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Muhammad Aslam Jarwar Senior Member, IEEE

Abstract— The provision of physical healthcare services during the
isolation phase is one of the major challenges associated with the
current COVID-19 pandemic. Smart healthcare services face a major
challenge in the form of human behavior, which is based on human
activities, complex patterns, and subjective nature. Although the
advancement in portable sensors and artificial intelligence has led
to unobtrusive activity recognition systems but very few studies
deal with behavior tracking for addressing the problem of variability
and behavior dynamics. In this regard, we propose the fusion of
PRocess mining and Paravector Tensor (PROMPT) based physical
health monitoring framework that not only tracks subjective human
behavior, but also deals with the intensity variations associated with
inertial measurement units. Our experimental analysis on a publicly available dataset shows that the proposed method
achieves 14.56% better accuracy in comparison to existing works. We also propose a generalized framework for healthcare
applications using wearable sensors and the PROMPT method for its triage with physical health monitoring systems in
the real world.

Index Terms— Activity Recognition, Deep Learning, Process Mining, Smart Healthcare, Wearable Sensors

I. INTRODUCTION

CURRENTLY we are facing a pandemic in the form of
COVID-19. The situation requires self-isolation at home

as the first line of defense. If an individual is asymptotic
or has mild symptoms, physical inactivity becomes the risk
factor for various diseases [1]. Researchers are trying to build
a defense mechanism to slow the spread of COVID-19 through
automated means that include physical health monitoring,
physical action recognition, and contact tracking. Physical
human activity has always been an epitome of a healthy
lifestyle. In the context of the COVID-19 pandemic, that
is, self-isolation, lifestyle, and health monitoring, can all be
performed together through physical action recognition which
is required for personal wellbeing. Monitoring of such sort
is only possible if the monitoring devices and software are
ubiquitous and ubiquitous. Thanks to wearable technology
such as smartwatches, body-worn sensors, and smartphones
that allow the collection of sensor data without affecting the
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activities of daily life [2]. The modalities that can be recorded
automatically through the devices mentioned vary from inertial
units to heart rate and blood pressure measurement.

A process in process mining can be referred to as a set of
tasks that are carried out temporally to attain the desired goal
[3]. With the recent advancements in micro-electromechanical
systems (MEMS) the industries and organizations prefer to
record the log of process-related events. The field of process
mining combines the characteristics of process modeling, data
mining, and computational intelligence to discover temporal
events and transform them into a process model that could
be observed and analyzed accordingly [3]. Process discovery,
i.e., extracting the model from event log, is a vital component
of process mining framework which can be realized through
state-charts, UML activity diagrams, process trees, Petri Nets,
and BPMN models [4]. The process mining techniques were
originally proposed for analyzing and modeling business
processes, but over time its scope has been broadened to
other domains and therefore can be used for human activity
recognition.

The semantic meaning of the event labels generated from
business process event logs was clear in their terms, such
as to request, mortgage, register, and so forth. However,
the event logs generated from inertial sensors worn by the
humans or motion sensors placed at different places in a home
environment have much more complex event labels. This dis-
criminates the use of process mining with traditional business
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processes and in smart environments such as smart homes,
smart learning, and more. Now, process mining techniques are
widely used to model human behavior [5]. The modeling of
human behavior through generated process models is helpful
in the independent living of elder people, healthy lifestyle,
health monitoring, learning behaviors, gaming behaviors, and
so forth. However, modeling behavior is a complicated task
due to the generation of event logs on the sensor level, but the
analyst might be interested in investigating the process of how
the activities are performed by an individual while interacting
with the sensors. In simple words, generating the event log
based on sensor activations in smart homes produces non-
informative behavior models while overgeneralizing events [6].
In addition to temporal characteristics, researchers have also
tried to recognize human activities through various combina-
tions of feature extraction and machine learning techniques.
However, most of the features extracted are based on cor-
relations and the intensity levels of sensor readings, which
are sensitive to abrupt changes of hand or wrist movements.
The inhomogeneity in the intensity levels of sensor readings
at different scales makes it difficult for the machine learn-
ing algorithm (specifically shallow learning methods such as
support vector machines and logistic regression) to recognize
actions accurately. Furthermore, the changes also vary in terms
of human behavior because performed activities depends on
individual’s style [7]. The use of paravectors was introduced
for complex shape analysis using 3D vectors in Euclidean
space. Considering that the wearable sensors have three-axial
inertial measurement units, we can think if as plane fragments
that can be used to define a new object, i.e., a paravector.

In this study, we propose a human behavior-based physical
healthcare monitoring system. The underlying recognition
relies on the fusion of process mining and paravector tensors
based deep learning methods. The process mining helps to
learn the temporal associations among the activities based
on human behavior, while the paravector tensors would sup-
press the shortcomings regarding correlation-based features for
learning activity patterns from 3-D sensor data. We show that
the proposed approach achieves state-of-the-art results on a
publicly available dataset in comparison to the existing works.
Furthermore, we propose a generalized framework based on
the fusion method for monitoring physical health using mul-
tiple modalities for a potential triage and integration method
with emerging technologies. To the best of our knowledge,
this is the first work to propose a paravector-based solution
for sensor-based activity recognition and its fusion with the
process mining approach. The contributions of this paper are
summarized below.

• We propose a paravector tensor-based solution for human
activity recognition using wearable sensors.

• We propose a fusion scheme to combine the process min-
ing and the deep learning method based on a paravector
tensor to improve the recognition process.

• We propose a generalized framework that can use multi-
ple modalities for physical health monitoring during the
COVID19 pandemic.

• We report the best quantitative results on a publicly

available dataset in comparison to existing approaches.
The remainder of this paper is structured as follows. Section
II provides a review of articles that focus on modeling the
behavior of human activities. Section III presents the method-
ology for the proposed PROMPT framework to recognize
human actions. Section IV presents an experimental setup,
results, and analysis to show the importance of behavior
modeling in the context of the activity recognition domain and
its comparison with existing methods. Section V proposes a
generalized framework for physical healthcare monitoring in
the context of a pandemic situation using multiple modalities.
Section VI concludes the study, followed by future research
directions.

II. RELATED WORKS

In this section, we present a consolidated review of the
studies using process mining to model human behavior in the
context of human activities. As the field of process mining
is quite recent, there are a few studies that consider these
techniques to extract behavior patterns from daily activities.
The underlying assumption for using process mining is that an
activity can be considered as an event of the process instance,
and the behavior can be explored by analyzing the series
of events executed in that process. The study in [6] paved
the way for analyzing user behavior for high-level activities
using process mining techniques. The logs of activities were
recorded through smartphones and smartwatches. The logs are
then transformed into modeling macroactivities. This study
captured the true essence of instrumental activities of daily
life (IADL) using process mining techniques, as they focused
on the interaction of user activity with respect to location,
reflecting human behavior when performing different activities
at different places.

Fernandez-Llatas et al. [8] focused on modeling the be-
havior of workers in the health care domain, which is the
hospital area. The activity information was based on the
location sensors deployed in the surgical areas of the hospital.
The collected data from the indoor location was then used to
recognize macro activities followed by the process discovery
to analyze the staff behavior. The authors adapted the process
mining tool: parallel activity-based log inference algorithm
(PALIA) [9] to build a Petri Net on the principles of formal
automaton, i.e., timed parallel automaton for representing the
process. [10] proposed the use of a “knowledge layer” that acts
as an intermediary to map raw sensor data, that is, location and
time, from real-time location systems (RTLS) to event logs.
The authors [10] refer to the knowledge layer as an interaction.
Process mining approaches are then used to discover the pro-
cess models from the transformed event logs, assuming that the
interaction module has prior domain knowledge. [11] focused
on modeling user habits in a smart home environment. Their
work considered the case study of the smart home project from
the center for advanced studies in adaptive systems (CASAS)
laboratory of Washington State University. The smart home
was equipped with temperature sensor, switch sensors on
the main entrance door, and passive infrared (PIR) sensors;
which were activated in a sequence when a user performed a
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specific activity. The user habit modeling was performed using
Fuzzy miner for multiple inhabitants in the smart home. [12]
proposed the event abstraction method, which derives high-
level activity from the relationship of their patterns and low-
level event logs. Domain knowledge is required to capture
user behavior patterns to perform event abstraction. The ad-
vantage of using such abstraction is two-fold. First, process
mining techniques will be able to get more insights from the
abstracted event log compared to low-level events, and second,
the robustness to handle the noise. Their proposed method
was evaluated in a hospital setting with the help of experts
in the Norwegian hospital domain. [13] exploited process
discovery techniques from sensor activation logs to derive
activity models. The activity models were then used to analyze
user behavior. The major contribution of this work was to
characterize event logs in macro- and microactivities generated
from user annotations and sensor activations, respectively. The
event logs from the respective source, i.e., macro- and micro-
activities were pre-processed to remove the noise, and process
discovery techniques were used to generate the macroactivity
models for the user behavior analysis. [14] focused more on
deriving an alternative method to conventional pattern recog-
nition to infer activities and user behavior. Their study relied
on knowledge representation and process mining techniques to
infer a graphical visualization that depicts the action sequences
performed daily. These visualizations were then used to infer
the activities and user behavior patterns. [7] proposed a way to
combine the characteristics of machine learning with process
mining techniques to recognize personalized macro-activities,
as well as to extract user behavior patterns to solve a cold-start
problem. The contribution of this work mainly lies with the
solution of activity handling problem suggesting that the user
performs the same activity differently when performing them
at different locations, and also they might perform different
activities in comparison to other users. Their study proposed
a similarity metric that can determine the closest available
model in the existing pool of samples based on user behaviors.
Once selected, the model will then be used to predict the
macro-activities of the user. This work is also one of a kind
as it can be applied to both sensor activations and inertial
measurement units. The study [15] proposed the use of process
mining to discover behavior patterns from activities carried
out using sensor data. The process model was generated using
flow patterns based on sensors, time, and users in a smart
environment. Another study [16] used the pattern mining
approach to model user behavior using gait pattern analysis.
The study used various filters and cubic spline techniques to
analyze the user’s gait to recognize high-level activities.

Although the studied used process mining techniques to
understand user behavior, some studies focused on improving
the modeling process for mining activity patterns [17]. These
studies performed filtering, abstraction, and other techniques
to reduce the complexity of the generated process model, i.e.,
transforming a spaghetti model to a lasagna-like process.

III. PROMPT
The proposed PRocess Mining and Paravector Tensor

(PROMPT) framework for physical healthcare monitoring us-

ing wearable sensors is shown in Figure 1. PROMPT leverages
the characteristics of process mining to model human behavior
while using paravector tensors to improve the variability in
intensity of sensor readings for improving recognition perfor-
mance. We first define the method for extracting 3D paravector
representation, followed by the extraction of indicators and
responses and their transformation to tensors. We then briefly
define the adopted methodology for process mining based
approach. Lastly, we describe our fusion method for improving
the action recognition performance, accordingly.

A. Paravector Tensor Module

As shown in Figure 1, we first apply a separable quadrature
filter on the alpha scale space in polar space. Quadrature
filters have been successfully used for 2D image signals and
have proved that the features are resistant to lighting and
contrast. We intend to use the quadrature filter for making the
features resistant to intensity levels, accordingly. We denote
the angular frequency and the radial frequency by ℑ(rk) and
ℑγ(w). The filter kernel based on the said frequencies can
be defined as (ℑγ(rk, w) = ℑ(rk)ℑγ(w)). The notation rk
refers to orientation, and γ represents scale space, respectively.
The frequency coordinates for the scale space are defined as
w = (w1, w2). We adopt the technique introduced in [18]
to apply a fractional order derivative on scale spaces for
constructing the radial function while considering the value of
γ = 0.25, hence the name quarter-scale kernel. The quarter-
scale derivative is then represented in frequency domain using
the formulation shown in equation 1. The mathematical proofs
for deriving the scale spaces are given in [18], [19].

ℑγ(w) = normc w
j exp(−

√
scale · w) (1)

where scale refers to the scaling factor, normc represents the
normalization constant and j ∈ R+. The formulation for the
octave bandwidth B, normc, and the peak tuning frequency
w0 are given in equation 2.

w0 =
4j2

scale
, normc = 2

√
π/4(22j+1)(scalej+0.5)√

2(2j + 1)

B =
2 ln(W(−1,α)

W(0,α) )

ln(2)
, α = −2−

1
2j

e

(2)

The notation W represents the Lambert function in equation
2. The derived filter comprises both the imaginary (odd-
symmetric) and real (even-symmetric) parts, respectively. The
selectivity of responses to the orientations is determined by
the angular component, that is, (r̂k · ŵ)2. The orientation of
the filter directing vector is given as (k π

3 ) suggesting that only
three directions will be considered for the feature extraction,
accordingly.

The second feature extraction technique employed for the
paravector tensor module is the rotational paravector function
using the Riesz transform [20]. The transform projects the
summation of oriented symmetric patterns from time-series
data in a 3D vector, i.e. two imaginary parts and one real
part. We denote the rotational paravector as ℜrk

T (w) and the
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Fig. 1. Proposed PROMPT Architecture for Physical Healthcare Monitoring

formulation to calculate the rotational paravector is shown in
equation 3.

ℜrk
T (w) = (h̄ ∗ U ∗ ℑrk

γ )(w), when h̄ = (h̄1, h̄2) (3)

The notation h̄ and U refers to the Fourier domain repre-
sentation of the Riesz transform and the L2 norm of the
sensor modality readings, respectively. The representation of
odd parts regarding 3D paravector is shown in Equation 4.

h̄ =
√
−1(h̄1(w) +

√
−1h̄2(w))

=
√
−1

w1

∥w∥2
+
√
−1(

√
−1

w2

∥w∥2
)

=

√
−1w1 − w2

∥w∥2

(4)

With reference to Equation 4, we can compute even and odd
responses using Equations 5 - 7.

Erk(x) = real(F−1(Ū(w) ∗ ℑrk
γ (w))) (5)

hrk1 (x) = real(F−1(Ū(w) ∗ ℑrk
γ (w) ∗ h̄(w))) (6)

hrk2 (x) = imag(F−1(Ū(w) ∗ ℑrk
γ (w) ∗ h̄(w))) (7)

where Erk , hrk1 , hrk2 , represent the even and odd parts while
F−1 refers to the inverse Fourier transform, respectively. The
study [21] showed that the local features from 3D paravector
function can be estimated using Clifford analysis. These
local features exhibit the direction information in terms of
phase through local orientation θrkT and local phase ϕrkT . The
aforementioned features are obtained using Riesz energy and

paravector energy functions which are shown in equation 8
and 9.

Erk
T =

√
Erk2 + Erk

h , E
rk
h =

√
hrk

2

1 + hrk
2

2 (8)

θrkT = arctan2(hrk2 , h
rk
1 ), ϕrkT = arctan(

Erk
h

Erk
) (9)

where θrkT ranges between [−π, π] and ϕrkT ranges between
[−π/2, π/2]. Finally, we transform the paravector valued func-
tions into tensor representation using the formulation shown
in equation 10.

τ =
∑
k

Mrk(ẐkẐ ′
k − ρI) (10)

where τ represents the paravector tensor, M represents
the features, i.e., Erk

T , θrkT , and ϕrkT . The notation Ẑk

refers to the normalized column vector defined as Ẑk =
[cos(normc); sin(normc); 1]. An identity matrix of size 3x3
is denoted by I and ρ refers to the orientation scale, which
is 0.25, respectively. The derived tensor representation is then
processed through a deep learning architecture to extract the
feature vectors. It should be noted that the paravector tensors
derived above are for a single window and a single modality.
For instance, τacc1 represents the tensor representation for
1st window of accelerometer sensor. Therefore, the tensor
representation for all windows and modalities are provided
as input to the deep learning architecture.

B. Process Mining Module
This section provides information regarding the basic no-

tation used in process mining techniques in the context of
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activity recognition studies. The process instance can be
formally characterized by three elements, i.e. event, trace, and
event-log.

An event E can be represented in the form of a tuple
<α, r, t> , where α refers to an activity of a set of activities
A, r refers to the resource who performed the activity, and t
represents the time stamp at which the activity is performed
by a specific resource. Let us assume that a user named Oliver
∈ R performs an activity Personal Grooming ∈ A at 9.15 on
June, 1st 2016. The tuple for this event can be represented as
〈Personal Grooming, Oliver,”2016-06-01 09:15:00”〉. A trace
T r refers to the sequence of events {ϵ1, . . . , ϵn} in temporal
ordering such that each event is unique, i.e. ∄ϵi, ϵj and i ̸=
j|ϵi = ϵj ∧∀i,j with i < j, ti ≤ tj . An event log ϵl records all
process instances in a dataset. An event log stores the trace
( T r) of a process instance according to its temporal order
of occurrences. An ϵl can be represented as {T r1, . . . , T rk}
such that every ϵ appears only once in the complete log, i.e ∀ϵ
∈ ϵl,∄T ri, T rj |ϵ ∈ T ri∧ ϵ ∈ T rj . An example of a trace for
a set of activities from a publicly available dataset is shown
in Table I.

TABLE I
SNIPPET OF TOY DATASET SHOWING MORNING ACTIVITIES

A R T
ϵ1 Personal Grooming Oliver 2016-06-01 09:15:00
ϵ2 Eating/Drinking Oliver 2016-06-01 09:57:03
ϵ3 House Work Oliver 2016-06-01 10:09:27
ϵ4 Socializing Oliver 2016-06-01 11:21:47
ϵ5 Personal Grooming Robert 2016-06-01 07:12:21
ϵ6 Desk Work Robert 2016-06-01 07:23:02
ϵ7 Socializing Robert 2016-06-01 07:52:28
ϵ8 Personal Grooming Oliver 2016-06-02 08:29:11
ϵ9 House Work Oliver 2016-06-02 09:02:03
ϵ10 Eating/Drinking Oliver 2016-06-02 09:52:07
ϵ11 Socializing Oliver 2016-06-02 10:33:29

With reference to the example shown in Table I, the set of
activities and resources can be described as A ={Personal
Grooming, Eating/Drinking, House Work, Socializing}, and
R = {Oliver,Robert}, respectively. The traces with re-
spect to the particular sequences of events shown in Table
I are represented as follows: T r1 = {ϵ1, ϵ2, ϵ3, ϵ4}, T r2 =
{ϵ5, ϵ6, ϵ7} , and T r3 = {ϵ8, ϵ9, ϵ10, ϵ11}. These event logs
provide some insights regarding the user behavior, for instance
each event starts with activity “Personal Grooming” and ends
with an activity “Socializing”. However, the ones performed
between these activities vary from T r1 − T r3, with some
abnormalities/commonalities of course, for instance, activities
“House Work” and “Eating/Drinking” appear together in two
of the traces. In reality, there are thousands of events in
real-world event logs, and it is nearly impossible to perform
a manual analysis. Therefore, generating process flows and
looking for such events corresponds to the field of process
modeling.

There are several process discovery techniques for deriving
a process model from the event log if it is not available in the
first place. The most common techniques for process discovery
include infrequent inductive miner, Heuristic miner, Fuzzy
miner, and Alpha Miner [3]. The infrequent inductive miner

discovers the model based on the process tree principles, where
the activity or the process is represented through a leaf node
and an operator is represented as a branch node. The output of
the infrequent inductive miner is represented by Petri Net. The
miner filters the infrequent instances. The model discovered
through inductive miner is considered to be one of the soundest
ones (refer to the soundness [3]), i.e. the final marking is
always reachable when the process is executed using Petri
Net. The heuristic miner is similar to the infrequent inductive
miner in the sense that they both filter the infrequent behaviors.
The heuristic miner is also related to Alpha miner, where it
extends the mapping of casual relationships between activities
and applies some heuristics while considering the frequency of
the relationships. This allows a heuristic miner to differentiate
between the parallel and sequential activities, accordingly.
The fuzzy miner provides a high-level abstraction of the
process model by grouping the most infrequent instances.
The output generated using a fuzzy miner aggregates the
infrequent activities as a single activity, while displaying the
most frequent ones with their prior relations. In this study,
we employ the associative classifier method that uses process
mining technique at its core as proposed in study [7]. However,
instead of directly classifying activities and generating process
model, we use the class association rules and transform them
into a numeric matrix and flatten them to generate the feature
vector, accordingly.

C. Fusion Module
It has been proved by several existing studies that fusing

multiple modalities or diverse characteristics from different
feature set improves the activity recognition performance [2],
[22]. Most of the studies employ decision-level fusion, i.e.,
combining the classification scores using weighted averaging,
due to its simplistic approach. Although improved results have
been achieved using the said approach, it does not exploit
correlations among heterogeneous feature sets or multiple
modalities. In this regard, the PROMPT architecture performs
feature-level fusion to model the correlations between features
based on the paravector tensor and features based on the rules
of the class association to enhance recognition performance.
There are many techniques proposed to fuse the feature
vectors from multiple streams such as hard fusion, soft fusion,
and direct fusion [23]. Direct fusion simply concatenates the
feature vectors, thus, it does not model the correlations quite
well. Therefore, in this study, we investigate the latter two
techniques for feature level fusion. The hard fusion strategy
passes the feature vector through a fully connected layer
followed by a sigmoid function. A Gumbel softmax method
is used to compute the hardmask obtained from the sigmoid
function [24] which consists of binary values. Let’s denote
the feature vector obtained using paravector tensor module as
featpt and the feature vector from the process mining module
as featpm, the computation for hard fusion is given as:

Spt = σ(featpt), Spm = σ(featpm)

Gpt = gumbelsm(Spt), Gpm = gumbelsm(Spm)

ψhard(featpt, featpm) = [featpt ⊙Gpt; featpm ⊙Gpm]
(11)
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The only difference between the hard and soft fusion method
is that the Gumbel softmax method is not used, therefore,
soft fusion only generates a softmask multiplied element wise
with its corresponding modality. The computation for the soft
fusion is shown in Equation 12

Spt = σ(featpt), Spm = σ(featpm)

ψsoft(featpt, featpm) = [featpt ⊙ Spt; featpm ⊙ Spm]
(12)

IV. EXPERIMENT AND ANALYSIS

In this section, we first provide the details regarding exper-
imental setup, followed by the network and parameter details
used for the proposed method. We then present experimental
results and comparisons with existing work to prove the
efficacy of the proposed approach.

A. Experimental Setup

The experimental analysis has been carried out on daily
life log dataset [5]. The rationale for choosing the dataset
is because of the availability of raw sensor data as well
as high-level activity labels in relation to low-level actions.
We employ recently proposed Transformer networks [25] as
our deep learning architecture, and CAPHAR method [7]
for computing class association rules. The process model
is generated using Inductive miner in PRoM and decision
trees with Python 1 were used for predicting the high-level
activity label, accordingly. We also compare the performance
in terms of accuracy and average execution time obtained
using the proposed framework with some existing methods,
as shown in Figures 2 and 3. The existing methods include,
DeepConvLSTM [26], Deep Residual Bidirectional LSTM
(DRBLSTM) [27], DeepSense [28], and Associative learning
(AL) [7], respectively.

B. Network and Parameter Details

We consider 150 samples in a single window obtained using
inertial sensor measurements, i.e., 50 Hz sampling rate while
window size is of 3 seconds. The kernel size of Conv1D
layers in the transformer architecture is set to 2. We use 7
residual blocks for the data extraction from paravector tensor
module. A ReLU and drop out layer is placed after each
Conv1D layer of each residual block. The initial layers use 64
filters while the last two layers use 128 filters. In the fusion
module, two fully connected layers are used. The first layer
considers the same number of units as that of the feature maps,
followed by a ReLU and dropout layer having 0.4% dropout
factor. The second fully connected layer has a number of units
similar to that of activity classes. For stable training and fast
convergence, we use Rectified ADAM optimizer [29]. The
learning rate is set to 0.001 with a decay rate of 10 after every
10 epochs. The batch size was set to be 32, accordingly.

1https://pm4py.fit.fraunhofer.de/implemented-approaches

C. Experimental Results
We perform leave-one-subject-out (LOSO) analysis, which

is a standard for human activity recognition studies. The results
have been compared with state-of-the-art approaches, i.e.,
DeepConvLSTM, DRBLSTM, DeepSense, and Associative
Learning. The results for accuracy are shown in Figure 2.
The results represent the superiority of the proposed PROMPT
method in comparison to existing approaches. The proposed
work achieves 74.09% accuracy which is an improvement
of 14.56% in comparison to DeepSense (achieved the least
accuracy), and 6.24% better in comparison to Associative
learning method (achieved second best accuracy). It should
be noted that the associative learning method is trained for
individual subjects, i.e., a separate test model for each subject,
respectively, while the proposed work uses a single model to
classify all the high-level activities. The results also show that
the PROMPT method achieves relatively less execution time in
comparison to the majority of existing methods. The execution
time can further be lessened by reducing the number of trees
employed for classification purposes, but there would be a
trade-off in terms of achievable accuracy.

Fig. 2. Comparative Analysis of the proposed work with existing
methods on Daily Life Log Dataset

Fig. 3. Comparison of the average execution time of the proposed work
with existing methods on Daily Life Log Dataset
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Fig. 4. Generalized PROMPT Framework for Triage in Pandemic Situations with Physical Healthcare Monitoring Systems using multiple modalities.

V. TRIAGE OF THE PROMPT FOR MULTIPLE
MODALITIES AND PHYSICAL HEALTHCARE APPLICATIONS

We propose a generalized PROMPT framework for its triage
with multiple modalities and physical healthcare applications
as shown in Figure 4. The framework is designed in the
context of smart health concerning pandemic situation such
as COVID-19. We explain the components of the proposed
framework in the context of smart healthcare monitoring with
respect to recognition of physical activity. Data cube is a
generalized term that can store the data from multiple sensor
modalities, such as sensor data, image data, and knowledge
graphs. The framework can use the data from all the modalities
or anyone modality, considering its availability. Now, most of
the architectures include pre-processing and feature extraction
layers. Considering the recent deep learning architectures,
the need for pre-processing and feature extraction has been
reduced significantly. However, if the system designer wants
to use such techniques, it won’t affect the overall process
of the proposed architecture. The data is then sent to the
paravector tensor module to extract informative features that
are resilient to changes in intensity, which is a recurring prob-
lem in inertial measurement units associated with wearable
sensors. The paravector tensors are then sent to a deep learning
architecture such as convolutional neural networks, long-short-
term memory networks, gated recurrent units, transformers, or
others to extract feature representation for predicting the class
label. Alternatively, the same data will be an input to the class
association block, which will compute the class association
rules based on the frequent item sets. For example, walking
and standing are performed quite frequently together while
performing “personal grooming” activity. In this regard, the
class association rules will be constructed in order to provide
a context later. The class labels from the deep learning archi-
tecture and the class association rules with frequency from the
association block are then provided input to the process model.

The process model will undergo conformance checking and
the process will be iteratively performed until the maximum
conformance checking is obtained. The process model is then
used for predicting the high-level or anomalous activities.
Furthermore, process model from each of the modality can be
constructed, and the final results might be fused to increase
the classification performance, accordingly.

VI. CONCLUSION

This work proposes a fusion of PRocess Mining and
Paravector Tensor (PROMPT) for human action recognition
based on their behavior. The experimental analysis on a
publicly available dataset shows that the PROMPT achieves
the best accuracy compared to existing work while utilizing
less computation time. The work also proposes a generalized
architecture for physical healthcare monitoring in pandemic
situation using wearable sensors and PROMPT method. The
underlying application is quite relevant in the current COVID-
19 situation. Activity monitoring is important in a sense that
people live in isolation, and user behavior patterns can provide
us with insights regarding their anomalous behavior. Moreover,
patterns can help us to distinguish between the COVID patient
and the normal one. Furthermore, the behavior patterns can be
extended to check the compliance of the isolation guidelines
followed by the COVID patient. The process mining frame-
work is currently one of the best resources for extracting such
behavior patterns.

One of the limitations of the proposed approach is that it
requires both the raw sensor data for low-level actions and
contextual data for high-level activities. Due to this limitation,
our experimental results are restricted to the analysis of only
one dataset which provides both of the required information.

The architecture also highlights some potential future works
for the integration of process mining techniques with machine
learning and knowledge representations. As an extension, we
would also like to apply the proposed framework for students
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learning behavior and work on a real-life case study by
collecting a large volume of data from students watching
online videos in the current pandemic crisis globally.
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