
Atrial fibrillation detection service validation tool

FAUST, Oliver <http://orcid.org/0000-0002-3979-4077>, KAREEM, M and LEI,
Ningrong <http://orcid.org/0000-0003-0935-9426>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/30086/

This document is the Published Version [VoR]

Citation:

FAUST, Oliver, KAREEM, M and LEI, Ningrong (2021). Atrial fibrillation detection 
service validation tool. Software Impacts, 10: 100117. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Software Impacts 10 (2021) 100117

a

b

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Atrial fibrillation detection service validation tool
Oliver Faust a,∗, Murtadha Kareem b, Ningrong Lei a

Department of Engineering and Mathematics, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK
Materials and Engineering Research Institute, Sheffield Hallam University, Howard St, Sheffield S1 1WB, UK

A R T I C L E I N F O

Keywords:
Algorithm validation
Deep learning
Parallel processing
Clinical data processing

A B S T R A C T

We developed a software tool to validate a deep learning algorithm for an atrial fibrillation detection service
with heart rate data from a clinical study. The deep learning algorithm analyses the measurement data and
establishes an estimated atrial fibrillation probability for each heartbeat. The software tool displays both data
and deep learning analysis results. Furthermore, the graphical user interface can be used by medical experts
to detect atrial fibrillation periods in the data and establish a reference result which will be treated as ground
truth in subsequent result analysis steps. Once both deep learning and expert results are available, a confusion
matrix is produced and the algorithm performance is validated by establishing accuracy, sensitivity, specificity,
and f1-score. The software tool was created in Python and the software incorporated a graphical user interface
as well as functional elements for data display and deep learning. To establish the required functionality, we
used three different parallel processing methods for: (1) user interface processing, (2) data handling, and (3)
deep learning. This highlights the need for parallel processing methods even for projects with a low or mid-
range complexity. We have learned that the functionality of individual components can be expressed elegantly
in Python. However, the lack of parallel debugging support makes it rather difficult to integrate functional
components to establish a working solution.

Code metadata

Current Code version 0.1
The clinical study, the measurement of which are assessed with the tool, is still
ongoing. Therefore, it is expected that the tool is not feature complete.

Permanent link to code/repository used of this code version https://github.com/SoftwareImpacts/SIMPAC-2021-82
Permanent link to Reproducible Capsule
Legal Code License GNU General Public License v3.0
Code Versioning system used SVN
Software Code Language used Python 3.7.7
Compilation requirements, Operating environments & dependencies Linux (Ubuntu), Windows
If available Link to developer documentation/manual None
Support email for questions oliver.faust@gmail.com

Software metadata

Current software version 0.1
Permanent link to executables of this version There is no executable for this program.

As such, the program has a very narrow scope, therefore producing an executable
was not a requirement. However, we tried to generate an executable for
distribution and found that the dependencies were too complex. Especially the
deep learning modules and QT were incompatible with standard methods for
building executables.

Permanent link to Reproducible Capsule
Legal Software License GNU General Public License v3.0
Computing platform/Operating System Microsoft Windows, Unix-like
Installation requirements & dependencies Python 3.7.7
If available Link to user manual - if formally published include a reference to the
publication in the reference list
Support email for questions

∗ Corresponding author.
E-mail address: oliver.faust@gmail.com (O. Faust).
https://doi.org/10.1016/j.simpa.2021.100117
Received 1 August 2021; Received in revised form 6 August 2021; Accepted 8 August 2021

2665-9638/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2021.100117
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2021.100117&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2021-82
mailto:oliver.faust@gmail.com
mailto:oliver.faust@gmail.com
https://doi.org/10.1016/j.simpa.2021.100117
http://creativecommons.org/licenses/by/4.0/


O. Faust, M. Kareem and N. Lei Software Impacts 10 (2021) 100117
1. Introduction

The need for the proposed software tool is linked to stroke, which
is the second leading cause for mortality and the third leading cause
of disability worldwide [1,2]. Prevalence in the general population
and severities of outcome are the main drivers behind that statistic.
Stroke refers to the detrimental processes that occur when brain tissue
is deprived of oxygen [3]. An Ischemic stroke occurs when debris,
such as blood clots and plaque, blocks an artery. The occurrence of
debris is linked to the fluid dynamics in the cardiovascular system.
The way in which the heart pumps blood has a major impact on the
fluid dynamics. Hence, the heart rhythm is linked to the occurrence of
debris which influences the stroke probability. Studies have found that
the heart rhythm irregularity known as atrial fibrillation is particularly
dangerous because it is rather common, and it will increase the stroke
risk fivefold [4,5]. Unfortunately, some forms of atrial fibrillation are
difficult to detect because the signature rhythm irregularity is not
present all the time. The national health service in England estimates
that only 79% of all atrial fibrillation cases are detected [6]. Technical
solutions are required which extend the observation duration and
thereby improve the detection rate.

One way of detecting atrial fibrillation is to monitor the heart
rate of a patient and analyze the resulting signal for signs of heart
rhythm irregularity [7]. We have trained a long-short term memory
deep learning algorithm with data from the PhysioNet atrial fibrillation
database to create a heart rhythm irregularity detection model [4].
That model can detect atrial fibrillation with an accuracy of 99%.
Encouraged by the excellent detection capability [4], we designed an
atrial fibrillation detection service based on internet of medical things
technology [6]. The idea is that the measured signals flow from the
patient to a cloud server where our algorithm analyses the signal in real
time [8]. Hybrid diagnosis support will ensure proper human validation
during the diagnostic process [9–11]. Having wireless connectivity
and real time analysis extends the observation duration indefinitely
and thereby presents a viable solution to the atrial fibrillation de-
tection problem [8]. However, before the service can be deployed,
it is necessary to validate the deep learning algorithm in a clinical
environment.

To address the validation problem, we have created a software tool
which tests the deep learning functionality of the atrial fibrillation
detection service. That software automates the comparison between
cardiologist and deep learning results. For these comparisons, we treat
the cardiologist results as ground truth against which we benchmark
the deep learning results. Each heartbeat is labeled by both cardiologist
and machine algorithm as either AF or non-AF. All the labels are sum-
marized in a confusion matrix and abstract performance measures, such
as accuracy, sensitivity, and specificity are calculated. Furthermore, the
graphical capabilities of the software tool foster detailed discussions
between cardiologists, computer scientists, and biomedical engineers
which might help to improve the proposed atrial fibrillation detection
service.

The remainder of this manuscript introduces the software tool by
following the systems engineering methodology. The next section de-
tails the software requirements. Section 3 refines these requirements
into a specification. The implementation discusses some aspects of the
coding. The last section provides conclusion, limitation, and future
work.

2. Requirements

The following requirements describe what software we should build
[12]. The software tool should automate the comparison between
human expert and deep learning results. The measurements should be
processed offline with the previously developed deep learning algo-
rithm. The software should allow human experts to input the ground
truth analysis results. The output of the program should be a confusion
matrix and classification quality measures.

3. Specification

The requirements are refined into a specification which defines
how we build the software [13]. The software takes excel sheets as
input. These excel sheets are produced by the Lifeguard server from
Isansys and they contain heart rate and electrocardiogram signals
amongst other information. The heart rate signals are analyzed with
the long-short term memory deep learning algorithm, which produces
an estimated AF probability score for each heartbeat [4]. The analysis
results are displayed alongside the signal data in two dimensional
graphs. Navigation through these graphs is established with crosshair
functionality. These graphs can be used to review and annotate the
electrocardiogram signal with regions of atrial fibrillation [14,15]. The
annotated regions are treated as ground truth with which the deep
learning result is compared. To be specific, every beat that falls within
the annotated region is treated as AF and every beat outside the region
is non-AF [16]. A threshold is used to generate regions of estimated AF.
This is done by comparing the threshold value with the estimated AF
probability for each heartbeat. Whenever the estimated AF probability
value is larger than the threshold, that beat belongs to a region of
estimated AF. As a result, each beat has two labels: one from a human
expert and one from the deep learning algorithm. Based on these labels
a 2×2 confusion matrix is established. The matrix elements are used to
calculate the performance measures of accuracy, sensitivity, specificity,
and f1-score. These performance results, together with the estimated AF
probability as well as the expert and algorithmic regions are saved in
a separate excel file.

4. Implementation

The implementation was a meandering journey between learning
the Python language and establishing the specified functionality. De-
spite the relative inexperience with the language itself, the need for
parallel processing became apparent early in the implementation cycle.
To start, the inference functionality of Kearas, which utilizes our
deep learning model, incorporates parallel processing to establish the
estimated atrial fibrillation probability [17]. Fortunately, this func-
tionality is very well abstracted and indeed hidden from the user.
Engaging with parallel processing libraries was required to realize
a speedup for the signal display processing. We have used pyscp to
compose electrocardiogram, heart rate, and estimated atrial fibrillation
probability data vectors in parallel. Composing these vectors and the
inference processing has high and very high computational complexity,
respectively. This translates into waiting times for the program user. A
progress spinner was implemented which indicates the processing of
a potentially long task. This required us to use the QT multithreading
functionality.

We have successfully established the specified functionality with
three different parallel processing methods. However, the lack of debug
support for parallel processing in the Python development environment
Spyder made that task unnecessarily hard. At times we resorted to
trace messages and sometimes we bypassed the Qt multithreading
functionality to inspect variables in code which is normally executed
as a Qt thread. Furthermore, there is also some scope for formalizing
the design and standardizing both code as well as file structure. This
might lead to improved code quality.

5. Impact review

The atrial fibrillation detection service validation tool automates the
comparison between cardiologist and deep learning analysis results [3].
Furthermore, relevant signal graphs allow the users to inspect the
analysis results which might lead to a deeper understanding of artificial
intelligence for atrial fibrillation detection. To be specific, for medical
professionals it is important to visualize the deep learning processing,
because they want to establish what mistakes are happening and the
2



O. Faust, M. Kareem and N. Lei Software Impacts 10 (2021) 100117
extend of overreporting and underreporting of events. Based on this
visualization, we can start a conversation on what action to take as a
result of a specific scenario. For example, we might be able to answer
questions like: How much automatically detected atrial fibrillation
justifies interventions with potentially life-threatening side effects, such
as anticoagulation. Currently, this is where we draw the line between
machine and human work. The machine provides an estimated atrial
fibrillation probability over time and cardiologist must interpret that re-
sult. The interpretation should be done by fusing the result information
with knowledge about the patient to reach a diagnosis.

Establishing a hybrid environment where humans work with ma-
chine algorithms is an important goal for future work [9]. The current
atrial fibrillation detection service validation tool can only serve as an
initial attempt with which we can study interaction patterns. These pat-
terns might indicate a direction for further automatization. Currently,
we are thinking about rules to establish alarm situations. Understanding
the estimated atrial fibrillation probability signal shape for a treatable
case might lead to the automated generation of alarm messages. For
example, an alarm message is sent when the estimated atrial fibrillation
probability is above a 50% threshold for more than 5 min within
one hour. Calculating that and disseminating the alarm message is
straight forward, but significantly more research is needed to estab-
lish a useful amount of alarm cases. The focus on establishing alarm
message conditions might seem like a minor point, but this is what
lies at the heart of all internet of medical things devices that provide
diagnosis support by measuring, distributing, and analyzing patient
data in real time. These systems are capable to extend the observation
duration indefinitely which holds the promise of detecting diseases
earlier and that detection is largely independent from whether there are
long asymptomatic episodes [6]. Having the long observation duration
together with the alarm functionality is likely to improve outcomes for
patients through an early diagnosis which will lead to less intrusive
interventions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was funded by Grow MedTech (Research England) as
part of a proof of feasibilitystudy, grant number PoF000099.

References

[1] P.A. Wolf, R.D. Abbott, W.B. Kannel, Atrial fibrillation as an independent risk
factor for stroke: the Framingham study, Stroke 22 (8) (1991) 983–988.

[2] A.G. Thrift, D.A. Cadilhac, T. Thayabaranathan, G. Howard, V.J. Howard, P.M.
Rothwell, G.A. Donnan, Global stroke statistics, Int. J. Stroke 9 (1) (2014) 6–18.

[3] N. Lei, M. Kareem, S.K. Moon, E.J. Ciaccio, U.R. Acharya, O. Faust, Hybrid
decision support to monitor atrial fibrillation for stroke prevention, Int. J.
Environ. Res. Public Health 18 (2) (2021) 813.

[4] O. Faust, A. Shenfield, M. Kareem, T.R. San, H. Fujita, U.R. Acharya, Automated
detection of atrial fibrillation using long short-term memory network with RR
interval signals, Comput. Biol. Med. 102 (2018) 327–335.

[5] O. Faust, U.R. Acharya, Automated classification of five arrhythmias and normal
sinus rhythm based on RR interval signals, Expert Syst. Appl. 181 (2021) 115031.

[6] M. Kareem, N. Lei, A. Ali, E.J. Ciaccio, U.R. Acharya, O. Faust, A review of
patient-led data acquisition for atrial fibrillation detection to prevent stroke,
Biomed. Signal Process. Control 69 (2021) 102818.

[7] O. Faust, Y. Hagiwara, T.J. Hong, O.S. Lih, U.R. Acharya, Deep learning
for healthcare applications based on physiological signals: A review, Comput.
Methods Programs Biomed. 161 (2017) 1–13.

[8] O. Faust, W. Yu, U.R. Acharya, The role of real-time in biomedical science: A
meta-analysis on computational complexity, delay and speedup, Comput. Biol.
Med. 58 (2015) 73–84.

[9] M. Kareem, O. Faust, Establishing the safety of a smart heart health monitoring
service through validation, 2019, pp. 6089–6091.

[10] O. Faust, E.J. Ciaccio, A. Majid, U.R. Acharya, Improving the safety of atrial
fibrillation monitoring systems through human verification, Saf. Sci. 118 (2019)
881–886.

[11] O. Faust, U.R. Acharya, B.H. Sputh, T. Tamura, Design of a fault-tolerant
decision-making system for biomedical applications, Comput. Methods Biomech.
Biomed. Eng. 16 (7) (2013) 725–735.

[12] O. Faust, B.H. Sputh, U. Acharya, A.R. Allen, A pervasive design strategy for
distributed health care systems, Open Med. Imaging J. 2 (2008) 58–69.

[13] O. Faust, R. Acharya, B.H. Sputh, L.C. Min, Systems engineering principles for
the design of biomedical signal processing systems, Comput. Methods Programs
Biomed. 102 (3) (2011) 267–276.

[14] O. Faust, R.J. Martis, L. Min, G.L.Z. Zhong, W. Yu, Cardiac arrhythmia
classification using electrocardiogram, J. Med. Imaging Health Inf. 3 (2013) 448.

[15] A. Mohsin, O. Faust, Automated characterization of cardiovascular diseases using
wavelet transform features extracted from ECG signals, J. Mech. Med. Biol. 19
(01) (2019) 1940009.

[16] U.R. Acharya, O. Faust, E.J. Ciaccio, J.E.W. Koh, S.L. Oh, R. San Tan, H. Garan,
Application of nonlinear methods to discriminate fractionated electrograms
in paroxysmal versus persistent atrial fibrillation, Comput. Methods Programs
Biomed. 175 (2019) 163–178.

[17] O. Faust, M. Kareem, A. Shenfield, A. Ali, U.R. Acharya, Validating the robustness
of an internet of things based atrial fibrillation detection system, Pattern
Recognit. Lett. 133 (2020) 55–61.
3

http://refhub.elsevier.com/S2665-9638(21)00046-4/sb1
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb1
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb1
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb2
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb2
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb2
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb3
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb3
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb3
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb3
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb3
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb4
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb4
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb4
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb4
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb4
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb5
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb5
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb5
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb6
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb6
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb6
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb6
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb6
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb7
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb7
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb7
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb7
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb7
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb8
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb8
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb8
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb8
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb8
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb9
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb9
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb9
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb10
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb10
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb10
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb10
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb10
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb11
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb11
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb11
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb11
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb11
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb12
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb12
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb12
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb13
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb13
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb13
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb13
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb13
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb14
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb14
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb14
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb15
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb15
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb15
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb15
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb15
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb16
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb17
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb17
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb17
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb17
http://refhub.elsevier.com/S2665-9638(21)00046-4/sb17

	Atrial fibrillation detection service validation tool
	Introduction
	Requirements
	Specification
	Implementation
	Impact review
	Declaration of competing interest
	Acknowledgments
	References


