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Abstract. Social assistive robotics aims at improving the quality of life
of elderly people and caregivers. Human Activity Recognition (HAR)
is one of the capabilities the assistive robot should be endowed with,
to allow aged people to independently live in their homes. This work
deals with the problem of performing HAR by employing two wearable
inertial sensors and one RGB-D camera, mounted on the social robot
Pepper. Specifically, the main purpose is to prove that Pepper robot
is able to correctly recognize daily living activities by exploiting the
information coming from the RGB-D camera and one inertial sensor
placed on the index finger of the subject. Ten users were asked to perform
ten activities while wearing an inertial glove, SensHand, and while being
recorded by the camera. Two different perspectives of the robot were
studied to understand if a good activity recognition could be obtained
when the robot is in front of the person and on his side. The results
show that almost the same recognition performances are obtained when
combining the visual sensor, no matter the chosen perspective, with the
inertial sensor only on the index (95%), with respect to the fusion of the
same camera with the inertial sensor on the index and on the wrist (96%).
This supports the conclusion that elderly people could just wear a small
ring on the index finger to allow the robot to recognize their activities,
taking advantage from a system which is comfortable and easy-to-wear.

Keywords: HAR · Gesture Recognition · Inertial Sensors · Visual Sen-
sors · Machine Learning.

1 Introduction

Over the past decade, major neurocognitive disorder (NCD) has become a public
health priority. The increasing number of people living with major NCD by 2050,
according to the World Health Organization, raises the question of care, together
with the risk of hospitalization, nursing home placement and the burden of pro-
fessional and informal caregivers. As a consequence, it leads to increased care
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costs. New initiatives based on psycho-social interventions, such as social-robot-
based therapy, have been proposed as alternative solution to improve the quality
of life of patients and caregivers [16,9,4]. Human Action Recognition (HAR) plays
a vital role in the field of Human-Robot Interaction and it is widely researched
for its potential applications [3]. It refers to an area of research that mainly in-
volves automatic detection, recognition, and analysis of human actions from the
data obtained from different types of sensors. Based on the specific applications,
there are several activities that the HAR system is able to recognize. Activities
of Daily Living (ADL) have given great importance to the monitoring of elderly
people. In particular, in an Ambient Assisted Living (AAL) monitoring people
while performing normal daily activities is essential [18]. In a AAL, activities like
eating or drinking can be very important to help people keeping a healthy life-
style, facilitating them to live longer in their family residential environments [11].
Different sensor modalities are employed in the HAR field. These include mainly
RGB-D cameras and inertial wearable sensors. RGB-D video cameras are widely
available and cost effective. They provide rich texture information of the scene
and they are easy to operate. However, the vision-based approach is challenging
many issues such as background clutter, occlusion, camera position, subject vari-
ations in performing actions and they are limited to a constrained space defined
by the camera position and settings. To address such challenges, wearable iner-
tial sensors are introduced to perform human action recognition. These include
accelerometers and gyroscopes. This sensor technology has enabled coping with
a much wider field of view as well as changing lighting conditions. Thanks to
the lowering in the energy consumption and the increasing in the computational
power of inertial sensors, long-term recordings have been enabled. These sensors
allow to receive information directly from the movement of the users, detecting
also fast and subtle movements without forcing them to stay in front of a cam-
era. However, wearable inertial sensors have limitations as well. One of the main
limitations is the sensor drift that may occur during long operation times; more-
over, measurements are sensitive to sensor location on the body. In addition,
for human action recognition, they require to be worn by subjects performing
the actions, which creates the disadvantage of intrusiveness or inconvenience for
the subjects. Even if a typical human action recognition system uses a single
sensor, no single sensor modality can cope with various situations that may oc-
cur in real scenarios. One way to improve the performance of the human action
recognition systems is to combine data from these two different modality sensors
considering that images from a visual sensor and inertial signals from a wearable
sensor provide complementary information. For example, images capture global
(or full body) movement attributes while inertial signals capture fine movements,
leading to a more robust recognition [6].

Therefore, the aim of this work is to combine inertial and visual data to obtain
a system which can offer a robust activity recognition. Specifically, the main goal
of this study is to go further the state of the art by evaluating whether an inertial
sensor placed on the index finger, combined with visual data, is good enough to
perform recognition of daily living activities. Skeleton data were obtained from
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a RGB-D camera mounted over a social humanoid robot, Pepper, and they were
combined with the inertial data acquired by a wearable glove, SensHand.

In a real-case scenario, a social robot could be very important to monitor
the status of older people at home. Indeed, even if gesture recognition can be
achieved by only exploiting fixed cameras and inertial data, it is much better
that the camera, ideally characterized by robot’s perspective, can move in the
environment following the elderly person when required; indeed, it is not feasible
to think of mounting several cameras to cover all the possible perspective in the
environments. In this sense, a not-fixed camera mounted on the robot could
overcome this limitation and could always adapt its point of view changing its
perspective when required (i.e. when the older person is moving and/or changing
activity or room). It is also very important to highlight that the interaction of
an elderly person with a social robot allows the former to have company and not
feel alone [19] [7].

In the proposed work, it is intended to simultaneously evaluate the perfor-
mances of the system in two real-case scenarios, i.e. when the robot is in front of
the person and when it is on the side. For this reason, during the experimental
phase, two cameras were mounted frontally and laterally with respect to the sub-
ject performing the activity, to simulate the sight of the robot from two different
perspectives. Such a system would improve the recognition rate of daily living
gestures, by allowing the caregivers to monitor elderly people, and in particular
people living with neurocognitive disorders, in any scenario.

The structure of the paper is herein presented: in Section 2 a general overview
of the related works is provided, while in Section 3 the architecture of the system
and the approach followed in this work are explained. Finally, in Section 5 and
Section 6 the results of the previously performed data analysis are respectively
presented and discussed.

2 Related Works

Several works focus on daily living activity recognition based on performed ges-
tures detected by inertial and visual sensors. In their work, Dawar et al. [8]
employed a wearable inertial sensor on the wrist and a Kinect v2 camera to rec-
ognize smart TV gestures. Acceleration and rotation signals from inertial sensors
and skeleton data from depth cameras were extracted to train a Variable length
Maximum Entropy Markov Model classifier. Action detection and recognition
were performed continuously in real-time with the aim of separating actions of
interest from actions of non-interest. Different scenarios were compared (subject-
specific vs. subject-generic) with different values of the threshold probability
p. The best performance in both the scenarios was observed at the threshold
probability of p=0.45, obtaining 92% of precision. Wearable depth cameras for
on-body activity recognition in home environment were used by Voigt et al. [21]
to recognize 10 daily living activities. In particular, the Google Project Tango
platform, which provides both a depth and an inertial sensor, was employed. Af-
ter segmenting the signal, for each segment mean and standard deviation were
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extracted as basic temporal features for all the sensors. With a total of nine
features, they were able to achieve accuracy levels > 90%. However, due to the
size and weight of the platform, the system is not comfortable enough to be worn
over long periods of time. Many works have combined inertial and depth sensors
to other devices to improve gesture recognition. Li et al. [12] considered tri-
axial accelerometers, micro-doppler radar and Kinect depth cameras to classify
10 different activities. Fusing information from the three sensors the classifica-
tion accuracy reached 86.9% with the quadratic-kernel SVM classifier, and up to
91.3% using an ensemble classifier. Manzi et al. [15] aimed to recognize ten daily
living activities using data from inertial sensors, worn on the index finger and on
the wrist, from a depth camera mounted on a mobile robot and from the robot
position, since the platform was able to self-localize in the environment. The
classifier used three different types of features: user location, provided by the
navigation module of the mobile platform, skeleton activity features, extracted
from the raw skeleton data, and inertial features: mean, standard deviation, vari-
ance, mean absolute deviation, root mean square, energy, and IAV (integral of
the magnitude of the acceleration vector), extracted from the accelerations’ sig-
nals. Different combinations were tested and a decision-level fusion was applied.
In their best configuration, namely fusion of depth camera, IMUs on wrist and
index finger and location, accuracy levels of 70% were achieved. Supervised and
unsupervised techniques are both used for classification. Usually a supervised
classifier is used when the number of label and the actions to be recognized
are already known. In particular, the most common ones are Support Vector
Machine (SVM) [10], [12], the Random Forest (RF) [15], [10], [12], [21] and the
K-Nearest Neighbors (KNN) [21]. Unsupervised approaches (e.g. k-means, Self-
Organizing Map, and Hierarchical Clustering) were compared with supervised
ones (RF, Multilayer Perceptron (MLP) and SVM) in [18]. The results reported
in [18] about the intra-subject analysis, obtained as the mean value of 12 subject-
dataset, were comparable with the results of the supervised analysis conducted
with the 10-fold cross validation approach.

3 System Architecture

One of the aims of this work is to develop a not intrusive technology that can be
adopted in real AAL scenarios as solution for monitoring the activity of elderly
people. The activity recognition relies on a multimodal system composed by a
wearable glove (i.e. Senshand) and a social humanoid robot (i.e. Pepper), as
shown in Fig. 1.

SensHand is composed of four inertial modules positioned in correspon-
dence to the wrist and to the thumb, index, and middle finger. Each mod-
ule is composed of a complete 9-axis inertial sensor (6-axis geomagnetic mod-
ule LSM303DLHC and 3-axis digital gyroscope L3G4200D, STMicroelectronics,
Italy) and includes a microcontroller (ARM®-based 32-bit STM32F10REMCU,
STMicroelectronics, Italy) which can acquire, filter and store data at a frequency
of 100 Hz [20]. Each module is able to measure metrics and parameters related
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to posture, orientation and movement of the human hand. It is very easy to
wear and to use thanks to its miniaturised and light structure; it is independent
from the physical build of the person wearing it and from artifacts caused by
the movement, making it suitable for remote rehabilitation and self-monitoring
[20]. The entire system weights about 50 grams and its dimensions correspond
to 3x4 cm as regards the wrist module and 1.5x1.5 cm for those on the fingers.

The system integrates a Pepper robot, which is the world’s first social hu-
manoid robot able to recognize faces and basic human emotions [2]. It is charac-
terized by a multimodal sensing (i.e. touch sensors, infrared, cameras and sonars)
thanks to which it can interact with people and move in an autonomous way. To
enrich the visual capability of the robot, a RGB-D camera (i.e. Intel Realsense)
is mounted on its chest over its tablet.

Fig. 1: Instrumentation employed: on the left, Pepper with the depth camera
mounted above the tablet, and on the right, SensHand wearable glove.

The connection to the devices has been established via Bluetooth to the
SensHand and via WiFi to the robot. Inertial data from the wearable glove and
skeleton data from the cameras have then been integrated through a Python
interface; in particular, two Python executables have been created to start data
acquisition and transmission from the glove, while visual data have been acquired
using the Robot Operating System (ROS) framework.

3.1 Experimental Protocol

The choice of the activities was based on the comparison between two public
datasets, the Cornell Activity Dataset (CAD-60 and CAD-120) and the MSR
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Daily Activity 3D Dataset. As result, ten activities in common between the two
datasets were chosen, in such a way that they were similar in pairs (see Tab. 1).

Table 1: Description of gestures performed for the experimental session.

Activity Description Position

EF: Eat with the fork Take the fork from the table, eat
and put the fork back continuously

Sitting on the chair

DG: Drink from a glass Take a glass from the table, drink
and put it back repeatedly

Sitting on the chair

BT: Brush teeth Take the toothbrush, brush teeth
and put it back

Sitting on the chair

UL: Use laptop Type on the keyboard with both
hands

Sitting on the chair

WP: Write on a paper Take a pen and write on a paper
continuously

Sitting on the chair

TP: Talk on the phone Take the phone, talk on it and put
it back

Sitting on the chair

WK: Walk Walk forward and backward re-
peatedly

Standing

SB: Sweep with the broom Take the broom, sweep and put it
back at the end

Standing

RC: Relax on the couch Sit comfortably on the couch and
relax

Sitting on the couch

RB: Read a book Take the book, read it and turn
pages repeatedly

Sitting on the couch

The experimental protocol consisted in the enrollment of 10 healthy par-
ticipants, half males and half females, right-handed, from 19 to 44 years old.
The experimental phase of this work was conducted in Sheffield (England), in
the Smart Interactive Technology (SIT) research laboratory of Sheffield Hallam
University. Study, design, and protocol, including subject privacy and sensitive
data treatment, were approved by the Ethics Committee of Sheffield Hallam Uni-
versity. At the beginning of the experimental session, written informed consent
was obtained from the participants. As a token of gratitude, participants received
an Amazon e-voucher of £10 after successfully completing the experiment. Dur-
ing the experimentation, each subject simulated the ten activities, each for one
minute, by wearing one SensHand glove on the dominant hand. The session was
recorded by two cameras, one mounted over the robot and one located on the
lateral side of the participant (Fig. 2) to acquire data from two different points
of view, saving time, instead of asking the users to perform twice the protocol.
The lateral camera is the same as the one mounted on Pepper and it was placed
at the same height from the ground. The Pepper robot gave instructions about
the action to perform and how to perform it. It is worth mentioning that the par-
ticipants were left free to grab the objects and act in the way they preferred, so
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no instruction was given in that sense. During the acquisition, each activity was
labeled manually by an operator using an ad-hoc web interface. In particular,
the interface has been appropriately created through an HTML code. It allowed
to connect the sensors and, once selected the activity, to start the simultaneous
data acquisition from the glove and the cameras.

At the end of the experimental trial, the participants were asked to fill in
the System Usability Scale (SUS) questionnaire to assess the system usability.
It consists of ten items with a five-point attitude Likert scale, providing a global
view of subjective assessments of usability. A value equal or higher than 68 means
that a certain technology is usable [1].

Fig. 2: Experimental setup in the Smart Interactive Technology (SIT) research
laboratory of Sheffield Hallam University.

4 Data Analysis

The proposed activity recognition is performed on several steps. Firstly, data
from the glove and the cameras have been analyzed on their own. This phase
involved the extraction of the features from the sensors: the skeleton coordinates
and inertial features. Then, the extracted features were organized in a database.
The activity recognition was performed by employing supervised machine learn-
ing algorithms on unimodal data, collected in the dataset, and multimodal data,
obtained by combining the previous ones. The multimodal classification was im-
plemented at fusion-at-feature-level [22].

4.1 Pre-processing And Feature Extraction For IMU

Since the main frequencies of the inertial signal were between 0 and 5 Hz, a 4th
order digital low-pass Butterworth filter was used, setting the cut-off frequency
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at 5 Hz, similarly to [17]. In particular, acceleration and angular velocity data
were filtered on their single components (x, y, z) and they were concatenated
computing the Euclidean norm. According to the results obtained in [17], only
the data coming from the wrist and index finger sensors of the glove have been
used for the activity recognition.

Inertial data were segmented by 50%-overlapping moving windows with a size
of 3 seconds, considering that some individual actions were very short. For each
window, many features were extracted. Tab. 2 shows the features extracted from
acceleration and angular velocity signals. The final dataset has been composed
by 10 features inherent to acceleration values and 6 features to angular velocities,
for both wrist and index finger, for a total of 32 features.

Table 2: Features extracted from inertial data in time (t) and frequency domain
(f).

Data Extracted Features

Mean value (t) Skewness (t)
Standard Deviation (t) Kurtosis (t)

Acceleration Variance (t) SMA: Signal Magnitude Area (t)
MAD: Mean Absolute Deviation (t) Normalized Jerk (t)
RMS: Root Mean Square (t) Power (f)

Angular Mean value (t) Mean Absolute Deviation (t)
Velocity Standard Deviation (t) Root Mean Square (t)

Variance (t) Power (f)

4.2 Pre-processing And Feature Extraction For cameras

As concerns RGB images analysis, the Openpose software [5] was employed to
obtain the skeleton features. In particular, 25 keypoints were estimated for the
body (see Fig. 3), where each of them represents the (x, y) pixels’ coordinates
of the joints. Some preliminary results show that a reduced set of joints could
improve classification performances [13]. In the present study, a restricted set
of joints was selected, namely composed by: head, neck, hands, feet and torso,
which has been shown to be the most discriminative for activity recognition [14].

A normalization step was applied to the extracted features: the original ref-
erence frame was moved from the camera to the torso joint, and the joints were
scaled with respect to the distance between the neck and the torso joint [14,15].
This normalization procedure yields data which are independent with respect to
the person’s specific size and to the relative position of the camera. Formally,
considering a skeleton with N joints, the skeleton feature vector, f , is defined for
each frame as in Eq. (1):

f = [j1, j2, . . . , ji, . . . , jN−1], (1)
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Fig. 3: Extracted skeleton for the 10 activities.

where each ji contains the normalized coordinates of the ith joint Ji detected
by the sensor. Finally, considering all the frames, ji expands to a vector and it
is defined as in Eq. (2):

ji =
Ji − J0

||J1 − J0||
, i = 1, 2, . . . , N − 1 (2)

where J0 and J1 are the coordinates of the torso and the neck joint, respec-
tively [14]. The number of attributes of the feature vector, f , is equal to 2(N−1).
Considering that in this case N = 7, the posture feature vector is composed by
12 attributes, which correspond to the x and y coordinates of the restricted set
of joints, excluding the torso which was used as reference.

The signal containing the skeleton features for each frame was segmented by
50 %-overlapping moving windows with a size of 3 seconds as the inertial ones,
and for each window the mean x and y joints’ coordinates were extracted.

4.3 Features Reduction And Datasets Creation

At the end of the features extraction, a total of 32 features were extracted from
inertial sensors (index and finger) and 12 from the skeleton data. The Kruskal
Wallis test was applied to obtain the most significant feature vector in distin-
guishing the group of instances. This test confirmed that the ten gestures, which
characterized the activities under investigation, were statistically different for all
the above features (p < 0.05). Finally, a correlation analysis was performed in
order to retain only the significantly uncorrelated features (Correlation Coeffi-
cient < 0.85). At the end, the remaining features were combined into different
combination of sensors considering also the two cameras’ points of view (Tab.
3). By knowing the acquisition frequency of the glove, i.e. 100 Hz, and the one
of the cameras, i.e. about 30 frames per second (fps), both incoming data have
been synchronised according to the recorded timestamps.
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Fig. 4: Representation of the human skeleton: original with 25 joints (left) and
subset of selected joints (right) with the torso joint as reference (in yellow).

Table 3: Combination of Sensors.

Acronym Combination

FC Frontal Camera
LC Lateral Camera
I Index finger
IW Index finger and Wrist
I+FC Index finger with Frontal Camera
I+LC Index finger with Lateral Camera
IW+FC Index finger and Wrist with Frontal Camera
IW+LC Index finger and Wrist with Lateral Camera
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4.4 Classification

The stand-alone systems (i.e. I, I+W, FC, LC) have first been classified to eval-
uate their performances. Then, all the different combinations, above mentioned,
have been classified as detailed in Fig. 5.

Fig. 5: Feature-level Fusion scheme.

For each classification model, the training set is composed by the 70% of
the original dataset, while the test set is composed by the remaining 30%. A
10-fold cross-validation was carried out on the training set. In particular, ten
different models were created at the end of the training phase. The 10-fold cross-
validation considers the 90% of the initial training set to train the model (train
set) and the remaining 10% to evaluate it (validation set). The data in the
mentioned sets change at each iteration, to prevent the model from overfitting.
The final classification results are based on an average of the performances. Three
supervised machine learning algorithms were used in the stand-alone and in the
combined classifications, reported in Tab. 3 :

– Multiclass Support Vector Machine (SVM): it exploits the kernel trick to
deal with multiclass problems. It maps the input space into a higher di-
mensional space by using kernels, to make the problem linearly separable,
and then it finds the hyperplane that can separate the two classes with the
largest margin. In this work, it has been trained by using Sequential Minimal
Optimization (SMO).

– Random Forest (RF): it is an ensemble learning method for classification
and regression. It operates by constructing a multitude of decision trees at
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training time and outputting the class that is the mode of the classes of the
individual trees, with the goal of reducing the variance.

– K-Nearest Neighbor (KNN): it is a simple algorithm which stores all available
cases and classifies new cases based on a similarity measures, which are
distance functions. They are assigned to the most common class among its
k nearest neighbors. If k = 1, the object is simply assigned to the class of
that single nearest neighbor.

These classifiers were trained to recognize ten classes for each system, which
correspond to the ten activities. The classification procedure was implemented
and evaluated in MATLAB and the classification performances were evaluated in
terms of accuracy, precision, recall and F-measure. In the following, the confusion
matrices, corresponding to the configurations with the best accuracy, have been
reported to understand the degree of recognition of the different gestures and to
evaluate the performances also at gesture level.

5 Results

For the aim of this work, different combinations of sensors were evaluated and
three classifiers were applied. The features retained after the feature selection
described in Sec. 4.3 are reported in Tab. 4, for each combination. The classifi-
cation results of the stand-alone system was taken as a gold-standard reference
for comparison.

Table 4: Features selected after correlation analysis.

Index+Wrist Index Cameras

Wrist acc. mean Index acc. mean Index acc. mean Head x
Wrist acc. stdev Index acc. stdev Index acc. stdev Head y
Wrist acc. RMS Index acc. RMS Index acc. RMS Neck x
Wrist acc. skewness Index acc. skewness Index acc. skewness Neck y
Wrist acc. kurtosis Index acc. kurtosis Index acc. kurtosis Left hand x
Wrist acc. SMA Index acc. SMA Index acc. SMA Left hand y
Wrist acc. power Index acc. power Index acc. power Right hand x
Wrist ang. vel. mean Index ang.vel. mean Right hand y
Wrist ang. vel. stdev Index ang.vel. stdev Left foot x
Wrist ang. vel. power Index ang.vel. power Left foot y

Right foot x
Right foot y

5.1 Stand-Alone Systems

Inertial Sensors The system was evaluated by considering the index sensor (I)
and the combination of the index and the wrist sensors (I+W). In the former
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case, the activity is described by a total of 10 features (first column of Tab. 4),
while in the latter case 17 features are attributed to each activity. The results,
shown in Tab. 5, suggest that inertial sensors are quite good in recognizing
human gestures, especially when considering I+W combination (up to 86% of
accuracy). Indeed, when considering only the inertial sensor on the index, values
of 78% are obtained for accuracy, precision, recall and F-measure.

Table 5: Results obtained by inertial sensors

I+W I

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

SVM 0.86 0.86 0.86 0.85 0.78 0.78 0.78 0.78
RF 0.84 0.84 0.84 0.84 0.68 0.70 0.68 0.68
KNN 0.86 0.86 0.86 0.86 0.78 0.76 0.76 0.76

Visual Sensors The feature selection steps returned that all the skeleton fea-
tures were uncorrelated and relevant for the proposed task. As reported in Tab.
4, a total of 12 features for frontal camera and 12 features for lateral one were
used as input to the classifiers. Classification results indicate that the frontal
camera is able to recognize the activities with a 95% of accuracy by considering
KNN classifier, with respect to the 87% of the lateral camera, as shown in Tab. 6.
The results related to the lateral camera are comparable to the ones achieved by
inertial sensors alone when considering both wrist and index (86% of accuracy),
and higher than the ones obtained by the index sensor alone (78% of accuracy).

Table 6: Results obtained by the cameras

FC LC

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

SVM 0.94 0.93 0.93 0.93 0.84 0.88 0.84 0.85
RF 0.86 0.86 0.86 0.86 0.82 0.82 0.82 0.82
KNN 0.95 0.95 0.95 0.95 0.87 0.92 0.87 0.88

The results reported in Tab. 5 and Tab. 6 indicate that the RF algorithm is
the worst among all, being unable to correctly classify the ten activities. On the
contrary, SVM and KNN are comparable in the performance when considering
inertial sensors alone (86% and 78% of accuracy for I+W and I, respectively).
The results obtained by the cameras suggest that KNN classifier achieves the
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best performance in classifying skeleton features (95% and 87% of accuracy for
frontal and lateral camera, respectively).

5.2 Fusion At Feature-Level

Four combination of sensors were considered. The combination of index-wrist
sensor and frontal camera (IW+FC) is characterized by a total of 29 features,
while the combination of the index sensor and the frontal camera (I+FC) de-
scribes the activity with 22 features (see Tab. 4). The same number of features
characterized the combinations made by substituting the frontal camera with
the lateral one. The results achieved by the feature-level fusion are shown in
Tab. 7 and Tab. 8.

Table 7: Fusion at Feature-level’s Results with Frontal Camera

IW+FC I+FC

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

SVM 0.90 0.90 0.90 0.90 0.95 0.95 0.95 0.95
RF 0.94 0.94 0.94 0.94 0.93 0.93 0.93 0.93
KNN 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95

Table 8: Fusion at Feature-level’s Results with Lateral Camera

IW+LC I+LC

Accuracy Precision Recall F-measure Accuracy Precision Recall F-measure

SVM 0.84 0.87 0.84 0.84 0.85 0.90 0.85 0.86
RF 0.96 0.97 0.96 0.96 0.94 0.94 0.94 0.93
KNN 0.87 0.91 0.86 0.87 0.85 0.90 0.85 0.86

The classification performances obtained by the frontal camera and the iner-
tial features are comparable to the ones achieved by the frontal camera classifier
(accuracy is 95% and 94%, respectively). An improvement in the performances
is obtained by combining the lateral camera with the inertial sensor. The lat-
eral camera (LC) alone got an accuracy up to 87% (see Tab. 6. It improves up
to the 96% when considering the lateral camera together with the inertial fea-
tures (IW+LC). In the same way, precision, recall and F-measure improve up
to 97%, 96% and 96%, respectively. Looking at the results obtained by using
only the index sensor, the results are prominent. In the combination with the
frontal camera (I+FC), the system obtains 95% of accuracy, precision, recall
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and F-measure, which slightly outperforms the IW+FC configuration (94% of
accuracy, precision and recall). When considering the combination of the index
sensor with the lateral camera (I+LC), 94% of accuracy is obtained, comparable
to the 96% achieved when considering also the wrist sensor (IW+LC).

Comparing the performances of the classifiers on the fusion at feature-level,
the results highlight a general good performance. In the IW+LC and I+LC cases,
the RF got an higher accuracy (improved by 9%) with respect to the other al-
gorithms. Both RF and KNN obtain the same performances in the IW+FC
combination (94% of accuracy, precision, recall and F-measure), while SVM
outperforms in the I+FC combination (95% of accuracy, precision, recall and
F-measure).

To analyse the performances of the SVM classification at activity level, the
normalized confusion matrices of I+FC and I+LC configurations are shown in
Fig. 6 and Fig. 7, in which each cell value has been normalized by the number of
observations that has the same predicted class. The system composed by index
and frontal camera (see Fig. 6) can correctly recognize the activities ’Talk on
the phone (TP)’ and ’Brush teeth (BT)’, while it encounters some difficulties in
recognizing the activities ’Relax on the couch (RC)’ and ’Sweep with the broom
(SB)’. The confusion matrix in Fig. 7 displays the performances of the I+LC
configuration. With respect to I+FC, the SVM classifier is not able to correctly
recognize the activity ’Brush teeth (BT)’ when considering the lateral camera.
In this case, the best recognized activity is ’Eat with the fork (EF)’, and good
results are obtained also for ’Relax on the couch (RC)’ and ’Talk on the phone
(TP)’ activities.

Fig. 6: Normalized confusion matrix obtained by SVM classifier for index and
frontal camera
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Fig. 7: Normalized confusion matrix obtained by SVM and classifier for index
and lateral camera

The data analysis show that the average SUS score was equal to 72.4 (Stan-
dard Deviation equal to 14.5), meaning that usability is good (grade B).

6 Discussion And Conclusion

In this work, cameras and wearable inertial sensors have been combined to en-
hance the capabilities of the robot to recognize human activities. One of the
AAL aims is to develop a social robot which is able to recognize human gestures
in a non invasive way (i.e. by only exploiting the visual information). The sys-
tem employed in this work focused on life-like situations, where the users were
free to perform the activities. Particularly, in this paper, two different visual
perspectives (frontal and lateral) were introduced in the experimental session to
explore how the relative position between the robot and the user can affect the
recognition task. This work shows that high levels of accuracy are obtained when
considering the frontal camera alone. This suggests that the robot can properly
recognize the human activities if it is in front of the person. However, this is not
a realistic situation. It is quite unlikely that the robot is always perfectly facing
the subject. It will more likely be positioned slightly to the side, decreasing its
recognition abilities due to occlusion’s problem. Moreover, in a life-like situation,
the robot and the person could be in relative movement, leading to a decrease
in the recognition performances. It is expected that the combination of visual
sensors with inertial ones could limit these issues and greatly improve the per-
formances, making the system able to monitor quite well the person in real-time
in almost every scenario, avoiding as much as possible delays or mistakes that
could affect elderly quality of life.
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Four different configurations have been tested with a feature-level fusion ap-
proach, i.e. features from frontal camera, wrist and index (IW+FC), from frontal
camera and wrist (I+FC), from lateral camera, wrist and index (IW+LC) and
from lateral camera and index (I+LC), to understand which is the best combi-
nation of sensors.

The selection of gesture appropriately created is made of activities in which
the hands are often moved to the head to perform the action, i.e. eating with
the fork, drinking from a glass, brush teeth and talk on the phone. These actions
are quite similar and difficult to recognize. However, by looking at the confusion
matrices, it is possible to appreciate in which extent the system is able to recog-
nize each of them: all the activities are well differentiated and there is no activity
which is significantly exchanged for another one. These results suggest that the
proposed multi-modal approach could overcome some limitations related to the
camera occlusion and similarity between fine gestures.

The results obtained by this fusion of sensors suggested that inertial sensors
need to be worn by the user to obtain the best possible gesture recognition. This
implies that the person should wear at least two sensors (e.g. smart bracelets
and smart ring) during his daily living activities to obtain a good recognition
accuracy. There are limitations related to that, because the system could be
cumbersome and not easy to wear and to use, especially for elderly people. It
is important that they can perform all the movements, which could already be
impaired due to their ages, with as little encumbrance as possible. Comparing the
performances of the combined classifiers, the results obtained when considering
only index and camera are almost the same, and sometimes even better, with
respect to the ones achieved by wrist, index and camera combination.

The results achieved in this work outperform the ones obtained by Manzi et
al. [14]. In this work, accuracy levels up to 95% are obtained when considering
I+FC combination, compared to the 71% achieved by Manzi et al. when con-
sidering skeleton data combined to location and wrist features. For this reason,
it can be concluded that the use of an inertial ring on the index can be enough
to recognise daily living activities and it can also be less bulky. The proposed
system could easily become usable in different conditions, since the whole sys-
tem can adapt to various situations: the robot can be positioned wherever in the
room and the wearable sensors can be used everywhere.

In this work, the analysis of the data has been conducted offline. However,
this application aims to achieve a system which is able to recognize the gestures
in real-time by exploiting the combination of the two sensor modalities.

In conclusion, recognition of daily activities is crucial when monitoring el-
derly people at home. This is an additional challenge, as the accuracy, precision
and usability of obtained data should be high enough to allow the caregivers to
remotely monitor the patients, in particular people living with major neurocog-
nitive disorders, allowing them to stay longer at their own place. In the proposed
work, the experimentation has been carried out with young healthy people to
evaluate whether the system composed by a camera and an inertial ring on
the index finger could be used to recognise significant daily gestures, obtaining
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positive and promising results. However, it is necessary to test the system also
with elderly people to check the performances of the same configuration of sen-
sors. Hence, future experimentation will involve elderly people who could have
physical impairment, linked to neurodegenerative diseases like Parkinson and
Alzheimer Diseases.
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