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Abstract: Water scarcity is a global issue, and its severity is expected to worsen in the near future,
prompting further efforts to find new sources of freshwater. Solar-Powered Atmospheric Water
Harvesting (SPAWH) is a promising passive approach for atmospheric water generation. This study
aims to examine the thermal performance of different glazing materials and water production in
SPAWH. The research consists of two phases: a laboratory test of various glazing materials and an
experimental study to assess system efficiency in producing water in the tropics. The preliminary
results indicated that glass demonstrated better thermal performance than acrylic in the lab, with
higher thermal conductivity and less heat loss. The experimental findings showed that the maximum
water produced by the proposed SPAWH (60 cm length, 60 cm width and 30 cm height) placed
on a 30◦ tilt angle using glass (3 mm) and acrylic (3 mm) was 0.61 L/m2/day and 0.44 L/m2/day,
respectively. The cost analysis revealed that produced water costs $0.18/kg for glass and $0.40/kg for
acrylic, respectively. Atmospheric water could be harvested using SPAWH in the tropics, which would
help to provide new opportunities for sustainable water supplies and development in these regions.

Keywords: water generation; atmospheric water harvesting; desiccant materials; solar still; tropics

1. Introduction

Climate change affects water resources in complex ways; it changes weather patterns,
unpredictably affects water availability and would contaminate water supplies. By 2100, the
world population is expected to reach nearly 10.9 billion [1]. Such population growth will
add massive pressure on drinking water supplies [2]. In addition, Shiklomanov indicated
in a study entitled water in crisis: a guide to the world’s freshwater resources that there is
only 2.5% freshwater on the planet, while the rest is saline water [3]. The statistics showed
that the current 2.5% of freshwater is categorized into 30% groundwater and 70% in the
form of ice and snow [4,5]. As a result, only less than 1% of freshwater is available for
human consumption.

Globally, the distribution of available water resources is not responding to the popula-
tion’s actual needs and activities. Many countries possess plenty of freshwater resources
while they are insufficient in other countries. Even though some of those countries have
sufficient water, such as Southeast Asia countries, the dynamic urbanization and climate
change negatively affect the availability of water resources. Many polluting materials
are discharged every year into many rivers in Southeast Asia countries. Simultaneously,
this region is vulnerable to a variety of hydro-meteorological hazards, many of which are
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likely to worsen as a result of climate change. Lorenzo and Kinzig [6] asserted that severe
disasters, such as flooding, can have an immediate impact on water quality and cause
long-term infrastructure damage in many tropical countries.

Atmospheric water harvesting (AWH) is considered an effective technique to increase
water production [7,8]. Beysens and Milimouk [9] pointed out that the atmosphere contains
12,900 km3 of freshwater, where 98% is water vapor, and only 2% occurs in the form of
clouds. If we consider a volume of humid air as a thermodynamic system, converting water
from vapor to liquid requires a decrease in entropy and enthalpy. Hence, energy must be
removed from the system. Latent water vapor energy can be transferred when the ambient
temperature is less than the dew point temperature, which occurs in only two settings.
The first scenario is to position the system near a source of cold with a temperature lower
than the dew point, such as the case with dew condensation and direct cooling systems.
The second scenario is when the system pressure and the dew point temperatures increase
above the ambient temperature similar to sorption/desorption systems [10].

The fundamental advantage of adsorption systems is the ability to generate energy
from low-temperature heat sources. Generally, low-cost and environmentally friendly
resources are used, such as solar energy [11,12], biomass [13,14], ground heat [15] or waste
heat [16]. No conventional mode such as 220 V electricity is available for these energies, and
the utilization of these energies demands specific design and sensitivity to environmental
circumstances. There is a direct correlation between the amount of water needed and the
amount of solar radiation received. Furthermore, passive designs can make use of sunrise,
sunset and the temperature differential between day and night.

Adsorbent selection is also influenced by the type of energy supplied and the temper-
ature of the heat source, as each adsorbent has a distinct regeneration temperature. This is
more apparent when solar energy and waste heat are used, as the heat source’s temperature
is limited. However, heat pumps [17] and solar concentrators [11,18] can be used to raise
the source temperature.

Furthermore, Cattani, Cattani and Magrini [19] proposed a Global Evaluation Index
(GEI) to investigate all useful effects of atmospheric water generation. Solar-powered
atmospheric water harvesting techniques are studied worldwide and novel approaches
are developed on a regular basis. Desiccant materials combined with a solar still and
collector or concentrator are a key strategy for increasing solar power and enhancing the
efficiency of SPAWH. The system is cost-effective, effortless and easy to install, particularly
in distant places.

Solar-Powered Atmospheric Water Harvesting (SPAWH)

Using sorption/desorption technology to generate water from humid air has been the
subject of recent studies globally. SPAWH’s main advantage over other technologies lies in
its capacity to produce water at low relative humidity. SPAWH can produce water widely
from hot deserts to tropical areas depending on the adsorbent. Due to the sensible heat of
the device’s body and the adsorbent remaining consistent, the rate of energy consumption
per unit of water generated is lower than other technologies.

Innovative materials and structural designs allow moisture harvesters to speed up the
next-generation development of AWH systems [8]. Many studies have been conducted to
enhance AWH systems’ productivity. For example, Kumar and Yadav [20] investigated
the effect of design parameters on the productivity of the solar glass desiccant box type
system (SGDBS) (Figure 1a). The study concluded that suitable design parameters are air
gap height of 0.22 m, angle inclination of 30◦ and effective glass thickness of 3 mm. William,
Mohamed and Fatouh [21] introduced a trapezoidal prism made of fiberglass and used solar
energy to extract water from the ambient air (Figure 1b). The collector was made of a multi-
shelved bed to increase the surface area of the bed. The experiment used cloth and sand as
host materials that were soaked with CaCl2. With a system efficiency of 29.3% for cloth and
17.76% for sand, the 30% CaCl2 concentration produced 2.32 kg/m2/day of evaporated
water. Harvesting water from air using a novel design of 1.54 m2 Scheffler reflector,
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Srivastava and Yadav [18] experimentally investigated three absorber salts, namely: CaCl2,
LiCl and LiBr with a concentration of 37% and sand as a host material. CaCl2, LiCl and
LiBr composites produced a maximum of 115 mL/day, 90 mL/day and 73 mL/day in
270 min, 330 min and 270 min, respectively, while the annual cost for the production/L
of water amounts to $0.53, $0.71 and $0.86. Talaat et al. [22] investigated the parameters
that affect the performance of a finned-type solar-powered portable apparatus, which is
used to extract water vapor from atmospheric air through a cloth layer saturated with the
solution of CaCl2 (Figure 1c). This apparatus is made of two-faced layers of the conical
finned absorber and transparent cover. At night, the conical-absorber soaked moisture,
and throughout the day, the absorber was tightly covered with the conical transparent
cover and then exposed to the sunlight. The system produced water that ranged from
0.33 kg/m2/day to 0.63 kg/m2/day.

Khechekhouche et al. [23] examined the productivity of double glazing solar still
and conventional solar still (0.5 × 0.5 m). The results showed that the water yield of
double glazing was reduced by 56% in comparison with conventional solar still. A similar
approach was conducted by Kumar et al. [24] to compare conventional pyramid-shaped
solar still (CPSSS) and air-packed pyramid-shaped solar still (APPSSS) with double glazing
(Figure 1d). Due to the air-packed cover, the APPSSS was found to perform less than
the CPSSS. Khalifa and Hamood [25] examined the impact of insulation thickness and
Elango and Murugavel [26] and Al-Karaghouli and Alnaser [27] conducted experiments to
examine the impact of insulation on solar still productivity. PV panel integrated solar still
performance was studied by Manokar et al. [28] and Manokar et al. [29]. Sibie, El-Amin
and Sun [30] introduced mathematical modeling and simulation to explain the absorption
process of three anhydrous salts for water generation in a low humidity climate.
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Figure 1. (a) Solar glass desiccant box type system (SGDBS), adopted from [20]; (b) Trapezoidal 
prism solar collector, adopted from [21]; (c) Double-faced conical finned absorber, adopted from 
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Figure 1. (a) Solar glass desiccant box type system (SGDBS), adopted from [20]; (b) Trapezoidal prism
solar collector, adopted from [21]; (c) Double-faced conical finned absorber, adopted from [22] and
(d) traditional pyramid-shaped solar still and air-filled pyramid-shaped solar still, adopted from [24].
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So far, major studies and reviews have been involved in developing adsorbents in
terms of the mass of water adsorption and the adsorption/desorption kinetics. The impor-
tance of adsorbents cannot be overstated; however, the performance of an AWH system can
be affected by a variety of factors. Even if an ideal adsorbent exists, this does not ensure
that the system will work properly. Furthermore, condensation surface wettability and
vapor droplet contact angle value affect the condensation mechanism, which in turn affects
the efficiency of solar stills [31,32]. Similar to other adsorption applications, mass and heat
transfer may play an important part in the system’s overall performance [33,34]. However,
this study only focuses on the heat transfer of different glazing materials.

The main drawback of SPAWH is the low water yield and poor latent heat during the
condensation process. Several design modifications were added to boost the SPAWH’s
water production. The Inclined Solar Still (ISS) is an example of a SPAWH. However, only
limited progress was made in the development of ISS. The ISS includes the following
benefits added to its design: the flexibility in inclination angle that improved effective area,
the direct projection of solar radiation toward the basin and a higher evaporation rate [35].
Further evaporation and condensation mechanisms are vital to enhancing the overall solar
still efficiency [36]. Radiation from the sun is the source of energy heat for solar still. Thus,
to increase the evaporation rate of absorbers and system efficiency, maximum utilization
of solar heat is crucial to gain more water yield. Thus, this study aims to investigate the
effect of glazing materials on the thermal performance of SPAWH and its water generation.
Table 1 summarizes the main research studies conducted on atmospheric water harvesting
(AWH) using the sorption/desorption technique.

Table 1. A survey of studies conducted on atmospheric water harvesting (AWH) systems using desiccants.

Ref Location Procedure Desiccant Water Production Efficiency (%)

[37] Egypt Experimental and
theoretical CaCl2/sand 1.2 L/m2/day -

[38] Egypt Experimental CaCl2/saw wood and cloth 2.5 L/m2/day 90–95%

[39] China Experimental CaCl2/MCM-41 1.2 kg/m2/day -

[40] Saudi Arabia Experimental CaCl2/sand 1.0 L/m2/day -

[41] India Experimental Silica gel 200 mL/kg/day -

[20] India Experimental CaCl2/saw wood 180 mL/kg/day -

[42] India Experimental CaCl2/vermiculite/saw wood 195 mL/kg/day -

[21] Egypt Experimental CaCl2/cloth Cloth = 2320 gm/m2

Sand = 1235 gm/m2
Cloth = 29.3%
Sand = 17.76%

[43] China Experimental LiCl/consolidated active
carbon 14.5 kg/40.8 dry sorbent/day -

[18] India Experimental LiCl, CaCl2 and LiBr
LiCl = 90 mL/1.54 m2/day

CaCl2 = 115 mL/1.54 m2/day
LiBr = 73 mL/1.54 m2/day

-

[22] Egypt Experimental and
theoretical CaCl2/cloth 0.33–0.63 kg/m2/day 22.56%

[44] Egypt Experimental and
mathematical CaCl2/cloth 1.5 L/m2/day 17%

[45] Saudi Arabia Experimental and
theoretical CaCl2/Cotton cloth 0.51 L/kg (dry sorbent)/day 24.61%

2. Experimental Setup and Measurements

The thermal performance of glazing and water production from atmospheric air were
investigated based on two phases, as shown in Figure 2. The first phase is a laboratory
test of glass and acrylic properties in terms of solar spectrum transmission and solar
power transmission. The second phase covered an experimental study to examine water
production and systems efficiency of glass and acrylic glazing systems.
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2.1. Laboratory Tests

Understanding glazing specifications is critical for increasing heat transfer and storage;
hence, the efficiency of the atmospheric water harvesting system (SPAWH). In this phase,
a comparison between acrylic and glass materials was conducted in terms of their solar
spectrum transmission and solar power transmissions (Figure 3). The scientific name of
the acrylic used is poly(methyl methacrylate) (PMMA) and classified as a transparent
thermoplastic.
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Figure 3. (a) EDTM-SS2450 instrument to measure the solar spectrum; (b) EDTM-SP2065 instrument
to measure transmission power.

Five samples of each glass and acrylic Perspex (20 cm × 20 cm) with thicknesses:
3, 4, 5, 6 and 8 mm were tested. Solar spectrum transmission was measured using the
EDTM-SS2450. Generally, solar radiation contains three primary forms of light: ultraviolet
(UV), visible and infrared (IR).

In addition, EDTM-SS2450 measures the Damage Weight Transmission (Tdw) of solar
radiation. Solar radiation contributes to the damage of materials through fading and the
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general breakdown of the fabric structure. For example, an 80% Tdw will cause more
fading than a 20% Tdw. This evaluation will assist in considering the effect of the glazing
type on the materials inside SPAWH in long-term usage. Additionally, EDTM-SP2065
instrument was used to measure the power and solar transmission of glass and acrylic
samples (Figure 3).

Table 2 shows the comparison between glass and acrylic samples’ properties in terms
of the solar spectrum and power transmission. For ultraviolet energy UV (315–380 nm), the
results showed that UV transmission for glass was almost similar for all samples with a
range of 57–59% for glass thickness of 8 mm to 3 mm. In contrast, for acrylic samples, UV
energy presented a wide variation with a maximum level of 74% for the acrylic thickness of
3 mm and 5% for 8 mm of acrylic thickness. Turning into visible light (380–780 nm), acrylic
samples recorded higher transmission values than glass samples. Visible light transmission
gradually increased from 91–95% for acrylic samples and 89–90% for glass samples of
3 mm–8 mm. For the near-infrared radiation IR (780–1700 nm), increasing glass thickness
reduced the amount of transmission with a range from 80–70% for a glass thickness from
3–8 mm. In contrast, an increase in acrylic thickness slightly increased the amount of IR
transmission from 90–92% for acrylic thickness from 3–8 mm. As infrared radiation IR
energy typically refers to long waves, which are mainly responsible for heat radiation
transfer, acrylic glazing might experience high heat loss compared to glass. However, the
damage weight for glass was less than acrylic for a thickness of 3 mm (glass 84% and acrylic
88%). Damage weight of glass increased from 84–86% with the rise in samples’ thicknesses
from 3–8 mm but reduced from 88–77% for the same thicknesses of acrylic samples. Total
power transmission percentages were similar for all acrylic samples with 91%. However,
glass power transmission ranged from 82–70% for samples’ thicknesses from 3–8 mm, as
shown in Table 2. Therefore, the amount of heat that escapes from glass is less than acrylic,
which might increase SPAWH heat and system efficiency.

Table 2. Comparison between glass and acrylic samples’ properties.

Properties of Glass (G) vs. Acrylic (A)

EDTM-SS2450 EDTM-SP2065

Thickness> UV
(315–380 nm) %

Visible
(380–780 nm) %

IR
(780–1700 nm) % Damage Weight % Transmission

Power %

Glazing G A G A G A G A G A

3 mm 59 74 89 91 80 90 84 88 82 91

4 mm 59 17 89 92 77 91 85 78 78 91

5 mm 59 15 89 93 73 91 85 78 74 91

6 mm 59 7 90 94 73 92 86 76 72 91

8 mm 57 5 90 95 70 92 86 77 70 91

2.2. Experimental Study

The study conducted field experiments at the faculty of the built environment, the
University of Malaya in Kuala Lumpur, Malaysia. The study targeted two periods of
dry and wet seasons, around February and August (Figure 4). Two atmospheric water
harvesting systems (SPAWH) were compared in terms of thermal performance, water
quantity and system efficiency using glass and acrylic materials as glazing. More details
about these two systems are explained in the following sections.

In this experimental study, the solar-powered atmospheric water harvesting systems
(SPAWH) were designed, manufactured and used, as shown in Figure 5. The first SPAWH
is fabricated by assembling a clear Perspex acrylic box (60 cm (L) × 60 cm (W) × 30 cm (H)).
The upper cover is adjusted to be removable for the processes of sorption and desorption.
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For collecting condensed water, a pipe was connected to the system. During the
regeneration process, a transparent 3 mm acrylic, which acts as a condenser, is used for
glazing. The desiccant material (silica gel) was held by a wire mesh sized 3 mm × 3 mm,
screwed to the L shape frame (Figure 6). A measuring cylinder with a reading of 5 mL is
used to measure the quantity of water generated. Figure 7 displays the desiccant material
before and after the absorption process in the SPAWH. Table 3 provides more details about
SPAWH main parts.

Table 3. Main parts of SPAWH.

SPAWH Parts Description

Main container

Two containers of glass and acrylic were used due to their sufficient
strength and long life. The size of each SPAWH is 0.6 m × 0.6 m × 0.3 m.
The top cover was modified so that it can be removed for the nighttime
absorption process. A water pipe with a slight slope was fitted on the
front side to collect droplets from the glass/acrylic after condensation.

Glazing

The first container used a glass of 3 mm thickness for glazing, while the
second container used a clear Perspex acrylic of 3 mm as glazing. This

glazing also acted as a condenser during the process of regeneration. The
sunlight of shorter wavelengths can enter the SPAWH by the glass and
clear acrylic and captured radiation of longer wavelength after heating

the desiccant material. The greenhouse effect was generated within
the SPAWH.
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Table 3. Cont.

SPAWH Parts Description

Wire mesh tray
Inside SPAWH, the desiccant material was stored on the wire mesh of

steel wire. The wire mesh is 3 mm × 3 mm in dimensions. The aluminum
L shape frame was fastened with a wire mesh.

Connecting pipe Between the container and the measuring cylinder, the connection pipe
was attached. This pipe provided a path to flow water droplets.

Water measuring
cylinder

A water measuring cylinder for water collection was used outside the
SPAWH. The water was collected directly through the connecting tube to
the measuring cylinder. There were measuring marks on the bottle that
indicate the amount of water collected. The minimum quantity of water

measurable was 5 mL.

Desiccant material

For atmospheric water extraction, silica gel was used as a desiccant
material. To this end, for each SPAWH, 2 kg of silica gel was used. In

regenerated form, the color of silica gel was blue, whereas it turned to a
rose color in a saturation state. This color transformation is due to cobalt

chloride (Figures 6 and 7).
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Figure 6. Experimental setup photograph: (a) absorption process during the night; (b) regeneration
process during day and (c) Mini meteorological station.
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Figure 7. Desiccant material before and after absorption process.

2.2.1. Measuring Instruments and Sensor Specifications

During laboratory tests and empirical experiments, various parameters were mea-
sured, as shown in Table 4. All laboratory and experimental data were recorded in the
study field.

2.2.2. Experimental Procedure

Two main stages were performed to investigate the atmospheric water production
using the desiccant materials (Figure 8):

(a) Adsorption process at night. In this step, water vapor is taken up by the adsorbent in
contact with ambient air.

(b) Desorption and condensation process on the next day. The desiccant is isolated from
the ambient air and the solar heat is applied to desorb the water vapor, which is finally
condensed and collected.

The desiccant material was exposed to the atmosphere from 7:00 p.m. in the evening
to 7:00 a.m. As a result of the difference in vapor pressure between the desiccant material
surface and air, moisture from the ambient air is adsorbed by the desiccant material. The
adsorption rate decreases as time goes by. In the interval of 30 min, the adsorption rate
was measured using a weighing machine. The cover was closed in the morning at 7:00 a.m.
and the SPAWH was tightly sealed for sunlight exposure in the regeneration process. The
difference in vapor pressure between the desiccant surface and the air in the inner space
of the box increases as the temperature of the desiccant material increases. The absorbed
moisture is then transferred to the inner air and raises the vapor pressure. As the solar
intensity increases, mass vapor flows from the desiccant substance to the indoor air until it
reaches the saturation point. The water vapor then begins to condense on the inside of the
glass cover, forming tiny drops. These tiny drops slip across the glass surface and land in
the water collection tray. Finally, the collected water flows through a connecting pipe to the
water measurement cylinder due to the slope in the water collection tray. The volume of
water collected was measured manually at an interval of 30 min. In addition, the system
temperature and meteorological data were recorded during the regeneration process.
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Table 4. Specifications of measuring instruments and sensors.

Instruments/
Sensors Models Accuracy Ranges Characteristics

La
b

te
st

s

Solar spectrum transmission EDTM-SS2450 ±3% 315 nm–1700 nm

Accurate solar spectrum transmission and
damage weight. Application: Measuring glass

and acrylic samples
(3, 4, 5, 6 and 8 mm).

Solar power meter EDTM-SP2065 N/A N/A

Measures the power of incident solar radiation
per unit area entering the sensing zone of the

meter. Application: measuring glass and
acrylic samples

(3, 4, 5, 6 and 8 mm).

Ex
pe

ri
m

en
ta

ls
en

so
rs

Weather station data logger H21-USB - -
A weatherproof data logger for multi-channel
monitoring of microclimates. It includes five

smart sensor inputs.

4-Channel Thermocouple
Data Logger UX120-014M ±0.21 ◦C −260 ◦C to 1820 ◦C

To measure the surface temperature of the
desiccant material, the inner and outer side of
the glass/acrylic top cover and the inner side

of the SPAWH.

Thermocouple probes Type J 6 ft
Beaded ±2.2 ◦C 0 ◦C to 250 ◦C

It contains 1.8 m (6′) of isolated 30-AWG cable
wound for a built-in spool

caddy/subminiature connector. Application:
stick on the glazing surface and connect with

the thermocouple data logger.

Outdoor relative humidity S-THB-M002 ±0.1% RH 0–100% Highly precise measurement of relative
humidity. Long-term humidity stability.

Outdoor air temperature S-THB-M002 ±0.21 ◦C −40 ◦C to 75 ◦C Accurate measurement of ambient
air temperature.

Solar radiation intensity S-LIB-M003 ±10 W/m2

(±5%) 0 to 1280 W/m2
To measure light intensity. This sensor has a
measurement range of 0 to 1280 W/m2 over

wavelengths from 300 to 1100 nm.

Solar radiation shield RS3-B - -

To improve the precision of temperature
measurements, use the RS3-B Solar Radiation
Shield with HOBO external sensors in places

exposed to sunlight.

Electronic balance AJ-12KE ±0.1 g 0 g–12,000 g

Quick response and stable indication balance.
Applications: (1) To measure the desiccant

material before experiments. (2) To measure
the absorption rate during nighttime. (3) To

measure the desiccant material after the
regeneration process.

The adsorption and regeneration rates were determined based on weight. The rate of
adsorption and regeneration was calculated using the following formula [47]:

Ga = mwS
dw
dt

(1)

where Ga refers to the adsorption rate (kg/h), mwS is the adsorber’s weight (wet basis) in
kg, dw/dt is moisture content in the desiccant material throughout the time interval.

Gr = mdS
dw
dt

(2)

where Gr is the regeneration rate (kg/h) and mdS is the adsorber’s weight (dry basis) in kg.

3. Results and Discussion

The main objective of this study is to compare the performance of SPAWH design
using different glazing materials in the tropics. For this purpose, the two glazing systems
were analyzed in terms of the adsorption rate of desiccant materials, the temperature of
SPAWH at several points, water production from each system and cost analysis.
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3.1. Adsorption Rate of Desiccant Materials

Both SPAWH systems (glass and acrylic) covers were opened during nighttime to
measure the adsorption rate of the desiccant materials. The adsorption rate was manually
recorded for 12 h from 7:00 p.m. to 7:00 a.m. with half-hour intervals. Generally, both
systems’ adsorption rate was similar, as the same weight of desiccant materials was placed
in each system (2000 g of silica gel). Figure 9 shows the adsorption rate alongside relative
humidity and ambient air temperature. At the initial stage, maximum adsorption rate
was recorded at 0.080 kg/h and 0.082 kg/h followed by 0.044 kg/h and 0.052 kg/h on
21 February 2020 and 31 July 2020, respectively.

The behavior of adsorption rate returns to the characteristic of pores in the desiccant
materials. Initially, all pores in silica gel were empty and with the progression of time, most
pores started to be filled. Subsequently, the adsorption rate decreases with time. However,
the adsorption rate on 31 July 2020 was a bit higher than on 21 February 2020, as shown
in Figure 9. The relative humidity of outdoor air on 31 July 2020 was higher compared to
21 February 2020. In addition, the adsorption rate efficiency of silica gel reduces with an
ambient temperature of more than 25 ◦C [48], which is slightly lower than the adsorption
rate on 21 February 2020.
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Figure 9. Adsorption rate, ambient air temperature and relative humidity.

3.2. Temperature Variation in the Systems

The water production and system efficiency are mainly affected by temperature vari-
ation in SPAWH. Four thermocouple probes were attached on desiccant materials, inner
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side, inner glazing cover and outer glazing cover of each SPAWH to examine temperature
behavior in the systems. As the Solar-Powered Atmospheric Water Harvesting with acrylic
glazing (SPAWHa) properties allow more solar energy to enter into the desiccant materials
(see Table 2), the temperature increased more than the Solar-Powered Atmospheric Wa-
ter Harvesting with glass glazing (SPAWHg) at the initial period between 9:00 a.m. and
10:30 a.m. In contrast, the thermal conductivity of glass is higher than in acrylic. After
10:30 a.m., the temperature in the SPAWHg was higher. As the power transmission percent-
age of the glass is lower than acrylic (see Table 2), the heat loss rate in SPAWHg was less
than SPAWHa. Subsequently, the net heat in SPAWHg was higher than SPAWHa, which
led to higher performance of the SPAWHg. However, the penetration of the solar irradiance
was also reduced by water droplets on the condensation surface.

Figures 10 and 11 show the variation in desiccant temperature and solar radiation
with time in both SPAWH (glass and acrylic). In SPAWHg, the maximum desiccant tem-
perature reached 79 ◦C and 73 ◦C, whereas for SPAWHa reached 77 ◦C and 65 ◦C on
21 February 2020 and 1 August 2020, respectively. Generally, the desiccant temperature in
SPAWHg was higher than SPAWHa during the daytime.
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Figure 10. Variation in solar intensity and temperature of desiccant materials on 21 February 2020.
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Figure 11. Variation in solar intensity and temperature of desiccant materials on 1 August 2020.

Figure 12 shows the internal side temperature of SPAWH and solar intensity with
time on 21 February 2020 and 1 August 2020. The internal side of SPAWHg has a higher
temperature compared to SPAWHa. In SPAWHg, the maximum temperature reached
56 ◦C and 50 ◦C, whereas SPAWHa reached 54 ◦C and 48 ◦C on 21 February 2020 and
1 August 2020, respectively. In the same way, for SPAWHg, the temperature on the inner
cover and outer cover was higher than SPAWHa, as shown in Figures 13 and 14. However,
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the surface temperature in the SPAWHg for the inner and outer cover side was higher
than SPAWHa at about 3–6 ◦C. This can be attributed to the higher latent temperature of
the glass. The maximum surface temperature of the inner SPAWHg cover was 59 ◦C and
53 ◦C, whereas SPAWHa was 54 ◦C and 50 ◦C on 21 February 2020 and 1 August 2020,
respectively. In comparison, the outer side cover was 54 ◦C and 49 ◦C for SPAWHg and
51 ◦C and 46 ◦C for SPAWHa on 21 February 2020 and 1 August 2020, respectively.

When energy is transmitted into an adsorbent bed, some of this energy was used to
raise the temperature, which is known as sensible heat [49]. During the transition to the
adsorption phase, this heat was most frequently released back into the atmosphere. All
adsorption systems lose energy efficiency due to sensible heat, which cannot be avoided.
The lower the ratio of sensible heat to adsorption heat, the more efficient the device will
be at capturing energy. Due to this, the desorption enthalpy should be given greater
consideration [50]. A reduction in adsorption enthalpy can boost daily production capacity
due to the limited availability of energy resources.
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Figure 12. Variation in solar intensity and internal side temperature: (a) 21 February 2020 and (b) 1
August 2020.
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Figure 13. Variation in solar intensity and inner cover temperature: (a) 21 February 2020 and (b) 1
August 2020.
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Figure 14. Variation in solar intensity and outer cover temperature: (a) 21 February 2020 and (b) 1
August 2020.
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3.3. Variation in Water Production

The water production rate of SPAWH depends on several variables that affect the
system efficiency, such as solar intensity, ambient air temperature, relative humidity during
the night, desiccant adsorption capacity and temperature needed to release water (gener-
ation process). However, there are other variables that affect water production, such as
proper design and tightness of SPAWH and glazing materials and properties in terms of
the solar spectrum and power transmissions. Although this study used the same desiccant
material (silica gel) with the same weather circumstances and identical SPAWH design and
dimensions (L60 cm ×W60 cm × H30 cm), the difference is only in the glazing system.

The water production and system efficiency in SPAWHg were higher than SPAWHa.
As shown in Figures 15 and 16, water production from SPAWHg was 220 and 180 g/day,
whereas for SPAWHa, it was 160 and 125 g/day on 21 February 2020 and 1 August 2020,
respectively. Although acrylic allowed more solar energy transmission into the SPAWH, the
thermal conductivity of the glass is higher, which led to rising the net heat of SPAWHg. In
addition, the characteristics of glass reduce heat loss from SPAWHg into the surroundings,
which leads to an increase in the temperature inside SPAWHg and generates more water.
The rate of energy entry and temperature of the condenser has an effect on desorption
kinetics as well [51]. Both factors are no longer constant if solar energy is used. As a result
of the overall heat increment, the overall performance of SPAWH improved when the
design of the adsorption-desorption system was efficient.
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Figure 15. Variation of water production by glass and acrylic glazing systems on 21 February 2020:
(a) hourly water produced and (b) accumulated water produced.
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3.4. Cost Analysis of the SPAWH

In order to determine the costs of water production for the unit, a cost analysis is
conducted. The unit works every day of the year. The principal cost analysis estimation
parameters are [22,52]:

The capital recovery factor, CRF, which is estimated by the following relationship,

CRF =
I(I + 1)N

(I + 1)N−1 (3)

where I is the annual interest rate, which is assumed to be 12% and N is the number of life
years, which is assumed to be 10 years for glass and 5 years for acrylic. The fixed annual
cost, FAC, can be calculated by multiplying the unit’s present capital cost (PC), as shown in
Table 5 (which is $75.15 (USD) for glass SPAWH and $81.15 (USD) for acrylic SPAWH) and
CRF as,

FAC = PC × CRF (4)
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Table 5. Cost breakdown of AWH systems.

Parameter Cost of Glass AWH System
(USD)

Cost of Acrylic AWH
System (USD)

Glazing 22 28

Wire mesh tray 5 5

Desiccant materials (2 kg) 14 14

Wood table 15 15

Paint 2.5 2.5

Water collecting cylinder 1.25 1.25

Connecting pipe 0.4 0.4

Production 15 15

Total cost 75.15 81.15

The sinking fund factor, SFF, can be calculated as,

SFF =
I

(I + 1)N−1 (5)

The annual salvage value, ASV, is determined by multiplying SFF by the salvage
value, S, which is calculated as,

S = 0.2 × PC (6)

ASV = SSF × S (7)

The unit’s annual maintenance operational cost, AMC, can be calculated as,

AMC = 0.15 × FAC (8)

The annual cost is estimated as,

AC = FAC + AMC − ASV (9)

To calculate the cost produced kilogram of water generated (CPK), the annual cost can
be divided by total produced water over the year, M, as,

CPK =
AC
M

(10) (10)

The cost of a kilogram of produced water is determined by this cost analysis with
$0.18 USD/kg and $0.40 USD/kg for glass and acrylic SPAWH, respectively.

4. Conclusions

Two solar-powered atmospheric water harvesting systems (SPAWH) were designed
and manufactured with different glazing materials: glass and acrylic in the tropics. This
desiccant adsorbs moisture from humid air and then regenerates it with solar heat. The sys-
tem operation and experimental results were thoroughly discussed and the main findings
can be summarized as follows:

• Although acrylic glazing allows more solar transmission compared to glass, a system
with acrylic has a low thermal conductivity compared to glass. The data showed that
the desiccant material’s temperature of the SPAWHa was higher than SPAWHg at the
first two hours of the experimental period; however, the desiccant materials of the
SPAWHg recorded higher temperature along with the daytime.
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• The power transmission in glass samples (3 mm–8 mm) is reduced from 82–70%, while,
for acrylic samples, the percentage was maintained for all samples with different
thicknesses and achieved 91%. These findings showed that the SPAWHg desiccant
materials maintained higher temperatures along with the daytime with less heat loss,
hence, increased system efficiency.

• Water production from SPAWHg was 220 g/day on 21 February 2020 and 180 g/day
on 1 August 2020. SPAWHa was 160 g/day on 21 February 2020 and 125 g/day on
1 August 2020. These results showed that during a dry season, when ambient air
temperature and solar radiation are high, the system could generate 22% water in
SPAWHg and 28% in SPAWHa more than in a wet season because the relative humidity
is high and ambient air temperature is low.

• The maximum water produced by SPAWHg and SPAWHa was 0.61 L/m2/day and
0.44 L/m2/day, respectively. That imputes to glass properties that enjoy higher
thermal conductivity and mitigate heat loss, hence, increasing the system efficiency.

• The cost analysis shows that the kilogram of produced water costs 0.18 USD/kg and
0.40 USD/kg for glass and acrylic SPAWH, respectively.

• Atmospheric water can be produced using SPAWH in the tropical climate, which
enjoys a high percentage of moisture content.

For enhancing AWH systems’ productivity, this study investigated two different
glazing materials, namely, glass and acrylic in terms of their thermal performance. However,
testing other transparent materials (e.g., plastic, Polyvinyl chloride (PVC), etc.) with novel
designs to raise thermal performance and increase the productivity of SPAWH is needed.
In addition, this study compared the systems in February and August; moreover, the need
for long-term testing throughout the entire year might be beneficial. All experiments have
been done in one location in Kuala Lumpur; therefore, conducting other experiments in
different tropical locations would enhance the system’s reliability. Future research is needed
to investigate the efficiency of SPAWH systems in the tropics using different designs and
shapes with different desiccant materials. Moreover, examining the condensation surfaces’
wettability and vapor droplet contact angle value of novel coated glazing materials would
enhance the efficiency of SPAWH systems. However, considering economic, environmental
and social aspects are crucial for the reliability and productivity of SPAWH systems.
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