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Abstract

Performance of evolutionary algorithms depends on many factors such as population size,
number of generations, crossover or mutation probability, etc. Generating the initial popula-
tion is one of the important steps in evolutionary algorithms. A poor initial population may
unnecessarily increase the number of searches or it may cause the algorithm to converge at
local optima. In this study, we aim to find a promising method for generating the initial pop-
ulation, in the Feature Subset Selection (FSS) domain. FSS is not considered as an expert
system by itself, yet it constitutes a significant step in many expert systems. It eliminates
redundancy in data, which decreases training time and improves solution quality. To achieve
our goal, we compare a total of five different initial population generation methods; Infor-
mation Gain Ranking (IGR), greedy approach and three types of random approaches. We
evaluate these methods using a specialized Teaching Learning Based Optimization search-
ing algorithm (MTLBO-MD), and three supervised learning classifiers: Logistic Regression,
Support Vector Machines, and Extreme Learning Machine. In our experiments, we employ
12 publicly available datasets, mostly obtained from the well-known UCI Machine Learn-
ing Repository. According to their feature sizes and instance counts, we manually classify
these datasets as small, medium, or large-sized. Experimental results indicate that all tested
methods achieve similar solutions on small-sized datasets. For medium-sized and large-sized
datasets, however, the IGR method provides a better starting point in terms of execution
time and learning performance. Finally, when compared with other studies in literature, the
IGR method proves to be a viable option for initial population generation.

Keywords: Feature subset selection, Initial population, Multiobjective optimization

1. Introduction and Background1

With advances in technology and the effects of globalization, electronic devices get2

cheaper and cheaper. As of today, technology has spread among users having various types3

of demographics and it has been an indispensable part of our lives. As a result, 2.5 quintil-4

lion bytes of data had been created every day in 2012 and this volume increases massively5
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Figure 1: Non-dominated solutions fitting to a pareto curve in a multiobjective FSS problem (Deniz et al.,
2017).

every passing minute (BBC, March 2014). It is not feasible to analyze this amount of data6

by manual processing, hence, we need to utilize machine learning techniques to do it au-7

tomatically. However, building an efficient and accurate machine learning models is not a8

straightforward process. Also, training a machine learning model requires analyzing every9

single feature of every single instance. Therefore, removing redundant and/or irrelevant fea-10

tures from data could be beneficial in terms of computation time and learning performance.11

Feature Subset Selection (FSS) has been a preferable tool to achieve this goal (Guyon &12

Elisseeff, 2003).13

FSS is the process that tries to remove redundant and/or irrelevant features from data.14

Since these features may not be clear initially, the utilization of such searching algorithms for15

finding the features that represent the data best is crucial. In this study, we use the MTLBO-16

MD searching algorithm to find the best feature subset. MTLBO-MD is a multiobjective17

teaching learning based optimization algorithm, proposed in our previous study (Kiziloz18

et al., 2018). Detailed information on the MTLBO-MD algorithm is given in subsection 2.1.19

We need a multiobjective search algorithm since there are two objectives in this problem20

domain, namely, decreasing number of features and increasing classification performance21

(accuracy). In a multiobjective optimization environment, different solutions may dominate22

each other in different objectives, hence, there may exist a solution set rather than only23

one solution (Horn et al., 1994). Figure 1 shows a sample of non-dominated solutions in a24

hypothetical problem.25

Evolutionary based algorithms are utilized in many combinatorial and optimization prob-26

lems and they require an initial population to begin their search. Traditionally, this initial27

population is set randomly (Michalewicz, 1996). However, poor selection of initial popu-28

lation may lead to getting stuck in local optima rather than finding the global optimum29

(Toğan & Daloğlu, 2008). Also, choosing the initial population wisely could possibly lead30
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to faster convergence to the global optimum. For this reason, we investigate the effects of31

using different initial population generation methods in FSS domain. Our main motivation32

is to analyze empirical results and find a promising initial population generation method in33

this domain.34

There are many studies proposing different strategies to generate an initial population35

in evolutionary algorithms. Maaranen et al. (2007) show that the initial population may36

have a considerable effect on the objective function in continuous optimization problems.37

They test different initial population seeds and conclude that smarter initial populations38

may decrease computation time or may bring out better solutions. Similarly, Karci (2004)39

proposes a method to initialize the population for continuous global optimization problems.40

The study emphasizes that the initial population should be evenly distributed for not getting41

stuck in local optima. Three benchmark problems having many dimensions were used in42

their experiments and it is seen that their method finds near-optimal solutions. Besides,43

Diaz-Gomez & Hougen (2007) propose five different (two gene-level, two chromosome-level,44

and one population-level) metrics to evaluate population diversity. However, they do not45

compare these metrics with empirical results.46

Studies investigating the initial population for well-known optimization problems also ex-47

ist. Hill (1999) proposes a heuristic for generating the initial population for two-dimensional48

knapsack problems, which performs better than the traditional methods according to their49

experiments. Similarly, Escobar et al. (2011) propose a constructive heuristic algorithm to50

generate the initial population for transmission expansion planning problem. They use real51

data in their experiments and their algorithm gives better results than random initializa-52

tion. In addition, Jorapur et al. (2016) proposes a population initialization algorithm for53

the job shop scheduling problem. Their algorithm uses random job based initialization after54

a simple job based representation and obtains better results than mere random based one.55

Moreover, Deng et al. (2015) propose a k -means based initial population generation algo-56

rithm for the travelling salesman problem. Experimental results indicate high performance57

improvement as compared to generating an initial population in a random or greedy fash-58

ion. Meanwhile, setting the initial population in k -means clustering is also very important59

since it may affect the clustering result dramatically. Zhou et al. (2018) propose a method,60

called SeedClust, which generates the best chromosome for automatic k -means clustering61

by applying an adaptive genetic algorithm. Experiment results show that SeedClust is an62

effective method for finding an effective initial population.63

Up to our best knowledge, the effects of the initial population have not been investigated64

thoroughly in the FSS domain. On the other hand, all mentioned studies state, with empir-65

ical results on different problem domains, that initial population should be selected wisely,66

rather than being generated randomly. Wise selection methods refer to statistical or greedy67

approaches, both of which are included in our tests.68

The main contribution of this study is to investigate the effects of using different initial69

population generation methods in FSS domain. For this reason, we compare five different70

methods (traditional methods along with our proposed methods) using various datasets and71

analyze their effectiveness with empirical results. FSS is generally not the main functionality72

of an expert system, yet, applying it to remove redundant data becomes a crucial step as73
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Figure 2: Chromosome structure (1 indicates selected features, 0 otherwise).

dataset sizes grow larger. Moreover, it should be applied without compromising efficiency.74

We expect our study to help researchers apply FSS with higher accuracy using less resources75

when building an expert system.76

The rest of the manuscript is organized as follows. In Section 2, our model is introduced77

with the following subsections: population selection, initial population generation methods,78

and applied machine learning techniques. Experimental results and discussion are given79

in Section 3. Finally, concluding remarks and possible future works are shared in the last80

section, Section 4.81

2. Model82

In this section, we introduce the model used in our study. First, we describe the pop-83

ulation selection algorithm, MTLBO-MD, in detail. Then, we give the initial population84

generation methods used. Finally, we briefly mention the machine learning techniques used85

for evaluating individuals.86

2.1. Individual description and population selection87

Finding the best population in a multiobjective environment is not a straightforward88

process since an improvement in one objective may worsen other objectives. In a previous89

study (Kiziloz et al., 2018), we proposed a promising algorithm, called Multiobjective Teach-90

ing Learning Based Optimization with Minimum Distance (MTLBO-MD), to overcome this91

problem. For FSS domain, we define a chromosome as given in Figure 2. Here, a chromo-92

some consists of 1s and 0s, indicating whether its corresponding feature in the dataset is93

selected or not, respectively.94

In a multiobjective domain, an individual in the population dominates another one if95

and only if it gives better result in at least one of the objectives while all other objectives96

give the same result. If two individuals can not dominate each other, then they are called97

non-dominated to each other. MTLBO-MD consists of two phases: the teacher phase and98

learner phase (see Figure 3). In teacher phase, all non-dominated individuals are found and99

the one that is closest to the ideal point is chosen as the teacher while the other individuals100

are set as students. The ideal point in feature subset selection domain is the point where the101

number of features = 1 and accuracy = 1.0, i.e. being able to classify perfectly using only102

one feature. After the teacher is selected, a crossover is applied between the teacher and103

all students, separately. We keep both old and new individuals (students) in the possible104

population set. Teacher phase of the algorithm ends with this operation and the learner105

phase begins. In the learner phase, a crossover is applied to two random students for106
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generate initial population

calculate both objectives of every individual in the population

find non-dominated individuals, and select the individual that is 
closest to ideal point as teacher

crossover teacher with all students separately

keep both old and new individuals

select two random students as parents and apply crossover

keep all three individuals: two parents and the child

remove duplicates and apply non-dominated selection to 
decrease size of individuals to population size

is termination
criteria satisfied?

apply non-dominated sorting and find the pareto set
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Figure 3: MTLBO with Minimum Distance (MTLBO-MD).
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the number of population size. Meanwhile, all new individuals are added to the possible107

population set. When the crossover is complete, first, duplicate individuals in the possible108

population set are removed and the number of individuals is decreased to population size109

via non-dominated sorting. For this purpose, individuals are divided into fronts (i.e. the110

first front includes all non-dominated solutions, the second front includes solutions that are111

only dominated by first front solutions and are non-dominated to each other, etc.). The112

population is filled by selecting from these fronts in order. Crowding distance method is113

used to select individuals constituting a front if only a part of that front is needed to fill the114

population. When the teacher and learner phase run for the specified number of generations,115

the algorithm terminates after finding the pareto set.116

We used crossover and mutation operators in the generation of new chromosomes. Half117

uniform crossover is implemented for the crossover part, and bit-flip mutation is imple-118

mented for the mutation part. In half uniform crossover, one new chromosome, namely119

child chromosome, is generated by using two existing chromosomes, namely parent chromo-120

somes. Feature genes of the parent chromosomes are compared, and the same ones are kept121

in the child chromosome. If a feature gene is different in the parents, then one of them is122

randomly chosen and transferred to the child chromosome. Mutation, on the other hand,123

operates on a single chromosome. It inverts one of the feature genes randomly and generates124

a new chromosome. We set the mutation probability to 0.02 in our implementation.125

2.2. Initial population generation methods126

We initially designed four different initial population generation methods, as described127

below. The fifth method, SR, is introduced as a post hoc study after obtaining initial test128

results.129

Random (Rnd): In this method, initial population is generated in a complete random130

fashion.131

Distinct Random (DR): Rather than complete randomness, we wanted to add a heuristic132

into random population generation and investigate its effects. For this purpose, we randomly133

generated individuals that is 10 times the population size and selected the most distinct134

individuals among them as the initial population. Here, we use the Hamming Distance, i.e.135

the number of different features, as distinctness metric between two chromosomes.136

Information Gain Ranking (IGR): In this method, we utilized a filter based feature137

selection approach, information gain (Quinlan, 1986), to find the most promising features in138

our dataset. Then we generate the initial population as follows: the first individual is the139

chromosome having only the most promising feature selected, the second individual is the140

chromosome having the most two promising features selected, and so on. We continue to141

generate individuals in this fashion until population size is met.142

Greedy (Gr): Finally, we utilized a greedy approach, sequential forward selection, to143

generate the initial population. For this purpose, we evaluate all chromosomes having only144

one feature selected, and pick the feature with the highest accuracy value. We add the145

individual having this picked feature selected into our initial population. Then, for the146

second individual, we fix the picked feature as selected and evaluate all possible chromosomes147

having two features selected. Now, we pick the features achieving the highest accuracy value,148
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and add this individual into the initial population. Search for the third individual is similar,149

picked two features are fixed as selected, and all chromosomes having three individuals are150

evaluated. This iteration continues until population size is met. The main difference of151

this method from others is its requirement to evaluate many chromosomes for generating152

the initial population. This method evaluates many possibilities and could be considered153

as an extreme case, yet, its solutions are valuable for evaluating the performances of other154

methods.155

Small Random (SR): In Rnd and DR, the initial population is deployed in a totally156

random fashion, giving it a small chance to find the global optima in small population size157

and number of generations. Accordingly, we introduced the SR method as a smarter option158

for random based initial population generation methods. In this method, the first individual159

is the chromosome having only one randomly selected feature. This individual is added to160

the initial population. The second individual is the chromosome having two features: the161

first one is the selected feature for the first individual, the second one is randomly selected.162

After adding this individual into the initial population, the third individual is generated163

similarly: the first two features selected from the second individual, the third feature is164

selected randomly. Iteration continues until population size is met.165

2.3. Applied machine learning techniques166

We used Logistic Regression (LR), Support Vector Machines (SVM) and Extreme Learn-167

ing Machine (ELM) to evaluate solution sets obtained by MTLBO-MD algorithm. LR uses168

a probabilistic model to perform classification, SVM tries to maximize the distance between169

different classes, and ELM utilizes the power of neural networks.170

Logistic Regression: LR analyzes the similarity of the data points to estimate the occur-171

rence probability of an event. Once this probability is calculated, it decides on the occurrence172

result and performs classification accordingly. We used a Matlab function, glmfit, for LR173

classification.174

Support Vector Machines : SVM constructs a line between different classes by maximiz-175

ing the distance between the line and closest data points to the line. We used a Matlab176

function, fitcsvm, for SVM classification. We chose kernel type as linear and set normaliza-177

tion parameter to True. Other than these, default parameters of the built-in function are178

used.179

Extreme Learning Machine: ELM is a feedforward neural network consisting of a single180

hidden layer. ELM does not need tuning which distinguishes it from other neural networks.181

Consequently, the training time of ELM is less than other traditional neural networks. We182

used an ELM library, developed by Huang et al. (2011), for ELM classification. We set the183

activation function as sigmoidal and node count to 20 in the hidden layer.184

3. Experimental Results185

In this section, we describe our experimental environment, problem instances, and ob-186

tained results. We carried out the experiments on a computer with AMD Ryzen 7 1800X187
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Table 1: Specification of the datasets used in the experiments.

Dataset Problem
ID

Number
of features

Actual
number
of classes

Number
of instances

Class
proportions

Covertype CT 54 7 581, 012 43% - 57%
Mushrooms MR 22 2 8124 48% - 52%
Spambase SB 57 2 4601 39% - 61%
Nursery NU 8 5 12, 960 50% - 50%
Connect-4 Opening C4 42 3 67, 557 27% - 73%
Waveform WF 40 3 5000 50% - 50%
Financial FI 93 2 17, 108 3% - 97%
Pima Indian Diabetes PM 8 2 768 35% - 65%
Breast Cancer BC 9 2 699 35% - 65%
Ionosphere IO 34 2 351 36% - 64%
Wisconsin Breast Cancer WBC 30 2 569 37% - 63%
Musk (Version 2) MU 168 2 6598 15% - 85%

Eight-Core Processor with a 3.6 GHz clock rate and 16 GB of main memory. We used188

MATLAB 2015a for evaluating individual accuracy, and Java for remaining parts.189

In our study, we used 12 datasets, 11 of which are obtained from the University of190

California UCI Machine Learning Repository (Dua & Graff, 2017). One remaining dataset,191

Financial, is retrieved from a study by Pacheco et al. (2009). Detailed information on192

datasets is given in Table 1. Most of the datasets used in this study have two actual classes.193

In different cases, datasets are reduced to two classes with the selection of the classes having194

most instances. Categorical values in datasets are converted to numerical values by arbitrary195

coding of symbols, in the preprocessing phase of the study.196

In supervised learning, classification accuracy mainly relies on how well training data197

represents actual data. To eliminate any bias towards one class, the data is generally split198

into k-partitions and each partition is used for testing in separate turns, while all remaining199

partitions are used for training. This methodology is called k-fold cross-validation. However,200

some of our datasets have a high amount of instances (the number of instances increases201

up to 581, 012) and application of k-fold cross-validation on these datasets would consume202

an enormous amount of time. For this reason, we first reduced the instance sizes of the203

CT, NU, WF, and FI datasets to 10, 000, with respect to their original class proportions,204

and then applied 5-fold cross-validation on all datasets. A validation set is not used in the205

experiments.206

In an evolutionary algorithm, especially in MTLBO-MD, population size and number of207

generations are two main factors that affect the quality of the results. In our previous study208

(Deniz et al., 2017), we discovered with experimental results that, selecting population size209

as 40 and the number of generations as 60 could lead to finding good enough solutions in210

an acceptable amount of time. However, we opted to halve both values since we are only211

analyzing the effects of initial population generation methods in this study. This choice212

would limit the exploration and exploitation capability of the MTLBO-MD algorithm, and213

hence, initial population generation would become more important. As a result, population214

size and the number of generations are selected as 20 and 30, respectively.215
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Table 2: Maximum accuracy, number of features at maximum accuracy, and execution time values for each
initial population generation method and machine learning technique.

Dataset
(Feature
size)

Method
Max.

accuracy

# of
features
at max.
accuracy

Exec. time
(sec.)

LR SVM ELM LR SVM ELM LR SVM ELM

CT (54)

Rnd 0.775 0.778 0.685 10 14 8 1341.9 20170.5 251.6
Gr 0.779 0.776 0.666 10 7 2 927.5 16932.8 385.8
IGR 0.772 0.773 0.655 8 6 3 86.6 6727.1 59.3
DR 0.777 0.776 0.586 11 11 10 590.5 13769.8 135.0
SR 0.751 0.621 0.673 3 3 4 79.3 592.7 35.7

MR (22)

Rnd 0.938 0.958 0.981 3 8 4 113.0 3621.5 83.5
Gr 0.955 0.952 0.990 9 6 2 294.0 2875.4 113.7
IGR 0.950 0.957 0.989 6 8 3 44.6 5703.3 18.4
DR 0.945 0.950 0.990 8 6 4 87.4 3758.7 51.5
SR 0.938 0.956 0.947 4 6 4 23.8 4481.5 20.7

SB (57)

Rnd 0.917 0.919 0.882 15 15 14 138.0 4561.8 135.5
Gr 0.922 0.922 0.889 14 15 8 146.8 2748.6 220.2
IGR 0.900 0.906 0.882 8 13 7 28.9 978.5 26.3
DR 0.915 0.910 0.887 18 25 12 121.8 3719.0 63.8
SR 0.869 0.854 0.818 13 13 8 34.1 2410.0 33.3

NU (8)

Rnd 1.000 1.000 1.000 1 1 1 34.4 168.4 31.0
Gr 1.000 1.000 1.000 1 1 1 40.4 104.5 30.9
IGR 1.000 1.000 1.000 1 1 1 20.0 43.0 8.7
DR 1.000 1.000 1.000 1 1 1 29.0 443.5 27.4
SR 1.000 1.000 1.000 2 2 2 13.9 210.0 10.8

C4 (42)

Rnd 0.805 0.797 0.792 21 11 9 308.3 15743.8 225.4
Gr 0.818 0.728 0.798 16 1 14 188.1 4872.9 522.6
IGR 0.806 0.813 0.793 13 17 11 46.2 10347.2 124.8
DR 0.813 0.803 0.791 17 16 11 156.5 12621.0 160.6
SR 0.744 0.738 0.759 11 5 7 74.6 1206.8 86.2

WF (40)

Rnd 0.923 0.924 0.904 9 14 7 47.4 2314.4 74.7
Gr 0.924 0.926 0.902 9 9 7 47.5 2392.2 125.7
IGR 0.925 0.929 0.903 10 11 6 18.4 790.2 11.6
DR 0.922 0.926 0.906 13 14 6 24.0 2283.7 33.7
SR 0.900 0.893 0.871 9 6 4 15.3 497.4 12.2

FI (93)

Rnd 0.966 0.966 0.966 8 11 15 2566.8 71212.4 203.2
Gr 0.966 0.966 0.966 1 1 1 547.5 23589.3 672.0
IGR 0.966 0.966 0.966 1 1 1 71.2 302.8 28.2
DR 0.966 0.966 0.966 14 15 10 2209.0 76677.8 119.8
SR 0.966 0.966 0.966 1 1 1 45.1 615.9 30.9

PM (8)

Rnd 0.773 0.776 0.727 5 6 1 2.9 23.0 7.1
Gr 0.777 0.776 0.741 6 6 1 2.4 23.7 5.5
IGR 0.773 0.776 0.746 5 6 1 4.6 12.3 3.5
DR 0.777 0.773 0.720 6 3 1 2.9 19.7 6.3
SR 0.771 0.773 0.714 4 3 4 3.5 7.9 2.7

BC (9)

Rnd 0.969 0.971 0.966 4 5 4 2.6 12.4 6.8
Gr 0.967 0.971 0.966 5 5 3 3.6 11.6 6.1
IGR 0.967 0.971 0.970 5 5 3 1.8 4.1 3.2
DR 0.969 0.971 0.967 3 5 3 3.3 8.7 5.9
SR 0.966 0.969 0.969 4 6 4 1.2 6.2 2.4

IO (34)

Rnd 0.900 0.906 0.917 6 12 5 40.7 89.8 26.6
Gr 0.906 0.912 0.917 8 7 3 114.0 77.6 35.2
IGR 0.858 0.877 0.923 6 5 3 4.3 28.8 6.9
DR 0.895 0.915 0.926 10 12 4 20.0 53.5 12.1

Continued on next page
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Table 2 – continued from previous page

Dataset
(Feature
size)

Method
Max.

accuracy

# of
features
at max.
accuracy

Exec. time
(sec.)

LR SVM ELM LR SVM ELM LR SVM ELM
SR 0.895 0.877 0.915 7 9 3 14.2 33.8 5.5

WBC (30)

Rnd 0.979 0.981 0.954 7 10 7 17.0 74.4 32.9
Gr 0.981 0.984 0.930 6 9 3 15.7 76.5 27.9
IGR 0.979 0.975 0.928 6 5 3 4.6 14.9 7.2
DR 0.974 0.979 0.960 5 7 5 13.1 32.3 21.7
SR 0.979 0.984 0.947 6 9 5 6.6 33.6 7.3

MU (168)

Rnd 0.938 0.944 0.866 72 69 37 880.8 55579.0 293.3
Gr 0.910 0.921 0.890 11 10 9 354.8 20854.9 978.8
IGR 0.920 0.920 0.880 10 16 5 25.6 3306.1 40.9
DR 0.941 0.943 0.867 64 50 30 628.6 43691.9 180.7
SR 0.868 0.896 0.870 6 7 5 19.1 1687.3 39.4

219

Accuracy results of the non-dominated solutions, execution times and the number of216

features for each initial generation method and machine learning technique are summarized217

in Table 2. Complete results (all the non-dominated solutions separated by datasets) are218

provided in the supplementary document.220

Rather than discussing all 12 datasets separately, we categorize our existing datasets into221

three clusters as small-, medium-, and large-sized datasets, in order to make comparisons222

easier. For this purpose, we sorted all the datasets by their number of features in ascending223

order. Categorizing PM, NU, and BC as small-sized datasets was straightforward due to224

their small number of features (up to 9). For deciding on where to split the medium- and225

large-sized datasets, the increment in the number of features from 42 (C4) to 54 (CT) stands226

out at first glance. However, the huge difference in the number of instances between WF227

(5000) to C4 (67,557) is also remarkable, and C4 resembles CT (581,012) more on this228

aspect. As a result, even though the number of features between WF and C4 differentiates229

by only 2, we decided to categorize WF as a medium-sized dataset, and C4 as a large-sized230

dataset, due to their number of instances. Hence, we obtain the clusters as specified below:231

• small-sized datasets: PM, NU, and BC232

• medium-sized datasets: MR, WBC, IO, and WF233

• large-sized datasets: C4, CT, SB, FI, and MU234

We would like to note that our categorization is not a representative of a universal cat-235

egorization considering enormous datasets used in other domains such as text mining or236

bioinformatics. We categorize some of our datasets as large since they are larger than the237

others in this study only.238

Obtained results indicate that, on the small-sized datasets, all methods can decrease the239

number of features with similar accuracy values. The execution time of IGR is less than240

other methods in most cases. For medium-sized datasets, it is clear that Gr performs well in241
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Table 3: Mean and standard deviation of the dataset accuracies with LR classification.

Dataset Rnd Gr IGR DR SR

CT 0.741± 0.064 0.768± 0.012 0.762± 0.011 0.771± 0.006 0.716± 0.070
MR 0.807± 0.169 0.904± 0.070 0.859± 0.147 0.900± 0.073 0.831± 0.128
SB 0.896± 0.022 0.897± 0.022 0.854± 0.052 0.900± 0.017 0.826± 0.076
NU 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000 0.807± 0.272
C4 0.794± 0.012 0.787± 0.024 0.782± 0.021 0.788± 0.025 0.739± 0.005
WF 0.904± 0.022 0.893± 0.040 0.905± 0.024 0.912± 0.014 0.837± 0.126
FI 0.966± 0.000 0.966± 0.000 0.966± 0.000 0.953± 0.018 0.966± 0.000
PM 0.765± 0.011 0.767± 0.011 0.765± 0.011 0.767± 0.011 0.737± 0.052
BC 0.954± 0.018 0.955± 0.016 0.955± 0.016 0.950± 0.021 0.939± 0.043
IO 0.844± 0.086 0.896± 0.008 0.840± 0.015 0.838± 0.092 0.835± 0.089
WBC 0.920± 0.115 0.964± 0.024 0.967± 0.014 0.956± 0.026 0.921± 0.105
MU 0.930± 0.004 0.891± 0.022 0.896± 0.027 0.935± 0.004 0.856± 0.009

terms of both minimizing the number of features and maximizing accuracy. Rnd and IGR242

compete with each other, and both dominate DR. Similar to small-sized datasets, execution243

times of IGR are much less than the execution times of the others. The result for the244

large-sized datasets is interesting. Both Rnd and DR are outperformed by Gr and IGR in245

terms of minimizing the number of features. Among Gr and IGR, Gr achieves more diverse246

non-dominated solutions than IGR does. Again, IGR is the fastest method among all of247

them. Also, results show that SR can reduce the number of features well, yet, it struggles248

to find high accuracy values in most cases.249

This analysis shows us that, Rnd and DR are competitive initial population generation250

methods in small-sized datasets, however, they tend to get stuck in local optima as datasets251

grow larger. This outcome could be triggered by the number of selected features in the initial252

population. Gr and IGR algorithms begin selecting the number of features from 1, up to253

population size in the initial population. This is actually a good starting point considering254

that one of the objectives is reducing the number of features. In medium- and large-sized255

datasets, Rnd and DR can only achieve high accuracy values with a higher number of features256

than other methods (Gr, IGR, and SR).257

To carry out a more complete comparison, we give mean and standard deviation of258

the accuracy values of datasets for all initial population generation methods when LR is259

applied, in Table 3. Moreover, Figure 4 presents the non-dominated solution sets of each260

initial population generation method on three selected datasets when LR is applied.261

To provide more robust analysis, we enhance the comparison results with statistical tests.262

We use Friedman’s Test to test differences of accuracy, the number of features and execution263

time between initial population generation methods, which indicates a significant difference264

in every comparison. A post hoc Wilcoxon signed-rank test with Bonferroni Correction is265

employed for pairwise comparison, with setting the significance level at p < 0.01, and the266

results are presented in Table 4.267

Statistical tests indicate no significant difference between initial population generation268

methods in terms of maximizing accuracy. The only exception is the SR method, which per-269
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Figure 4: Non-dominated solutions evaluated by LR on three datasets (one to represent each small, medium
and large-sized datasets) using five different initial population generation methods.
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Table 4: Results of post hoc pairwise Wilcoxon signed-rank test with Bonferroni Correction (significance
level set to p < 0.01). Friedman’s test results for each group are given in parantheses under each machine
learning technique. Significant differences are presented in bold.

(a) Accuracy

LR
(χ2(4) = 19.705, p = 0.001)

SVM
(χ2(4) = 23.280, p < 0.001)

ELM
(χ2(4) = 17.745, p = 0.001)

Rnd Gr IGR DR Rnd Gr IGR DR Rnd Gr IGR DR

Gr Z=-1.173
p=0.241 - - - Z=-0.700

p=0.484 - - - Z=-0.714
p=0.475 - - -

IGR Z=-0.296
p=0.767

Z=-1.304
p=0.192 - - Z=-0.841

p=0.400
Z=-0.070
p=0.944 - - Z=-0.204

p=0.838
Z=-0.771
p=0.441 - -

DR Z=-1.023
p=0.306

Z=-0.459
p=0.646

Z=-1.201
p=0.230 - Z=-0.210

p=0.833
Z=-0.663
p=0.507

Z=-1.020
p=0.308 - Z=-0.306

p=0.760
Z=-0.889
p=0.374

Z=-0.631
p=0.528 -

SR Z=-2.490
p=0.013

Z=-2.934
p=0.003

Z=-2.941
p=0.003

Z=-2.824
p=0.005

Z=-2.934
p=0.003

Z=-2.847
p=0.004

Z=-2.936
p=0.003

Z=-2.934
p=0.003

Z=-2.934
p=0.003

Z=-2.845
p=0.004

Z=-2.667
p=0.008

Z=-2.401
p=0.016

(b) Number of features

LR
(χ2(4) = 12.905, p = 0.012)

SVM
(χ2(4) = 11.752, p = 0.019)

ELM
(χ2(4) = 20.451, p < 0.001)

Rnd Gr IGR DR Rnd Gr IGR DR Rnd Gr IGR DR

Gr Z=-1.424
p=0.154 - - - Z=-2.666

p=0.008 - - - Z=-2.805
p=0.005 - - -

IGR Z=-1.836
p=0.066

Z=-1.943
p=0.052 - - Z=-2.310

p=0.021
Z=-0.140
p=0.889 - - Z=-2.670

p=0.008
Z=-0.511
p=0.610 - -

DR Z=-1.782
p=0.075

Z=-2.497
p=0.013

Z=-2.599
p=0.009 - Z=-1.274

p=0.203
Z=-2.310
p=0.021

Z=-2.293
p=0.022 - Z=-1.367

p=0.172
Z=-2.666
p=0.008

Z=-2.670
p=0.008 -

SR Z=-1.929
p=0.054

Z=-2.253
p=0.024

Z=-1.252
p=0.211

Z=-2.669
p=.008

Z=-2.825
p=0.005

Z=-1.067
p=0.286

Z=-1.156
p=0.248

Z=-2.224
p=0.026

Z=-2.395
p=0.017

Z=-0.045
p=0.964

Z=-0.939
p=0.348

Z=-1.993
p=0.046

(c) Execution time

LR
(χ2(4) = 28.533, p < 0.001)

SVM
(χ2(4) = 20.867, p < 0.001)

ELM
(χ2(4) = 42.200, p < 0.001)

Rnd Gr IGR DR Rnd Gr IGR DR Rnd Gr IGR DR

Gr Z=-0.628
p=0.530 - - - Z=-2.275

p=0.023 - - - Z=-2.275
p=0.023 - - -

IGR Z=-2.903
p=0.004

Z=-2.903
p=0.004 - - Z=-2.510

p=0.012
Z=-1.726
p=0.084 - - Z=-3.059

p=0.002
Z=-3.059
p=0.002 - -

DR Z=-2.903
p=0.004

Z=-1.177
p=0.239

Z=-2.903
p=0.004 - Z=-1.255

p=0.209
Z=-1.177
p=0.239

Z=-2.510
p=0.012 - Z=-3.059

p=0.002
Z=-2.903
p=0.004

Z=-3.059
p=0.002 -

SR Z=-2.981
p=0.003

Z=-2.981
p=0.003

Z=-0.784
p=0.433

Z=-2.981
p=0.003

Z=-2.275
p=0.023

Z=-2.118
p=0.034

Z=-0.784
p=0.433

Z=-2.510
p=0.012

Z=-3.059
p=0.002

Z=-3.059
p=0.002

Z=-0.157
p=0.875

Z=-3.059
p=0.002

forms worse than all others, in almost all cases. In the comparison of the number of features:270

IGR and SR methods perform better than DR for LR; Gr and SR perform better than Rnd271

for SVM; Gr and IGR perform better than Rnd and DR for ELM. Moreover, the difference272

is only marginally insignificant in 6 cases (p < 0.025). We conclude that Gr, IGR and SR273

perform better than Rnd and DR in terms of reducing the number of features. Next, we274

compare execution times of the initial population generation methods. Results indicate that275

IGR and SR methods execute faster than Rnd, Gr and DR methods, in general. SVM, at276
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Figure 5: Initial population and final population distributions of the MTLBO-MD + IGR (population
size=40, number of generations=60).
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Table 5: Training and test set sizes of datasets for comparison with previous studies.

CT MR SB NU C4 WF FI PM BC IO WBC MU

Training set 600 1300 600 400 1200 400 1000 268 199 101 169 400
Test set 200 200 200 200 200 200 200 200 100 50 80 200

first glance, seems like an exceptional case with no significant differences between methods.277

However, even though pairwise differences in SVM is not significant, Friedman’s test indi-278

cates a significant difference between initial population generation methods. Furthermore,279

the difference between IGR and Rnd, IGR and DR, and, SR and DR is only marginally280

insignificant, with a p-value of 0.012.281

Analyzing the results, it is clear that SR cannot perform well in terms of accuracy.282

Among the remaining 4 initial population generation methods, Gr and IGR perform better283

than Rnd and DR, in terms of minimizing the number of features. As a final comparison284

to decide between Gr and IGR, we see that the execution time of IGR is better than the285

execution time of Gr. From these results, we conclude that the IGR method achieves good286

enough solutions in a timely manner, standing as a promising method for initial population287

generation. We also present the performances of initial and final populations for each dataset288

in Figure 5, when the IGR method is employed.289

Finally, we compare the results of the IGR initial population generation method with290

results obtained from our previous studies, where MTLBO-MD (Kiziloz et al., 2018) and291

NSGA-II (Deniz et al., 2017) were used as metaheuristics with LR as the classifier and292

the initial population was generated randomly. However, in those studies, population size293

and number of generations were twice as much (population size was 40 and the number of294

generations was 60). Also, they used another method for splitting data into training and295

test sets, similar to other studies in the literature (Pacheco et al., 2009; Unler & Murat,296

2010). Briefly, for each dataset, they calculated instance proportion per class, and randomly297

selected instances from classes with respect to their proportion to fill up the training set sizes298

given in Table 5. Then, they randomly selected instances, apart from those existing in the299

training set, for the test set. Hence, we mimicked this methodology for all datasets prior to300

the study and generated 10 training set and 10 test set per each training set (a total of 100301

test sets). Similar to those studies, we increased the population size to 40 and the number302

of generations to 60, reran our tests of IGR method with LR selected as the classifier.303

Comparison results for all 12 datasets are given in Table 6. IGR produces close enough304

solutions to randomly initialized MTLBO-MD and NSGA-II algorithms. Numerically, out305

of 73 available comparisons (a row in the table, where MTLBO-MD + IGR method may306

be compared with at least one other method in terms of accuracy value, is considered as an307

available comparison), IGR can find the maximum accuracy value in 36 occasions. It finds308

a solution with up to 0.005 decrease in maximum accuracy in 60 occasions. Moreover, it309

requires less amount of time to execute in medium and large-sized datasets.310

Possible limitations to the study could be specified as follows. The most important311

drawback is the specific domain we evaluate our results on, namely FSS. FSS is an important312

step for building an expert system, yet it is not considered as one by itself. Hence, we do313
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not directly evaluate its effect on a real expert system. Secondly, the selected crossover and314

mutation operators have their own working schemes, which may affect the outcome of the315

study. Likewise, other types of search algorithms could lead to different results.316

4. Conclusion317

Machine learning applications may suffer from high dimensional data. As the number of318

redundant and/or irrelevant features in a dataset increase, learning time and accuracy are319

affected badly. Feature Subset Selection (FSS) is an important tool for dimension reduction,320

and evolutionary based heuristic algorithms are utilized for this purpose. These algorithms321

require an initial population to begin their search, and initial population selection may affect322

the final solution.323

In this study, we aim to improve the performance of an expert system, by improving the324

performance of an intermediate step, FSS. To improve the FSS performance, we propose325

selecting its initial population wisely. For this reason, we compare five initial population se-326

lection methods, namely Random (Rnd), Distinct Random (DR), Information Gain Ranking327

(IGR), Greedy (Gr), and Small Random (SR). We use the MTLBO-MD heuristic algorithm328

and three machine learning techniques, namely Logistic Regression, Support Vector Ma-329

chines, and Extreme Learning Machine, for evaluating the performance of the solutions.330

In our experiments, we utilize a total of 12 publicly available datasets, most of which are331

Table 6: Multiobjective comparison of the IGR method with previous studies.

(a) C4

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 - 0.729 -
2 0.737 0.746 -
3 0.751 0.755 -
4 0.764 0.764 0.765
5 0.772 0.772 0.772
6 0.778 0.777 0.778
7 0.784 0.784 0.785
8 0.791 0.791 0.791
9 0.796 0.796 0.796
10 0.802 0.797 0.800
11 0.804 0.799 0.802
12 0.807 0.799 0.807
13 0.813 - 0.810
14 0.817 - 0.812
15 0.819 - 0.815
16 0.823 0.805 0.819
17 - - 0.821
19 - - 0.822
20 0.826 - 0.822
22 - - 0.825
23 - - 0.826
24 - - 0.826

Time 502.6 431.6 1197.6

(b) SB

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.747 0.782 -
2 0.805 0.835 0.835
3 0.857 0.857 0.857
4 0.871 0.871 0.871
5 0.883 0.879 0.883
6 0.888 0.891 0.890
7 0.898 0.896 0.902
8 0.905 0.905 0.906
9 0.906 0.910 0.910
10 0.909 0.911 0.914
11 0.911 0.913 0.915
12 0.913 - 0.916
13 0.913 0.915 0.917
14 - - 0.919
15 0.914 - 0.919
16 - - 0.920
17 - - 0.920
18 - - 0.920

Time 372.1 426.1 1171.8

(c) MU

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

2 0.844 - -
4 0.875 - -
5 0.888 - -
6 0.904 - -
7 0.907 - -
8 0.909 - -
9 0.910 - -
10 0.911 - -
21 - 0.907 -
22 - 0.910 -
23 - 0.912 -
24 - 0.914 -
25 - 0.916 -
26 - 0.917 -
27 - 0.918 -
28 - 0.919 -

Time 76.9 931.2 -
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(d) CT

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.743 0.743 0.743
2 0.753 0.753 0.753
3 0.764 0.764 0.764
4 0.767 0.767 0.767
5 0.770 0.770 0.770
6 0.770 0.772 0.772
7 0.772 0.773 0.772
8 0.772 0.773 0.773
9 - 0.774 0.774
10 - - 0.774
13 - - 0.774
14 - - 0.775

Time 170.4 548.7 964.4

(e) WF

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.807 0.789 0.868
2 0.857 0.868 0.893
3 0.889 0.893 0.902
4 0.901 0.902 0.915
5 0.910 0.915 0.917
6 0.917 0.917 0.919
7 0.919 0.919 0.921
8 - 0.921 0.922
9 - 0.922 0.923
10 - 0.923 0.923

Time 47.9 88.8 176.6

(f) MR

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.589 0.763 0.750
2 0.762 0.905 0.867
3 0.909 0.937 0.937
4 0.937 0.940 0.937
5 0.939 0.949 0.945
6 0.947 0.950 0.946
7 0.951 - -
8 0.951 - 0.946
9 - - 0.949

Time 211.3 158.8 303.9

(g) IO

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.816 0.816 -
2 0.872 0.872 0.872
3 0.876 0.876 0.876
4 0.878 0.882 0.878
5 0.886 0.886 0.886
6 0.889 0.886 0.889
7 - 0.887 -
8 - 0.890 -

Time 85.1 131.6 239.6

(h) BC

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.927 0.927 0.927
2 0.953 0.953 0.953
3 0.958 0.963 0.963
4 0.961 0.963 0.963
5 0.962 0.963 0.963
6 0.962 - -

Time 11.1 7.2 12.4

(i) PM

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.747 0.747 0.747
2 0.760 0.760 0.760
3 0.766 0.766 0.766
4 0.768 0.768 0.768
5 0.771 0.771 0.770

Time 4.8 4.9 5.9

(j) WBC

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.918 0.920 0.920
2 0.958 0.961 0.961
3 0.972 0.971 0.972
4 - 0.975 0.975
5 0.973 - -

Time 35.5 54.1 89.2

(k) FI

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 0.966 0.966 0.966
2 0.966 - -
3 - 0.967 0.966

Time 115.8 702.8 2721.7

(l) NU

F.
size

MTLBO
MD +
IGR

MTLBO
MD +
Rnd

NSGA
II +
Rnd

1 1.000 1.000 1.000

Time 22.0 12.5 17.5

obtained from the UCI Machine Learning Repository.332

Experimental results indicate that all initial population generation methods can find333

good enough solutions in a timely manner when dataset size is small. As dataset size grows334

larger, random based methods get stuck in local optima and cannot compete with Gr and335

IGR. Among these two algorithms, Gr achieves slightly better results than IGR. On the other336

hand, the execution time of Gr is enormous as compared to the IGR method. Additionally,337

the IGR method is compared with two other algorithms in literature having random initial-338

izations. The obtained results show that the IGR method can achieve comparable solutions339
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with smaller execution time. As a result, we suggest using IGR as the initial population340

generation method for FSS, for small, medium and large-sized datasets.341

The main strength of the proposed method is its simplicity. Information Gain is a well-342

known algorithm, and its implementation in our method is straightforward. On the other343

hand, this method is not readily available in many existing frameworks, hence an additional344

step is required for its implementation.345

The main contribution of this study can be summarized as follows. Even though the346

importance of initial population generation is theoretically well-known, initializing the pop-347

ulation randomly is still the common approach. We analyze five different initial popula-348

tion generation methods with empirical results to emphasize the subject and find the most349

promising method. Our experiment results clearly show that generating the initial popula-350

tion wisely improves the overall performance, for all dataset sizes.351

Possible future work for this study can be implementing different types of initial popula-352

tion generation methods, such as a hybrid method that combines information gain, greedy353

approach and/or randomness. Also, other existing methodological settings can be tested.354

For example, different searching algorithms such as NSGA-II or PSO may be used instead355

of MTLBO-MD. Similarly, different types of crossover and mutator operators exist in the356

literature. We used half uniform crossover and bit-flip mutation, respectively, and it could357

be interesting to see whether the obtained results generalize over all operators. Moreover,358

in this study, we verified the importance of generating the initial population wisely, for the359

FSS domain. Wise initial population generation approaches for other problem domains, such360

as bin packing, graph coloring, travelling salesman, etc., can also be investigated. Finally,361

initial population generation methods can be implemented specifically to different dataset362

types such as image, text, etc.363
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