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The bulk viscosity of dilute argon gas is calculated using molecular dynamics simulations in the temperature
range 150–500 K and is found to be proportional to density squared in the investigated range of densities 0.001–1
kg m−3. A comparison of the results obtained using Lennard-Jones and Tang-Toennies models of pair interaction
potential reveals that the value of the bulk viscosity coefficient is sensitive to the choice of the pair interaction
model. The inclusion of the Axilrod-Teller-Muto three-body interaction in the model does not noticeably affect
the values of the bulk viscosity in dilute states, contrary to the previously investigated case of dense fluids.
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I. INTRODUCTION

The bulk viscosity of fluids (also known as volume vis-
cosity, or second viscosity) is a transport coefficient which
corresponds to the irreversible part of the resistance of fluids
to compression or expansion [1]. Recognized for a long time
as an independent coefficient [2,3], bulk viscosity manifests
itself in various phenomena which involve compressible fluid
flows, ranging from sound adsorption and dispersion [4] to
shock wave structure [5,6] and its interaction with bubbles [7]
and vortices [8], supersonic [9,10] and hypersonic [11] flows,
combustion [12,13], acoustic streaming [14,15], separation of
emulsions [16], longitudinal rheology [17], Rayleigh-Taylor
instability [18], turbulent flows [19,20], and capillary flows
[21]. Despite the vast range of applications, not many reviews
dedicated to the bulk viscosity of fluids have been published
so far [22–24].

In dilute molecular gases, bulk viscosity arises due to the
relaxation of internal degrees of freedom [23,25]. For some
molecular fluids it is predicted to be much larger than shear
viscosity [26]. In contrast to molecular gases, monoatomic
gases have no rotational and vibrational degrees of freedom,
and electron excitations can be neglected unless the thermal
energy is comparable with the electronic excitation energy. In
the absence of internal degrees of freedom bulk viscosity orig-
inates from the structural relaxation due to the rearrangement
of atoms during compression and rarefaction of the fluid [24].
The experimental data on bulk viscosity are most accurately
obtained from measurements of acoustic absorption [27]. The
experimental values of bulk viscosity have been reported
for neon [28], argon [29–37], krypton [35–38], and xenon
[35–37,39]. Theoretical approaches to the bulk viscosity of
simple fluids in their dense states, based on statistical me-
chanics and kinetic theory, require a pair distribution function
or other structural data of the fluid as their inputs [40–45],
and are strongly dependent on the accuracy of these inputs

[46,47]. The predictive power of such theories decreases at
high densities [48], therefore increasing the role of computer
simulations. Simulations of the bulk viscosity of liquid noble
gases modeled by the Lennard-Jones potential were carried
out using the Green-Kubo formula [49] and modified Einstein
relation [50] in a wide range of states, including the states
close to the freezing line [51] and metastable states [52].

At low densities, the appropriate theoretical approach to
describe the bulk viscosity of simple fluids is provided by
the kinetic theory of gases. The simplest model based on the
Boltzmann equation, which takes into account only two-body
collisions between particles, predicts a zero value of bulk
viscosity [53], thus making it necessary to take into account
higher-order collisions [54,55]. Since the bulk viscosity of
monoatomic gases is determined by many-particle collisions,
it has a small value and is difficult to measure experimentally.
Currently, the only source of experimental data on the bulk
viscosity of monoatomic gases is the work of Madigosky on
argon [33].

In the present paper, we compute the values of the bulk
viscosity coefficient obtained using a molecular dynamics
simulation of dilute argon gas. In addition to reporting these
values, we aim to answer the following questions: (A) How
does the bulk viscosity of argon gas depend on its density?
(B) What is the effect of many-body interactions? (C) Can an
interatomic interaction be approximated by the Lennard-Jones
potential?

The motivation behind each of these questions is detailed
in the following sections.

A. Density dependence

The dependence of the bulk viscosity of gases μ on their
density ρ can be expressed in form of a “virial” expansion
[56]:

μ(ρ) = μ0 + μ1ρ + μ2ρ
2 + · · · . (1)
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The bulk viscosity virial coefficients μ0, μ1, μ2, etc., contain
the contributions of binary, ternary, quaternary, etc., collisions
and, generally, depend on temperature. Higher-order contri-
butions in Eq. (1) are known to diverge [57,58]. Nevertheless,
the truncated virial expansion can be used at sufficiently low
densities [59].

The low-density limit of bulk viscosity, given by μ0, is zero
for monoatomic gases [53]. In systems with only repulsive
interactions the density expansion starts with the ρ2 term
[59–61]. However, in systems with attractive interactions the
presence of the nonzero term proportional to ρ is not excluded
due to the possible existence of bound states [62,63]. Simula-
tions of the Lennard-Jones fluid by Meier et al. [50] give a
bulk viscosity proportional to ρ at low densities, while the
experimental values of bulk viscosity measured for argon by
Madigosky [33] are proportional to ρ2, although the gas was
not dilute in both these cases. The question on the low-density
behavior of bulk viscosity remains open.

In order to recover the density dependence of the bulk
viscosity of dilute gas, we carry out molecular dynamics sim-
ulations at very low (down to 10−3 kg m−3) densities.

B. Many-body interaction

The total potential energy of a system of N identical atoms,
U (r1, . . . , rN ), can be expanded as a sum of n-body interac-
tions [64], un:

U (r1, . . . , rN ) =
N∑

i< j

u2(ri, r j ) +
N∑

i< j<k

u3(ri, r j, rk ) + · · · .

(2)

The thermodynamic properties of the system with many-body
interactions can often be determined using a model system
with an appropriate effective pair potential [65] which may
depend on the thermodynamic state of the system and the
thermodynamic property to be described [66]. Such a coarse-
graining procedure, based on the Henderson theorem [67],
is not necessarily applicable for nonequilibrium and inho-
mogeneous systems. Many-body interactions may affect the
transport and interfacial properties of the fluids, as reported
for a self-diffusion coefficient [68], shear viscosity [68–71],
bulk viscosity [69,70,72], thermal conductivity [69,70], and
gas-liquid surface tension [73,74]. In particular, many-body
interatomic interactions were found to play a significant role
in the formation of bulk viscosity in dense argon fluid [72].

In dilute gases, many-particle collisions are rare. However,
using the kinetic theory of gases to calculate the term in the
bulk viscosity expansion (1) proportional to ρ2, described by
the virial coefficient μ2, would require considering at least
four-particle collisions. The collision integral would contain
terms up to those corresponding to a four-body interaction.
Thus, the influence of many-body interactions on the dy-
namics of many-particle collisions and, consequently, on the
values of bulk viscosity may be not small.

A numerical analysis of the collision integral is difficult
even in the case of triple collisions [54] and three-body in-
teractions [55]. For this reason, in order to study the effect
of a three-body interaction on bulk viscosity we resort to
molecular dynamics simulations.

C. Pair potential

Although it is common practice to represent the interparti-
cle interaction in argon by the Lennard-Jones pair potential,

uLJ(r) = 4εLJ

[(
σLJ

r

)12

−
(

σLJ

r

)6]
(3)

(with the parameters εLJ and σLJ corresponding to the depth
of the potential well and the distance at which the potential is
zero, respectively), it is known that the Lennard-Jones poten-
tial is only an approximation to the real interaction in noble
gases. Accurate interatomic potentials have been obtained for
argon using ab initio quantum chemical calculations [75,76].
Experimental results obtained for argon at large pressures are
better explained if the larger steepness of the interaction po-
tential at small interatomic separation distances is taken into
account [77,78]. Moreover, the effect of many-body interac-
tions on thermodynamic properties can be substantial [79–81].

Nevertheless, the account of triple-dipole and dipole-
dipole-quadrupole dispersion interactions was shown to move
the effective potential of liquid argon towards the Lennard-
Jones form [82], and indeed, using the Lennard-Jones
potential with the values of the parameters εLJ and σLJ not
necessarily corresponding to a genuine pair interaction de-
scribes the thermodynamic properties of dense noble gases
with good accuracy [83]. The role of the many-body inter-
action, however, decreases with a decrease in density, so that
the effective pair potential becomes closer to the actual pair
potential. As a result, using an ab initio pair potential yields a
better prediction of the thermophysical properties of argon at
low densities [84].

In this study, we investigate the effect of approximating
the pair interaction with the Lennard-Jones potential upon the
values of bulk viscosity in low-density states.

II. INTERACTION MODELS

In order to obtain answers to the questions set forth in
the Introduction, we consider three models of the interatomic
interaction: (i) Lennard-Jones pair potential, (ii) ab initio pair
potential, and (iii) ab initio pair potential+three-body interac-
tion.

In model (i) we use the Lennard-Jones potential, Eq. (3),
with the values of the parameters εLJ/kB = 116.79 K and
σLJ = 0.33952 nm provided by Rutkai et al. [83].

We describe pair interaction in models (ii) and (iii) by the
following modification of the Tang-Toennies potential func-
tion [85] presented by Jäger et al. [75]:

uTT(r) = A exp

(
a1r + a2r2 + a−1

r
+ a−2

r2

)

−
8∑

n=3

C2n

r2n

[
1 − e−br

2n∑
k=0

(br)k

k!

]
. (4)

We use the values of the parameters A, an, b, and Cn obtained
for argon by Jäger et al. [75] and listed in Table I. The
higher-order dispersion coefficients are determined using the
recursion formula [75,85]

C2n = C2n−6

(
C2n−2

C2n−4

)3

, n � 6. (5)
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TABLE I. Parameters of the modified Tang-Toennies potential
function (4), taken from Ref. [75].

Parameter Unit Value

A K 4.61330146×107

a1 (nm)−1 −2.98337630×101

a2 (nm)−2 −9.71208881
a−1 nm 2.75206827×10−2

a−2 (nm)2 −1.01489050×10−2

b (nm)−1 4.02517211×101

C6 K (nm)6 4.42812017×10−1

C8 K (nm)8 3.26707684×10−2

C10 K (nm)10 2.45656537×10−3

Various models of three-body interactions in argon have
been reported, including triple-dipole [86–88] and higher-
order [89] dispersion as well as other (exchange and induced-
polarization) contributions [79,90–93]. In model (iii) we use
the triple-dipole dispersion interaction, derived by Axilrod
and Teller [94] and Muto [95], which decays more slowly
with interparticle separation than the exchange, induced-
polarization, and higher-order dispersion contributions, and
is therefore the most significant many-body contribution for
gases. The Axilrod-Teller-Muto interaction is described by the
formula

u3(r12, r23, r31) = ν
1 + 3 cos γ1 cos γ2 cos γ3

r3
12r3

23r3
31

, (6)

where the ri j are the lengths of the sides, γi are the angles
of the triangle formed by three argon atoms, and ν is the
triple-dipole interaction coefficient. We use the value ν =
7.353×10−108 J m9 reported for argon by Kumar and Meath
[88].

III. SIMULATION DETAILS

Computations were carried out using the LAMMPS pack-
age [96] for molecular dynamics simulation in combination
with the OCTP package [97] for on-the-fly computation of
bulk viscosity. We used the equilibration and bulk viscosity
computation procedures described by Jamali et al. [97]. The
values of the bulk viscosity coefficient were extracted from
the fluctuations of kinetic pressure, which were sampled in
microcanonical ensemble (NV E ensemble) over a time period
of 5 ps. To enhance the statistics, each simulation was run for
4×105 production time steps, with the time step set to 0.25 fs.

We modified LAMMPS to include the Tang-Toennies pair
interaction, Eq. (4), and the Axilrod-Teller-Muto three-body
interaction, Eq. (6) [98]. The cutoff radius for all pair inter-
actions was set to 6.5σLJ. The potential for a triplet of atoms
was calculated only if all three distances r12, r23, r31 between
the three atoms satisfied ri j < rc2 . In addition, the product of
the three distances was required to satisfy r12r23r31 < r3

c3
to

exclude from calculation the triplets with a small contribution
to the interaction [99]. We set the cutoff values for three-body
interactions to rc2 = 6.5σLJ and rc3 = 3.5σLJ.

For each of the three potential models described in Sec. II,
we carried out simulations of the system at the densities ρ =

FIG. 1. Dependence of the ratio of bulk viscosity to the square
of density at temperature 234.55 K. Bulk viscosity is obtained
from molecular dynamics simulation using the potential model (iii),
described in Sec. II (squares), and from experimental work by
Madigosky [33] (circles). The dashed line is a guide to the eye.

0.001, 0.01, 0.1, and 1 kg m−3 and the temperatures T = 150,
200, 300, and 400 K. We ran the same simulation sets with
16 384 and 32 000 particles and did not observe a systematic
dependence of the bulk viscosity on the number of particles
in the simulation box for all interaction potentials and state
points.

In order to compare our results with the experimental data
by Madigosky [33], we additionally carried out simulations
at T = 234.55 K of the system with the ab initio+three-body
interaction at the densities 0.01, 0.1, 1, and 10 kg m−3.

IV. RESULTS

Figure 1 presents the results of the molecular dynamics
simulation for the dependence of the ratio of bulk viscosity
to the square of density for the potential model (iii) (ab initio
pair+three-body interaction), described in Sec. II. The data
were computed at T = 234.55 K with 32 000 particles in the
simulation box. We do not show error bars in Fig. 1 because
each point corresponds to a single simulation run which,
according to the results of Pranami and Lamm [100], is not
sufficient for obtaining a reliable estimate of the statistical
uncertainty.

Figure 1 also shows the experimental values by Madigosky
[33] obtained at higher densities. Modeling of the system
with many-body interactions at such high densities was not
undertaken in this work as it would require considerable
computational resources. Nevertheless, experimental data by
Madigosky [33] manifest a ρ2 dependence of the bulk vis-
cosity consistent with our results. The deviation of the
experimental data from low-density dependence is observed
only at very large densities when the gas is no longer dilute.

We have observed the results, similar to those shown in
Fig. 1, for all other temperatures, potential models, and system
sizes we explored, without the systematic dependence of μ/ρ2

on ρ. We therefore conclude that μ ∼ ρ2 at low densities,
so that the ratio plotted in Fig. 1 corresponds to the bulk
viscosity second virial coefficient μ2 defined by Eq. (1). On
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FIG. 2. Temperature dependence of the second bulk viscosity
virial coefficient calculated using Eq. (7) for three potential models
described in Sec. II: (i) Lennard-Jones pair interaction (3), (ii) Tang-
Toennies pair interaction (4), and (iii) Tang-Toennies pair interaction
(4) plus Axilrod-Teller-Muto three-body interaction (6). Error bars
are shown only for model (iii), and the mean squared deviation for
other models has a similar magnitude. Other lines are drawn to guide
the eye.

that account, we shall calculate μ2 using the formula

μ2 = μ

ρ2
, (7)

and averaging the results at different values of the (small)
density and (large) number of particles, keeping track of the
mean squared deviations. Figure 2 presents the temperature
dependence of μ2, calculated in this way, for all three potential
models.

The results are different for the Lennard-Jones and Tang-
Tonnies pair potentials, and the difference increases with
a decrease in temperature. We conclude that modeling the
interatomic interaction with the Lennard-Jones potential un-
derestimates the bulk viscosity, and more accurate models
must be used in modeling the bulk viscosity of argon gas in
dilute states.

On the other hand, the change in the results due to
Axilrod-Teller-Muto three-body interactions is within sta-
tistical uncertainty. We therefore conclude that many-body
interactions can be neglected in modeling the bulk viscosity

TABLE II. Second bulk viscosity virial coefficient μ2 and cor-
responding mean squared deviation �μ2 calculated at different
temperatures for the potential model (iii), described in Sec. II.

Temperature μ2×1010 �μ2×1010

(K) (kg−1 m5 s−1) (kg−1 m5 s−1)

150 4.97 0.64
200 4.26 0.27
250 3.92 0.15
300 3.86 0.17
350 3.72 0.08
400 3.73 0.09

of dilute argon gas, so it should be sufficient to include only
pair interactions in theoretical and numerical models.

For reference, we present in Table II the numerical values
of the bulk viscosity second virial coefficient from the most
accurate potential model we investigated, model (iii). These
data can be used to calculate bulk viscosity, according to
Eq. (7), as μ = μ2ρ

2.

V. CONCLUSION

We have used molecular dynamics simulations to com-
pute the bulk viscosity of dilute argon gas at densities of
0.001, 0.01, 0.1, and 1 kg m−3 and temperatures of 150,
200, 300 and 400 K. We investigated three models of the
interatomic interaction, (i) Lennard-Jones pair potential, (ii)
Tang-Toennies ab initio pair potential, and (iii) Tang-Toennies
ab initio pair potential+Axilrod-Teller-Muto three-body inter-
action, and established the following results:

(A) The bulk viscosity of dilute argon gas is proportional
to density squared in the investigated range of densities,
not following the ∼ρ dependence predicted by Hammer and
Oppenheim [62] for systems with attractive interactions and
observed by Meier et al. [50] in more dense states.

(B) Many-body interactions do not noticeably affect the
bulk viscosity in dilute states, contrary to the previously in-
vestigated case of dense fluids [72].

(C) Using the Lennard-Jones interaction model in dilute
states leads to an underestimation of bulk viscosity of ar-
gon and, therefore, more accurate models of pair interaction
should be used for quantitative predictions of bulk viscosity.

The results of this work can potentially facilitate further
theoretical and computational studies of dynamic properties
of noble gases and their mixtures.
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