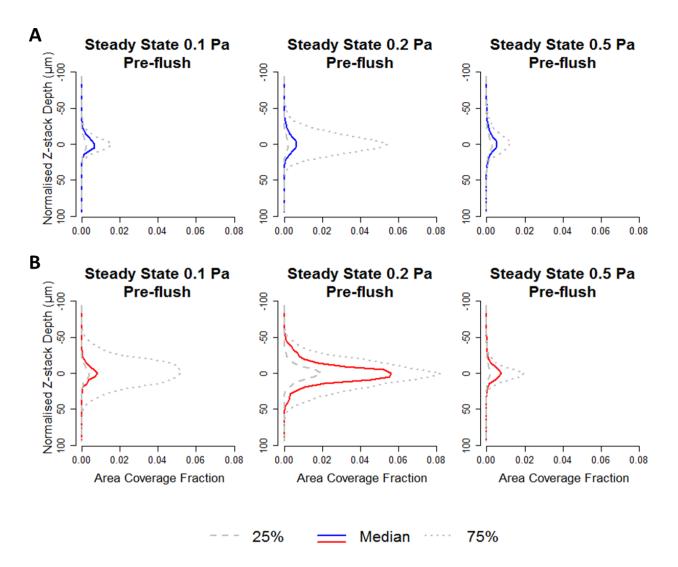


Impacts of temperature and hydraulic regime on discolouration and biofilm fouling in drinking water distribution systems

FISH, Katherine E., SHARPE, Rebecca http://orcid.org/0000-0002-2783-9215, BIGGS, Catherine A. and BOXALL, Joby B.

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/30600/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.


Published version

FISH, Katherine E., SHARPE, Rebecca, BIGGS, Catherine A. and BOXALL, Joby B. (2022). Impacts of temperature and hydraulic regime on discolouration and biofilm fouling in drinking water distribution systems. PLOS Water, 1 (8): e0000033.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Supporting data for "Impacts of temperature and hydraulic regime on discolouration and biofilm fouling in Drinking Water Distribution Systems", Fish *et al*

S1 Fig. Area Coverage of Cells within Steady State conditioned Biofilms from 8°C (A) and 16°C (B) experiments. Quartiles and median are plotted based on n=21, "0 normalized Z-stack depth" indicates the maximum cell coverage location. Area coverage fraction refers to the proportion of each XY image of the Z-stack covered by the stained cells.