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Abstract
Most voice biometric systems are dependent on the language of the user. However, if the
idea is to create an all‐inclusive and reliable system that uses speech as its input, then they
should be able to recognise people regardless of language or accent. Thus, this paper
investigates the effects of languages on speaker identification systems and the phonetic
impact on their performance. The experiments are performed using three widely spoken
languages which are Portuguese, English, and Chinese. The Mel‐Frequency Cepstrum
Coefficients and its Deltas are extracted from those languages. Also, this paper expands
the research study of fuzzy models in the speaker recognition field, using a Fuzzy
C‐Means and Fuzzy k‐Nearest Neighbours and comparing them with k‐Nearest
Neighbours and Support Vector Machines. Results with more languages decreases the
accuracy from 92% to 85.59%, but further investigation suggests it is caused by the
number of classes. A phonetic investigation finds no relation between the phonemes and
the results. Finally, fuzzy methods offer more flexibility and in some cases, even better
results compared to their crisp version. Therefore, the biometric system presented here is
not affected by multilingual environments.
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1 | INTRODUCTION

Speech exists with the main reason to enable communication
between humans. This communication translates into a
sequence‐dependent and rule‐based system: a language. To
talk with each other, humans use a complex system to produce
the voice signal. Starting at the lungs, though the trachea,
stimulating vocal cords and the larynx tube, using the pharynx
cavity, the tongue, vellum, mouth, and nasal cavity to produce
sound. This procedure is detailed in Ref. [1].

Speaker Identification (SI) is a biometric branch of the
Automatic Speech Recognition field. It can be defined as
‘deciding if a speaker is a specific person or is among a group
of persons.’ without prior identity claim [2]. It is popularly
used for database search in criminal records [3]. For instance,
ALIZE is a popular framework [4]. Thus, this biometric
focusses on identity recognition. This problem can be

further specified as open‐set when the speaker is not enrolled
in the system and as closed‐set when everyone is registered
[5]. Furthermore, some systems rely on previous knowledge
of what is said, that is, a type of passphrase. Those are
classified as text‐dependent, in contrast to text‐independent
when the user can speak anything [6]. This paper explores
closed‐set text‐independent speaker identification systems.
More specifically, this paper proposes a method to verify how
different languages (on structure, accent, and ancestry): Por-
tuguese (BP), English (EN), and Chinese (CN), can affect
fuzzy and typical classifiers for those systems.

1.1 | Literature review

The literature presents a wide range of experiments for this
biometry. To represent a speaker, the Mel‐Frequency Cepstrum
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Coefficients (MFCC) are widely adopted [7–10] as voice‐print,
even though the state of the art has shifted from it to i‐vectors
[9, 11] and then towards x‐vectors [12]. Also, there are some
variants for those representations [13] and few using fuzzy
information theory [14, 15].

Besides biometric features, classification has also improved
for SI. For long, the Gaussian Mixture Model combined with
Universal Background Model [6] and Hidden‐Markov Models
[16] dominated the field.However, other methods such as vector
quantisation [17, 18] have their spots. A little research is made for
fuzzy classification [8, 19–22], but most are quite dubious when
describing their methods for both models and data. Further-
more, most recent research has converged to Neural Network
variants, such as Deep Neural Networks [11, 23, 24], Convolu-
tional Neural Networks [25], and others [26, 27].

Meanwhile, the SI community has always speculated the
impact of language on those systems [28]. In fact, some studies
investigate this topic [29, 30], but they usually employ lan-
guages with common ancestry such as English and German, or
even accent variations. Other limitations on these studies are
the use of a small dataset, not providing a better description of
how to split the dataset or any statistical tests performed. Also,
research for fuzzy models is scarce, even though they have
provided decent results. Moreover, only one work [31] has
considered BP in its open‐set classification. The low occur-
rence of this language is due to its lack of resource for creating
speech technologies [32].

Therefore, the main contributions of this paper are as
follows:

� Propose a method to verify how different languages,
without ancestry, can affect closed‐set text‐independent
speaker identification;

� Expand the research with Brazilian Portuguese;
� A phonetic analysis to investigate how the sounds can affect

those systems;
� Provide a detailed discussion and methodology for Fuzzy

models applied to speaker identification.

The rest of the paper describes the datasets, the data
processing, and feature extraction methodology of this work
(Section 2). Next, there is a brief description of the classifi-
cation methods (Section 3). Then, it introduces the evaluation
methodology with the hyperparameter space of the models
(Section 4). Next, the results are presented (Section 5),
including a phonetic analysis and followed by an extensive
discussion (Section 6). The paper ends with the final remarks,
presenting some limitations and a summary of the outcomes of
this research study (Section 7).

2 | DATA AND PRE‐PROCESSING

This section presents the building‐steps of the multilingual
dataset. Besides, it also describes the pre‐processing methods
(data cleaning, under‐sampling, and reduction) and finally the
process to extract features.

2.1 | Multilingual data

This research study uses three distinct datasets on three
different languages: DARPA‐TIMIT [33], LapsBenchmark16k
(LAPSBM16K) [34], and AISHELL‐1 [35]. They provide data
on EN, BP, and CN, respectively. The choice of the datasets is
based on their equal sampling rate, besides all of them being
public and free. Other multilingual corpus is the NIST SRE
datasets [36], Call My Net Corpus [37], and more. However,
most of them have a price and are under the Linguistic Data
Consortium (LDC), which puts them over the budget of this
research study. Each dataset is better detailed in their respective
references; therefore, the following is merely a brief description
of their main characteristic.

The DARPA‐TIMIT is a free version of TIMIT, which has
to be purchased at the LDC. The prompts on the corpora are
scripted, and every speaker has a total of 10 samples. The audio
in this dataset has 2.9s � 0.8s of duration. The BP data from
LAPSBM16K has 20 audio samples per speaker, while their
durations are about 4.6s � 0.8s. Finally, the AISHELL‐1
provides a substantial amount of CN speech with at least
300 samples per speaker and an approximated duration of
4.6s � 1.3s.

Table 1 summarises the main characteristics of the datasets.
The gender distribution from BP and EN are not good
compared to that of CN. However, since our goal is to
investigate multilingual speech technologies, then overall the
gender is almost evenly distributed. The number of recordings
for each data is also quite different. However, these charac-
teristics are balanced by under‐sampling them when needed.
Furthermore, the most important is that all recordings have the
same sampling rate of 16 kHz/16bit, which ensures the same
resolution across languages. During review, the representa-
tiveness of the data was questioned. However, DARPA‐TIMIT
has much more depth than described here, and the Chinese
dataset is large. The Brazilian Portuguese dataset is small
compared to the others; however, there are not many resources
for this language.

2.2 | Pre‐processing the datasets

The first step of our work was to make sure all the dataset
distributions were as similar as possible. Two main character-
istics kept from the data were gender and number of speakers.
Since LAPSBM16K had the least number of classes, both EN

TABLE 1 Summary of the datasets

Dataset Size #Speakers Gender (M/F) Lang Source

DARPA‐TIMIT 6300 630 70%/30% EN [33]

LAPSBM16K 700 35 72%/28% BP [35]

AISHELL‐1 141,200 400 47%/53% CN [34]

Total 148,200 1065 48%/52% — —

Abbreviations: BP, Portuguese; CN, Chinese; EN, English.
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and CN had to be adjusted to obtain a fairer experimental
setup.

Also, DARPA‐TIMIT had the least samples per speaker.
Thus, an under‐sampling is applied on AISHELL‐1 and
LAPSBM16K, making them have 10 samples for each speaker
through a Roulette algorithm. Furthermore, the total number
of classes for BP is 35, way less than other languages. There-
fore, some English speaker had to be cut‐off from experiments
resulting into 34 speakers. The development subset with 40
speakers was used for the CN dataset. Figure 1 gives an overall
comparison between the original and experimental multilingual
dataset.

2.3 | Extracting speaker features

To prepare the data for the SI task, the signals pass through an
energy‐based voice activity detection. The experiments use the
first 13 coefficients from 40 extracted MFCC, excluding the
0th, using frames of 25 ms length with 10 ms stride, a Ham-
ming Window function as well as a 512‐point Fast Fourier
Transform, besides, 40 triangular filters spamming from 300 to
3400 Hz. Then, calculating the Deltas and double Deltas and
appending the logarithm energy, a 40‐dimensional MFCC
feature vector is created. Finally, a cepstral mean subtraction is
applied to the features before training/testing to remove
channel and recording variations [6].

This section briefly introduced our three datasets: DARPA‐
TIMIT, LAPSBM16K, and AISHELL‐1. Also, it introduced the
pre‐process of the data and the process of feature extraction.

3 | METHODS

Four classification models are used in this research study.
There are two fuzzy methods: Fuzzy C‐Means (FCM) and
Fuzzy k‐Nearest Neighbours (FkNN), and two traditional
methods: k‐Support Vector Machines ours (kNN) and Support
Vector Machines (SVM). Since the traditional methods are well
known by the research community, this section focusses on
describing the Fuzzy classifiers.

3.1 | Fuzzy C‐Means

The Fuzzy C‐Means [38] and its improved version [39] works
by minimising the weighted distance of each sample to every
cluster centre. The weights correspond to the membership
matrix U = uij. Thus, given a fuzziness factor m, a sample xi
has a membership degree of uij for cluster j. Therefore, every
cluster works as a fuzzy subset. Those subsets have a fuzziness
degree m > 1, which affects the compatibilities of data samples
according to

uij ¼
XC

k¼1

�
�xi − cj

�
�

jxi − ckj

� �
−1
m−1 ð1Þ

3.2 | Fuzzy k‐Nearest Neighbours

Another fuzzification of crisp methods is the Fuzzy k‐Nearest
Neighbours. In this paper, this model is based on the work of
Ref. [40]. First, the model creates a membership matrix Uij
with the labelled data using a kNN [40]. With nj neighbours of
x that belong to class i, L ≠n K is the total number of
neighbours. Then, it classifies new data by finding the closest k
vectors, scaling the fuzzified distances by uij and normalising
by the sum of distances.
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4 | EXPERIMENTAL SETUP

The following steps were executed on a system with an AMD
Ryzen‐5 1600 Six‐Core Processor, Dual Channel 2 � 8 GiB
DIMM DDR4 2400 MHz, SSD Kingston A1000 NVMe
R1500 Mb/s, and W500 Mb/s, [MSI] Radeon RX580 8G OC,
64‐bit Pop!_OS 20.04 with Gnome 3.36.2.

The method consists of three stages: (i) the monolingual,
where a baseline accuracy for BP (after pre‐processing) is
defined, and the model with the best performance is used for
further experiments; (ii) then, in the multilingual, the mono-
lingual data is augmentedwithEN speakers, and thenwithCN to
showcase the SI performance when adding more languages; (iii)
finally, the size constraint, creates smaller multilingual datasets to
investigate if the number of classes is affecting the results.

A total of 30 experiments with 34 speakers from all languages
are performed to verify any bias towards number of classes. For
that, 1/3 of data from each language (considering Figure 1 left) is
selected, this time ignoring other characteristics from data.

The description below presents every set of configurations
for each parameter used during the fine‐tuning. This procedure
was performed with a stratified 3‐fold cross validation and a
grid‐search with the hyperparameters below. The stratified
version can preserve the class distribution, while a 3‐fold
guarantees a decent trade‐off between the amount of training
and test samples. The kNN and SVM are from the SKLearn
library [41], while FCM and FkNN are implemented by the
authors using python and is available at GitHub1.

FCM have m varying in {1.5, 2, 2.5, 3}. The number of
clusters is fixed at the number of classes, and the stop criterion

1
https://github.com/thalesaguiar21/Fuzzy
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used is a fixed tolerance of 0.2. Tests used three distances:
Manhattan, Euclidean and Minkowski.

FkNN have K ∈{2, 4, …, 12}. Distance metrics are
Manhattan, Euclidean, and Minkowski for m∈{1.5, 2,
2.5, 3} and L in (3) is fixed to 16.

kNN have K ∈{2, 4, …, 12}. Distance metrics are Man-
hattan, Euclidea, Minkowski, and DTW.

SVM has C and γ ∈{0.0001, 0.001, 0.01, 0.1, 1, 10}.
Kernels tested are polynomial, radial basis function (RBF), and
sigmoid. When using the polynomial kernel, the degrees
{1, 2, 3, 4, 5} are verified. Thus, the linear kernel is verified as
well.

5 | EXPERIMENTAL RESULTS

The results are divided into sections with respect to each
experiment performed in this paper.

5.1 | Monolingual

Results for Fuzzy clustering reaches a maximum accuracy score
of 32.57% � 4.88% (Figure 2). Setting the fuzziness m = 1.5
and the metric to Euclidean produces the best results, while
cluster fuzziness has no significant improvement.

FkNN, on the other hand, achieves 87.42% � 4.1% accu-
racy (Figure 3). This score is obtained when using the Euclidean
similarity with 2 neighbours andm = 2. Therefore, it represents
an absolute 54.85% improvement over FCM. Besides,
increasing m above 2 makes it decrease the classification score.
Also, notice that it obtained its best scores when using a small k.

For kNN, the best value is 86% � 3.14% (Figure 4), a
1.42% attenuation compared to FkNN. This score is achieved
by Euclidean, Minkowski, and Manhattan metrics using k = 6.
The last metric is the best, as it has the same performance with
better generalisation.

With respect to the SVM, almost every kernel achieves
decent accuracy values. Both Sigmoid and RBF get the highest
score of 92.29% � 4.8%. They obtain this result when
γ = 10−3 and C = 10, while the Linear kernel is close by with
92% � 4.2% accuracy.

Since there is a tiny difference between these results, it was
necessary to compare these kernels with more details. In short,
the Linear kernel has a 7.7% better performance per time
(Table 3), lower σ2 (Table 2), smaller test duration (Table 2), and
lower C (Table 3), while losing in absolute accuracy and γ. Since
using aC = 10 can lead to a non‐generic model, the Linear SVM
configuration (SVML1‐C01G01) is better suited for this prob-
lem. SVML1‐C01G01 shows 4.58% improvement over FkNN.
Table 2 presents the best results of each kernel. Finally, Figure 5
presents the Linear SVM results in more detail.

5.2 | Multilingual

Now, SVML1‐C01G01 is submitted to experiments with
BP + EN and BP + EN + CN speakers. Results are presented
in Figure 6.

Results shown on the 2‐language experiments have a similar
behaviour from monolingual SVM tests regarding C with no
effect on accuracy for γ ≤ 0.01. The best configuration on this
dataset is stillC = 0.01 and γ = 10−1, achieving 87.97%� 2.56%
of accuracy and therefore a 4.03% decrease compared to the

F I GURE 1 Original (left) and experimental
(right) data distribution for number of speakers and
gender

F I GURE 2 Results for FCM in Brazilian
Portuguese. FCM, fuzzy C‐means
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monolingual experiments. Also, the number of mistakes of BP
speakers by EN is small when compared to the opposite, as
presented in Figure 7. Since the features were carefully extracted
and processed to remove any bias from languages, recording
procedures, or errors added while transforming the signal; these
mistakes are unlikely originated from those sources.

Next, adding CN as a third language to the dataset, results
into 85.59% � 1.32% accuracy and 2.38% decrease compared
to BP + EN, which is mostly due to confusions between CN
and EN speakers. From Figure 7, it is noticeable that confu-
sions between languages are rare. Besides that, from a total of
45 wrong classifications, 31% (28) are from BP, 34% (31) from
EN, and 45% from CN.

F I GURE 3 Results for FkNN in Brazilian
Portuguese. FkNN, Fuzzy k‐Nearest Neighbours

F I GURE 4 kNN results for Brazilian
Portuguese. kNN, k‐Nearest Neighbours

TABLE 2 Monolingual results of SVM

Model acc ð%Þ σ2 (%)

SVM‐Poly1‐C01‐G01 92.00 4.20

SVM‐Poly2‐C1‐G0001 79.15 3.14

SVM‐Poly3‐C1‐G0001 81.15 4.50

SVM‐Poly4‐C01‐G001 69.62 5.10

SVM‐Poly5‐C01‐G01 71.44 7.20

SVM‐RBF‐C10‐G0001 92.29 4.80

SVM‐Sig‐C10‐G0001 92.29 4.80

Abbreviation: SVM, Support Vector Machines.

TABLE 3 Accuracy over time for classifiers

Model Train (ps) Test (ps) ACC/ps (%)

FCM 300.00 75.00 00.80

FkNN 267.00 128.00 00.32

kNN 0.05 0.58 14.90

Poly1‐SVM 7.02 2.21 41.40

Sig‐SVM 8.42 2.74 33.70

RBF‐SVM 8.42 2.74 33.70

Abbreviations: FCM, Fuzzy C‐Means; FkNN, Fuzzy k‐Nearest Neighbours; kNN,
k‐Nearest Neighbours; RBF, radial basis function; SVM, Support Vector Machines.
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5.2.1 | Size constraint

Next, a total of 30 tests are evaluated using the same config-
uration from previous multilingual experiments with smaller
versions of the multilingual dataset. As average, these experi-
ments achieved 91.88% � 1.87%, a 0.12% difference from
monolingual results.

5.2.2 | Phonemes

At the phonetic level, the most frequent (above the mean of
frequencies) phones that appear in both multilingual experi-
ments increase in frequency when Chinese is added (Figure 8

and Figure 9). For instance, ‘A’, and ‘A+’ for BP, or ‘KCL’ and
‘IY’ for EN. For both languages, there is no phoneme that
appears in 2‐language that does not appear in 3‐language ex-
periments (Figure 10). However, some distinct phonemes
occur when using Chinese as additional data in our experi-
ments. These new labels are presented in Table 4.

Brazilian Portuguese has half of most frequent symbols
within vowels, followed by consonants. For Chinese, there are
40 sounds (Figure 11). A vowel and two consonants make the
top three sounds present in misclassifications, while from 40
phonemes, 21 are vowels.

Meanwhile, the majority of EN phonemes for 2‐language
setup comes from vowels. These are followed by stops,
semi‐vowels, and fricatives (Figure 8 right). From these, there
are two allophones: ‘Q’ and ‘UX’. With the experiments using
three languages, the EN results are consistent with the previ-
ous outcomes. The same classes of sounds occur while there is
a difference at which ones become more frequent when
comparing Figure 8 right and Figure 9 right. Finally, the allo-
phone ‘HV’ (voiced ‘H’) is observed when using three lan-
guages, as presented in Table 4.

6 | DISCUSSION

For better presenting the results, they are segmented into
subsections addressing a different aspect of our work.

F I GURE 5 Fine‐tuning results for linear SVM
using Brazilian Portuguese. SVM, Support Vector
Machines

F I GURE 6 Fine‐tuning results for linear SVM
for BP + EN (upper) and BP + EN + CN (down).
BP, Portuguese; CN, Chinese; EN, English; SVM,
Support Vector Machines

F I GURE 7 Language�Language confusion matrix for multilingual
experiments
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6.1 | Unsupervised SI

The first model evaluated was the FCM. It was expected to
have a bad performance, achieving a maximum of 32.57%
using Euclidean distance and m = 1.5. As the worst accuracy
rate between our classifiers, it is used as our baseline model.

As a more sophisticated version of k‐Means, FCM also
uses distance measures to separate the data. Its known capacity
to recognise well‐overlapping data does not help much here.
Another element to keep in mind here is the amount of data.
Our speakers have a total of 10 samples each, and these consist
of short‐time recordings [29] and [42]. As a clustering method,
this technique does rely on large amounts of data to better
separate the feature space. Furthermore, FCM is a non‐

supervised model, a notable disadvantage when comparing to
models that have previous information about classes. This
characteristic can have a huge impact on the classification, as
unsupervised methods will almost always have worse perfor-
mance compared to supervise techniques. So, this is another
reason for its side‐by‐side low performance. Possible solutions
to improve these results would be to try different feature
vectors or even membership functions. The following section
discusses the results achieved by our Nearest Neighbours
classifiers.

6.2 | Nearest neighbours classification

The kNN and FkNN, in contrast to FCM, do not rely on a
centre based on all data points. Instead, they manage to
create an increasing boundary starting at the unknown sam-
ple, rather than matching the new sample to pre‐built clus-
ters. Thus, as expected, these models had a much better
performance on the experiments when compared to the
baseline.

It is true that choosing k too small can lead to an overfit,
while making k→ n for a data with n samples would lead to a
complete generic model. However, it is important to consider
how much data is available; given the small number of samples
(6 per speaker) the search space for both crisp and fuzzy
versions should be small.

Moreover, the FkNN had a decent score, surpassing its
crisp version by 1.42%. Even though not by a large margin,
this value can still improve with a few more tuning. Here,
several membership functions could be tested to better balance
the model according to the data. As pointed out in Ref. [40],
different functions can be used, leading to distinct outcomes as
shown by their results and thus possibly increasing its accuracy.
These further improvements cannot happen for kNN, which
had all its parameters changed.

F I GURE 8 Most frequent phonemes for 2‐language experiments on incorrect classifications in BP (left) and EN (right). BP, Portuguese; EN, English

F I GURE 9 Most frequent phonemes for 3‐language experiments on incorrect classifications in BP (left) and EN (right). BP, Portuguese; EN, English

(a) (b)

F I GURE 1 0 Phonetic intersection between multilingual experimental
results in BP (left) and EN (right). BP, Portuguese; EN, English

TABLE 4 New phonetic occurrences for 3‐language experiments

Language Labels

BP O∼, U+, W∼, TJ, SCH, E∼, A∼+’, NJ, U

EN HV

Abbreviations: BP, Portuguese; EN, English.
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6.3 | SVM classification

This classifier managed to obtain the highest accuracy score. It
is possible to go further and use the Sigmoid or RBF kernel,
which achieved 92.29% recognition rate. As argued in the
previous section, we choose the Linear kernel in spite of the
higher accuracy of the other kernels.

Another aspect to notice is the Linear kernel overcoming
the non‐linear kernels in some configurations. The reason
behind it is the non‐pure Linear kernel. As noted in Section 5,
it is simulated with a polynomial kernel with degree 1. While
theoretically they are equivalent, their implementations have
their divergences. Using this strategy creates a Linear SVM that
can be influenced by γ, which may affect the performance.

Furthermore, the polynomial kernel has a very akin change
on accuracy. When comparing Figure 5 with the results in
Figure 6 most of them shows a low accuracy for small values of
γ and C. γ, on the other hand, loses the effect as it and C
increase. This accuracy progression is found on both mono-
lingual and multilingual results for this kernel. This can be
explained by how sensitive to γ each model is. As discussed, the
polynomial kernel can be influenced by changes on γ, which
can be visualised in our results (Figure 5). However, its influ-
ence decaying shows that this parameter cannot force the
borders enough to make individual samples separable from
others. Therefore, small values are able to change the border
shape by a small factor, while higher values do not make any
difference. Although, RBF and Sigmoid are much more sen-
sitive to this parameter, being able to even outline an individual
sample inside a distinct class space.

6.4 | Identification with fuzzy methods

Fuzzy methods are becoming increasingly popular in several
artificial intelligence segments. However, these methods really
lack on implementations or even dedicated libraries when
compared with their crisp versions. This can restrict the use of
these classifiers as the situation creates an environment without
standard implementation.

First, the fuzzy classification in this work has two ap-
proaches: unsupervised and supervised. In the former, the
FCM tries to discriminate the identity of a speaker. This
method has a small accuracy rate, but that can still go beyond
with additional modifications. For the latter, this work uses a

Fuzzy k‐Nearest Neighbour, which outperformed its crisp
version. Overall, these methods offer a great flexibility. They
allow a vast set of characteristics to be modified. Besides, the
flexibility on classifying is found better on the performance of
FkNN compared to kNN.

Since they require additional computational resources to
determine the membership degrees of the current data, they
also demonstrate a large disadvantage on performance. It is
also true for the FkNN, for which the initialisation used in our
work uses a kNN classification. Of course, the SKLearn [41]
library has several optimisations for their algorithms, and it
becomes quite evident when looking at the train and test
duration. Therefore, if performance is crucial in the project,
either a very optimised algorithm should be used, or a careful
trade‐off between performance and accuracy rate should be
considered. The next section will discuss the multilingual
aspect of this work.

6.5 | On the multilingual SI

Results showed that adding a second language reduced the
model accuracy by 4.03% and by 6.41% for three, thus indi-
cating that our hypothesis would fail. However, language is not
the only variable to consider, due to other characteristics being
able to influence SI results. For this problem, results can easily
be influenced by gender and number of speakers, the last one
being the most harmful for identification problems. As shown
in Section 5.2, it is also crucial to consider how the confusions
are distributed by language and gender as well as take into
account the increasing number of classes as new languages are
added.

For confusions, the proportions of speaker languages are
fair and do not present any biases. A more careful analysis
showed that genders are also balanced for our mistakes, with
male speakers appearing on 46% of them and therefore dis-
carding any influence of it on our outcomes.

Furthermore, some information extracted from it is quite
interesting. Chinese speakers hold 79.16% of opposite gender
mistakes, that is, predicting a male speaker with a female or the
other way around. From this proportion, the female speakers
represent a large amount. Except by 1 test, every mistake of
Chinese speaker by English speaker is between female (CN)
and male (EN). For Portuguese, from a total of 9 Chinese
females, only two are predicted as female BP speakers. This

F I GURE 1 1 Chinese phoneme occurrences on incorrect classifications
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suggests that Chinese male voices are very distinct from both
BP and EN males. CN females, on the other hand, have a close
relation to male voices. But, this conclusion is not a fact, given
the presence of some noises on Chinese audio.

Analysing the language misclassifications, they are quite
balanced between languages. Taking into consideration the
rows and columns in the confusion matrices (Figure 7) the
frequency of each language is consistent with their volume of
data. There are 340 EN, 350 BP and 400 CN speakers, and the
mistakes go as BP, EN, CN. Also, there are not many changes
between the confusion matrices from 2 to 3 language experi-
ments. In this transition, EN classifications have an error
reduction by 2 for BP column, while BP has increased by 1 at
the EN column. Also, note that charts for accuracy rate in
Figures 5 and 6 have similar progressions. Besides the influ-
ence of γ previously discussed, comparing this behaviour
among languages may also indicate a similar feature distribu-
tion among them.

After concluding that our results are not influenced by
gender, experiments were executed to assess the increasing
number of classes. Identification problems naturally suffer
when there are many classes. This process allowed creating
datasets with 34 speakers, one less than the proposed mono-
lingual dataset, by ignoring the gender. This is only possible
because gender does not influence our results. Otherwise, this
new dataset could be biased. Then, these experiments resulted
into 91.88% accuracy. Figure 12 compares our main results
from each dataset: monolingual, 2 languages, 3 languages, and
3 languages with reduced number of speakers. This new result
is 0.12% lower in comparison with the monolingual accuracy,
which is a fairly close score, thus, indicating that consecutive
reductions of accuracy in our results are likely due to the
increasing number of classes.

At the end, the experiments shift towards an investigation
about how each phoneme may affect our results. As shown in
Section 5, at all experiments the vowels are the most common,
possibly because the languages used here naturally have a high
occurrence of vowels in words. Also, every phoneme that
appeared in one experiment, is also present on the other.
Finally, only one new phoneme is added for English in
BP + EN + CN experiments, which is an allophone for voiced
‘H’, a fricative. For BP, however, there are 10 distinct sound
occurrences when Chinese is added. Most of them are vowels,
but it is more interesting that except for ‘U’, the other is
closed‐mid to open vowels, thus, indicating that while these
vowels are very distinct from the EN versions, they have a

much closer similarity to Chinese sounds. Therefore, it hardly
seems like phonemes are affecting the results. However, it is
clear that languages have similar sounds, as adding languages
have preserved the phonemes from previous experiments.

Finally, with the arguments and data presented here, the
conclusion is that using the methods given in this research study
makes speaker identification a language independent task.

7 | FINAl REMARKS AND FUTURE
WORK

This paper presented results for multilingual closed‐set text‐
independent speaker identification. It is crucial to keep in
mind that our objective is not achieving high accuracy. The aim
of this paper was to investigate how SI systems behave in
multilingual environments. With our results, using the config-
urations described in this work, speaker identification has
certain robustness in a multilingual environment.

As a result of combining different datasets, a lot of our
effort was put into preparing and processing the data. Mostly,
to make our results more reliable for SI it was crucial to make
sure the data would not lead our results towards any language.
Also, only the DARPA‐TIMIT was made with identity recog-
nition in mind. So, it made necessary to organise both BP and
CN to then run our experiments. Of course, all this work on
the datasets would be unnecessary if they were consistent with
each other or they were a single data. However, no dataset with
the required characteristics, inside the budget of this research
study, were found. In general, they either have a highly
disproportional language distribution or do not include BP.
Although, having a decent dataset being found, there would be
far more time to experiment different strategies and obtain
even more interesting results.

Some segments of this work can be improved or expanded.
First, most of our findings come to the conclusion that the
model is language independent, but the influence of the feature
vector is not investigated. A comparison between different
features, such as x‐vectors or Linear Predictive Coding, could
enrich the discussion around multilingual SI. Furthermore, a
better method to evaluate the influence of the number of
classes could be used. These results are shown in Figure 8 and
were obtained through random experiments. A better method
would be to split and label each language data, then test all its
combinations. This way, one can ensure that all speakers are
evaluated.

F I GURE 1 2 Comparison of monolingual,
2‐language, 3‐language, and size constraint results
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