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Abstract 

Balance maintenance is crucial to participating in the activities of daily life. Balance is often 

considered as the ability to maintain the centre of mass (COM) position within the base of 

support. Primarily, to maintain balance, reliance is placed on the balance related sensory 

systems i.e., the visual, proprioceptive and vestibular. Several factors can affect a person’s 

balance such as neurological diseases, ageing, medication and obesity etc. To gain insight into 

the balance operations, studies rely on statistical and machine learning techniques. Statistical 

techniques are used for inferencing while machine learning techniques proved effective for 

interpretation.    

The focus of this study was on the issues encountered in human balance analysis such as the 

quantification of balance by relevant features, the relationships between COM and ground 

projected body sway, the performance of various sensory systems in balance analysis, and their 

relationships between the directions of body sway (i.e., mediolateral (ML) and anterior-

posterior (AP)). A portable wireless accelerometry device was developed, balance analysis 

methods based on the inverted pendulum were devised and evaluated for their accuracy and 

reliability against a setup designed to allow manual balance measurements.  Balance data were 

collected from 23 healthy adult subjects with the mean (standard deviation) of the age, height 

and weight: 24.5 (4.0) years, 173.6 (6.8) cm, and 72.7 (9.9) kg respectively. The accelerometry 

device was attached to the subjects at the approximate position of the illac crest, while they 

performed 30 seconds trials of the four conditions associated with a standard balance test called 

the modified Clinical Test of Sensory Interaction and Balance (mCTSIB). These required 

standing on a hard (ground) surface with the eyes open, standing on hard surface with the eyes 

closed, standing on a compliant surface (sponge, 10 cm thick) with the eyes open and standing 

on a compliant surface with the eyes closed. Statistical and machine learning techniques such 

as t-test, Wilcoxon signed-rank test, the Mann-Whitney U test, Analysis of variance (ANOVA), 

Kruskal-Wallis test, Friedman test, correlation analysis, linear regression, Bland and Altman 

analysis, principal component analysis (PCA), K-means clustering, and Kohonen neural 

network (KNN) were employed for interpreting the measurements.   

The findings showed close agreement between the developed balance analysis methods and the 

related measurements from the manual setup for balance analysis. The COM was observed to 

be responsible for differing amount of sway across the subjects and could affect both the angle 

and ground projected sway. The AP direction was more sensitive to sway than the ML 

direction. The subjects were observed to depend more on their proprioceptive system to control 

balance. The proprioceptive system was observed to have a greater impact in controlling the 

AP velocity of the subjects as compared to their visual system. The proprioceptive system had 

no impact on the ML velocity. The visual system was responsible for the control of the ML 

velocity and for reducing the acceleration in both directions.  

It was concluded that for comparison of postural sway information, subjects with closely 

related COM positions should be compared, comparison should be carried out in respect to the 

base of their support. The sway normalisation by dividing with COM position should be 

performed to reduce the obscuring effect of the COM. Enhancement of the proprioceptive 

system should be carried out to reduce the AP velocity while enhancement of the visual system 

should be used to reduce the ML sway and acceleration in ML and AP directions. The velocity 

in the AP direction should be used to examine the performance of the proprioceptive system 

while the ML velocity and acceleration should be used for the visual system. The vestibular 

system characterised sway more in the AP direction, and hence, the AP direction should be 

used to examine its performance in balance.  
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Chapter 1 Introduction 

1.1. Background to the study   

Balance is a fundamental requirement whose loss in humans has detrimental effects on both 

physical and social functions. The ability to maintain balance plays an immerse role in 

independent living. Falls and fear of mobility due to falls, are associated significantly to 

myriads of psychological problems such as trauma, depression, inactivity, and serious 

morbidity. Balance problems are caused mainly by ageing, neurological and musculoskeletal 

disorders.  

About 33 to 50 percent of people over 65 years of age have been reported to experience some 

sort of balance or ambulation difficulties (Mancini & Horak, 2010). The World Health 

Organisation (WHO) estimates that the number of people over 60 years of age by 2050 is 

expected to be over 2 billion (Ageing and health, 2018). In Western Europe, the ageing 

population (65 year or higher) is expected to increase from 18.5% in 2010 to 27.3% in 2035 

(Nations, 2012).  This introduces a great burden on the independence of the ageing population, 

of which the ability to maintain balance is a key player. Without independence, as the ageing 

population increases so does the population and technology required to foster their care. Thus, 

the independence of older adults in the performance of basic life functions are paramount to 

the world, most especially to technologically advanced countries as there is a link between 

advancement in medical technology and ageing (Breyer et al., 2010).  

The prevalence of balance disorders has also been reported in both young children, young 

adults and adults alike. An estimation of 3.3 million children (5.3%) in the United States of 

America has been reported to have experienced some sort of dizziness and related balance 

problems (Li et al., 2016). Similarly, an estimate of 50 million people worldwide has been 

reported to sustains a traumatic brain injury (TBI) every year (Maas et al., 2017) with the age 

range of TBI generally between 15 and 25 years (Hillier et al., 1997).   

Currently, there exist no unanimous definition of the term balance in humans (Pollock et al., 

2000). In order to define balance, one has to consider the mechanical definition according to 

Newton’s first law of motion. The state of rest referred to by Newton in his first law of motion 

is what defines balance. This may be true for inanimate objects and may not be the case for 

humans, as humans are constantly in motion when alive. In the context of human balance, the 

definition of stability as the property of restoring to an initial state after disruption (Johansson 
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& Magnusson, 1991) appears well suited. Thus, the term maintaining balance can be used 

interchangeably with the term stability. The term stability was what Pollock et al. (2000) 

referred to as postural control howbeit with the restoration to an initial state referring to the line 

of gravity within its base of support. This implies that the term postural control and balance 

ability can be used interchangeably. Thus, the loss of postural control also implies loss of 

balance ability.  In the context of this study the term “loss” as used in balance is not binary in 

nature but rather varies in degrees. The loss of the state of balance can be categorised into two: 

intentional and unintentional loss (Bhatt & Pai, 2005). Intentional loss is a loss of balance that 

can be avoided with prior knowledge. For example, children engaging in ‘merry-go-round’, 

tripping over an obstacle, engaging in difficult exercises that involves specialised training etc. 

Contrarily, unintentional loss occurs because of inadequacies/deficiencies in one or more of 

the systems responsible for balance leading to inadequate control of the centre of mass (COM) 

position within the base of support (BOS). The major difference between the two is that the 

former is not linked with a balance problem while the latter is. The term ‘balance problem’ is 

often used in connection with unintentional loss.  

Balance is achieved through the integration and coordination of several systems of the body 

including the auditory, visual, vestibular, motor, and higher premotor systems (Horak, 1997). 

Primarily, balance in humans is maintained by the integration and interaction of the 

uninterrupted signal flow from the sensory systems i.e., the visual, vestibular and 

proprioceptive systems (Fitzpatrick & McCloskey, 1994). Under normal circumstances, the 

main elements in spatial orientation are the visual system-for spatial orientation and 

proprioceptive systems-for balance (Bronstein, 2016) while the vestibular system is 

responsible for the detection of head motion and head position with respect to the gravitational 

vector (Fernandez & Goldberg, 1976). The reliance on these systems to maintain balance 

depends on several factors such as age, history of fall, the operational state of the systems 

(healthy or unhealthy) etc. Redfern et al. (2001) suggested that when the vestibular system 

becomes defective, reliance on balance is placed on the visual system. Among the elderly, 

sensorial interaction has been shown to vary according to the history of falls (Ricci et al., 2009).  

In another study, older adults have been shown to prioritise vision in other to control balance 

(Yeh et al., 2014) while younger healthy adults have been suggested to depend on their 

proprioceptive system (Horak, 2006; Peterka, 2002). 

Balance can be broadly divided into two: static and dynamic balance. Geuze (2003) defined 

static balance as the ability to maintain an upright posture and keeping the COM within the 
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area of the base of support (Geuze, 2003). The term “upright posture” as used in this definition 

can be considered ambiguous because upright posture can mean having a good posture which 

may not always be the case even in people with good balance. In this study, we refer to static 

balance as balance in quiet standing position where the balance is measured by the ability to 

maintain the COM position within its base of support. Dynamic balance is considered as 

balance in non-static position (Karimi & Solomonidis, 2011; Neptune & Vistamehr, 2019). In 

static condition, the base of support is fixed while in dynamic condition the base of support is 

moveable. Static and dynamic balance are considered as integral parts of functional balance 

(Ghanavati et al., 2012). The rate of feedback and feedforward control from the sensory 

systems to the central nervous systems (CNS) and vice-versa is lower for static balance as 

compared to dynamic balance (Gerasimenko et al., 2017).  One can argue that before engaging 

in dynamic activities, the ability to balance in static position should be prioritised. However, 

this does not infer that a good static balance is equivalent to a good dynamic balance, although 

it can give confidence of the expected performance in a dynamic situation.   

Balance assessment can be classified into two groups: Qualitative and Quantitative (Mancini 

& Horak, 2010). In qualitative assessment of balance little or no equipment are used and this 

leads to tester bias in its procedure (Mancini & Horak, 2010). In quantitative assessment an 

objective method is introduced to carry out the procedure thus tester bias is reduced. However, 

the bias that could be present is due to the limitation of the equipment used, the algorithm, the 

method of analysis, the procedure and whether or not the battery of test is capable of 

deciphering the balance condition. The objective methods can be divided into two: force-

measuring platform and wearable inertial sensors. According to Horak (1987), a clinically 

quantitative reference tool should: 

i. Reflect functional capabilities and the quality of postural strategies  

ii. Be sensitive and selective to abnormalities of postural control  

iii. Be valid and reliable  

iv. Be practical i.e., inexpensive and easy to implement.  

Inertial sensors can better meet all these recommendations as compared to the force-measuring 

platforms. However, inertial sensors have need for suitable signal processing and interpretation 

methods.  

Balance analysis using accelerometry involves the conversion of the digital output obtained 

from the use of the IMU sensor into meaningful and interpretable information that can aid in 
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the improvement of balance. Usually, balance analysis is carried out using statistical and 

machine learning methods. Many methods from machine learning and statistics have been used 

for making inferences and predictions. Both inference and prediction are the two major goals 

for the study of biological systems, and this fits well with statistical and machine learning 

methods (Bzdok et al., 2018). However, statistical methods are geared towards making 

inferences which are achieved through the creation and fitting of probabilistic models that are 

project specific in nature (Bzdok et al., 2018). These models enable us to compute 

quantitatively with a measure of confidence that a discovered relationship is of true effect and 

not based on random noise (Bzdok et al., 2018). In contrast, machine learning methods are 

aimed towards prediction using general purpose algorithms to find patterns (Bzdok, 2017; 

Bzdok et al., 2017).  

In this study, accelerometry techniques were devised to accurately measure and quantify body 

postural sway and analyse balance using statistical and machine learning techniques.  

 1.2. Aim and objectives 

The aim of this study is to further develop computerised accelerometry techniques to facilitate 

better understanding of human balance.  

The objectives are: 

(i) Development of a wireless accelerometry system with associated hardware and 

software to accurately record balance information. 

(ii) Representation of accelerometry signals by balance related features.  

(iii) Development of accelerometry techniques to accurately quantify body movement, 

e.g., displacement, velocity, acceleration and tilt and their interpretation. 

(iv) Critical analysis and interpretation of accelerometry data to assist with balance 

related sensory systems’ dysfunctions.  

(v) Critical evaluations of the devised approaches through trials on healthy adult 

volunteers. 

The main challenge has been accurate computerised quantification of body movement, i.e., 

acceleration, tilt etc. and their interpretation in the context of the subject's physique and balance 

related sensory functions.  
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1.3. Outline of thesis  

The outline of the thesis is presented as below: 

Chapter two: Literature review. In this chapter, previous related studies in relation to use of 

accelerometry in balance analysis are reviewed.  

Chapter three: Related theory. In this chapter, the theoretical background in the analysis of 

balance is presented. 

Chapter four: Methodology. This chapter presents the research problem, type of data, the 

data collection method, the subjects’ details, and ethical considerations.  

Chapter five: Algorithm development and evaluation based on the inverted pendulum 

model. In this chapter, the algorithm utilised for balance analysis is developed and evaluated 

using a manual setup. Time domain measures of the accelerometry data were obtained and 

utilised to better understand relationships between the sensory systems and balance.    

Chapter six: The effect of centre of mass position on balance analysis. The effect of varying 

centre of mass position on balance is investigated. 

Chapter seven: Investigation of the sensory interaction in healthy adult subject using 

principal component analysis. The patterns/behaviour of the sensory systems to balance are 

investigated. This is carried out using PCA and other statistical methods. 

Chapter eight: Investigation of the interaction of the sensory system interaction to human 

balance using the Kohonen neural network. The sensory systems behavioural characteristics   

in relation to the direction of sway is investigated.  

Chapter nine: Conclusion and further work. The study is summarised and further research 

work are presented.  

1.4. Summary 

In this chapter, the general concept of human balance and its importance to human life were 

introduced. Balance is related to the quality of life of a person. Balance and postural control 

can be used interchangeably. In humans, an absolute state of rest is non-existent and balance is 

used as a quantifying term for the state of rest or equilibrium. Because humans are locomotive 

beings, an expected degree of balance is required in carrying out their daily activities. The 
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expected degree of balance is considered as the ability for a person to control his/her centre of 

mass within the base of support and it is task dependent.  Balance degenerates as a result of 

certain factors not limited to age and neurological problems. Balance is assessed either in static 

or dynamic conditions. Accelerometry and force platform are the two major instruments used 

for objective balance analysis. However, the benefit of using accelerometry outweighs that of 

a force platform in cost, weight, size, sensitivity, comfortability and ease of use. Accelerometry 

suffers from various limitations such as accuracy in algorithm for balance measurement and 

the interpretability. Statistical and machine learning methods are the two main methods used 

for balance analysis. Statistical methods are geared towards inference while machine learning 

methods are used for prediction.  
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Chapter 2 Literature review 

2.1. Importance of balance assessment    

The ability to maintain balance is fundamental to human movement. Maintaining balance as 

well as a proper body posture, during the performance of anti-gravitational activities is primary 

to the execution of other secondary movement related activities (Panjan & Sarabon, 2010). 

Balance is important in order to navigate our surrounding environment (Winter, 1995) and to 

engage in the physical dimensions of life such as physical function, health, energy and vitality 

which contributes significantly to quality of life (Spirduso et al., 2005). The importance of 

balance can be readily observed among fray elderly people. The balance of a person is assessed 

by the amount of his/her postural control during some balance related task. Postural control is 

the act of maintaining, achieving or restoring a state of balance during any activity or posture 

(Pollock et al., 2000). Quantitatively, postural control is measured by measuring the movement 

of the centre of mass (COM), centre of pressure (COP), body segment, electromyographic 

activities and the evaluation of the contribution of the sensory systems (Paillard & Noé, 2015). 

Poor postural control in a particular activity may infer poor ability to balance in that activity. 

Hence, balance is a relative term that is categorised depending on the activity under 

consideration.  

Postural instability has been related to a myriad of problems relating to the systems responsible 

for maintaining balance. Postural instability and poor balance are features of neurological 

diseases such as Parkinson’s disease (PD) (Kim et al., 2018), Alzheimer’s disease (Apostolova, 

2016), Multiple sclerosis (Goldenberg, 2012), Huntington’s disease (Porciuncula et al., 2020), 

Cerebellar ataxia (Kashyap et al., 2020), Stroke (Hou et al., 2019), Traumatic brain injury (TBI) 

(Harrell et al., 2021), Neuropathies (Khan & Andersen, 2021), and Vestibular syndromes 

(Young et al., 2018). Other factors that can affect a person’s balance include ageing, medication 

and obesity. Ageing has been reported to be a contributing factor to poor balance as it 

progressively reduces the functions of the sensorimotor which include changes in the structural 

and functional aspect of the visual, somatosensory and vestibular systems, alongside leads to a 

decline in the central neural processing system and muscle strength (Sturnieks et al., 2008). 

Consequently, ageing is a contributing factor to slow reaction time and reduced limit of 

stability, leading to an exacerbated control of balance especially during cognitive task and 

unanticipated postural perturbations (Sturnieks et al., 2008; Mileti et al., 2019). Ageing also 

leads to multimorbidity, a term used to describe the co-existence of two or more chronic health 
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conditions. Multimorbidity correlates with reduced quality of life, mobility, functional ability, 

self-rated health, physiological distress, increase in hospitalisation, mortality, cost, and use of 

health care resources (Caughey et al., 2009; Marengoni et al., 2008; Roughead et al., 2011). 

Polypharmacy, a term used to describe the use of multiple medicines, is associated with 

multimorbidity. Polypharmacy is associated with adverse outcomes such as adverse drug 

reaction, mortality, higher length of stay in hospitals, falls and hospital readmissions (Milton 

et al., 2008; Caughey et al., 2010; Caughey et al., 2010). The use of benzodiazepine and its 

relation to falls was investigated among a cohort of 169 elderly tenants in New Jersey with 

mean age (±SD) of 79.8 (7.3) years, of which 80% were women (Sorock & Shimkin, 1998). 

They found out that any use of benzodiazepine was related to multiple falls in the persons who 

fell (Sorock & Shimkin, 1998). They suggested a periodic review for the need of 

benzodiazepine among the elderly (Sorock & Shimkin, 1998). The effect of obesity and its 

relation to balance, posture and fear of falling among different genders were studied by Ercan 

et al. (2020). Their study consisted of 251 subjects (51.4% female and 48.6% male, ages 40 to 

60 years) of which 49.8% were obese. Their findings suggested: among obese people gender 

played a factor as there was a significant difference between the history of stumbling and falls 

in obese males as compared to obese females (p<0.05); no fear of falling or impede confidence 

to engaging in activities was evident among the obese males (p>0.05); restriction to engaging 

in activities as a result of fear of falling was observed among obese females (p < 0.05); and 

impaired posture was also observed among the 125 obese patients (Ercan et al., 2020). They 

suggested that balance and postural training should be included in exercise as part of a 

multidisciplinary approach to obesity (Ercan et al., 2020).  

Thus, balance assessment is useful in areas of measuring and detecting neurological diseases; 

combating ageing constraints; controlling weight and monitoring the impact of medications. 

Clinical assessment of balance can be divided into two: Qualitative and Quantitative (Mancini 

& Horak, 2010). In qualitative assessment of balance, little or no equipment are used, and this 

leads to tester bias in its procedure (Mancini & Horak, 2010). In quantitative assessment an 

objective method is introduced to carry out the procedure thus tester bias is reduced.       

In subsequent sections, the objective methods most especially on the aspect of accelerometry 

are discussed, the challenges in clinical balance analysis and the commonly used methods of 

analysis available in the literature are presented.  
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2.2. Objective clinical balance assessment  

The objective clinical assessment of balance can be broadly divided into two, Posturography 

using: Force platforms and Computerised Dynamic Posturography (CPD), and Accelerometry 

(Mancini & Horak, 2010)  

2.2.1. Force platform and computerised dynamic posturography as a balance evaluation 

tool 

The objective assessment of balance overcomes the limitations of the subjective methods by 

providing an objective and quantitative measure to posturography, i.e., the measurement of 

postural sway (Bronstein & Pavlou, 2013). Posturography involves the use of techniques that 

objectively quantifies balance by providing quantitative measures. These techniques for 

posturography can be divided into static and dynamic. Static techniques indicate situations 

where the position is studied under normal condition, i.e., a fixed platform, while dynamic 

techniques indicate the conditions where the position of the individual studied is in response to 

an applied perturbation either to the individual or to the individual’s support surface (Duarte & 

Freitas, 2010). The two most commonly used and widely accepted instruments for investigating 

posturography are the computerised dynamic posturography and the force platform used for 

the analysis of the individuals’ centre of pressure (COP), an important parameter used to 

monitor premature sensory motor deficit (Moe-Nilssen, 1998).  

The equipment usually employed under static condition to quantify balance is the force 

platform. A force platform consists of sensors attached to a metal plate to give electrical output 

proportional to the force on the plate (Wardoyo et al., 2016). A force platform measures the 

centre of pressure (COP) of a subject in the form of three-dimensional ground reaction force. 

The COP refers to a point on the support surface where the resultant vertical force tends to act. 

The force platform enables postural evaluation under differing conditions such as standing on 

a single leg or with both legs, with eyes open or closed, the performance of varying cognitive 

tasks simultaneously, which supports its use as the chosen instrument for many research studies 

(Bauer et al., 2008). Thus, this instrument has been considered as the gold standard for the 

analysis of postural control in static condition.   

The use of force platform in balance analysis has been reported in several studies. Jaworski & 

Kołodziej (2020) utilised a force platform to assess the postural stability of woman aged 60 

and above. In their study, the women were divided into two groups: 14 younger (< 70) and 10 
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older (> 70) group and comparison were made based on their COP sway parameters. The result 

suggested that the older group had a lower level of postural stability compared to the younger 

group (Jaworski & Kołodziej, 2020).  

Nevertheless, the force platform has been reported to suffer from several limitations such as 

high cost (around £11,529), weight (around 10 kg for only the platform), considerable testing 

area (around 2.5 square metre), difficulty to transport, difficult of use, lack of sensitivity to the 

weight of children (Estévez-Pedraza et al., 2020; Rodríguez-Rubio et al. 2020). Matłosz et al. 

(2020) compared three different and commonly used force platforms among 111 young healthy 

adult subjects. They observed a low level of agreement between their measurements in the eyes 

open and closed conditions (Matłosz et al., 2020). Thus, the analysis obtained from one force 

platform may differ from those obtained from another force platforms and hence there is low 

reliability across platforms. 

Dynamic posturography refers to the measurement of postural control oscillations over a 

predefined area which is unstable (Leirós-Rodríguez et al., 2019). In the case of oscillating 

platforms, the external instability can be permanent when the surface is not flat or can be as a 

result of a sudden alteration, i.e., rotation or inclination (Leirós-Rodríguez et al., 2019). Internal 

instability can result from varying movements such as leaning forward, sitting to standing and 

raising arms etc. (Pérennou et al., 2005). On the other hand, in computerised dynamic 

posturography, a force platform is used with a combination of different stimuli. A model of the 

computerised dynamic posturography commonly used in research is the EquiTest, which is 

made up of an evaluation surface that consists of two independent force platforms in the mid 

lateral axis (Leirós-Rodríguez et al., 2019). In computerised posturography, the information 

regarding the type of difficulty faced by the individual in maintaining postural control is not 

known. The system is capable of only quantifying the degree of functional limitation to stay in 

balance which is important in predicting fall risk and the evaluation of the sensory systems 

(Visser, 2008). The main drawbacks of dynamic posturography include the cost of the 

equipment, space for installation, the time for training and testing, unsuitability for dynamic 

balance during gait, as well as turning and sit to stand transition (Mancini & Horak, 2010; 

Visser, 2008).    

These methods of evaluation are in theoretical conflict with the widely acceptable concept of 

balance as the control of the centre of mass (COM) position during movement produced by an 

individual or an external disturbance (Honeine & Schieppati, 2014; Horak, 2006). However, it 
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has been shown that the variables obtained from the COP corresponds to that from the COM 

under static conditions (Winter et al., 1998).           

2.2.2. Accelerometry as a balance evaluation tool 

An alternative to the force platform in measuring balance is the use of accelerometry. 

Accelerometry refers to the use of accelerometers to measure and quantify balance. The use of 

accelerometry for the assessment of human movement was first proposed in the 1950s 

(Liberson et al., 1962; Saunders et al., 1953). However, due to their high cost, bulkiness and 

unreliability, they were considered unsuitable for ambulatory monitoring (Culhane et al., 

2005). In the past decade the fabrication technology of accelerometers has advanced greatly as 

a result of the need for its use in various areas in the automotive industry such as air bags 

release systems (Culhane et al., 2005). These new generational accelerometers were designed 

to meet the requirement of reliability, high volume and low cost. The benefits of using 

accelerometers over the force platform include low cost, small size which is suitable for 

subjects to work without obstruction, diversity of dynamic range and sensitivity, and direct 

measurement of 3D acceleration (Adlerton et al., 2003; Mayagoitia et al., 2002).   

Accelerometry can also be defined as the use of inertial measurement unit (IMU, 

accelerometers, gyroscope and magnetometers) to quantify postural control. Various 

applications of IMUs have been reported in clinical monitoring. Gonzalez et al. (2021) utilised 

a combination of IMU, surface electromyography, and force plates with application of support 

vector machines in activity recognition task such as walking and running performed by five 

healthy subjects (Gonzalez et al., 2020). Principal component analysis (PCA) was used to 

compare similarities across the various tasks and support vector machine was used in order to 

classify the PCA data into motion categories. The results obtained using the sensors provided 

a classification accuracy of 90% (Gonzalez et al., 2020). Janc et al. (2021) compared the 

simultaneous measurements of the IMU (MediPost) placed at the L4 region (penultimate 

vertebra of the lumber spine) and a force platform of the head shaking posturography (at a 

frequency of 0.3 and 0.6 Hz) of 38 patients (age 50.6 with standard deviation of 11.6 year) with 

unilateral vestibular weakness (UV) and those of 65 healthy volunteers (mean age and standard 

deviation: 48.7 and 11.5 years). The results suggested that both systems were suitable for 

differentiating between subjects with problems of vestibular pathology although a slightly 

lower value of velocity was observed in the IMU result for head shaking at 0.6 Hz (Janc et al., 

2021). Yu et al. (2021) utilised a waist worn tri-axial accelerometer to assess the functional 
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balance and mobility of 85 community dwelling adults (mean and standard deviation: 72.12 

and 6.99 years) using a short form of the Berg Balance Scale test and Timed Up and Go test 

(Yu et al., 2021). The result showed a moderate to high predictive accuracy for both test (Yu 

et al., 2021).    

Accelerometry has also been found useful in the quantitative assessment of activities of daily 

living (ADLs). Quantitative assessment of the activities of daily living has been suggested to 

play an essential role in the evaluation of the severity of diseases and of the quality of life 

(Mulas et al., 2020). IMUs have been shown to be important in these aspects as they enable 

ease of use, long term and remote functioning evaluations. Abdollah et al. (2021) investigated 

the effectiveness of using a single accelerometer mounted on the head to monitor postural 

transition and the Timed Up and Go (TUG) test. Two tri-axial accelerometers with a sampling 

frequency of 100 Hz were attached to 12 able-bodied subjects–one on the right mastoid and 

the other on the sternum while the subjects performed a battery of activity of daily living task 

that consisted of varying postural transitions (Abdollah et al., 2021). The results of the head-

mounted accelerometer and that of sternum were compared to the result of a video motion 

capture device. Utilizing their developed systems, the result suggested that a single head 

mounted tri-axial accelerometer can produce a high accuracy (>95%), sensitivity (>90) and 

specificity (100%) for detecting events of walking and postural transition (Abdollah et al., 

2021). Pau et al. (2021) employed the use of accelerometer worn on the wrist to quantify 

bilateral upper limb activity and asymmetry in twenty-eight people with multiple sclerosis 

(pwMS) under free living conditions. Twenty-eight age and sex matched individuals were 

required to wear the device for two weeks in the same way as the twenty-eight individuals with 

multiple sclerosis (Pau et al., 2021). The results obtained from the accelerometer attached to 

the upper limb suggested that significant lower overall activity, extended time period of the 

dominant limb and superior intensity were characteristics of the people with multiple sclerosis 

(Pau et al., 2021). Soltero et al. (2021) utilised wrist worn accelerometers to determine the 

contribution of 24-hour activity and sleep behaviours on type 2 diabetes in Latino adolescents 

and young adults with obesity. The accelerometer sensors were worn for a period of 24 hours 

while it assessed moderate to vigorous physical activities, sedentary behaviours (SB), sleep, 

and sleep regularity in both thirty-eight adolescents (age range: 12-16 years) and twenty-two 

young adults (age range: 18-22 years) (Soltero et al., 2021). The result suggested that physical 

activity, reducing sedentary behaviour and improving sleep are critical for reducing type 2 

diabetes in young adults and Hispanic adolescent (Soltero et al., 2021).  
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There is also association between involvement in physical activity and improved health. 

Shiraishi et al. (2021) investigated the association that exist between an accelerometer worn on 

the wrist, cardiopulmonary exercise testing (CPX), and the result of the Kansas City 

Cardiomyopathy Questionnaire in thirty-one heart failure patients that were hospitalised for 

acute decomposition (Shiraishi et al., 2021). The device was worn for two weeks and a short 

version of the Kansas City Cardiomyopathy Questionnaire filled by the patients shortly after 

the removal of the device. The parameters measured consisted of the exercise time, daily step 

counts and percentage sedentary time. The result showed best correlation between sedentary 

time, Kansas City Cardiomyopathy Questionnaire overall score and the clinical scores, and 

suggested that accelerometer could be used as a complement with the Kansas City 

Cardiomyopathy Questionnaire in assessing physical activity in heart failure patients after 

hospitalization (Shiraishi et al., 2021).  

Accelerometry has also been reported to be useful in assessing physical disabilities. Dostál et 

al. (2020) utilised 31 time-synchronised accelerometer sensors placed at different locations of 

the body to recognise the gait motion patterns between twelve ataxic and thirteen healthy aged, 

matched individuals. Data of the mean power of the frequency band was used as features in the 

classification algorithms. The result showed high accuracy (77.1% to 98.5%) in differentiating 

between the healthy and the ataxic individuals (Dostál et al., 2020).  The use of accelerometers 

in assessing Parkinson disease (PD) subjects have also been reported in Barrachina-Fernández 

et al. (2021). Rovini et al. (2020), employed four wearable IMU devices (two placed on the 

hands and two placed on the feet) to extract information from 40 healthy adult subjects and 40 

aged matched patients with PD. Seventy-eight and ninety-six parameters were measured from 

the lower and upper limb respectively, which were trained using supervised learning classifiers. 

The result suggested excellent discrimination between the two groups with accuracy ranging 

from 0.936 to 1 across classifiers (Rovini et al., 2020).     

In the field of medicine and biomedical engineering, various studies have been conducted to 

improve the ability of people affected by balance problems. In order to assess and evaluate 

balance problems such as Parkinson disease, the assessment of the functional limit of stability 

(fLoS) and freezing of gait are usually used (Nutt et al., 2011). The fLoS is defined as the 

maximum centre of pressure displacement of a person while voluntarily leaning forward and 

backward (Mancini et al., 2008; Hasegawa et al., 2019). Freezing of gait (FoG) is referred to 

as an intermittent failure to maintain or initiate locomotion (Giladi & Nieuwboer, 2008; Nutt 

et al., 2011). The use of wearable sensors such as IMUs have been reported in the measurement 
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of fLoS and FoG. People with PD have been suggested to have worsen fLoS and FoG. Mancini 

et al. (2021) investigated FoG in 40 participants with PD using a novel algorithm based on five 

inertial sensors attached to the feet, shins and lumber regions while the participants were 

walking (Mancini et al., 2021). The algorithm’s performance was compared with the clinical 

decisions of two experts that examined the number of FoG episodes from the video recordings 

of the participants walks and turns based on differing duration of times, ranging from very short 

(< 1 second) to long (> 5 second). The result suggested moderate to good agreement between 

the results of the algorithm and the clinical decisions for the short and long episodes of FoG 

(Mancini et al., 2021). In another study, Mancini et al. (2021), also extended the method to 48 

PD individuals with and without FoG in an unsupervised home monitoring condition with three 

sensors worn at the feet and lumber regions for 7 days, while recording the percentage time of 

freezing and its variation. The result suggested that the percentage time of freezing and its 

variation were significantly (p < 0.05) capable of differentiating between people with and 

without FoG and that 69 percent of FoG were made up of short FoG episodes (Mancini et al., 

2021). Similarly, Hasegawa et al. (2021) investigated the difference in the fLoS during quiet 

stance between 64 PD individuals with FoG and 80 PD individuals without FoG, and also the 

difference between the individuals with PD and 79 healthy control subjects. The inertial sensor 

was worn on the lumber spine while the participants were involved in several balance task such 

as the fLoS in the forward and backward directions and postural sway while they stood with 

their eyes open on a firm and foam surface respectively i.e., condition one and three of the 

modified clinical test of sensory interaction and balance (mCTSIB) test. The result suggested 

that: (i) participants with PD and FoG showed significantly (p = 0.004) smaller fLoS compared 

to those without FoG and to the healthy controls (p < 0.001); (ii) participants without FoG and 

healthy controls showed no significant difference (p = 0.48) in the fLoS; (iii) significant larger 

postural sway on foam surface was observed between participants with PD and FoG and 

participants with PD and without FoG as against those of healthy controls (p = 0.001) and (iv) 

no significant difference existed between PD participants with FoG and without FoG on foam 

surface (Hasegawa et al., 2021).   

The use of accelerometers to assess the balance of children and to assess neuro-developmental 

disorders have been reported. García-Liñeira et al. (2020) investigated the reliability and 

internal consistency of accelerometric measurements related to static equilibrium and gait in 

70 healthy children aged 6 to 12. The accelerometer was placed at the 4th lumbar vertebra 

while the participants performed three trials while standing on one leg with eyes closed and 
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eyes open, dynamic balancing on one leg on a foam mat and normal gait. The result suggested 

that the test on older children had higher internal consistency than those in younger children, 

test performed in children aged 8 years and above had strong correlation (r > 0.71) between 

trials and that the static test presented more reliability than those obtained in the gait test. Thus, 

comparison between healthy controls and children that have balance problems are better 

applied to children above 8 years of age in the static condition as compared to gait condition 

(García-Liñeira et al., 2020). Examples of neuro-developmental disorders that occur in children 

are the developmental coordination disorder (DCD) and attention deficit hyperactivity 

disorders (ADHD). DCD and ADHD, are neuro-developmental disorders which starts at 

childhood and affect a child’s planning of movement and coordination (Ricci et al., 2019). The 

prevalence of DCD is estimated to be about 6% worldwide (Blank et al., 2012) while ADHD 

is estimated to be about 5% worldwide (Sayal et al., 2018). The use of wearable IMUs have 

been reported in the diagnoses of these problems. Ricci et al. (2019) investigated how an IMU 

can provide objective support in the diagnosis of motor impairments such as DCD and ADHD 

in 37 school children. The IMU was used to measure the linear and rotational movements of 

the children (ages 7-10 years), of which 17 of them had DCD and ADHD while the other 20 

children were used as healthy controls. The result measured from the movements suggested a 

significant difference in the linear and rotational movements between children with the motor 

impairments and healthy control (Ricci et al., 2019). Children with developmental coordination 

disorders are known to be physically less active as compared to children of typical development 

(TD). Yu et al. (2021) utilised an accelerometer to investigate the functional movement skill 

of 73 children with DCD and 99 children of typical development (TD) in the age range of 6 to 

10 years. The five components of the functional movement skill (running, catching, kicking 

and jumping) were assessed by various product and process-oriented approaches using the 

second edition of Test of Gross Motor Development while measuring the time spent in 

moderate to vigorous physical activity (MVPA) and sedentary behaviour (SB). The result 

showed that children with DCD had significantly poorer performance in the functional 

movement skill when compared to those of TD (Yu et al., 2021).  

Despite the usefulness of accelerometry in the analysis of balance and gait, it also has 

limitations which currently prevent its acceptance as the standard in clinical setting. Some of 

these challenges are presented in the next section.     

 



16 
 

2.3. Challenges faced in human balance analysis using accelerometry      

In order for acceleormetry to be used as a clinical tool for balance evaluation, it must address 

the needs in balance evaluation as suggested/required by clinicians. Several clinicians and 

researchers have given their recommendations on the areas that need to be addressed in order 

for posturography to be considered as a clinical tool. A summary of their recommendations 

was presented by Kingma et al. (2011).  The first recommendation was the system to meet the 

aims of posturography. As indicated, the aims of posturography include objective 

quantification of balance control; identification and adequate description of the deficits and 

functional loss; quantification of handicap in daily life; prediction of falls and problems with 

balance; assist with guidance for programs in balance rehabilitation (Kingma et al., 2011). The 

second recommendation was to determine which measurement technique was optimal and 

required for the assessment of balance control (Kingma et al., 2011). Some of the widely used 

methods suggested include the use of a force platform, camera-based method and 

accelerometry or inertial measurement units (IMUs). The need for a 2 or 3 dimensional 

evaluation of movement and the need for separation into anterior-posterior and lateral sway 

(Kingma et al., 2011). The third recommendation was the test conditions and the technique of 

perturbations required (Kingma et al., 2011). They considered the position of the arms, head 

and feet; the cognitive task; importance of the postural assessment in regards to eyes open and 

close or necessary sway reference vision; and optokinetic stimulation; balance during gait; neck 

and calf muscle vibrations; and adaptation and habitual impact (Kingma et al., 2011). The 

fourth recommendation was the definition of relevant clinical output parameters and the 

technique for analysis (Kingma et al., 2011). They suggested spatial orientation of the body; 

muscle activity; timing between stimulus and response; spectral analysis; the sequence and 

timing of body movement; and movement perception and psycho-physics (Kingma et al., 

2011). The fifth recommendation was in the standardisation of the measurement technique, 

data analysis, procedure and display (Kingma et al., 2011). They identified the need for the test 

to be reproducible and individually adaptable; sensitive and specific to various balance 

problems; identify pathologically responsive patterns, dependent on data of posturgraphy such 

as experience, motor training, gender and age; practical limitation of the test and methods on 

dealing with incomplete test (Kingma et al., 2011). Finally, the sixth category identified was 

in the comparison of posturography with other balance assessment methods such as balance 

analysis during gait (Kingma et al., 2011).       
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Posturography should be carried out in such a way that it describes the individual’s balance 

strategies and the dependencies from the various sensory modalities (Kingma et al., 2011). The 

goal is to tailor the assessment to the sensory and motor deficits in relation to complaints, have 

discriminative and meaningful estimate of the deficits of an individual patient and not based 

on merely group differences, and aid in the rehabilitation process of an individual by providing 

relevant information (Kingma et al., 2011).  

In order to address the issues that faces clinical balance analysis, a widely acceptable definition 

of the view of human balance is required. Several researchers in the study of human balance 

have suggested that humans sway was likened to the form of an inverted pendulum when in 

quiet standing. Although other researchers have utilised more complex models to analyse 

balance (Jacob, 1997; Nicholas et al., 1998)  or have refuted the claim of the inverted pendulum 

(Bloem et al., 2000), the inverted pendulum model has been shown to be simpler to investigate 

as it requires fewer variables; only one joint axis exist through the ankles and the angular 

position of the mass of the pendulum can be measured precisely; its balancing strategy 

illuminates the mechanism used in standing and provides a hypothesis for which standing can 

be tested (Loram & Lakie, 2002). An inverted pendulum is one in which the COM position is 

above the pivot point. Thus, for a system to be adequately utilised in balance analysis, it should 

be able to accurately represent the COM sway while utilizing the inverted pendulum model.  

Several challenges prevent the use of accelerometry in balance analysis. Some of the main 

challenges include the reliability and validity of the metric or a combination of metric used to 

accurately quantify a person’s health outcome as it relates to balance (Shiroma et al., 2018); 

the transformation of the reference frame of the body fixed sensor to an inertial reference frame 

(Zijlstra & Aminian, 2007); analysing balance according to the inverted pendulum (Winter, 

1998) and the translatability of the outcomes of accelerometry to that of a force platform 

(Richmond et al., 2021). When deploying an instrument for medical use, priority is placed on 

how and what the instrument should measure rather than trying to conform to what the 

instrument measures. In posturography, parameters of body sway are dependent on the head 

orientation, mental state, visual fixation distance, shoes, foot position and support surface 

(Kingma et al., 2011). Some researchers have considered balance in relation to the maintenance 

of the COM position with regards to the base of support (Fujimoto et al., 2015; Suvarna et al., 

2021; Rogers & Millie, 2018). This supports the need for the projection of the COM position 

unto the ground surface. Most algorithms for balance and postural sway analysis using 

accelerometry depend on integration of acceleration of the accelerometer placed on the centre 
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of mass position and by making analysis from the angles roll, pitch and yaw derived from the 

acceleration. These methods do not necessarily produce a reliable information about the sway 

of the subject as they deviate from the basis of the inverted pendulum. As the body is thought 

to obey the principle of the inverted pendulum model during balance, it is necessary that the 

model is used in deriving the algorithm utilised for postural sway analysis. The task to project 

the COM position to the ground surface have been embarked on by Mayagoitia et al. (2002). 

However, the algorithm proposed by Mayagoitia et al. (2002) suffers from limitations in 

modelling of the inverted pendulum which led to a 2-dimensional sway representation rather 

than a three-dimensional sway representation, limitation in ground projection of the COM 

position which requires the angle of sway to be relatively small and the occurrence of sway in 

both directions i.e., the mediolateral (ML) and anterior-posterior (AP) when actually the sway 

occurred in only one direction. Thus, there is a need for a more accurate representation of the 

projected COM postural sway.   

Accelerometry is also hindered from been the standard of assessing posturography due to 

unknown accuracy of IMU based evaluations with the gold standard i.e., the force platform 

(Ghislieri et al., 2019). If proven accurate, the use of IMUs for balance assessment would be 

ideal, since they are portable and low in cost. Validations of accelerometry with the gold 

standard i.e., the force platform and clinical score were introduced by several authors to check 

its validity and sensitivity (Ghislieri et al., 2019). Cabarkapa et al. (2021), investigated the 

accuracy of an accelerometer sampled at 100 Hz in detecting vertical jump heights in 15 healthy 

young adult subjects (10 females and 5 males) by comparing its result with that of a laboratory-

based force plate (Cabarkapa et al., 2021). They found that the accelerometer was effective in 

determining the vertical jump heights but produced a result that was 3.1 cm greater than the 

force plate (Cabarkapa et al., 2021). Pollind & Soangra (2020), investigated the validity of an 

IMU for sway analysis and its feasibility in detecting slight balance impairments due to reduced 

proprioception in 10 healthy adult subjects (5 males and 5 females). They found that sway 

velocity, root mean square and sway path were effective in differentiating postural changes due 

to varying proprioception and concluded that IMUs can be used for accurate clinical postural 

assessment and was effective in diagnosing postural impairments (Pollind & Soangra, 2020). 

Similarly, Noamani et al. (2020) investigated the accuracy of an IMU against an in-lab 

equipment used for characterizing standing balance. The study was divided into four 

approaches: camera-based bottom-up approach (reference method), camera-based top-down 

approach, IMU-based (accelerometer) top-down approach, and IMU-based (accelerometer and 
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gyroscope) top-down approach, were used to evaluate the inter-segmental moments and the 

COP position. In their study, ten young healthy adult individuals stood on a force platform for 

2 minutes. They observed that camera-based top-down approach and IMU-based 

(accelerometer and gyroscope) top-down approach resulted in high accuracy as compared to 

the reference method and no significant difference was observed between using only an 

accelerometer and a combination of an accelerometer and a gyroscope (Noamani et al., 2020). 

The validation of accelerometry based on these studies has either been due to a force platform, 

a camera-based method or based on clinician assessment. The force platform, camera-based 

method and clinician assessment have limitations and may not be considered as the standard 

method for sway comparison. A gold standard should produce the same result under similar 

condition, it should be limited to tester bias and design considerations. Different force platform 

has different sensitive and measurement accuracy. Rodríguez-Rubio et al. (2020), using healthy 

adult subjects, investigated the validity and reliability of the Satel 40 Hz stabilometric force 

platform for measuring quiet stance and dynamic balance. They observed that the validity of 

the device was directly proportional to the weight measured i.e., lower weight resulted in lower 

validity and higher weight resulted in higher validity (Rodríguez-Rubio et al., 2020). This 

implies that the system would produce a lesser valid result for children as a result of their lesser 

weight. Although the weight of a person can affect his/her balance, balance is not the measure 

of weight rather the excursion of the COM position with regards to the base of support under 

specific conditions. The force platform suffers from standardisation. The interpretation of the 

result of sway using a force platform varies and it is subject to the systems design or outcome 

report (Croarkin & Zampieri, 2021). Thus, a high amount of sway on one platform may not be 

considered as a high amount of sway on a different platform. A problem of validating a system 

against another when the other system is not the actual process to be measured or has limitations 

is that it may be considered accurate especially if they both have excellent reliability even when 

they may both share the same limitation. The algorithm proposed by Mayagoitia et al. (2002) 

when evaluated against a force platform, showed closely related results (Mayagoitia et al., 

2002). Thus, there is a need for accelerometry to be validated against the physical unit of length 

and not based solely on the force platform, video-based system and the expertise of clinicians. 

Physical unit of measurement helps to make necessary adjustments and to act when designing 

systems that could counter the sway reaction and prevent fall. It also aids in evaluating the 

accuracy of the system before deployment on a human subject. The representation of postural 

sway with physical unit creates a holistic approach to a subject’s balance analysis i.e., the 

subject can be used as his/her own control.  
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Another important consideration is in the investigation of balance in the mediolateral (ML) and 

anterior-posterior (AP) direction (Kingma et al., 2011). Varying pathologies and balance 

conditions have been suggested to lead to variation of sway in differing directions (Kingma et 

al., 2011). Ibara et al. (2021), using the sway of the hip, investigated the relationship between 

the kinematic and centre of pressure (COP) parameters of the time series scaling component 

(α) in hip osteoarthritis (OA) patients that were involved in a one leg standing task. The COP 

parameters were used to measure the scaling exponent (α), the standard deviation (SD), the 

maximal change in acceleration of the hip sway, and balance performance, and was compared 

during a one leg standing task between the OA and the control group using regression analysis 

(Ibara et al., 2021). The result for the OA group suggested a smaller α in the ML direction, 

larger SD and maximal change in the anterior-posterior acceleration, significantly negative and 

positively associated COP parameter with α in the ML and AP directions respectively, limited 

hip sway in the ML direction and greater movement in the AP direction (Ibara et al., 2021).  

Using a sit to stand activity, Annor et al. (2021) investigated the influence of the local tendon 

vibration of the lower limb in 10 elderly subjects (mean age of 76 and standard deviation of 

1.7 years) and also examined whether postural control can be improved by using a specific 

vibration frequency (Annor et al., 2021). In particular, comparison was carried out between the 

elderly subjects and 15 healthy young adults (mean age and standard deviation: 25.5 and 1.5 

years). The result suggested that the elderly subjects exhibited larger COP sway area and higher 

ML displacement than the healthy young adult subjects, and that local tendon vibration helped 

to reduce the ML displacement and sway area (Annor et al., 2021). Balance is primarily 

maintained by the interaction of the sensory systems i.e., the visual, proprioceptive and 

vestibular systems. Thus, examination of their respective postural responses would help 

determine and isolate balance related problems and deficits and understand their contributions 

to postural sway. For example, Masani et al. (2003), reported that the sway velocity reflects 

the proprioceptive system (Masani et al., 2003; Sun et al., 2019).    
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2.4. Overview of commercially available IMUs and smartphone technologies for human 

balance 

2.4.1. Commercially available IMUs 

The most commonly used commercially available sensors include: Opal System by APDM Inc. 

(APDM, Portland,OR,United States), G-Walk System (BTS Bioengineering® S.p.A., 

Garbagnate Milanese, Italy), Xsens MTx Enschede (MTx, XSens Inc, Eschende, Netherlands) 

and the Shimmer 3 (Shimmer, Dublin, Ireland) (Donisi et al., 2021; Ghislieri et al., 2019).  

The Opal system is composed of a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial 

magnetometer (Donisi et al., 2021). The accelerometer consists of a 14-bits analogue to digital 

(ADC) resolution and a sensitivity scale range of ±16 to ± 200 g. The gyroscope consists of a 

16-bits analogue to digital (ADC) resolution and sensitivity scale factor of range ± 2000 deg/s. 

The magnetometer consists of a 12-bit analogue to digital (ADC) resolution and ± 8 Gauss 

range. The sensor uses Bluetooth 3.0 technology for wireless communication.  

The G-Walk system is composed of a single wearable sensor equipped with four inertial 

platforms which is run by sensor fusion technology. The sensor consists of a 16-bit tri-axial 

accelerometer with a sensitivity scale factor of up to ±16 g, a tri-axial gyroscope of 16-bit with 

range of sensitivity up to 2000 degrees/second, a tri-axial magnetometer of 13-bit with a 

sensitivity scale factor of up to 1200 μT, where T is Tesla. The wireless mode of connection 

is based on Bluetooth 3.0 technology.  

The MTX Xsens Enschede consists of a 16-bit tri-axial accelerometer with a sensitivity scale 

factor of up to ±50 g, a 16-bit tri-axial gyroscope with a range of sensitivity up to ±1200 

degrees/second, a 16-bit tri-axial magnetometer with a sensitivity range of ±75 μT. The 

wireless mode of connection is based on Bluetooth 3.0 technology. 

The Shimmer-Shimmer 3 consists of a 16-bit tri-axial accelerometer with a sensitivity scale 

factor up to ±16 g, a 16-bit tri-axial gyroscope with a range of sensitivity up to ±2000 

degrees/second, a 16-bit tri-axial magnetometer with a sensitivity range of ±400 μT. The 

wireless mode of connection is based on Bluetooth 3.0 technology. 

Dugan et al. (2021), utilised Xsens MVN Analyse system to examine the gait and balance of 

38 patients who were undergoing treatment of concussion. The sensor consisted of 17 wireless 

sensors with a sampling frequency of 60 Hz attached to the feet, sacrum, thighs, scapulae, 



22 
 

sternum, upper arms, lower arms, head and hands. The patients were assessed in two phases: 

the initial arrival testing phase and the leaving or clearance testing phase. The motion of the 

mediolateral COM and gait velocity were measured. Also, during eyes open and closed 

condition of balance, postural sway velocity and jerk index were also measured. The result 

obtained suggested a significant decrease in ML sway from initial to clearance testing, a 

significant increase in gait velocity from initial to clearance testing, a significant increase in 

complexity index from the initial to clearance testing in the eyes closed condition and a 

significant decrease in jerk from initial to clearance testing for eyes open and eyes closed 

condition (Dugan et al., 2021). Thus, suggesting the system was effective in assessing the 

progress of concussions.  

However, the repeatability of these systems did not agree. The repeatability of the G-WALK 

System was assessed on 40 patients with neurological and orthopaedic pathologies (Pagano et 

al., 2021). The pathologies included fractured femur, hip replacement, knee replacement and 

hemiparesis. Two trials of the Timed Up and Go (TUG) test was used for each patient. The 

patients were asked to stand from a chair, walk for 7 m along a straight path, turn around a pin, 

go back and sit on the chair (Pagano et al., 2021). Seven kinematic parameters were analysed 

such as: test duration, duration of the raised phase, vertical acceleration during the raised phase, 

vertical acceleration during the sitting phase, duration of the sitting phase, mean rotation speed 

during the intermediate rotation phase and the mean rotation speed during the final rotation 

phase, with the sensor placed above the iliac crest at the L2 level (Pagano et al., 2021). Intra-

class correlation coefficient (ICC) was used to measure the repeatability. The result showed 

different repeatability for the motion parameters assessed and the repeatability changed based 

on the type of pathology (Pagano et al., 2021). 

The interchangeability of the Opal and G-Walk systems was investigated on twenty-one 

pathological subjects (mean age of 49.5 and standard deviation of 17.4 years) and thirty-two 

healthy subjects (mean age: 45.4 years and standard deviation of 14.2 years), that were involved 

in gait related task with seven spatiotemporal parameters recorded (Donisi et al., 2021). The 

result of the study showed a good repeatability and a non-perfect agreement between the two 

systems (Donisi et al., 2021). Thus, they suggested that the two systems should not be 

interchangeable during test. 
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2.4.2. Smartphones technologies 

Smartphones have also been found useful in gait and balance analysis as most smartphones 

have embedded IMUs. The accuracy of a smartphone’s gyroscope for measuring dynamic 

stability was investigated in 85 healthy adult subjects, 37 women (mean age ± SD: 22.1±1.6 

years) and 48 men (mean age ± SD: 22.4±1.7) (Polechoński et al., 2019). To assess the accuracy 

of the smartphone, stabilometric measurement was recorded simultaneously with a Sigma 

balance platform. The sampling frequency of the device was 30 Hz (Polechoński et al., 2019). 

A total of 170 measurements of postural stability were recorded in the frontal and sagittal plane. 

The result of the measurement showed a significantly strong correlation between both devices 

for the frontal (r = 0.997) and sagittal (r = 0.990) plane (Polechoński et al., 2019). In Borzì et 

al. (2020), a smartphone was used to assess the postural instability of 42 PD patients (31 males 

and 11 females, mean age ± SD: 68.6 ± 10.7 years) and 7 young healthy adult subjects (5 males, 

2 females, mean age ± SD: 27.2 ± 2 years). The subjects were asked to maintain a 30 second 

quiet stance with the smartphone attached to the lower back, L3-L5 level. A total of 414 

features that were representation of the time and frequency domain were extracted and used to 

train a support vector machine (SVM). The model produced a 100% accuracy in differentiating 

between the healthy control, patients with mild and severe postural instability (Borzì et al., 

2020).  Similarly, Mansson et al. (2021) utilised a mobile phone application (Mybalance) to 

assist with the self-assessment of balance for older people. The device has been developed and 

evaluated on 31 older adult individuals against a clinical standard instrument (Mansson et al., 

2021). Although the device is still in its initial testing phase, the device was shown to be reliable 

and valid against clinical instruments used in a physiotherapist setting (Mansson et al., 2021). 

The limitations of using a smartphone is the cost of the system and the interruptions due to text 

messages or calls.  

2.5. Common parameters in balance measurement 

Body sway is a representation of deviations in the location of the centre of gravity (COG) in 

space and centre of pressure (COP) on the support surface (Peterka, 2000). Similarly, body 

sway can also be defined as the slight movement in posture made by individuals in order to 

maintain a position of balance and can be estimated by the total displacement of the centre of 

mass (COM) in relation to the base of support (BOS) (Wang et al., 2010). The use of 

accelerometry entails recording of the COM sway in the form of acceleration (using 

accelerometers) and angular rate of change (using gyroscope) converting it into both linear and 
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angular displacements. The raw data is usually low pass filtered using a digital low pass filter 

with a frequency range of 0.5 to 10 Hz (Ghislieri eta al., 2019). The conversion to displacement 

is usually carried out by integration of the raw signals i.e., accelerations from the accelerometer 

sensor, although using the inclinometer capability of the IMU and algebraic calculations, the 

signal can also be converted into ground displacement (Mayagoitia et al., 2002). When 

accelerometry is projected to the ground surface, it utilised similar variables to a force platform 

for its sway analysis (Mayagoitia et al., 2002). Thus, the COM sway can thus be effectively 

analysed using the COP variables. 

The technique used to study the body sway in a standing position using a force platform is 

known as stabilomentry (Kapteyn et al., 1983). Usually, the force platform is connected to a 

computer which records the COP displacement for a defined period forming the COP signal. 

The COP signal can be considered in two forms: stabilogram and statokinesigram. Stabilogram 

refers to the representation of the COP displacement signal in only one direction (anterior 

posterior or mediolateral) as a function of time and statokinesigram is a representation of the 

COP displacement signal graphically in a horizontal plane (Prieto et al., 1996). Differing COP 

variables can be obtained from the raw COP data to evaluate/quantify postural sway. However, 

there is no agreement on the COP variables that should be extracted for balance assessment 

(Błaszczyk, 2016; Błaszczyk et al., 2016). The commonly used variables for postural sway are 

obtained from the COP displacement raw data. Because many variables of COP exist, it is often 

necessary to consider the characteristics of the postural task and the variables characteristics. 

These variables can be classified into global and structural variables (Duarte & Freitas, 2010; 

Baratto et al., 2002; Ihlen et al., 2013; Rhea et al., 2015). Global variables characterise the COP 

traces by the magnitude of the resultant components of the ML and AP in the time and 

frequency domains. Researchers usually consider the magnitude or deviations of these 

variables such that the greater the magnitude or deviations the lower the postural stability. 

However, some researchers have argued that global variables may not be sensitive to the 

structure of variation which harbours insightful information about the postural control process 

(Baratto et al., 2002; Ihlen et al., 2013). As a result, they suggested structural variables to be 

considered. Structural variables decompose the patterns of COP sway into smaller units 

correlating them with motor control processes (Baratto et al., 2002; Chen et al., 2021; Collins 

& De Luca, 1993, Duarte & Freitas, 2010; Ihlen et al., 2013; Rhea et al., 2015).  

The commonly used global variables that are synonymous to the IMU and force platforms 

include displacements (path length and amplitude), velocity, acceleration, standard deviation 
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and root mean square (Lapointe et al., 2021; Majcen Rosker et al., 2021; Zhu et al., 2021; Zhou 

et al., 2021). The path length examines the magnitude of the two-dimensional displacement 

based on the total distance travelled. The path length has been applied in various cohorts of 

subjects and has been considered a valid measure. Often, the smaller the path length the better 

the postural stability or balance. However, the path length may not be sensitive to the behaviour 

of the sensory systems as it affects the respective direction of sway due to it combining the 

measures. The amplitude of displacement is calculated by considering the distance between the 

maximum and the minimum COP displacement for each direction. Usually, the greater the 

value the lesser the stability. The amplitude variable was used to examine the differences in 

lower extremity reach performance, static posturography and gait outcomes between young 

(20–39 years), middle-aged (40–59 years) and older (60–79 years) adults using identical tests 

and parameters (Hill et al., 2020). The findings suggested reduced lower extremity reach 

distance was found in older adults compared to intermediate-aged (Cohen’s d = 1.28–3.60) and 

young (Cohen’s d = 2.09 – 3.87) adults (p < 0.001), while young adults demonstrated greater 

reach distances than intermediate (Cohen’s d = 0.64–1.74) aged adults (p < 0.001) (Hill et al., 

2020). The amplitude measure has been found useful in diagnosing patients with neurological 

disorders (Pavão et al., 2014). The velocity is obtained by dividing the COP excursion with the 

time duration of the trial. The velocity measure quantifies the efficiency of the postural control 

system while characterising the total neuromuscular activity required for balance maintenance. 

The velocity measure has been described as the most effective and reliable measurement among 

trials (Duarte & Freitas, 2010). Other researchers have also considered the COP velocity to 

have greater sensitivity in comparing people from differing age groups and with differing 

neurological conditions (Raymakers et al., 2005; Masani et al., 2014). In Siragy & Nantel 

(2020), information of the velocity variable was utilised in investigating the effect of arm swing 

on balance in twenty people with Parkinson disease (age: 63.78 ± 8.97). Average and standard 

deviation of the trunk linear and angular velocity were obtained from the subjects who walked 

with two arms conditions (absent and normal) on a split belt treadmill CAREN Extended-

System (Motek Medical, Amsterdam, NL) in all three axes. The result suggested that trunk 

anteroposterior instantaneous angular (least affected leg) and linear velocity (bilaterally) were 

reduced by the absent arm swing (Siragy & Nantel, 2020). The acceleration measure has also 

been found useful in balance analysis. The acceleration is the first derivative of the velocity. 

The root mean square obtained by taking the mean of the square root of the samples. The 

standard deviation is the total deviation from the mean and it is equal to the RMS if the COP 

signal has zero mean. The RMS and SD has been reported to provide good reliability in 
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differentiating between old and young subjects and between subjects that have pathologies and 

healthy subjects (Duarte & Freitas, 2010; Ozinga & Alberts, 2014; Zhang et al., 2021).  

2.6. Methods of data analysis  

Data analysis method refers to methods that enables inference, deduction and learning from the 

data (Bzdok et al., 2018). In balance analysis, the global or structural parameters are utilised as 

inputs in carrying out data analysis. Broadly speaking, data analysis in balance studies can be 

divided into statistical and machine learning methods.  

2.6.1. Statistical methods 

Statistical tests are used for comparing the differences between groups and for finding 

relationships. These can be broadly classified as parametric and non-parametric models (Orcan, 

2020; Van Buren & Herring, 2020). Parametric tests refer to those models where the number 

of parameters is fixed while non-parametric models refer to the case where the number of 

parameters increases as the available data increases (Orcan, 2020; Van Buren & Herring, 2020; 

Zhou et al., 2020). Parametric models can be defined by the assumption of the shape of the 

probability distribution of the data. The model is parametric if the distribution is normal and 

the mean and standard deviation are known. In parametric test, the mean is used as the 

representative measure for the normally distributed continuous variable and the median is used 

for non-parametric conditions (Mishra et al., 2019). In other to determine which model to 

employ, test of the distribution of the data are usually carried out. The commonly used 

statistical tests for normality are the Shapiro-Wilk test and the Kolgomorov-Smirnov test (Miot, 

2017; Orcan, 2020). Other methods include the construction of histogram combined with 

skewness and kurtosis statistic (Jun & Yanling, 2021), boxplot, probability to probability plot 

(Miot, 2017; Mishra et al., 2019). Several parametric and non-parametric models have been 

used in balance analysis depending on the task and the number of groups considered. The most 

common of these include the methods of testing hypothesis and inferences such as the t-test, 

Wilcoxon signed-rank test, the Mann-Whitney U test, Analysis of variance (ANOVA), the 

Kruskal-Wallis test and Friedman test; the methods of measuring association such as 

correlation analysis, linear regression, and methods of agreement such as Bland and Altman 

analysis, intra-class correlation and kappa statistic (Ranganathan et al., 2017). The principle of 

hypothesis testing is a decision on whether the data sample is a representative or not a 

representative of the population assuming the formulated hypothesis is true about the 

population (Mishra et al., 2019). In hypothesis testing, a null hypothesis and its alternative are 
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stated (Mishra et al., 2019). The null hypothesis states that no difference exist between the 

population and the sample in accordance with the parameter being measured (Mishra et al., 

2019). On the other hand, the alternative hypothesis states that in accordance with the 

parameter being measured, the population is different from the sample (Mishra et al., 2019). A 

probabilistic value also called the p-value is used to measure this difference. Typical values for 

the p-value varies from 5% to 1%, implying that there is 5% and 1% chance respectively of 

rejecting the null hypothesis (Emmert-Streib & Dehmer, 2019). The t-test is a parametric test 

that is used to compare the difference of means between two groups (Mishra et al.,2019). The 

t-test can be broadly divided into two: the independent sample t-test and the paired sample t-

test (Yan et al., 2017; Mishra et al., 2019). The independent sample t-test is used to test if a 

significant difference existed between two unrelated groups. The paired sample t-test is used 

to compare two related groups to investigate whether a significant difference existed or not. 

The non-parametric alternative of the independent t-test is known as the Wilcoxon rank-sum 

test or the Mann-Whitney U test (Yan et al., 2017; Mishra et al., 2019). The non-parametric 

alternative of the paired sample t-test is the Wilcoxon signed rank test. The two-sample t-test 

was used to examine the difference between the gait and balance parameters of 16 patients 

(sex: 10 males and 6 females; mean age ± standard deviation: 70.4 ± 7.1 years) with progressive 

supranuclear palsy (PSP) and those of 25 healthy adult controls (sex: 25 females; mean age ± 

standard deviation: 72 ± 6.6 years) (Ali et al., 2021). The result showed that gait parameters 

such as: kinematics, spatiotemporal and kinetic gait measures were significantly different 

between both groups (p < 0.05) (Ali et al., 2021).  The paired sample t-test was used to evaluate 

the pre and post treatment data obtained from thirty-eight Diabetes Mellitus Type-II patients 

(sex: 20 males; mean age ± standard deviation:  63.08 ± 3.3 years) with diagnosis of diabetic 

neuropathy (Daud et al., 2021). The Berg Balance Scale and Time Up and Go test were used 

to collect pre and post treatment data from the participants who were involved in 12 sessions 

(two sessions per week) of balance training on Biodex stability system. The result from the pre 

and post test suggested that balance training with Biodex Balance System can significantly 

improve balance function in Diabetes Mellitus Type-II patients with diabetic neuropathy (Daud 

et al., 2021). The self-reported change in physical activity dose and deterioration in balance 

performance, gait speed, and self-rated health (SRH) in One hundred and eighty-six older 

women (ages 69–79 years) between two time points were investigated using the Wilcoxon 

signed-rank and the Mann–Whitney U test (Papp et al., 2021). The result suggested that greater 

physical activity was important for maintaining physical functions and self-rated health.   
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Hypothesis testing is not limited only to two groups. There are conditions were more than two 

groups are required for comparison. In such a case, repetition of the t-test between the groups 

increases the chances of type 1 error (Gray et al., 2017). Type 1 error refers to the error of 

incorrectly rejecting the null hypothesis. That is, stating that the null hypothesis is false when 

indeed it is true. In a situation when more than two means are compared, the analysis of 

variance (ANOVA) is used (Mishra et al., 2019).  There are two main types of ANOVA: the 

one-way ANOVA and the one-way repeated measures ANOVA (Mishra et al., 2019). The one-

way ANOVA analysis is the extension of the independent sample t-test howbeit with more than 

two groups. Similarly, the one-way repeated measures ANOVA is the extension of the paired 

sample t-test howbeit with more than two groups. ANOVA states whether a significant 

difference exist between the groups but cannot tell which pairs are different. Thus, further 

analysis also called post hoc analysis are required (Mishra et al., 2019).  The use of ANOVA 

in balance analysis have been reported in the literature. The Kruskal-Wallis test is the non-

parametric equivalent of the one-way ANOVA and the Friedman test is the non-parametric 

equivalent of the one-way repeated measures ANOVA. The Kruskal-Wallis test and the Mann-

Whitney U test were used to investigate whether a significant difference existed in the ocular 

and cervical vestibular evoked myogenic potential (VEMP) in regards to the balance between 

30 Parkinson disease (PD) patients, 16 patients with atypical parkinsonism (AP) and 30 healthy 

controls (Klunk et al., 2021). The VEMP was induced by a mini head shaker and its latency 

recorded using a non-invasive surface electromyography (EMG) while the subjects balance 

were investigated using a pressure platform. The latency (n10 and p15 for the ocular VEMP 

and p13 and n23 for the cervical VEMP) and peak to peak amplitude obtained was used for 

statistical analysis (Klunk et al., 2021). The results suggested that patients with PD had a 

prolong ocular VEMP n10 as compared to healthy controls and extended p15 in comparison to 

both healthy controls and AP patients (Klunk et al., 2021). Patients with AP showed reduced 

ocular VEMP amplitudes in comparison to healthy controls and PD patients. There were no 

differences in cervical VEMP between groups (Klunk et al., 2021).  

The measures of association are used to measure the direction and magnitude between two 

variables (Franco & Di Napoli, 2017). Several type of correlation coefficient have been 

reported in literature. The most commonly used correlation coefficient measure include: 

Pearson correlation coefficient (r), Spearman rank correlation coefficient (𝜌), Kendall’s 

coefficient of rank correlation (𝜏𝑏) (Janse et al., 2021). Pearson correlation coefficient (r), 

Spearman rank correlation coefficient (𝜌), Kendall’s coefficient of rank correlation (𝜏𝑏), have 
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been used in several studies to measure association. The choice of correlation analysis to use 

depends on certain factors such as the level of measurement and the result of the distribution 

of the variable (Khamis, 2008; Janse et al., 2021). The Pearson correlation is mainly used for 

normally distributed data while the Spearman and Kendall’s tau correlation are suitable for 

non-normally distributed data (Janse et al., 2021). The Pearson correlation coefficient was used 

to investigate the relationship between balance confidence, core muscle strength and trunk 

control in 177 (110 males and 67 females, median age = 57 years and interquartile range (IQR) 

= 46-64 years) community dwelling patients with chronic stroke (Karthikbabu & Verheyden, 

2020). The balance confidence, core muscle strength and trunk control were measured using 

the activity specific balance confidence scale, handheld dynamometer and the trunk 

impairment scale 2.0 (TIS 2.0) respectively. The result of the correlation analysis showed that 

trunk control was highly correlated with balance confidence (r = 0.66, p < 0.001) and overall 

core muscle strength (r = 0.61 – 0.70, p < 0.001) (Karthikbabu & Verheyden, 2020). Spearman 

rank correlation coefficient was used to investigate the association between dizziness and falls 

in 187 (85 males and 102 females, mean age = 77.75 years with standard deviation = ±14.14 

years) institutionalised older adults (Lima Rebêlo et al., 2021). The instrument used for data 

collection were the questionnaires for assessing variables related to falls and the socioeconomic 

and demographic questionnaire. The result showed significant association between dizziness 

and the number of morbidities (p < 0.05), and dizziness and history of falls (p < 0.05) (Lima 

Rebêlo et al., 2021).  

The measures of agreement are used to investigate the accuracy and precision between two 

different methods, two different operators using the same method, or a repeated measure by 

the same operator (Watson & Petrie, 2010). The agreement between measurement is the degree 

of concordance between the measurements. The most common of these measures include the 

Bland and Altman’s method, intra-class correlation (ICC) analysis and the kappa statistic 

(Watson & Petrie, 2010; Taffé et al., 2020; Ranganathan et al., 2017). The Bland and Atlman’s 

method is used to measure the degree of agreement between two methods when one is 

considered as the gold standard (Watson & Petrie, 2010). The kappa statistic is also used in the 

same manner but operates only on categorical data (Watson & Petrie, 2010). The intra-class 

correlation coefficient (ICC) is used to measure the concordance between two readings. While 

the Bland and Altman’s is mainly used to compare two methods with one of the methods being 

considered as the reference, the intra-class correlation coefficient (ICC) is used without 

consideration of a reference (Ranganathan et al., 2017). The Bland and Altmans method, 
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weighted kappa (κ) and the intraclass correlation coefficient (ICC) were used to investigate for 

home use the reliability and validity of a modified version of the community balance and 

mobility scale (CBMS-Home) in 55 people (mean age and standard deviation: 77.2 ± 6 years). 

The subjects completed the full original CBMS, home based CBMS, the functional reach test 

and the step test. The result from the Bland and Altman analysis and the weighted kappa 

suggested a moderate to almost perfect agreement (weighted κ = 0.45–0.84) between the 

CBMS-Home and the CBMS. The intra-class correlation coefficient showed excellent test-

retest reliability (ICC = 0.95) of the distribution scores of the CBMS-Home based test (Ng et 

al., 2021). 

2.6.2. Machine learning methods 

The use of machine learning for gait and balance analysis is a fairly recent development.  

Machine learning techniques are aimed at designing algorithms that either can learn from the 

experience of the labelled data or can learn patterns automatically from the input data set 

(Prakash et al., 2016). Machine learning technique utilised for gait and balance analysis can be 

divided into supervised, unsupervised, reinforcement, evolutionary, probabilistic and hybrid 

approaches, and rule based (Prakash et al., 2016; Kabade et al., 2021). However, the most 

widely used for balance analyses include the supervised methods such as the neural network, 

the k-nearest neighbour (k-NN), ensembles (random forest, bagging and boosting) and the 

support vector machines and unsupervised methods or clustering methods such as the fuzzy c 

means, k means, hierarchical and the self-organising map (SOM); fuzzy logic, reinforcement 

learning and evolutionary approaches (Wright & Jordanov, 2014). Bao et al. (2019) explored 

supervised machine learning technique and trunk sway data to automatically evaluate balance. 

Sixteen participants (5 males, 11 females, mean age and standard deviation: 68.2 and 8.0 years) 

participated in a standing balance exercise while their trunk sway data were being recorded, 

and rated by a physical therapist (PT), rating their performance on a scale of 1 to 5. Applying 

support vector machines to 61-dimensional feature vectors representing performance of each 

exercise, an accuracy of 82% was achieved and the SVM outputs were significantly closer to 

PT ratings (Bao et al., 2019). Kamran et al. (2021) also utilised a supervised approach 

(convolutional neural network and random forest) to automatically evaluate balance in older 

adults and observed a good classification performance in comparison to that of physical tests 

(Kamran et al. 2021). Sun et al. (2019) suggested that the random forest algorithm showed 

good classification performance in differentiating controls and Multiple Sclerosis (MS) among 

individuals (153 participants (50 healthy controls and 103 MS individuals), 108 females and 
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45 males, with MS using their sway metrics obtained from standing upright for 30 seconds on 

a force platform) with an accuracy of 86.3 to 92.3%, sensitivity of 76.5 to 85.7% and specificity 

of 92.0 to 96.0% (Sun et al., 2019). Savadkoohi et al. (2021) showed that a one-to-one deep 

neural network used to process an open-sourced force plate sway data of (163 females and 

males aged 18-86) involved in the four conditions of the modified clinical test of sensory 

interaction and balance (mCTSIB) test were able to provide an accuracy of 99.9%, precision 

of 100% and a sensitivity of 100% in differentiating between fall risk individuals and healthy 

controls (Savadkoohi et al., 2021).  

Often the actual label of the dataset may not be known. In that case, the unsupervised method 

is used. The unsupervised method helps to reveal the patterns inherent to the data set and is 

suitable for understanding the systems under consideration. Rodrigo et al. (2012) applied the 

Kohonen neural network to classify the inter-subject gait variability of 60 normal individuals 

(mean age and range: 63.3 and range 37 to 86 years, 28 men) and 60 patients with idiopathic 

Parkinson’s disease (mean age and range: 68.8 and range 45 to 84 years, 37 men) based on a 

databased force platform obtained dataset. The result of the clustering obtained from the 

Kohonen map agreed with those of the classification carried out by experts (Rodrigo et al., 

2012). 

Araugo et al. (2018) utilised competitive neural network to access body steadiness in older 

adults (age range 60 to 80) by finding out the quiet standing point of equilibrium of their body 

sway. Stabilometry was used to obtain the values of the centre of pressure (COP) of the 

subjects. The result suggested that competitive neural network was a feasible alternative to 

compute the global centre of pressure and contributed to the postural steadiness and equilibrium 

condition analysis of the elderly (Araugo et al., 2018). 

Thus, machine learning techniques are task dependent. The supervised methods are mainly 

used for classification and prediction, while the unsupervised are used for finding hidden 

patterns. 

2.7. Summary  

In this chapter, the importance of balance assessment, the methods commonly used for the 

assessment of balance in a clinical setting, the challenges faced in the assessment of balance, 

the common parameters and common methods for analysis were briefly discussed. The 

commonly used methods for balance analysis are the force platform, computerised dynamic 

posturography and accelermetry. Accelerometry overcomes the limitations of the other two 
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methods due to its low cost, sensitivity to lesser weight, ease of use, ease of mobility and 

suitability in dynamic conditions. However, accelerometry also faces challenges such as the 

need for suitable algorithms to accurately depict the widely acceptable notion of balance i.e. 

the inverted pendulum model, interpretation of the results obtained in the mediolateral (ML) 

and (AP) directions for an understanding of the various sensory systems i.e. the visual, 

vestibular, and the proprioceptive system and its use for a comprehensive understanding of the 

balance of an individual. These challenges are addressed in this study.   

To gain insight into balance analysis, statistical and machine learning methods are used. The 

most widely used statistical methods can be grouped into three based on the task required. 

These are: the methods of testing hypothesis and inferences, methods of testing associations 

and methods of testing agreement. The most commonly used machine learning methods in 

human balance analysis can be grouped into two: supervised and unsupervised. These machine 

learning methods are task dependent. In this study, these methods are utilised for balance 

analysis. 

In the following chapter, the theories relevant to this study are presented. 
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Chapter 3 Related theory 

3.1. Introduction to the process of human balance  

The balance system comprises of complex organs and mechanisms which control the 

displacement of the centre of gravity (COG) from the equilibrium position. This is done by 

generating counter postural reactions and eye movements to maintain a stable image of the 

environment (Olchowik et al., 2015). The location of the body’s COG is determined by the 

information from the visual, proprioceptive and vestibular systems (Peterka, 2002). This 

information is received by the central nervous system (CNS) via a network of neurons which 

activates the musculoskeletal system in a way that prevent the COM from extending beyond 

the base of support, formed by the area of the feet (Alghwiri & Whitney, 2020; Richmond et 

al., 2021). The balance control mechanism of the human body is shown in Figure 3.1. It consists 

of three layers: the sensory input, the input integration and the motor output. These layers are 

interdependent in their functions; hence, their interactions and correct functioning are 

paramount to the maintenance of balance and postural control.  

 

Figure 3.1. Balance control in human body (Vestibular Disorders Associations, 2020). 
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3.2. Balance related sensory systems  

The sensory systems mainly associated with balance are the visual, proprioceptive and the 

vestibular systems.  

3.2.1. Vestibular system 

The vestibular system is often referred to as the primary sensory organ of movement. Its origin 

can be traced back to 500 million years ago (Graf & Klam, 2006) and it is involved in all levels 

of the brain. The vestibular system consists of three semi-circular canals and two otolithic 

sensors, these are located in the inner ear close to the cochlear organ. The canals encode the 

angular head acceleration in three dimensions and the sensors encodes linear and gravitational 

related linear acceleration (Besnard et al., 2018). This information is vital to the central nervous 

system (CNS) in order to maintain balance. The position of the head and neck is regulated by 

the vestibular system via two outputs: the vestibular ocular reflex (VOR) and the vestibular 

spinal reflex (Alghwiri & Whitney, 2020). Whilst the head is in motion, the vestibular ocular 

reflex is used for the stabilization of visual images on the retinal. The vestibular spinal reflex 

allows for the reflex control of the muscles of the neck and lower extremities so that the motion 

of the head and trunk can be maintained accurately and correlatively with the movement of the 

eye (Alghwiri & Whitney, 2020). The vestibular system provides support for brainstem 

functions (Vidal et al., 2004) and has recently been recognised for high level functions in spatial 

cognition (Besnard et al., 2015; Smith, 2017). The outermost portion of the vestibular system 

acts as a miniaturized accelerometer and gyroscope and reports information continually 

regarding the position and motion of the head and body. This information is sent to integrative 

units situated in the brainstem, cerebellum and somatic sensory cortices (Purves & Williams, 

2001). The vestibular system is a key component in both reflexes of posture and eye movement. 

When the head is in motion, a damaged vestibular system adversely affects balance, eye 

movement control and the sense of orientation. The assessment of the damage done to the 

vestibular system is important in brainstem injury evaluation. The brainstem consists of a large 

part of the vestibular circuitry, of which simple clinical examination of the vestibular function 

can be performed to examine its involvement in patient’s orientation. The primary symptoms 

of vestibular problems include dizziness, vertigo, vestibulovisual symptoms and postural 

symptom (Bisdorff et al., 2015). Dizziness is the sensation of an impaired spatial orientation 

which does not occur from a false sense of motion (Bisdorff et al., 2015). Vertigo is the 

sensation of a false sense of the motion of the head or body (Bisdorff et al., 2015). The 
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vestibulovisual symptoms are symptoms associated with the visual system such as visual 

distortion and false sensation of motion or tilting of the visual surround. These symptoms occur 

as a result of the interplay between the vestibular and the visual system or a vestibular 

pathology (Bisdorff et al., 2015). Postural symptoms are balance symptoms related to the 

maintenance of postural stability which occurs while in an upright position i.e., seated, 

standing, or walking (Bisdorff et al., 2015). Disorders of the vestibular system manifest in any 

of the above symptoms. Dizziness has been reported as one of the symptoms that occurred at 

the time of concussion (Alkathiry et al., 2018), and also in chronic unilateral vestibular 

hypofunction (Morimoto et al., 2019).  Vertigo has been reported as a symptom of Ménière's 

disease (Phillips et al., 2020) and it is said to have a duration between 20 minutes and 12 hours 

(Lopez-Escamez et al., 2015).   

The vestibular-ocular reflex (VOR) is responsible for integrating the vestibular and ocular 

systems to maintain gaze during head motion. It is often negatively affected following sport-

related concussion (Quintana et al., 2020).   

 

 

Figure 3.2. Vestibular system (Vision Therapy Children, 2018) 
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3.2.2. The visual system 

The visual system is one of the primary systems responsible for balance. The visual input 

provides the CNS with the information necessary to maintain a vertical position in relation to 

the environment (Chiba et al., 2016). The visual function is known to deteriorate with age and 

this deterioration has been reported to increase the risk of falls (Amir et al., 2021). In older 

adults, the major reasons for the decline in visual functions are attributed to anatomical changes 

of the eyeball (Saftari & Kwon, 2018). Structural changes to the eye occur as a result of ageing 

(Saftari & Kwon, 2018). Throughout the life span of the eye, the weight and cross-sectional 

area of its lens decreases. The lens of the eye, responsible for the change of focal distance, 

becomes thicker, heavier and loses its elasticity (Saftari & Kwon, 2018). Ageing also leads to 

changes in the ciliary muscle, a smooth muscle, responsible during accommodation for 

changing the shape of the lens when viewing objects at varying distances (Hipsley & Hall, 

2021). Glasser & Campbell (1999) compared the biometric, optical, and physical properties of 

19 pairs of isolated human eye-bank lenses obtained from people of ages 5 to 96 years. A 

scanning laser apparatus was used in measuring the lens focal length and spherical aberration, 

the lens thickness and the lens surface curvatures, were measured by digitizing the lens profiles. 

This data was used to calculate the equivalent refractive indices for each lens. The result 

obtained suggested that the optical and physical properties of the lens changed substantially 

with age in a complex manner (Glasser & Campbell, 1999). Although anatomical changes 

affect the visual functions by reducing the quality of the sensory input of higher-level 

processing (Alghwiri & Whitney, 2020; Saftari & Kwon, 2018), it is not solely responsible for 

the decline of the visual functions. Reduction in visual functions can also occur as result of a 

decline in the computational efficiency and compensatory heuristic in the higher-level 

processes (Alghwiri & Whitney, 2020).   

Ageing also leads to functional changes of the visual system (Saftari & Kwon, 2018). Some of 

these functional changes that are affected by age include, but are not limited to visual acuity, 

contrast sensitivity, glare sensitivity, and visual field (Rubin et al., 1997). Visual acuity (VA) 

is a measure of the eye’s ability to distinguish the details of objects and shape at a given distance 

(Alghwiri & Whitney, 2020; Saftari & Kwon, 2018). VA testing is a vital assessment of visual 

function and a screening tool for ocular pathology (Samanta et al., 2020). Contrast sensitivity 

is the ability to detect fine differences in patterns and shading (Alghwiri & Whitney, 2020). It 

is an important function necessary for detecting objects without clear outlines and for 

discriminating objects from their background (Alghwiri & Whitney, 2020). The balance of the 
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oculomotor (a nerve responsible for the coordination of eye muscle) and contrast sensitivity 

are known to be impaired after an intake of a single dose of lorazepam (Giersch et al., 1996).  

Glare sensitivity refers to the loss of visual acuity in bright lighting (Marié et al., 2021). The 

conditions of light could produce discomfort and pain without necessary affecting the visual 

perception (Boyce, 2017). Aartolahti et al. (2013) investigated the relationship between 

functional vision, balance, and mobility performance in a community-based sample of 576 

older adults, aged 76 to 100 years. Balance and mobility were measured by the Timed Up and 

Go (TUG) test, maximal walking speed, Berg balance scale (BBS), and the chair stand test.  

Depressive symptoms, self-reported fear of falling, cognition and physical activity were also 

assessed with the participants placed into poor, moderate, or good functional vision groups. 

Compared to the participants with moderate (N = 222) or good functional vision (N = 259), the 

participants associated to the poor functional vision group (N = 95) had more comorbidities 

(multiple illness), depressed mood, fear of falling, cognition decline, and reduced physical 

activity (Aartolahti et al., 2013). By addressing problems of the visual system, the risk of falls 

can substantially decrease. For example, peripheral field deficits can be addressed by using 

glasses with prisms, contrast sensitive can be increased by tinted glasses and problems with 

bifocals can be addressed by glasses for near and far vision (Alghwiri & Whitney, 2020). 

  

3.2.3. The proprioceptive system 

The receptors of the joints, muscles, and tendons provides the somatosensory information to 

the central nervous systems (CNS). This information is about the body’s: segment position, 

movement in space and the amount of force generated for the movement (Alghwiri & Whitney, 

2020). Clinically, the assessment of somatosensory function is carried out in two distinct 

phases: the primary and cortical sensory modality (Klingner & Witte, 2018). The primary 

sensory modalities include touch, vibration, pressure, pain, position sense of joint and 

temperature (Klingner & Witte, 2018). The cortical sensory modality are experiences that 

occurs from the fusion of the primary sensory modalities by the parietal cortex (Klingner & 

Witte, 2018). Examples of cortical sensory modalities include stereognosis (the ability to 

understand an object by touch), graphesthesia (the ability of a person to recognize a letter 

written on the person’s skin without seeing it), two-point discrimination (the ability to 

distinguish the cutaneous stimulation of one point from the stimulation of two points), tactile 

localization (the ability to accurately identify the site of tactile stimulation), muscle spindle 

activity, proprioception, cutaneous receptors in the lower extremities and changes in vibration 
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sense (Klingner & Witte, 2018). These functions are known to decrease with age. Lower 

extremities vibration perception has been found to be the main determinant of postural control 

in older adults (Kristinsdottir et al., 2001). The postural control of the younger adults was found 

to be comparable with that of older adults who had good vibration perception, while an increase 

in frequency was observed in older adults with impaired vibration perception (Kristinsdottir et 

al., 2001). The testing of the primary and cortical sensory modality provides an indication of 

where a possible lesion exists and whether the parietal cortex is affected (Klingner & Witte, 

2018). The primary sensory information required to maintain balance has been found to be 

proprioception and cutaneous input (Bacsi & Colebatch, 2005). The information of the 

somatosensory function that includes proprioception, cutaneous input and vibration, have been 

found to be primarily important in the assessment and intervention processes of older adults 

who are at risk of postural instability (Alghwiri & Whitney, 2020). Clinically, proprioception 

(sense of position and movement) is assessed by a joint positioning matching test (Alghwiri & 

Whitney, 2020). The test starts distally with the “toe up/down” test with eyes closed and moves 

proximally to the ankle and knee, if impairments are observed in the toes (Alghwiri & Whitney, 

2020). A proprioceptive normal patient should be capable of detecting the subtle movement of 

the big toe (Alghwiri & Whitney, 2020). Vibration sense can be assessed by placing a tuning 

fork (normally 128 Hz) at the first metatarsal (the bones of the foot) head (Alghwiri & Whitney, 

2020).  

3.2.4. Sensory organisation test  

The sensory systems (visual, vestibular and proprioceptive) interaction can be evaluated using 

different methods. However, the most common method used with accelerometry is the 

modified Clinical Test of Sensory Interaction and Balance (mCTSIB) test. The test is designed 

to assess a person’s ability to utilise his/her sensory systems (visual, vestibular and 

proprioceptive) for balance (Wrisley & Whitney.,2004). The mCTSIB test was proposed by 

Cohen et al. (1993). It is a modified version of the Clinical Test of Sensory Interaction and 

Balance (CTSIB) developed by Shumway-Cook & Horak. (1986). The CTSIB test is made up 

of six conditions: (i) standing on a firm surface with eyes open, (ii) standing on a firm surface 

with eyes closed, (iii) standing on a firm surface with visual conflict dome, (iv) standing on a 

compliant surface with eyes open, (v) standing on a compliant surface with eyes closed and 

(vi) standing on a compliant surface with a visual conflict done. However, the mCTSIB test 

consists of four conditions which are obtained after eliminating the two conditions where the 

visual conflict dome were used in the CTSIB test, as no significant difference were observed 
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with the eyes open conditions. The four conditions of the mCTSIB test include standing on a 

firm surface with eyes open, standing on a firm surface with eyes closed, standing on a 

compliant surface with eyes open, and standing on a compliant surface with eyes closed. The 

mCTSIB dynamic platform test has been suggested to have a moderate validity and reliability 

to evaluate balance in older women living in the community (Antoniadou et al., 2020). Shaikh 

& Joshi (2020) observed that gender had no effect in the performance of static balance while 

using the mCTSIB test.  

3.3. Motor control system  

Motor control refers to the regulation of movement in organisms that have a nervous system 

(Li et al., 2018). This consists of reflexes and controlled movement (Li et al., 2018). Motor 

control is an important property required to perform the activities of daily living (ADLs) and 

for the regulation of stability and balance. The activities of daily living (ADLs) is a term used 

to describe the fundamental skills required to independently care for oneself (Bieńkiewicz et 

al., 2014). The central nervous system (CNS) and the peripheral nervous system (PNS) play an 

important role in motor control. The CNS integrates the input from the sensory system, 

coordinates and implement the orders required for the neuromuscular system to provide the 

necessary and accurate motor output (Alghwiri & Whitney, 2020). The CNS is defined as the 

brain and the spinal cord and it is usually considered to consist of seven basic parts: the spinal 

cord, the pons, the medulla, the midbrain, the cerebellum, the cerebral hemisphere and the 

diencephalon (Purves et al., 2001). The pons, midbrain and the medulla are collectively referred 

to as the brainstem; the cerebral hemisphere and diencephalon are collectively referred to as 

the forebrain (Purves et al., 2001). The brainstem consists of the cranial nerve nuclei. The 

cranial nerve nuclei are responsible for receiving input from the cranial sensory ganglia via the 

various cranial sensory nerve and to give rise to axons that form the nerves of the cranial motor 

(Purves et al., 2001). The brainstem is also considered as the channel for various crucial areas 

in the CNS (Purves et al., 2001). These areas are responsible for relaying sensory information 

from the spinal cord and brainstem to the midbrain and forebrain and vice versa (Purves et al., 

2001). The cerebellum has been suggested to play an important role in timing, sensory 

acquisition and in the prediction of the sensory consequences of action (Manto et al., 2011). In 

humans, the cerebellum constitutes 10% of the brain volume but accounts for more than 80% 

of the neurons of the CNS (Herculano-Houzel, 2009). Its function is well known in motor 

control. However, recent studies have suggested that the cerebellum also aids in non-motor 

functions (Welniarz et al., 2021). Impairments of the cerebellum results in disorders relating to 
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speech, eye movement, limb movement, posture and gait, and cognition (Manto et al., 2011). 

The PNS is responsible for relaying information from the brain to the rest of the body and vice 

versa (Irimia & Van Horn, 2021). The peripheral nerves reside outside of the brain and spinal 

cord and can be divided into two: The autonomic nervous system and the somatic nervous 

system (Bradley, 1989). The autonomic nervous system regulates glands and control 

involuntary body function such as digestion, blood pressure and heart rate etc. (Maltese et al., 

2020). The somatic nervous system is responsible for controlling motor movement and for 

relaying information from the sensory systems to the central nervous system (Bradley, 1989). 

Problems with the CNS and PNS affects balance in various ways. For example, severe COVID-

19 was reported in four male subjects (ages 50 - 70 years) which affected their CNS and PNS, 

and resulted in confusion, psychiatric disorders (hallucinations and paranoid delusion), 

pyramidal signs, swallowing dysfunctions, upper limbs myoclonus, cognitive dysfunctions and 

fasciculation and focal muscle atrophy (Chaumont et al., 2020). In another study, twenty 

individuals that have suffered from stroke were compared against aged matched sixteen healthy 

controls to identify postural control impairment. Their centre of mass (COM) and centre of 

pressure (COP) information obtained from quiet standing and voluntary stepping response 

were used for comparison (Moisan et al., 2021). The result suggested that in quiet standing 

position, post stroke individuals showed greater maximal COP displacement in the 

mediolateral direction, greater displacement in the vertical direction and greater COM speed 

excursions compared to healthy controls. While during the voluntary stepping response, post-

stroke individuals showed smaller step length, posterior foot placement in relation to the pelvis 

and COM anteroposterior excursions compared to those of heathy controls (Moisan et al., 

2021).  The link between the disorders of the CNS and vertigo has been reported (Saha, 2021).  

3.4. Postural strategies  

The strategies used to respond to unexpected postural disturbances can be grouped into five: 

the ankle strategy, hip strategy, stepping strategy, reaching strategy and suspension strategy 

(Alghwiri & Whitney, 2020). The strategy used by a person is based on the size of the base of 

support (BOS) and the amount of force created by the disturbance (Alghwiri & Whitney, 2020). 

Ankle strategy is used for small disturbances and involves the activation of muscles around the 

joint of the ankle while standing on a normal support surface (Alghwiri & Whitney, 2020). The 

ankle strategy has been suggested to consist of a delayed activation of the ankle, thigh and 

trunk muscles with this delay starting distally to proximally on the ventral position of the body 

(Nashner & McCollum, 1985; Horak & Nashner, 1986). The mobility and the strength of the 
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ankle is important for the successful implementation of the ankle strategy. The mechanical 

perspective of the ankle strategy is considered as a single segment inverted pendulum that is 

directed by the torque of the ankle joint. It involves the rotation of the body about the ankle 

joint with less movement about the superior joint (Nashner & McCollum, 1985). The latency 

i.e., the delay from the time of impulse to the time of action, is considered to be between 73 to 

110 millisecond (Horak & Nasher, 1986).  

Hip strategy is used for sudden and forceful disturbances of the BOS while the subject is 

standing and results in the activation of the muscles around the hip (Alghwiri & Whitney, 

2020). Contrary to the ankle strategy, a delayed activation of the trunk and thigh muscles that 

occurs in a proximal to distal fashion is observed in the hip strategy (Alghwiri & Whitney, 

2020). However, the hip strategy has the same latency as the ankle strategy (Alghwiri & 

Whitney, 2020). Mechanically, the hip strategy consists of the forward and downward rotation 

of the upper body which imposes on the lower body a backward rotation, while resulting in a 

decrease of the moment of inertia about the ankle (Runge et al., 1999). The hip strategy is 

limited by the friction of the surface and the horizontal force produced against the support 

surface (Nashner & McCollum, 1985; Horak & Nashner, 1986).  The hip and ankle strategy 

are considered as the most widely used strategies for assessing postural control. Horak & 

Nashner (1986), suggested that people can learn how to implement/execute the ankle and hip 

strategy through a training paradigm. Smith et al. (2012), investigated the effect of a six-week 

strength training protocol on force sense and strength development in forty participants with 

functional ankle strategy, with a mean and standard deviation of ages 20.9 ± 2.2 years. The 

participants were divided into two groups of equal sizes and sex representing the control and 

experimental group. The participants in the experimental group performed strength exercises 

with their injured ankle three times per week for six weeks using strengthening methods that 

were clinically accepted for ankle rehabilitation with a load used to measure the strength and 

force sense. The result suggested that strength training at the ankle increased strength but does 

not improve force sense (Smith et al., 2012). Similarly, Hall et al. (2018), investigated the effect 

of strength training on balance and functional performance in thirty-nine young adult subjects 

aged 23.5 ± 6.5 years with chronic ankle instability. The subjects were divided into three 

groups: balance training protocol, strength training protocol and control, with each group 

performing 20 minutes of session, three times per week, for six weeks. The result suggested 

both training protocols improved strength, balance and functional performance (Hall et al. 
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2018).  In both the ankle and the hip strategies, the generated muscle activities maintain the 

centre of gravity (COG) within the base of support (BOS). 

 

When more forceful disturbances occur, other movements different from the ankle and hip 

movements, must occur to change the BOS in order to prevent falling (Alghwiri & Whitney, 

2020). For forceful distances the stepping strategy is usually implemented (Alghwiri & 

Whitney, 2020). The stepping strategy involves the rapid movement of the forward and 

backward step in order to gain equilibrium in situations where the COG is displaced beyond 

the limits of the BOS (Alghwiri & Whitney, 2020). Im et al. (2021) investigated the effects of 

cerebellar disease on compensatory balance control in response to postural perturbation. In 

their study, comparison was made between ten healthy adult controls and ten aged-matched 

patients living with degenerative cerebella ataxia, and the recovery reactions to balance were 

assessed using a lean and release postural perturbation method while variables of the 

spatiotemporal characteristics of stepping movement and COM associated with the torso were 

obtained and analysed using a 3D motion capture system. The result suggested that patients 

with cerebellar disease utilised multiple steps to recover balance following perturbation while 

healthy controls used only a single step. Also, patients with cerebellar disease exhibited higher 

COM velocity, shorter foot to COM distance and less flexion of the trunk than the healthy 

controls (Im et al., 2021).  

 

The reaching strategy involves the movement of the arm to grasp an object for support 

(Alghwiri & Whitney, 2020). The movement of the arm is important in the maintenance of 

stability as it alters the COG or protect against injury (Alghwiri & Whitney, 2020). The 

stepping and reaching strategies are the only strategies utilised to compensate for large 

perturbations and as such important in prevention of falls.  The suspension strategy is used for 

maintaining a stable position during perturbation and it involves bending the knees during 

standing or ambulation (Alghwiri & Whitney, 2020). By bending the knee, the COG is lowered 

in respect to its distance from the base of support hence promoting better balance. 
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3.5. Key components in balance analysis   

3.5.1. Centre of mass position and centre of pressure  

The centre of mass (COM) is an imaginary point in the body where all the weight is said to be 

concentrated. It is obtained as the three-dimensional weight average position of each segment 

of the body (Corriveau et al., 2000). The vertical projection of the COM position on the ground 

is referred to as the centre of gravity (COG) (Boughen et al., 2013). The centre of pressure 

(COP) is a representation of the centre of distribution of the resultant applied force on the 

support surface (Corriveau et al., 2000; Zemková et al., 2021). 

Direct information about postural sway and postural control in relation to balance is obtained 

by considering the movement of the COM position. Close relationship exists between the COM 

and COP movements with COM considered as a more valid measure of levels of equilibrium 

in movements requiring high velocity (Benvenuti et al., 1999). Despite the close relationship 

between the COM and COP especially when averaged, partially distinct aspect of movement 

and neural control is reflected by the instantaneous COM and COP position (Richmond et al., 

2021). Recent modelling study by Safavynia & Ting (2013), suggested that the CNS may be 

more predisposed to the movement (position, velocity and acceleration) initiated by the COM 

position (Safavynia & Ting, 2013). During postural control the COM position is the key 

variable controlled by the central nervous system (CNS) (Scholz et al., 2007). Palmieri et al. 

(2002) suggested that the COP outcome reflects the CNS response to the COM (Palmieri et al., 

2002). In other word, the COP movement reflects the neuromuscular response to maintain 

stability. Comparing the sway obtained from an inertial measurement unit and that from a force 

plate, Soangra & Lockhart (2013) observed that the sway obtained from the trunk does not 

provide the same physiological time series information as the COP sway. Fall risk is directly 

influenced by the increase in the COM variability. This variability manifests itself in the form 

of an increased range of velocity of the COM position in relation to the BOS and in turn results 

in periods of low margin of stability (Hof et al., 2005). Small margin of stability results in 

difficulty in withstanding a large perturbing force (van Emmerik et al., 2016). The area of the 

BOS is of immerse importance when evaluating the excursion of the COM position. Within a 

larger BOS, the COM and COP have greater room for postural stability while a small BOS 

limits the maximum stable excursion of the COM position. Constant movement of the COM 

requires the range of the COP to be greater than that of the COM to prevent a fall occurrence 
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(Winters, 2009). To constrain the movement of the COM, the COP attempts to reach the 

boundaries of the BOS before the COM. 

The uncontrolled movement of the COM reflects the challenge faced in balance while the 

movement of the COP represents the response of nervous and musculoskeletal systems to 

counter the challenge (Richmond et al., 2021). Thus, while there is a close relationship between 

these measures, there exists differences in what they measure. The recognition of this 

distinction may be valuable to clinicians in keeping track of the changes in patients’ 

performance.  

3.5.2 Planes and axes of movement  

The ground in which we stand can be considered as a two-dimensional shape consisting of the 

horizontal and vertical axes. The horizontal axis also known as the abscissa/x axis, is drawn 

from left to right while the vertical axis also known as the ordinate/y axis is drawn from top to 

bottom. The meeting point of these two axes is referred to as the origin. However, in other to 

completely describe the shape of a person a three-dimensional shape is often used. In addition 

to the above two axes, a z-axis can be obtained by drawing a line in space to meet the x and y 

axes of the ground. Utilizing the three-dimensional representation, the planes of movement and 

the axes of movement can be described with the origin of these planes and axes usually 

expressed as the centre of mass. The planes of movement can be divided into three: sagittal, 

frontal and transverse (Cury et al., 2021). The sagittal plane is the plane that runs from the front 

to the back starting from the head to the toe or superior to inferior and divides the body into 

two equal halves left and right (Grimshaw et al., 2019). The transverse/frontal axis of rotation 

is perpendicular to the sagittal plane and extends from left to right (Grimshaw et al., 2019). 

Body movement in this plane occurs about the transverse axis i.e., the direction of which it is 

perpendicular. Examples of motion in this direction include flexion and extension movement 

or anterior and posterior movements examples include somersault, walking, jumping, 

squatting. The frontal plane runs from side to side and superior to inferior orientation while 

dividing the body into the equal front (anterior) and rear (posterior) portions (Grimshaw et al., 

2019). The axis perpendicular to the frontal plane is called the sagittal or the anterior-posterior 

axis. Example of movement about the sagittal axis and in the frontal plane is the cartwheel. A 

cartwheel is an activity in which a person performs a lateral handspring with arms and legs 

extended i.e., similar to rolling a coin from side to side while looking at it from the front. The 

transverse plane runs from side to side and anterior to posterior orientation and divides the 
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body into two equal parts: upper (superior) and lower (inferior) portions. The axis 

perpendicular to the transverse plane is called the longitudinal axis. Example of a movement 

in this plane and a rotation about this axis is the pirouette (Grimshaw et al., 2019).  The 

anatomical position (facing forward, arms by the side, palms forward with fingers extended 

and feet forward and parallel) with the planes and axes of movement is shown in Figure 3.3.  

 

 

Figure 3.3. Planes and axis of motion (Duan et al., 2020) 

In the analysis of human balance while in quiet standing position, two axes are often used for 

the quantification of the postural sway: the anterior-posterior (AP) or the sagittal axis and the 

mediolateral (ML) or the transverse axis. Using the centre of pressure velocity and standard 

deviations of the AP and ML axes, gender and age-related differences were investigated among 

47 older adults (70% women) and 38 younger adults (58% women) in their control of balance 

during and after stair descent on a foam mat (Kováčiková et al., 2021). The result showed 
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significant COP sway and velocity in both directions for older women as compared to older 

men where only significantly higher values were observed in the AP direction in relation to the 

younger counterparts. The result suggested that advancement in age, results in higher risk of 

women falling forward and sideways while men were prone to fall forward (Kováčiková et al., 

2021).  

3.5.3. Types of movement 

In other for humans to navigate their environment and participate in activities various type of 

movement are used. These include extension, abduction/adduction and rotation.  

During extension movement, the angle between two adjacent segments of the body increases 

as the ventral surfaces of the segments move away from each other (Uppal, 2020). This 

movement occurs in a sagittal plane about a frontal axis. However, the extension of the thumb 

is an exception to the direction of movement of extension as it takes place in the frontal plane 

and about the sagittal axis (Uppal, 2020).  

Flexion movement occurs in the sagittal plane, about the frontal axis and results in a decrease 

of the angle between two adjacent segments in the body as the ventral surfaces approximate 

each other. The extension of the thumb is an exception to the direction of movement of flexion 

as it takes place in the frontal plane and about the sagittal axis (Uppal, 2020). 

Abduction is movement in the frontal plane about the sagittal axis and involves moving the 

body part away from the midline of the body (Uppal, 2020; Hamill et al., 2021).  Adduction 

occurs in the frontal plane, about the sagittal axis and is a return movement of the segment of 

the body that occurred during abduction back towards the midline position of the body. 

Abduction and adduction occur in the body parts of the foot (metatarsophalangeal), hip, 

shoulder, wrist, and hand (metacarpophalangeal) joints. 

Rotational movements include any twisting motion and occurs in the transverse plane. A 

rotation can either be medial (internal) or lateral (external) (Hamill et al., 2021).  Rotational 

movement is carried out using the hip and shoulder. These joints are referred to as ball and 

socket joints. Through the use of smaller joints, our necks and backs can be rotated. The pivot 

joint in the neck between the first two vertebrae (C1 and C2) called the atlanto-axial joint is 

also used for rotation (Delleman et al., 2004). Rotation of the hip and shoulder are also 

considered as internal (medial) or external (lateral) rotation.  
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3.5.4. Types of motion  

In humans, there are two types of motion: translational and rotational motion (Hamill et al., 

2021). In translational motion, the motion of the centre of mass of the body from one position 

to the other is along a straight line. Rotational motion is also known as angular motion and 

refers to motion in which all parts of the body segment, travel through the same angle 

simultaneously and in the same direction about the axis of rotation but having varying distances 

e.g., the movement of a body segment about a joint such as the elbow (Hamill et al., 2021).  

3.6. Accelerometry in balance analysis   

Accelerometry refers to the technique of using inertial measurement unit (IMU) to quantify 

human movement (Ojie & Saatchi, 2020). An IMU consists of an accelerometer, gyroscope 

and magnetometer. However, the magnetometer is not often used due to its sensitivity to the 

magnetism of ferrous metals.   

3.6.1. Accelerometer   

An accelerometer is an inertial sensor that measures the acceleration of a moving system. They 

are useful in other motion sensing applications such as tilt, shock and for detecting vibration 

(Analogue Device Incorporation, 2009; Senturia, 2001). Accelerometers have been a major 

contributor to the MEMS market since 2012 due to their varied application in areas such as 

smartphones, flight control and navigation, air bag control unit etc. (Perlmutter & Breit, 2016; 

Yazdi et al., 1998).  The MEMS accelerometer have the advantages of low power, small size, 

easy integration with existing systems and high precision (Yazdi et al., 1998). The sensing 

mechanisms utilised by accelerometers are capacitive type, piezo-resistive and piezoelectric 

(Mukhiya et al., 2020). The capacitive accelerometer is preferred to other types due to its low 

noise and high sensitivity, low power dissipation, and compatibility with CMOS (Mukhiya et 

al., 2019). The underlying operational mechanism for the accelerometer is often described 

using the mass-spring system which is explained using the principle of Hooke's law and 

newton’s second law of motion. Hooke's law states that within the limits of proportionality, the 

extension of a spring is directly proportional to the force applied to it (𝐹 = 𝑘𝑥) (Mustafazade 

et al., 2020). On the other hand, Newton's second law states that the acceleration of a body is 

directly proportional to the force applied to it but inversely proportional to the mass of the 

object (𝐹 = 𝑚𝑎). When movement occurs on a mass-spring system it leads to the compression 
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of the spring which produces a restoring force proportionate to the movement (Kavanagh & 

Menz, 2008).     

In practice, the class of the accelerometer determines the technique used to quantify the 

acceleration (Kavanagh & Menz, 2008). In capacitive accelerometer, the mass element made 

of silicon is surrounded by an array of paired capacitors that is placed on the opposite sides of 

the housing of accelerometer. During movement, an imbalance is created between the opposing 

capacitor. This imbalance is due to the reaction of the mass element to the movement. 

Subsequently, the imbalance created results in an electrical output signal that is proportional to 

the magnitude of the acceleration applied (Kavanagh & Menz, 2008). The schematic diagram 

of the basic principle of operation of a parallel plate capacitor is shown in Figure 3.4.  

 

Figure 3.4. Principle of operation of accelerometer (Dadafshar, 2014). 

The motion of the moveable plate results in a change in the capacitance 𝑐1 and 𝑐2, whose 

difference result in the displacement and direction of the moveable mass. The acceleration is 

obtained from the displacement. The capacitance of a parallel plate capacitor can be obtained 

using Equation (3.1) (Dadafshar, 2014). 

     𝐶 = 𝜀0𝜀𝑟
𝐴

𝑑
                                                          (3.1)                   

where 𝜀0 is the permitted free space with an approximate value of 8.85 × 10−12 F/m, 𝜀𝑟 is the 

relative permittivity between the plates, A is the area of overlap between the electrodes and d 

is the separation between the plates.  

Irrespective of the accelerometer class, calibration is required to match the corresponding 

electrical output and the reference value of the acceleration. The calibration is performed under 
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specific conditions (Kavanagh & Menz, 2008). According to Kavanagh & Menz (2008), the 

calibration of an accelerometer can be carried out in two ways: static and periodic calibration. 

In static calibration, the output of the stationary accelerometer is compared with a known 

constant of acceleration (Kavanagh & Menz, 2008). For example, when aligned to gravity or 

the global vertical, the output of the sensing axis of the accelerometer should correspond to 1g 

and -1g when inverted respectively. Once the accelerometer raw output has been established 

for static conditions, a two-point linear calibration can be used to transform the raw output to 

units of acceleration (Kavanagh & Menz, 2008). Other forms of calibration which assumes 

linearity such as zero-span and slope intercept method can also be used (Kavanagh & Menz, 

2008). Alternatively, periodic calibration can be used although it is more time consuming and 

requires a specialised equipment. In periodic calibration, the relationship between the raw 

accelerometer output and the known acceleration harmonics is obtained by harmonic forcing 

of the accelerometer (Kavanagh & Menz, 2008). Periodic calibration has the advantage of 

enhancing the accuracy of the accelerometer measurement especially at a range of amplitude 

and frequencies that would be expected in real world situations (Kavanagh & Menz, 2008).  

In general, the fundamental characteristics in selecting an accelerometer are based on the 

bandwidth, sensitivity, voltage noise density, zero-g voltage, frequency response and dynamic 

range (Dadafshar, 2014). The bandwidth of an accelerometer in units of Hertz (Hz), refers to 

the range of vibration frequency to which the accelerometer will respond. The bandwidth is a 

critical consideration for data collection. The frequency range of body movement is contained 

below 20 Hz (Bianchi et al., 2010; Karantonis et al., 2006). However, for static posture, the 

frequency range of movement is below 5 Hz and as such a sampling frequency of 10 Hz is 

sufficient (Bao & Intille, 2004). The sensitivity of an accelerometer refers to the change in the 

electrical output signal per unit mechanical change (Dadafshar, 2014). It is a measure of the 

minimum detectable signal and the higher its value the more responsive the accelerometer to 

small changes in motion. The sensitivity of an analogue accelerometer is given in units of 

millivolt per acceleration due to gravity (mV/g). For digital accelerometers, the sensitivity is 

given in least significant bit per acceleration due to gravity (LSB/g). The voltage noise density 

changes with the inverse of the square root of the bandwidth. The accuracy of the signal is 

affected by the speed at which the accelerometer readings are obtained (Dadafshar, 2014).   

 

 



50 
 

3.6.2. Gyroscope 

Gyroscopes are sensors used for motion detection. Basically, it transforms the angular 

movement of an object or body from its physical quantity into electrical signal (Chen, 2005). 

There are various types of gyroscopes: mechanical, micro electrical mechanical sensors 

(MEMS) and optical (Abdelzaher et al., 2021). The mechanical gyroscope is made up of a free 

wheel that occupy a 3-dimensional space. The operation of the wheel is based on the principle 

of the conservation of angular momentum. This principle which is also referred to as the 

rotational equivalent of Newton’s third law of motion states that: in a system that is closed, the 

exerted torque on an object is equal and opposite to the torque exerted on another object 

(Krishna, 2021). In the case of the mechanical gyroscope, the orientation angle is obtained by 

using an angle acquisition unit.  The transformation of angular motion into an electrical signal 

is carried out using Coriolis effect and is based on the movement of a metal sphere connected 

to a group of springs. This has led to the development of the micro-electro-mechanical system 

(MEMS) (Bergh et al., 1984; Abdelzaher et al., 2021). The MEMS gyroscope is made up of a 

mass that is attached to a solid frame by springs. It is constructed using silicon micro-machining 

technique. Based on the construction material, the MEMS gyroscope is divided into two types:  

silicon and non-silicon (Miller et al., 2007; Witvrouw et al., 2004). Among the non-silicon 

types, the quartz gyroscope is of great interest because of its measuring ease and high-quality 

factor (Madni et al., 2003). However, the quartz gyroscope is expensive, and its fabrication 

process is complex. Compared to the quartz gyroscope, the advantages of the silicon MEMs 

gyroscope include low cost, high sensitivity, high precision, good linearity, small size and low 

power consumption (Liu et al., 2009).  The silicon MEMs gyroscope is used in a large variety 

of settings such as information and communication, aeronautics and astronautics, medical 

treatment, national defence, industry, navigation, environment and bioengineering (Guo et al., 

2015). A diagram illustrating a simple working principle of the MEMS gyroscope is shown in 

Figure 3.5.  
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Figure 3.5. The typical mechanics model of the Coriolis effect gyroscope (Guo et al., 2015) 

The sensor consists of a drive system, a sense element and a proof mass. The drive system and 

the sense element could be supported by a spring-like system and a suspended beam is used to 

support the proof mass. The drive system initiates a constant motion of the proof mass which 

reciprocates back and forth in the x direction. The displacement of the proof mass (𝑥) is shown 

in Equation (3.2) (Guo et al., 2015). 

    𝑥 =  𝐴𝑥cos (𝜔𝑥𝑡)                                                         (3.2) 

where 𝐴𝑥, is the amplitude of the movement of the displacement; 𝜔𝑥, is the angular speed of 

the driving system (Guo et al., 2015). An angular rate applied to the sensor in the Z direction 

results in a Coriolis force along the Y direction. The force in the Y direction (𝐹𝑦) is expressed 

in Equation (3.3) (Guo et al., 2015). 

    𝐹𝑦 =  2𝑚𝛺 × 𝑣 = −2𝑚𝛺𝐴𝑥𝜔𝑥sin (𝜔𝑥𝑡)                              (3.3) 

where 𝛺 is the applied angular speed; 𝑣 is the linear speed of the proof mass (Guo et al., 2015).  

3.6.3. Placement of the sensor 

The placement of the sensor refers to the location of the body where the sensors are placed and 

the way it is attached to that location (Yang & Hsu, 2010). The ergonomic guideline of the 

wearability for the description of the interaction between the wearable object and the human 

body have been proposed by Gemperle et al. (1998).  The locations proposed for wearing an 

IMU sensor include the collar area, rear of the upper arm, waist, forearm, front and rear sides 

of the ribcage, thighs, top of the foot and shin (Gemperle et al., 1998). These locations are 

common for both sexes, have a large surface area for attachment, and are less flexible. In most 
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y 

Input rotation rate 𝛺𝑧  
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cases, the sensor is placed on the sternum, lower back and waist to measure the entire body 

movement. Nguyen et al. (2021) proposed an algorithm for the estimation of the trunk 

acceleration using an IMU worn at the sternum.  Lyu et al. (2019) investigated the difference 

in sway for a sensor placed at the sternum against the sensor placed at the waist level of twenty-

six (twelve males and fourteen females) healthy adults and found no difference between the 

sway obtained from the sternum and the waist level (Lyu et al., 2019). However, there is a 

possibility of inaccuracies in the result as less sway is expected for healthy adult subjects and 

the sway at the sternum has a different ground projection from that of the waist. Adamová et 

al. (2018) investigated the postural stability of patients with cerebellar disorder during quiet 

stance using three-axis accelerometer placed at the lower back at the L region. Alkathiry et al. 

(2018) reported the use of accelerometer placed at the lower back to record postural sway in 

adolescents with concussions. Baracks et al. (2018) utilised the use of accelerometer placed at 

the lower back to investigate acute based sport related concussion.  

In most studies, the waist placement of the motion sensor is usually adopted as the torso 

occupies most of the mass of the human body and it is close to the centre of mass position of 

the entire body (Yang & Hsu, 2010). This ensures that the acceleration measured by a single 

sensor is a representation of the major part of the human motion (Yang & Hsu, 2010). 

Ergonomically, the weight bearing capacity of the torso is greater than most part of the body 

and can bear extra weight of wearable devices (Yang & Hsu, 2010). The waist also provides 

easy attachment and detachment of sensors and causes less restrain in body movement while 

minimizing discomfort.   

Another issue to consider in wearable sensors is the mode of attachment to the human body. 

The attachment of wearable sensors can be made directly to the skin (Najafi et al., 2003; 

Lindemann et al., 2005); using an indirect method such as a pant belt, wristband, straps or other 

accessories (Liszka-Hackzell & Martin, 2005; Menz et al., 2003; Menz et al., 2003) and 

integrated into clothing (Noury et al., 2004). It is necessary that the accelerometer is securely 

attached to the human body to prevent unintended movements that could affect its accuracy. In 

this study, the waist attachment method using a belt is utilised due to its ease of attachment, 

closeness to the centre of mass and reliability.  
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3.6.4. Mode of transmission  

Accelerometers can be connected either wired or wirelessly. Wired connection consists of only 

one system which is attached to the subject using a cable to a computer. The main problem 

with wired connection is that it restricts the movement of the subject as the range is limited to 

the length of the physical connection to the computer. On the contrary, the wireless connection 

consists of two sections: the transmitter and receiver sections. The transmitter section usually 

contains the accelerometer and the wireless transmitting unit and is attached to the subject. The 

dominant wireless technologies include ZigBee (Mu & Han, 2017) and Bluetooth. Low et al. 

(2020) utilised the XBee as a medium for communication of postural sway related data.  Clark 

et al. (2021) utilised Bluetooth as the medium for collecting postural sway data (Clark et al., 

2021). The ZigBee module are expensive in comparison to other standards such as Bluetooth, 

Radio Frequency Infrared Detection (RFID) and Near Field Communication (NFC) (Saha et 

al., 2017). However, the aforementioned standards are limited by their area of coverage (Saha 

et al., 2017). A new technology that is easy to configure and cheaper called the nRF24L01+ 

has been added to these technologies. The nRF24L01+ has been compared to a version of the 

ZigBee called the XBee and found to provide better throughput than the XBee (Saha et al., 

2017). The rate of transmission has also been determined to be higher than the XBee in multi-

hop networks (Saha et al., 2017).  Thus, in this study, the nRF24L01+ module is used to 

implement the wireless capability of the device.   

3.6.5. Signal filtering  

Most sensors are plague with some limitations in their performance and the accelerometer and 

the gyroscope are no exception. The accelerometer has been reported to be affected by noise 

and this noise results in inaccuracies in its reading. Similarly, limited by the current fabrication 

technology, the precision level of the gyroscope is usually low (Diao et al., 2013). The output 

of the gyroscope sensor is affected by drift and noise which result in a decline in its accuracy 

with time (Diao et al., 2013). The noise in the accelerometer is known to be of high frequency 

while the noise in the gyroscope is known to be of low frequency. Filtering and sensor fusion 

techniques are usually applied to produce accurate readings. Filtering is the process of 

removing unwanted frequencies from a signal (de Cheveigné & Nelken, 2019). The goal of 

signal filtering is to process the signal so that the result is more suitable than the original signal 

for a specific application (de Cheveigné & Nelken, 2019). Fourier transform is used to reflect 

the frequency of the periodic part of the signal. A filter can be considered as a matrix whose 
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components vary from 0 to 1. When the component is 1, the frequency is allowed to pass and 

when 0, the frequency is removed (Guo et al., 2015). A large variety of signal processing can 

be implemented through the application of differing filters. Examples of these filters include 

low pass filter, high pass filter and band pass filter (de Cheveigné & Nelken, 2019). A low pass 

filter attenuates high frequencies while passing low frequencies. A high pass filter allows high 

frequency signal to pass through while attenuating lower frequency. The cut-off frequency is 

the main determining factor of both filters. Frequencies below the cut-off frequency are 

considered as low frequencies while frequencies above the cut-off frequencies are called high 

frequencies. The band pass and band reject filter allow specific frequencies to pass through i.e., 

for a band pass filter, the cut-off frequencies are frequencies outside the specified range, while 

for a band reject filter, the cut-off frequencies are frequencies in the specified range (de 

Cheveigné & Nelken, 2019).  However, these filters are not ideal in nature because in practical 

implementation they behave in a causal fashion i.e., the output cannot be determined by the 

input in the future but are based on the present and past input. This creates a delay which result 

in a phase change that is inconsistent with the frequency response specification for an ideal 

filter. An ideal filter has zero transition from the pass-band to the stop-band. The filtering 

techniques used in this study are the Butterworth low pass filter and the complementary filter.  

3.6.5.1. Butterworth low pass filter 

The Butterworth filters are referred to as maximally flat filters. They are called maximally flat 

because for a given order, they have the sharpest roll off possible (Ellis, 2012). The second-

order Butterworth filter is the two-pole filter with a damping ratio of 0.707. Butterworth filters 

are commonly used because they do not have peaking (Ellis, 2012). The general formula for 

the Butterworth filter depends on whether the filter order is odd or even. The amplitude 

response of the Butterworth filter is given by Equation (3.4) (AlHinai, 2020). 

                                              |𝐻(𝑗𝜔)| =
1

√1+(
𝜔

𝜔𝑐
)

𝑛                                                                (3.4) 

Where 𝑛 is the order of the filter, 𝜔 is the frequency of the signal and 𝜔𝑐 is the cut-off 

frequency.  
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3.6.5.2. Complementary filter 

The complementary filter is a sensor fusion technique that consists of a low-pass and a high 

pass filter. The accelerometer has noise (unwanted signal that does not represent the true 

vibration) produced by the mechanical vibrations of the polysilicon springs, signal conditioning 

circuitry, and the measurement system (Mohd-Yasin et al., 2003). The gyroscope drift is mainly 

due to integration of the bias instability and the angular random walk (Guo et al., 2015). The 

dynamics of the gyroscope is complementary to the that of the accelerometer i.e., combining 

in such a way as to enhance the qualities of each other. The basic structure of the 

complementary filter is shown in Figure 3.6. 

  

Figure 3.6. Basic structure of the complementary filter (Narkhede et al., 2021) 

The figure consists of two inputs 𝑥𝑎 and 𝑥�̇�, where 𝑥𝑎 is the accelerometer angle which could 

either be roll or pitch and 𝑥�̇� is the corresponding gyroscope rate of change of the angle, 𝐺(𝑠)  

is the transfer function of the low pass filter, 𝐺(𝑠)̅̅ ̅̅ ̅̅  is the transfer function of the high pass filter, 

�̂� is the complementary filter output and 𝐺(𝑠)+ 𝐺(𝑠)̅̅ ̅̅ ̅̅ =1.The complementary filter output �̂� is 

given by Equation (3.5) (Narkhede et al., 2021). 

 

                                                  �̂� = 𝐺(𝑠) 𝑥𝑎 + 𝐺(𝑠)̅̅ ̅̅ ̅̅ 𝑥�̇�                                                       (3.5) 

Analytically, the angle (�̂�) is given by Equation (3.6) (Narkhede et al., 2021).   

                                                �̂� =  α × (∫ �̇�𝑔𝑑𝑡 ) + (1 − α) × 𝑥𝑎                                     (3.6) 

The parameter α also known as the scaling factor varies from 0 to 1 and determines the weight 

given to the gyroscope and the accelerometer. The scaling factor is usually between 0.7 and 
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0.98, 𝑑𝑡 represents the sampling period. The scaling factor and the time constant 𝜏 is given by 

the Equation (3.7) (Narkhede et al., 2021), 𝑑𝑡 is the sampling rate and 𝑓𝑐 is the desired cut-off 

frequency. 

                                                  𝛼 =  
𝜏

𝜏+𝑑𝑡
, 𝜏 =

1

2𝜋𝑓𝑐
                                                                                 (3.7) 

The estimate of the filter angle in terms of the transfer function in the frequency domain (𝑑𝑡 =

1/𝑠) is given by Equation (3.8) (Narkhede et al., 2021).  

                                            �̂� =  
𝜏𝑠

𝜏𝑠+1
 (

�̇�𝑔

𝑠
) +

1

𝜏𝑠+1
(𝑥𝑎)                                                       (3.8) 

3.7. Statistical and machine learning methods for human balance analysis 

3.7.1. Statistical methods  

Statistical methods involve the testing of hypothesis based on information provided by the 

samples and to draw conclusions for the population based on the result of the hypothesis 

(Emmert-Streib & Dehmer, 2019). In carrying out hypothesis testing, the sample under 

consideration is usually divided into a minimum of two groups considered as the experimental 

and the control group. The experimental group is the group under test and it is given the 

treatment while the control group is usually given a placebo or left alone (Emmert-Streib & 

Dehmer, 2019). The methods used for statistical testing is based on the level of measurements 

and the type of statistical inference (Fisher & Marshall, 2009).  

3.7.1.1 Level of measurement  

The level of measurement refers to the mechanism by which a variable is scored (Allanson & 

Notar, 2020). Generally, there are three main levels of measurement: nominal, ordinal and 

continuous. The nominal level of measurement refers to the scoring of cases into broad 

categories. In nominal levels of measurement, the categories must be sufficient for the cases, 

and mutually exclusive (Fisher & Marshall, 2009). The categories do not have hierarchical 

meanings i.e., considering sex, male is not different from female in terms of hierarchy (Fisher 

& Marshall, 2009). Examples of nominal levels of measurement include sex, religion and 

diagnosis etc. Ordinal level of measurement refers to the scoring of research participants into 

categories that have hierarchical meaning (Fisher & Marshall, 2009). Ordinal levels are used 

for variables that cannot be directly measured for example anxiety, pain and satisfaction. Like 

nominal data, ordinal categories are mutually exclusive and exhaustive, however unlike the 
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nominal levels, the categories have numerical hierarchy (Fisher & Marshall, 2009). For 

example, the Likert scale is numbered from low score to high score with each score having a 

numerical meaning. Continuous level of measurement refers to the measurement based on 

infinite scales where increments on the scales are of equal distance (Fisher & Marshall, 2009). 

Examples of continuous level data include pressure in mmHg, volume in millimetres and 

weight in grams etc. Continuous level of measurement can be divided into interval and ratio 

level of measurement. The data measured on the ratio scale have an absolute zero i.e., a zero 

score implies the absence of existence (Fisher & Marshall, 2009). Interval level of 

measurement does not have an absolute zero. An example of interval level of measurement is 

temperature, where an absolute zero does not mean nonexistence.   

3.7.1.2. Type of statistical inference  

Several parametric and nonparametric methods exist in literature. However, the most popularly 

employed methods are utilised in this study and consists of the t-test, Wilcoxon signed rank 

test, Mann-Whitney U test, Pearson and Spearman correlation, one-way analysis of variance, 

Kruskal Wallis test and the Friedman test.  

3.7.1.2.1 T test  

The t-test is a parametric method used to compare the mean of two groups (Kim, 2015). The t-

test is used when the samples satisfy the condition of normality, independence and equal 

variance. The test of equal variance can be carried out using the Levene’s test or the Bartllet’s 

test and the test for a normal distribution can be carried out based on the Shapiro’s test or the 

Kolmogorov-Smirnov test. The t-test can be divided into two: the independent t-test and the 

paired sample t-test (Kim, 2015). The independent t-test is used when the two groups under 

consideration are independent of each other while the paired sample t-test are used when the 

two groups under consideration are dependent on each other. In the independent t-test, the 

experimental subjects are divided into two independent groups, with one group given a 

particular treatment different from the other, while the dependent variable is measured on a 

continuous scale (Kim, 2015). In the paired sample t-test, the same group is treated with 

different treatment at differing times. The formula for calculating the t statistic between two 

groups of an independent sample with the assumption of a normal distribution and equal 

variance (independent sample t-test) is given by Equation (3.9) (Kim, 2015). Where �̅�1 and �̅�2  
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represents the mean of the samples of the two groups, 𝑠(1+2) represent the standard deviation 

of the samples of the two groups, 𝑛1 and 𝑛2 represents the number of samples in each group.  

                                          𝑡 =  
�̅�1−�̅�2

𝑠(1+2)√
1

𝑛1
+

1

𝑛2

~ 𝑡 (𝑛1 + 𝑛2 − 2)                                     (3.9) 

In situations where the assumption of equal variance cannot be met and/or the sample size 

differ the Welch's t-test method is used.  

In the paired sample t-test, the same sample is used which could lead to correlations in the 

variance and hence, the variance of the paired sample t-test differs from those of the 

independent sample t-test as a result of these correlations (Kim, 2015). In cases where the 

samples are not independent, the variance can be given by Equation (3.10) (Kim, 2015), where 

𝜎1
2 is the variance of variable A and 𝜎2

2 is the variance of variable B, ρ is the correlation 

coefficient of the two variables. For an independent sample, the correlation coefficient (ρ) is 

zero. Since the samples are the same, the t statistic for the paired sample t-test is given by 

Equation (3.11) (Kim, 2015).    

                                  Var(A − B) =  σ1
2 + σ2

2 − 2ρσ1σ2                                     (3.10) 

 

   𝑡 =  
�̅�1−�̅�2

√𝑠1
2+𝑠2

2−2𝜌𝑠1𝑠2
𝑛

                                                                  (3.11) 

3.7.1.2.2. Mann-Whitney U test and Wilcoxon signed rank test 

The Mann-Whitney U test and Wilcoxon signed rank test are nonparametric alternatives of the 

independent sample t-test and the paired sample t-test. In contrast to the independent samples 

t-test, the Mann-Whitney U test also known as the Wilcoxon rank sum test, is used to test for 

the differences between two groups on a single ordinal variable when the data does not conform 

to a normal distribution (Mann & Whitney, 1947; MacFarland & Yates, 2016; Mesároš et al., 

2019; Wilcoxon, 1945). The calculation of the Mann-Whitney U test is carried out using 

Equation (3.12) Where U is Mann–Whitney U test, 𝑛1 is sample size one, 𝑛2 is sample size 

two, 𝑅𝑖 is the rank of the sample size. 

                              𝑈 =  𝑛1𝑛2 +  
𝑛2(𝑛2+1)

2
− ∑ 𝑅𝑖

𝑛2
𝑖=𝑛𝑖+1                                                      (3.12) 

The Wilcoxon signed rank test is used when the parametric condition required for the paired 
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sample t-test are not met. The design criteria require that the samples are paired, the data are 

not subjected to the conditions of normality but at least of an ordinal scale. Rosenblatt & 

Benjamini (2018), evaluated the performance of the Wilcoxon signed rank test and the paired 

sample t-test under mixture alternatives. They observed that Wilcoxon signed rank test is more 

useful than the t-test in conditions where normality cannot be obtained. The Wilcoxon signed 

rank test is calculated using Equation (3.13). 

                                       𝑊 = ∑ [𝑠𝑔𝑛(𝑥2,𝑖 − 𝑥1,𝑖). 𝑅𝑖]
𝑁𝑟
𝑖=1                                                   (3.13) 

Where 𝑊 is the test statistic, 𝑁𝑟 is the sample size, 𝑠𝑔𝑛 is the sign function, 𝑥1,𝑖 and 𝑥2,𝑖 are 

the corresponding ranked pairs from two distribution and 𝑅𝑖 is the rank i. 

3.7.1.2.3. Analysis of variance 

The Analysis of variance (ANOVA) is a statistical technique for comparing the means of more 

than two groups. The ANOVA test can be broadly classified into two: the one-way ANOVA 

and the one-way repeated measures ANOVA (Mishra et al., 2019). The one-way ANOVA is 

used for independent samples, and it is considered as the extension of the independent sample 

t-test onto three or more groups (Mishra et al., 2019). The one-way repeated measures of 

ANOVA is used for dependent samples and it is considered as the extension of the paired 

sample t-test. The repeated measures design consists of multiple measures of the same variable 

taking under different conditions or time period on the same or matched subjects (Mishra et 

al., 2019). A significant p-value in this test leads to further pair-wise multiple comparisons to 

determine the significant pair. This further pair-wise comparison is also referred to as post-hoc 

analysis (Mishra et al., 2019). When post-hoc analysis is carried out correction for multiple 

testing is required (Smalheiser, 2017). The simplest method is to use Bonferroni correction. 

This involves dividing the p-value by the number of pairwise test conducted (Smalheiser, 

2017).   The general idea for the calculation of the ANOVA is to compare the variability across 

the groups with that of the variability within the groups (Smalheiser, 2017). When the 

variability within groups is much smaller than the variability across groups, at least one of the 

groups has a mean that is different from the others (Smalheiser, 2017). If the ratio of the across 

group variability and the within group variability is greater than 1, then at least one group is 

significantly different from the others. The ratio is indicated in Equation (3.14) (Smalheiser, 

2017). 
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𝐴𝑐𝑟𝑜𝑠𝑠 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑤𝑖𝑡ℎ𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦
 = 

𝑆𝑆𝑎/df𝑎

𝑆𝑆𝑤/df𝑤
                                                 (3.14) 

Where 𝑆𝑆𝑎 is the across group sum of squares, 𝑆𝑆𝑤 is the within group sum of squares, df𝑎 is 

the across groups degree of freedom and df𝑤 is the within groups degree of freedom. df𝑎 =

𝑘 − 1 and df𝑤 = 𝑛𝑘 − 𝑘, where k is the number of groups and n is the total number of data 

points in each group. A ratio of variance follows the F distribution.  

The ANOVA is a parametric statistic test and is used if the assumptions of parametric statistics 

are meant such as conformity to a normal distribution, equal variance of each group, and each 

data point of the same group are independent of each other, randomly sampled and follows the 

same underlying distribution (Mishra et al., 2019). The Kruskal-Wallis test is the 

nonparametric equivalent of the one-way ANOVA and it is based on ranks. The Friedman test 

is the nonparametric equivalent of the one-way repeated measures ANOVA. A detailed account 

of the calculation of these tests can be found in Hoffman (2019).   

3.7.1.2.4. Correlation analysis 

Correlation analysis examines the strength of the relationship between two variables. The 

choice of the measure of correlation depends on the scale of measurement and the distribution 

of both variables (du Prel et al., 2010). Pearson correlation (r) is a parametric variant that 

exclusively test for the linear relationship between two variables (Liu et al., 2020).  

The assumptions for Pearson correlation are: linear relationship, independence of the variables 

and normality (Deshpande et al., 2016).  The spearman correlation (𝜌) is a nonparametric 

variant that tests for the monotonous relationship between two variables and has the advantages 

of robustness to outliers and suitable for skew distributions (du Prel et al., 2010; Gogtay & 

Thatte, 2017). The null hypothesis to be tested claims no linear or monotonous relationship 

exist between the variables. The correlation coefficient is a single value that determines the 

relationship between the two variables under consideration (Gogtay & Thatte, 2017). The 

values of the correlation coefficient can vary between -1 to +1 with -1 representing the 

maximum inversely proportional relationship and +1 representing the maximum directly 

proportional relationship (du Prel et al., 2010; Gogtay & Thatte, 2017; Liu et al., 2020). A 

correlation coefficient of 0 indicates that no linear or monotonous relationship exist between 

the two variables under consideration (Gogtay & Thatte, 2017). The calculation of the 

correlation coefficient gives the sample correlation coefficient of which test of significance is 
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required to see how the value compare with the true population value i.e., the population 

correlation coefficients (Gogtay & Thatte, 2017). By squaring the value of the correlation 

coefficient, the coefficient of determination (r2) is obtained, which when expressed in 

percentages gives the percentage variability in one of the variables that is accounted for by the 

other variable. The Pearson (r) and Spearman (𝜌) correlation coefficient can be obtained by 

Equation (3.15) (Saccenti et al., 2020).  

                                                   𝑟𝑁 =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑁

𝑖=1

𝑁𝑠𝑥𝑠𝑦
                                                   (3.15) 

Where �̅� and �̅� are the sample mean of the variables 𝑥  and 𝑦 over 𝑁 observations, 𝑠𝑥 and 𝑠𝑦 

are their corresponding standard deviations.   

3.7.1.2.5. Bland and Altman’s analysis 

The bland and Altmans method is used to describe the agreement between two quantitative 

measurements by constructing limits of agreement (Bland & Altman, 1999). The statistical 

limits are calculated by using the mean and standard deviation (SD) of the differences between 

the measurements. The graphical approach was used to check the assumption of normality. The 

resulting graph is an XY scatterplot, with the differences in the Y axis and the means of the 

two measurements in the X axis.  Bland and Altman recommend that 95% of the data points 

should lie between ± 2 SD in order to indicate agreement (Giavarina, 2015). 

3.7.1.2.6. Regression  

Unlike correlation analysis that focuses on the strength of the relationship between two 

variables without the assumption of one been dependent or independent, regression analysis 

measures a causal relationship between one or more independent variable and the dependent 

variable (Gogtay et al., 2017). Both correlation and regression analysis are often conducted 

together with correlation used to identify the strength of the relationship while regression is 

used to model the relationship for prediction purpose. In regression analysis one variable is 

considered as the dependent variable while the other(s) is/are considered as the independent 

variable(s). An independent variable is one that remains unaffected and whose effect is studied. 

The dependent variable is one that responds to the effect of the independent variable by 

measuring its alteration/changes and it is the one of interest to the researcher. In medical 

research, there are three common types of regression: linear, logistic and Cox regression 

(Gogtay et al., 2017). The type of regression to be employed depends on the number and nature 
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of the independent and dependent variable and the shape of the regression line. Linear 

regression can be divided into simple linear or multiple linear regression. Simple linear 

regression is used when there in a one-to-one relationship between the dependent and 

independent variable while multiple linear regression is used where there is a one-to-many 

relationships between the dependent variable and independent variables (Gogtay et al., 2017). 

In linear regression both the independent and dependent variable must be continuous in nature. 

The logistic regression is used when the dependent variable is binary (categorical) in nature. 

The independent variable can be either quantitative or qualitative in nature. Unlike linear 

regression, logistic regression does not require a linear relationship. The criteria for using 

logistic regression include no correlation between the independent variables and an adequate 

sample size (Gogtay et al., 2017). Cox regression is used when the analysis is based on survival 

or time to die analysis (Gogtay et al., 2017). Regression analysis is conducted in three steps: 

analysing the correlation, fitting the regression line and evaluating and validating the regression 

line and its usefulness (Gogtay et al., 2017). The linear regression is used in this study and it is 

presented in Equation (3.16) (Gogtay et al., 2017). 

                                                    𝑌 = 𝐵0 + ∑ 𝐵𝑛𝑋𝑛
𝑚
𝑛=1                                                       (3.16) 

Where 𝑌 is the dependent variable, 𝐵0 is the 𝑌 intercept, 𝑚 is the number of independent 

variables, 𝐵𝑛 is the gradient of the independent variable 𝑋𝑛 and the dependent variable 𝑌.  

The evaluation and validation of the regression analysis can be carried out using graphical and 

numerical method. The graphical method requires the analysis of the residuals that uses graphs 

to visually inspect the robustness (Gogtay et al., 2017). On the other hand, the numerical 

method can be carried out by looking at the value of the coefficient of determination. The value 

of the coefficient of determination determines the variation accounted for by the line. The 

higher this value the better the fit (Gogtay et al., 2017).   

3.7.1.2.7. Principal component analysis 

Principal component analysis (PCA) is a technique that is mainly used for data reduction. It 

preserves a high amount of information that was originally contained in the data while reducing 

its dimensions. The principal components and the magnitude of the variance are represented 

by eigenvectors and eigenvalues.  

The eigenvectors and eigenvalues are obtained from the covariance or correlation matrix by 

eigenvalue decomposition. The eigenvector with the greatest eigenvalue is known as the first 
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principal component and subsequent principal components are obtained in the descending order 

of the eigenvalues. Before applying principal component to a dataset, the dataset is normalised 

to prevent variables of larger magnitude from suppressing those with lower magnitudes.  The 

commonly used standardisation methods include the z-score and the minimum-maximum 

techniques. However, standardisation is not required when PCA is performed using the 

correlation matrix (Jolliffe & Cadima, 2016). In PCA, the first few components with the largest 

eigenvalues are usually selected to represent the entire data set as they represent most of the 

variance in the dataset. The scree plot analysis and/or the eigenvalue criterion are used to decide 

which of the principal component(s) to retain (Cattell & Vogelmann, 1977). The sum of the 

eigenvalues is a representation of the number or variables entered into the PCA. This implies 

that an eigenvalue of one explains approximately one variables worth of the variability (Larose, 

2006). The rationale behind the use of the eigenvalue criterion is that at least for a component 

to be retained as principal, it should explain at least one variable worth’s of variability (Larose, 

2006). Thus, the eigenvalue criterion states that components with eigenvalues greater than one 

should be retained. The scree plot is a graphical plot of the eigenvalues against the components. 

Its representation follows a downhill fashion as the first few principal components usually 

explains much of the variability i.e., has higher eigenvalues (Larose, 2006). The scree plot 

criterion states that the components that should be extracted from conducting a PCA are those 

prior to where the plot begins to flatten out into a horizontal line (Larose, 2006). A pictorial 

view of the eigenvalue and scree plot criterion is shown in Figure 3.7.  
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Figure 3.7. Eigenvalue and scree plot criterion (Larose, 2006) 

The component matrix is the matrix that represents the correlation of the components with the 

variables and it is often rotated to achieve a simple structure. A simple structure is one where 

only one variable correlate highly unto a component. Various type of rotation exists, however, 

in this study the rotation used is the varimax rotation. The varimax rotation is a rotation that is 

orthogonal in structure and maximises the sum of the variances of squared coefficient within 

each eigenvector (Kaiser, 1958). The relationship between the components with the 

correlations of the variables are often used for inference. The coefficients of these correlations 

are known as factor loadings. Variables with closely related factor loadings have similar 

relationships (Hair et al., 1998). The variables with high correlations are referred to as the 

representatives of the principal component. Factor loadings greater than 0.4 have been 

considered to reach the minimal significance level of loading (Ho, 2006). However, there is no 

unanimous agreement for the threshold used for loading. The widely reported ranges for 

loading varies from 0.3 to 0.7 (Maskey et al., 2018). For interpretive purposes, Stevens (1992) 

suggested a threshold of 0.4. However, the purpose of this study was to observe the pattern of 

the distribution of the factors across the principal components, where closely related patterns 

showed close similarities between the conditions under investigation. In this study, 0.4 was 
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selected based on the recommendations of Stevens (1992). However, irrespective of the 

threshold used, the overall pattern observed remained unchanged.  

Principal components can be described mathematically (Larose, 2006) as follows: Let C be a 

matrix of the size m×n, with m representing the observations and n representing the variables. 

In this study, m is used to indicate the number of participants while n represent the number of 

variables. 

   𝐶𝑚×𝑛 = (

𝑐1,1 … 𝑐1,𝑛

⋮ ⋮ ⋮
𝑐𝑚,1 … 𝑐𝑚,𝑛

 ) 

The ith principal component of the standardised data matrix C = [𝐶1, 𝐶2, . . . , 𝐶𝑛] is given by 

𝑌𝑖 =  𝑒𝑖
′𝐶, where 𝑒𝑖 refers to the ith eigenvector and 𝑒𝑖

′ is the transpose of 𝑒𝑖. The principal 

components are linear combination 𝑌1,𝑌2, … 𝑌𝑘 of C such that the variance of 𝑌𝑖 are as large as 

possible and 𝑌𝑖 are uncorrelated. The eigenvalues can be obtained by solving for the lambdas 

in |𝐵 − 𝜆𝐼| = 0, where 𝐵 is a square matrix obtained from the standardised matrix C and 𝐼 is 

an identity matrix of size equal to B. Similarly, if  𝜆  is an eigenvalue of B, then its eigenvector 

(e) is a column vector such that Be = 𝜆e. 

3.7.2. Machine learning methods 

The machine learning methods utilised in this study for balance analysis can be divided into 

two: supervised and unsupervised methods (Khera & Kumar, 2020).  

3.7.2.1. Supervised learning approach 

Supervised learning is regarded as a task-based approach in which the input and desired output 

are available (Prakash et al., 2016). In supervised learning, a mathematical model is designed 

that maps the input to the desired outputs. Data outside of the training set should be assigned 

to an accurate class by the model. The main objective of supervised learning approach is to 

minimize error. However, this method relies on the expert knowledge of the clinician or a 

predetermined truth. Examples of supervised machine learning methods include the neural 

network, decision tree, K nearest neighbour, radial basis function, ensembles, and support 

vector machines (Prakash et al., 2016). The neural network aims to replicate the operation of 

the biological neural network. The first mathematical modelling research to formulate artificial 

neurons was conducted in 1943 by Warren Mculloch and Walter Pitts.  Other more enhanced 

models have since been developed by various researchers. The process of the neural network 
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continues until a certain minimum error, or a predefined epoch is reached. Through training 

using the existing data, a learning model is developed and the validation of the model is carried 

out using either the known or unknown data. The leave one out, K-fold validation approaches 

etc. can be used for validation (Prakash et al., 2016). The radial basis function is considered as 

the simplest variant of neural network. Naïve Bayes is a probabilistic approach employed when 

prior knowledge is available and hence is considered as a supervised learning method (Prakash 

et al., 2016). The Naïve Bayes assumes for each class a Gaussian distribution of values. The 

conditional probability for each feature 𝑑𝑖 ∈ 𝐷 class is learnt for a given set of training data 

having class name 𝑒 ∈ class label set E (Prakash et al., 2016). Ensembles are employed for 

prediction models and for clinical analysis (Prakash et al., 2016). Support vector machine is a 

part of supervised learning that is based on the concept of optimally separating hyper planes 

(Prakash et al., 2016). It projects non-linearly the input space unto a high-dimensional feature 

space and it is non-probabilistic (Prakash et al., 2016).  It defines the distribution of data points 

inside the feature space using a kernel function (Prakash et al., 2016). In the availability of 

labelled training data points, supervised learning method is the dominant method used.           

 

3.7.2.2. Unsupervised learning method  

In unsupervised learning methods, the model is trained without the use of labelled examples. 

These methods find the similarity between the attributes of the given data points using set of 

similarity measure. Based on the measure of the similarity also known as distance measures 

each of the data point is grouped into a cluster. Distance measures play an important role in the 

clustering process. Distance measures refers to the way the similarity between two points will 

be determined. Several distance measures exist, however the most widely used in clustering 

include the Euclidean distance, Manhattan distance, Minkwoski distance, Hamming distance, 

bit vector distance, Jaccard index, cosine index and the Dice index (Pandit & Gupta, 2011). 

The objective is to minimise the within cluster distance and maximise the between cluster 

distance. Examples of some well-known clustering method include fuzzy c mean, K-means, 

hierarchical clustering and the self-organising map. However, the K-means and self-organising 

map (SOM) are utilised in this study. The K-means is selected due to its efficiency and 

suitability, its empirical success, ease of implementation and its simplicity (Gesicho et al., 

2021; Jain, 2010). The SOM is selected due to its effectiveness in the representation of the data, 



67 
 

illustrating the hidden patterns inherent to the characteristics of the data as a specific data 

distribution (e.g., normal) is not expected (Kim et al., 2002; Samsonova et al., 2006). 

3.7.2.2.1. K-means clustering  

The K-means clustering is considered as the oldest and most popular partitioning clustering 

method. Several studies in literature have utilised the K-means clustering with varying 

extensions and in differing areas. However, the K-means clustering is affected by initialization 

and issues relating to the selection of the number of clusters (K). Several validity indices have 

been proposed for determining the number of clusters (K) such as Davies-Bouldin index (DB), 

Dunn’s index, Akaike information index, Bayesian information criterion, silhouette width, Gap 

statistic, Calinski and Harabasz index, modifield Dunn’s index and the generalized Dunn’s 

index (Sinaga & Yang, 2020). In this study the Davies-Bouldin index is used for validating the 

number of cluster (K). The similarity measure used for the K-means algorithm is the Euclidean 

distance. The operation of the K-means algorithm is as follows:  

I. The initial centroid for the clustering is defined by k points 

II.  The distance of each point to be clustered is measured against the centroids. The point 

is placed in the centroid with least distance. This process is done for all the points that 

needs to be clustered. 

III.  When all the points have been assigned to a cluster, the centroids are recalculated based 

on the points in its cluster.  

IV. Steps ii and iii, are repeated until no more changes between the points in their clusters.   

The aim of the K-means clustering is to minimize an objective function i.e., the overall sum of 

square error function. The objective function (𝑊) is given in Equation (3.17) (Kodinariya & 

Makwana, 2013). 

                                     𝑊(𝑆, 𝐶) =  ∑ ∑ ‖𝑦𝑖 − 𝑐𝑘‖2
𝑖∈𝑠𝑘

𝐾
𝑘=1                                                       (3.17) 

where S is the K cluster partition,  𝑐𝑘 is the kth centroid of the partition 𝑠𝑘, 𝑦𝑖 is the ith data point 

in the cluster 𝑠𝑘, k varies from 1 to number of clusters (K).    
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3.7.2.2.2. Kohonen neural network   

The Kohonen neural network (KNN) was developed in the 1980s by the Finnish researcher 

Tuevo Kohonen (Kohonen, 1990) and has been widely used in data exploration applications 

(Kohonen, 2013). The KNN is an unsupervised clustering method that represents an input space 

of high dimensions unto a low regular grid of low dimension that can effectively visualize and 

explore the relationships present in the data (Vesanto & Alhoniemi, 2000). Its operation is 

based on competitive learning, that is, each neuron competes with other neurons to be a 

representative of the input example (Larose & Larose, 2014). It has been used in various 

balance related studies for balance related analysis. The information in high dimensional 

balance strategies for young adult subjects, before and after a 6-week slackline training 

intervention were extracted and visualized using the KNN. The result showed that the pre and 

post-test coordination pattern for the slackline task were significantly different (Serrien et al., 

2017). A two-dimensional Kohonen map of size 10 by 10 neurons is shown in Figure 3.8.  

 

Figure 3.8. Kohonen neural network with a 10 ×10 output map (Ojie & Saatchi, 2021) 

The operation of the Kohonen neural network is summarized below in the following 4 steps:  

I. Initialization 
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In this stage, the weights associated to each neuron is initialized. The initialization of 

the weights of the neurons can be based on prior information or randomly selected. The 

nth neuron is connected to the mth feature of the input vector (representing an input 

example) by the connection weight wmn. The number of features of the input vector is 

the same as the number of weights of each neuron. The neighborhood size and the 

learning rate are also initialized as defined in step iii. The point of termination of the 

learning process is also initialized as described in step iii.   

 

II. Competition 

In this stage, the jth training input vector (Xj) is presented to the Kohonen network. Each 

neuron competes by calculating its distances of its weight to the jth training input vector. 

The neuron with the smallest distance is determined to win the competition. With the 

Euclidean distance, the distance (dn) for each neuron n is calculated using Equation 

(3.18).  

 

            𝑑𝑛 =  √(𝑥1 − 𝑤1𝑛)2 + (𝑥2 − 𝑤2𝑛)2 + ⋯ + (𝑥𝑘 − 𝑤𝑘𝑛)2                          (3.18) 

III. Adaptation  

This stage is defined in two steps. The first step involves identifying the neighbors of 

the winner neuron while the second stage involves updating the weight of the winning 

neurons and those of its identified neighbors (Ojie & Saatchi, 2021). The winner neuron 

(black dot) is surrounded by the neighborhood neurons as shown in Figure 3.8 above. 

The neighborhood size is defined as the number of neurons on each side of the winner 

neuron. In Figure 3.8, the neighborhood size is defined as 3. The operation of adaptation 

is carried out using the Kohonen learning rule as defined by Equation (3.19). 

 

                        𝑊𝑗_𝑢𝑝𝑑𝑎𝑡𝑒𝑑 = 𝑊𝑗_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +  𝜇(𝑋𝑗 − 𝑊𝑗_𝑐𝑢𝑟𝑟𝑒𝑛𝑡)                         (3.19) 

where the current and updated weight vectors for the winning neurons are represented 

by Wj_current and Wj-updated  respectively. The amount of weight changes taking place 

during each iteration is controlled by the learning rate and varies from 0 < μ ≤ 1. Smaller 

values of μ leads to slower learning but may improve adaptation effectiveness while 

larger values of μ leads to faster learning, but may reduce adaptation effectiveness. Its 

initial value is typically chosen heuristically (Ojie & Saatchi, 2021). To improve 
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learning, the neighborhood neurons are also updated to a lesser extent than that of the 

winner neuron. In most cases, the Gaussian function is used to adjust the extent of the 

update with smaller weights changes for the neurons farther from the winner neuron. 

This ensures the transition from coarse adjustments of the weight to finer adjustments. 

IV. Termination of iterations 

The processes of stages (ii) and (iii) are repeated until the desired iteration or the 

magnitude of the predefined weight value is reached  

The implementation of the KNN can be carried out either by the sequential or the batch process. 

In the sequential process, the update of the neurons takes place after the presentation of each 

input vector to the network. In contrast, the update using the batch process takes place after an 

epoch – a single pass through the entire input data set (Lawrence et al., 1999). The batch process 

has the advantages of no dependence upon the order in which the input is presented to the 

network (Lawrence et al., 1999) and the elimination of issues regarding poor convergence as 

the coefficient of the learning rate is absent (Ceccarelli et al., 1993). 

3.8. Summary  

In this chapter, the theories relevant to this study were briefly discussed in order to give an 

understanding about the work.    

Human balance system is primarily comprised of the sensory input, the sensory integration and 

the motor output. The sensory input comprises of the visual, proprioceptive and the vestibular 

systems. The information from these systems is integrated by the central nervous system (CNS) 

which gives control to the necessary motor system.  

In accelerometry, balance analysis is carried out by using inertial measurement unit (IMU) to 

measure the centre of mass (COM) sway. Its control within the base of support is important to 

prevent a fall. The sway from a subject is reflected mainly in two directions: mediolateral (ML) 

and anterior-posterior (AP) directions. These directions reflect the patterns inherent in 

understanding the balance of a subject. Signal filtering (low pass and complementary filter), 

statistical (t-test, analysis of variance, PCA, linear regression, correlation, and Bland and 

Altman analysis) and machine learning (K-means and Kohonen neural network) methods used 

in this study for data processing and balance analysis were presented.  

In the following chapter, the research methodology is presented.  
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Chapter 4   Research methodology 

4.1. Introduction  

In this chapter, the methodology that is general to the results obtained in this study is described. 

For clarity and ease of reading, the research methodologies specific to the studies in the 

respective chapters are explained in the chapters related to them. This chapter is divided into 

two sections: human balance evaluation and the design of the hardware and software. 

Section one describes the procedures for carrying out balance analyses on the human 

participants. Section two describes the system (hardware and software) used in the study. The 

system consisted of two units: the transmitter and receiver unit.  

A detailed description of the procedures and processes are presented in the following sections. 

4.2. Human balance evaluation 

4.2.1. Ethical approval  

Ethical approval was obtained from Sheffield Hallam University’s Ethics Committee prior to 

carrying out the study. The research was not deemed invasive in its application and structure, 

and posed low risk to human subjects. Refer to appendix 1 for ethical approval.  

4.2.2. Risk assessment  

The study was adequately risk assessed and it adhered to appropriate guidelines. All necessary 

forms were submitted to the designated authority.  

4.2.3. Information sheet  

Information sheet about the study was provided to the participants. The information sheet was 

prepared in such a way as to allow easy comprehension and understanding. Refer to appendix 

5 for the participant information sheet.   

4.2.4. Informed consent 

Informed consent was obtained from the participants through a signed consent form. The 

consent form gave the participants the leverage to withdraw from the study at any time if they 

so wished. Refer to appendix 6 for the participant consent form.  
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4.2.5. Inclusion and exclusion criteria 

The participants had to meet certain conditions for them to take part in the study: no current or 

history of balance problems or falls; no intake of any substance that could affect a person’s 

balance 48 hours prior to participating in the study; participants must be between ages 18 and 

60 years; the ability to maintain balance unaided; corrective lenses must be worn by those who 

needed them; ability to read and understand the instructions and demonstrations of the mCTSIB 

test. Those who did not meet the inclusion criteria as stated above were excluded. 

4.2.6. Participants’ information 

Twenty-three healthy adult subjects participated in this study. Their mean age and standard 

deviation were 24.5 and 4.0 years; their mean height and standard deviation were 173.6 and 

6.8 cm; and their mean weight and standard deviation were 72.7 and 9.9 kg. The participants 

performed the four conditions of the mCTSIB test. The demography of the participants is 

shown in Table 4.1.  

Table 4.1. Demography of the participants 

Parameter Value 

Sex Males:10 males; Females: 13 

Mean age (SD) (years) 24.5 (4.0) 

Mean weight (SD) (kg) 72.7(9.9) 

Mean height (SD) (cm) 173.6(6.8) 

Mean COM location (SD) (cm) 109.9 (5.45) 

  

4.2.7. Anonymity 

In accordance to the guidelines of the ethical approval of the study, unique identification 

numbers were used to identity each participant. 

4.2.8. Algorithm for balance analysis  

The algorithm used in this study for postural sway analysis will be developed and evaluated in 

chapter 5.   

4.2.9. Balance assessment test  

The test used for balance analysis was the modified Clinical Test of Sensory Interaction and 

Balance (mCTSIB). The mCTSIB test was proposed by Cohen et al. (1993). It consists of four 
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conditions: (i) standing on a firm surface with eyes open, (ii) standing on a firm surface with 

eyes closed, (iii) standing on a compliant surface with eyes open and (iv) standing on a 

compliant surface with eyes closed. In this study, the compliant surface utilised was a sponge 

of dimension 10 cm height, 50 cm length and 50 cm width. The test duration for each condition 

was 30 seconds.   

4.3. Design of the hardware and software  

4.3.1. Hardware 

The device consisted of two sections: the transmitter and the receiver unit. These sections are 

discussed below. 

4.3.1.1 The hardware components   

The components used for the development of the transmitting and receiving unit consisted of 

the inertial measurement unit (IMU) (type: MPU 6050), the microcontroller unit (type: Arduino 

Nano and Arduino Uno) and the wireless transceiver module (type: nRF24L01+).  

The MPU 6050 is designed for low power, low cost and high-performance requirements for 

wearable sensors. It consists of a 3-axis accelerometer and a 3-axis gyroscope embedded on 

the same silicon die, with an on-board Digital Motion Processor (DMP) which processes 

complex 6-axis motion fusion algorithms (Invensense, n.d.). The dimension of the device was 

4 mm × 4 mm × 0.9 mm with an accuracy of ±1% over the operating temperature range. The 

device voltage (VCC) is specified to operate between the range of 2.375 V to 3.46 V. The 

current drawn by the accelerometer and the gyroscope when in operation are 500 µA and 3.6 

mA respectively. The sensor is integrated with a 16-bit analogue to digital converter (ADC). 

Thus, the device can produce a resolution from 0 to 216 steps. The digital output of the three 

axes has a user programmable range of ±2g, ±4g, ±8g and ±16g for the accelerometer and an 

angular rate of ±250, ±500, ±1000, and ±2000 °/sec for the gyroscope, where g represents 

acceleration due to gravity and is approximately equal to 9.8 m/s2 (Invensense, n.d.).  

This programmable ranges are obtained from the sensitivity scale factors, where an increase in 

the sensitivity results in a reduction in the range. In this study, the ±2g range was used to 

provide suitable sensitivity, the digital output was divided by the sensitive scale factor of 

16,384 i.e., 65536/16384 = 4 g, which was further divided into its two complements of ±2g. 
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The higher the resolution the greater the sensitivity of the accelerometer but the lesser the range 

of coverage of the device. 

The nRF24L01+ is a low-cost transceiver module which operates on the 2.4 GHz industrial, 

scientific and medical band (ISM). It has a channel spacing of 1 MHz resulting in 125 possible 

channels from the range of 2.4 GHz to 2.525 GHz ("Nrf24L01-2.4GHz-HowTo - 

ArduinoInfo", 2021). Channel 76 was utilised in this study. The module was interfaced to the 

microcontrollers (Arduino Uno and Nano) on both the receiving and transmitting section using 

the SPI interface. The Arduino platform was used for the programming of the microcontroller. 

An excellent open-sourced library RF24 developed by TMRH20 was used in this study 

("Nrf24L01-2.4GHz-HowTo - ArduinoInfo", 2021). The communication between the 

nRF24L01 modules is carried out using a logically shared pipe. Pipe 1 was utilised in this 

study. The addresses for both the transmitter and receiver were the same and consisted of a 40-

bit address.    

The Arduino Nano is a small microcontroller board based on the ATmega328. It has 22 digital 

I/O pins of which 6 of them are used for pulse width modulation. Its operating voltage is 5 volts 

with a recommended input voltage of 7-12 volts. It has a clock speed of 16 MHz, a PCB size 

of 18 × 45 mm, a weight of 7 g, and a power consumption of 19 mA. It was used in the 

transmitter unit because of its small weight and size. The Arduino Uno is a robust 

microcontroller board that is based on the ATmega328P. It consists of a quartz crystal of 16 

MHz, a power jack, a USB connection, an ICSP header, a reset button, 6 analogue input pins 

and a 14 digital input and output pins ("Arduino - ArduinoBoardUno", 2021). It can be powered 

directly from a PC using its USB interface or from an external DC power supply using its AC-

to-DC adapter. Its operating and recommended input voltage is 5v and 7-12v respectively with 

a 50mA DC current for its 3.3v pin ("Arduino - ArduinoBoardUno", 2021). It has a flash 

memory of 32 KB of which 0.5 KB is used by its bootloader. It has a clock speed of 16 MHz, 

a weight of 25 g, a length of 68.6 mm and a width of 53.4 mm. It is programmed using the 

Arduino IDE ("Arduino - ArduinoBoardUno", 2021). It was used in the receiver unit. The 

diagram of these components are shown in Figure 4.1.  
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(a)                                                                                       (b) 

         

          (c)                                                            (d) 

Figure 4.1. The hardware components: (a) MPU 6050 (source: "Arduino Playground - MPU-

6050", 2021), (b) Arduino Uno (source: ("Arduino Uno Rev3", 2021)), (c) Arduino Nano 

(source: "Arduino Nano", 2021), (d) nRF24L01 transceiver module  

4.3.1.2. The transmitter unit 

The transmitter unit was designed to be comfortably worn by the subjects at the approximate 

COM position as this region has been suggested to represent the entire body’s sway. For 

comfortability, the enclosure was designed to have a flat surface for easy attachment to the 

back of the human body. The schematic and actual diagram of the device and its associated 

dimensions are shown in Figures 4.2 (a) and (b) respectively. The device was designed to be 

attached to the back of the subjects using a Velcro elastic band.    
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                                   (a)                                                                       (b) 

Figure 4.2. Diagram of the casing of the transmitter device: (a) Schematic diagram, (b) 

Actual device with belts for attachment onto a subject’s back. 

The internal circuitry of the transmitter section consisted of an inertia measurement unit (IMU, 

type: MPU 6050), a wireless transceiver module (type: nRF24L01), a microcontroller (type: 

Arduino Nano), and a rechargeable battery for power supply. The communication between the 

IMU and the microcontroller was enabled using the inter-integrated circuit protocol (I2C). The 

transmitter unit was responsible for measuring sway or movement related data. This data was 

in the raw form which was then transmitted by the nRF24L0l transmitter via I2C 

communication to the receiver. The communication between the wireless transceiver and the 

microcontroller was enabled via the serial peripheral interface (SPI) protocol. The recorded 

movement signals were communicated wirelessly to the receiver unit using the nRF24L01 

module. The transmitting range of the device was 100 m. The internal circuitry of the device 

is shown in Figure 4.3. 
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Figure 4.3. The internal circuitry of the transmitting unit. Where Acc. and Gyr. are 

abbreviations for accelerometer and gyroscope readings 

4.3.1.3. The receiver unit 

The schematic and actual diagram of the receiving device and its associated dimension are 

shown in Figures 4.4 (a) and (b) respectively.  

           

(a)                                                                                 (b) 

Figure 4.4. Diagram of the casing of the receiving device: (a) Schematic diagram, (b) Actual 

device attached to the computer 

The receiving unit consisted of a wireless transceiver module (type: nRF24L01), a 

microcontroller (type: Arduino Uno) and a laptop computer. The communication of the 

transceiver module with the microcontroller occurred via the serial peripheral interface (SPI) 

while the communication between the microcontroller and the laptop was facilitated using a 
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USB cable. The internal circuitry of the device is shown in Figure 4.5. The signal from the 

transmitter unit was received using the wireless transceiver module which has been 

programmed to be a receiver. The Arduino Uno serves as the microcontroller that organises 

the instructions from the laptop computer and the wireless device, and vice versa. The signal 

was further communicated to the laptop computer. The power source of the device was 

obtained directly from the laptop computer via its USB interface. 

 

Figure 4.5. The internal circuitry of the receiving unit. Where Acc. and Gyr. are 

abbreviations for accelerometer and gyroscope readings. 

4.3.2. Software 

The software section consisted of four types used for various purposes namely Arduino®, 

Processing®, SPSS® and MATLAB® software. The Arduino® software was used for 

programming the hardware systems i.e., the Arduino Uno and Nano microcontrollers. The 

Arduino® software is an open-source programming language used for writing codes and 

uploading them into microcontrollers. It runs on various operating systems: Windows, Mac OS 

X, and Linus. The integrated device environment (IDE) is written in C++ and based on 

Processing and other open-source software.  

The Processing® language was used for data recording, and real-time processing of the data 

based on the developed algorithm. The Processing® language is an open-source computer 

programming language. It was designed to give a visual appeal to programming. It can easily 

be interfaced with the Arduino® programing language. It was designed using the java language 

although its syntax is more simplified (Visual Information for Advocacy, 2021).  
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SPSS® is a statistical software used for the analysis of data and understanding of large complex 

data. 

MATLAB® programming language developed by MathWorks®. It stands for Matrix 

Laboratory and is used for the manipulation of matrixes, implementation of data algorithms, 

and function plotting etc. while presenting an appealing user interface (Wallisch et al., 2014). 

It can easily interface with other programming languages such as C, C++, C#, java and Python. 

It was used for post processing of the recorded data from the inertial measurement unit. 

 

4.3.3. Operation of the system  

The device was worn by the subjects at approximately the centre of mass position as shown in 

Figure 4.6 while performing various balance analysis procedures.  

 

Figure 4.6. The accelerometer device worn by a subject while performing a balance task 

Processing of data from the device was carried out via a dialogue box as shown in Figure 4.7. 

The user has the option of real time analysis of the sway or recording of the data for future use. 

It accepts a keyboard input from numbers 1-5 which performs different tasks and the 

corresponding program is displayed. Option 1, indicates the display of the accelerometer sway, 

option 2 indicates the COM plot in the x and y axes in units of centimetre (cm), option 3 was 

used to display the polar plot of the subjects in units of centimetre for the radius and degrees 

for the angle, option 4 created a rectangular sway of the subjects in the x and y axis 

simultaneously and option 5 was used for recording the data into the computer hard disk for 

future use.  
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Figure 4.7. Dialogue box for the performing various processing task 

The start and stop time of the data recording process is recorded as well as the data and utilised 

in calculating the sampling rate of the device. The baud rate of the device was set at 19200 bits 

per second and device sampling rate was 60 Hz. The sampling rate could be increased further 

by increasing the baud rate; however, the sampling rate of 60 Hz was sufficient for the 

experiment. The available baud rate varies from 300 bits per second to 115200 bits per second.  

During the recording process, the data was saved in rows and columns with the first three 

columns corresponding to the data from the three axes of the accelerometer and the last three 

columns corresponding to the data from the three axes of the gyroscope. The data was saved in 

a text file format (.txt) with the first and last sample time stamped. The time stamp was used to 

obtain the duration of the recording process which was used in calculating the sampling rate. 

The sampling rate was obtained by dividing the total number of samples by the recording 

duration. The recording duration was obtained from the difference between the time stamps of 

the last and first recorded samples.    

4.3. Summary  

In this chapter, the methodologies general to the study such as ethical approval, recruitment 

procedure, design consideration of the system, the associated hardware and software were 

discussed. Twenty-three healthy adult participants of mixed sex were recruited in this study. 

The test utilised to assess their balance is a well-known test referred to as the modified Clinical 

Test for Sensory Interaction and Balance. The test duration for each condition was 30 seconds. 

Prior to the participation of the subjects in the study, ethical approval was obtained from the 

 



81 
 

university ethical committee, information sheet was provided to the participants and informed 

consent of the participants were obtained. 

The accelerometry system developed consisted of two sections: the transmitter unit and 

receiver unit. Wireless mode of communication is used between the two systems. The 

transmitter unit contains the inertial measurement unit (IMU) and is attached to the subjects to 

capture postural sway. The receiver unit is connected to a laptop computer for data recording. 

In the following chapter, the developed device will be evaluated to determine its accuracy. The 

device will be utilised in subsequent chapters to carry out analysis on the balance of healthy 

human subjects. 
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Chapter 5 Algorithm development and evaluation based on the inverted 

pendulum model 

5.1. Introduction  

In this chapter, the algorithms developed to analyse human balance are described and 

evaluated. In order to carry out the evaluations, three methods were considered: method A, 

method B and method C. Method A consisted of a manual setup constructed using the principle 

of the inverted pendulum, method B represents the algorithm developed in this study and 

method C refers to the algorithm developed by Mayagoitia et al. (2002). The limitation of the 

algorithm developed by Mayagoitia et al., 2002 (method C) are: limitation in modelling of the 

COM position which led to the reduction of a three-dimensional sway i.e., sway in the x, y and 

z axes to only two dimensions (sway in the x and y axes); small angular deviation in order to 

maintain sway accuracy; and occurrence of sway in both directions when only one direction is 

actually involved.  

In all the three methods, the centre of mass (COM) is projected to the ground. Method A was 

considered as the reference method as it consists of physical units that can be measured 

manually. Comparison between the methods were conducted based on the paired sample t-test 

and the Bland and Altman’s analysis. The result showed that the algorithm developed in this 

study correlated strongly with the manual setup and accurately represented sway based on the 

principles of the inverted pendulum as compared to the algorithm developed by Mayagoita et 

al. (2002). The setup of the system, algorithm and the results obtained are presented in the 

following sections.   

Furthermore, the developed algorithm was evaluated on 15 healthy adult subjects (9 males, 6 

females; mean age (standard deviation) of their ages, weight and height were: 22.5 (3.4) years, 

70.9 (7.5) kg, 173.5 (9.8) cm respectively) who were involved in the balance evaluation of the 

sensory system based on the modified Clinical Test for Sensory Interaction and Balance 

(mCTSIB) test in order to examine the time domain measures that could differentiate 

effectively between the sensory systems. The ground projected sway in both the mediolateral 

(ML) and anterior-posterior (AP) directions were obtained and used in deriving various time 

domain measures. The time domain measures in both directions were evaluated using statistical 

methods to determine their suitability in differentiating between the various balance-related 

sensory information. The result suggested that measures of the root mean square (rms) velocity 
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and acceleration, average velocity and acceleration, and the range of the velocity in the AP 

direction, were more sensitive in differentiating between the sensory systems.   

5.2. Chapter specific methodology 

5.2.1. Development of the human balance algorithm 

Several studies have suggested that during quiet standing, the body sway can be compared to 

the motion of the inverted pendulum (Masani et al., 2006; Winter et al., 2003; Gage et al., 2004; 

Madigan et al., 2006). An inverted pendulum is a pendulum whose COM position is located 

above its pivotal point. Thus, an accurate projection of the COM sway is important in the 

analysis of human balance. A method to project a body’s COM to the ground surface has been 

reported in Mayagoitia et al. (2002). The method is shown in Figure 5.1 and can be described 

using Equations (5.1) to (5.3) respectively.  

 

Figure 5.1. Ground displacement of the tri-axial accelerometer (Mayagoitia et al., 2002) 

      𝐴 =  √𝑎𝑥
2 +  𝑎𝑦

2 + 𝑎𝑧
2                                                                        (5.1)                                                    

            cos 𝛼 =  
𝑎𝑥

𝐴
,   cos 𝛽 =  

𝑎𝑦

𝐴
, cos 𝛾 =  

𝑎𝑧

𝐴
                                                                   (5.2)                                    

       𝐷 =  −
𝑑𝑧

cos 𝛾
, 𝑑𝑥 =  𝐷 cos 𝛼 , 𝑑𝑦 =  𝐷 cos 𝛽                                                      (5.3) 

The resultant acceleration is represented by A, the directional cosines of the accelerations 𝑎𝑥, 

𝑎𝑦, and 𝑎𝑧 of the x, y and z axes are represented by cos 𝛼, cos 𝛽 and cos 𝛾 respectively, D is 
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the ground projected height of the COM, 𝑑𝑧 is the position of the sensor above the ground 

surface and represents the COM position, 𝑑𝑥 and 𝑑𝑦 are the ground positional displacement in 

the x and y axes respectively. All distances and accelerations are of the units of cm and cm/s2 

respectively. The first limitation of this algorithm was in the design not conforming to the 

inverted pendulum model. This has a major implication as it eliminates the deviation of the 

centre of mass height above the ground surface. This results in the reduction of a 3-dimensional 

sway i.e., sway in the x, y and z directions to 2 dimensions (sway in the x and y direction).  The 

second limitation is that if sway was occurring in only one direction (say the y direction), it 

was being reflected onto the other direction (x direction) and vice-versa. Thus, the accuracy of 

the result of a subject’s postural sway is affected. This is as a result of the component D present 

in both equations for obtaining the ground displacement in the x and y axes i.e., Equation (5.3). 

Thirdly, as a result of this limitation the algorithm may not be used for dynamic balance 

analysis as the angle of sway has to be very small for the measurements to be accurate 

(Mayagoitia et al., 2002). The inverted pendulum model is shown in Figure 5.2 and described 

using Equations (5.4) to (5.11). 

 

Figure 5.2. Inverted pendulum model (Ojie & Saatchi., 2020) 

The resultant acceleration (R) in Figure 5.2 is the same as the resultant acceleration (A) in 

Figure 5.1 above. 
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                                                                  𝑅 =  √𝑎𝑥
2 +  𝑎𝑦

2 + 𝑎𝑧
2                      (5.4)                                                                                          

                            cos 𝛼 =  
𝑎𝑥

𝑅
,   cos 𝛽 =  

𝑎𝑦

𝑅
, cos 𝛾 =  

𝑎𝑧

𝑅
                                           (5.5) 

The inclined accelerometer at position B has the following mathematical relationship: 

                                           𝜑1 = 90 − 𝛾, 𝛾 = 𝛼 − 90, 𝜑1 = 180 − 𝛼                                   (5.6) 

The line CD is parallel to the line AB i.e., 𝐶𝐷̅̅ ̅̅  // 𝐴𝐵̅̅ ̅̅ , and the line CA is parallel to the line BD 

i.e., 𝐶𝐴̅̅ ̅̅  // 𝐵𝐷̅̅ ̅̅ , and serves as a transversal to the parallel lines CD and AB. Mathematically, 

parallel lines are represented by the symbol // and the symbol – represents a line.  Hence, 𝜑2 =

𝜑1, 𝜑3 = 𝛾 (corresponding angles) and 𝜑4 = 𝜑2 , 𝜑5 = 𝜑3 (alternate angles). Replacing all 

the angles by their corresponding and alternate equivalents in terms of the angles 𝛼 and 𝛾, the 

ground position in the x axis (𝑑𝑥) and the height of the sensor above the ground surface (𝐻) 

can be obtained. Using similar operation and using the trigonometry identity cos(180 − 𝛽) =

− cos 𝛽, the ground position in the y axis (𝑑𝑦) can also be obtained. The equation for the ground 

position in the x axis (𝑑𝑥) and y axis (𝑑𝑦), and the height of the sensor above the ground surface 

(𝐻) is given by Equation (5.7). 

                 𝑑𝑥 =  −𝐿 cos 𝛼 , 𝑑𝑦 =  −𝐿 cos 𝛽 , 𝐻 =  𝐿 cos 𝛾                                        (5.7) 

Rotational information can be obtained by making use of the yaw angle of the gyroscope as 

shown in Figure 5.3.  

 

Figure 5.3. Inverted pendulum model with gyroscope rotational angle (Ojie & Saatchi., 

2020) 
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The mathematical algorithm to obtain the displacement, if rotational motion is assumed, is 

summarised by equations (5.8) to (5.11). 

                      �̂� = 90 − �̂� , �̂� = 90 − �̂� , �̂� = 90 − 𝑏, �̂� = �̂�                                   (5.8) 

                  𝑑𝑥𝑥 = 𝑑𝑥𝑐𝑜𝑠𝜑 ,  𝑑𝑦𝑦 = 𝑑𝑦𝑐𝑜𝑠𝜑, 𝑑𝑦𝑥 = 𝑑𝑦𝑠𝑖𝑛𝜑, 𝑑𝑥𝑦 = 𝑑𝑥𝑠𝑖𝑛𝜑                      (5.9)    

                     𝑑𝑥1 =  𝑑𝑥𝑥 − 𝑑𝑦𝑥 =  𝑑𝑥𝑐𝑜𝑠𝜑 −  𝑑𝑦𝑠𝑖𝑛𝜑                                                         (5.10)                                                                                                                                                                           

                 𝑑𝑦1 =  𝑑𝑦𝑦 + 𝑑𝑥𝑦 =  𝑑𝑦𝑐𝑜𝑠𝜑 + 𝑑𝑥𝑠𝑖𝑛𝜑                                                            (5.11) 

𝑑𝑥1 and 𝑑𝑦1 are the resultant displacements in the x and y axes due to the rotational angle φ 

in unit of degrees. 𝑑𝑥𝑥, 𝑑𝑥𝑦, 𝑑𝑦𝑦, and 𝑑𝑦𝑥, are coordinate displacements of the x and y axes of 

𝑑𝑥, and 𝑑𝑦, respectively. 𝑑𝑥 and 𝑑𝑦 are displacements of the accelerometer. The symbols with 

a caret (^) are angles used for mathematical justifications.  

It may be necessary to zero the sensor when placed on the subject’s back to resolve error due 

to its placement. Thus, we defined new angles for the inclination angles 𝛼, 𝛽, and 𝛾 known as 

𝛼2, 𝛽2, and 𝛾2 respectively. Where 𝛼2, 𝛽2, and 𝛾2 are given by Equation (5.12). 

                        𝛼2 =  𝛼 − 𝛼1 + 90, 𝛽2 =  𝛽 −  𝛽1 + 90, 𝛾2 =  𝛾 −  𝛾1                               (5.12) 

Where 𝛼1, 𝛽1, 𝛾1 is the first value or the mean of the first values of their respective angular 

measurement. The mean of the first values of the angular measurement may be preferable 

because of the noise in the system.  
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5.2.2. Evaluation of the algorithm 

The system devised for the evaluation of the algorithm consisted of the transmitter unit, metal 

rod (length of 134 cm and a diameter of 2 cm), a plumb bob, a string, a vice, a protractor, 

rechargeable power supply and a measuring tape as shown in Figures 5.4 (a) and (b). 

                   

(a)                                                                       (b) 

Figure 5.4. Apparatus used for evaluation (a) schematic diagram, (b) actual apparatus (Ojie 

& Saatchi., 2020) 

A hole was drilled on the metal rod at 100 cm from one of its ends (the end that made contact 

with the ground), and a string attached with the plumb bob attached at its base, was knotted to 

the hole. The accelerometer transmitting unit and its power supply were fastened to the metal 

rod at the position of 100 cm and 110 cm respectively from the end that made contact with the 

ground using a plastic tie strap. The metal rod was held by a vice which allowed it to be inclined 

to any angle measured by a protractor. The metal rod was inclined from 0 to 90 degrees and the 

corresponding y axis position of the plumb bob on the ground were recorded using a measuring 

tape while simultaneously recording the accelerometer and gyroscope sway data. The y position 

(𝑑𝑦) was obtained by taking the average of the readings over the recording duration using 
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Equation (5.13). The inclination angle (𝛾) of the metal rod was obtained by taking the average 

of the readings over its recording duration using Equation (5.14).  

                                                 𝑑𝑦𝑎 =
1

𝑁
∑ 𝑑𝑦(𝑛)𝑁

𝑛=1                                                               (5.13) 

                                              𝛾𝑎 =
1

𝑁
∑ 𝛾(𝑛)𝑁

𝑛=1                                                                   (5.14) 

The sampling rate of the device was 60 samples per seconds and 60 seconds of data recording 

were conducted for each angle of inclination. The data was transmitted wirelessly to the 

receiver unit and stored in a laptop computer for further processing.  

5.2.3. Experimental procedure for data collection on the healthy adult subjects using the 

developed system and algorithm 

Ethical clearance was obtained from Sheffield Hallam University before conducting the 

experiment. The experimental procedure was to examine the performance of the subjects on 

the conditions of the mCTSIB test and to examine the time domain measures capable of 

differentiating between the information of the sensory systems. Fifteen healthy adult volunteers 

(9 males, 6 females with mean (standard deviation) of age, weight and height: 22.5 (3.4), 70.9 

(7.5) kg, 173.5 (9.8) cm respectively, participated in the study. The accelerometer transmitter 

unit was placed on the subjects back at approximately the position of the iliac crest. The 

subjects performed the four conditions of the modified clinical test of sensory interaction and 

balance (mCTSIB), condition 1: the subjects stood on a firm surface with eyes open; condition 

2: the subjects stood on a firm surface as in condition 1 but with eyes closed; condition 3: the 

subjects stood on a flexible surface (sponge of dimension 10 cm height, 50 cm length and 

width) with their eyes open; condition 4: the subjects stood on a flexible surface as in condition 

3 but with eyes closed. For the eyes open test conditions (conditions 1 and 3), a point of focus 

for the subjects was marked on the wall. An area of 30 cm wide, was marked on the ground to 

ensure similarity of the standing position of the subjects. This area was 1 metre from the wall. 

The recording duration for each test condition was 30 seconds. This provided sufficient data 

without making the subjects tired. The data was stored on the laptop computer for further 

analysis.  
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5.2.4. Data analysis  

5.2.4.1. Data filtering  

The software used for carrying out data analysis was MATLAB® (version 2017a, MathWorks®, 

Massachusetts, USA) and SPSS® (version 24, IBM, Armonk, NY, USA). The signals obtained 

from both the gyroscope and accelerometer were combined using the complementary filter 

algorithm as shown in Equation (5.15) to obtain the roll and pitch angle respectively. 𝜃𝑐  and 

𝜃𝑐−1 corresponds to the current and previous roll or pitch angle in degrees respectively, 𝜃𝑔 is 

the gyroscope’s rate of rotation i.e., angular rate in degrees per seconds, 𝑑𝑡 is the sampling 

interval in units of seconds, a is the parameter of the filter and 𝜑  corresponds to the 

accelerometers roll (α) or pitch (β) angle. The parameter of the filter (a) was set to 0.8, where 

a = 
𝜏

𝑑𝑡+𝜏
, 𝜏 is the time constant. Thus, with a = 0.8, 𝑑𝑡= 1/60 s, 𝜏 = 0.066 s and the cut-off 

frequency 𝑓𝑐 = 1/2𝜋𝜏, 𝑓𝑐 = 2.39 Hz. The angles from the complementary filter were used to 

calculate the displacement as shown in Equation (5.7). 

𝜃𝑐 = 𝑎 × (𝜃𝑐−1 + 𝜃𝑔 × 𝑑𝑡) + (1 − 𝑎) × 𝜑                            (5.15) 

5.2.4.2. Algorithmic evaluation  

Test of normality of the data was conducted to determine which statistical test (parametric or 

non-parametric) was more suitable for carrying out the test for significant differences between 

the results obtained by the methods. Bland and Altman analysis was carried out to compare the 

values of the displacements of methods B and C with that of method A (the reference method). 

5.2.4.3. Human subjects sway analysis 

Time domain measures such as the positional displacement (displacement with respect to the 

origin), velocity and acceleration were used for analysis. The analyses were to examine which 

time domain features can differentiate between the conditions of the mCTSIB test and to 

examine the relationship between the conditions. Subsequent time domain measures such as 

the averages of the measures, the range of the measures and the root mean square values of the 

measures were obtained. The formulae for these measures are presented in Equations (5.16) to 

(5.24).  

               𝐷𝑀𝐿𝑛
= 𝐷𝑀𝐿𝑛

− 𝐷𝑀𝐿1
, 𝐷𝐴𝑃𝑛

= 𝐷𝐴𝑃𝑛
− 𝐷𝐴𝑃1

, 𝑉𝑀𝐿𝑛
=

𝐷𝑀𝐿𝑛−𝐷𝑀𝐿𝑛−1

𝑇
                     (5.16) 
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             𝑉𝐴𝑃𝑛
=

𝐷𝐴𝑃𝑛−𝐷𝐴𝑃𝑛−1

𝑇
, 𝐴𝑀𝐿𝑛

=
𝑉𝑀𝐿𝑛−𝑉𝑀𝐿𝑛−1

𝑇
 , 𝐴𝐴𝑃𝑛

=
𝑉𝐴𝑃𝑛−𝑉𝐴𝑃𝑛−1

𝑇
                              (5.17) 

                          𝐷𝑀𝐿𝑎𝑣
=

1

𝑁
∑ |𝐷𝑀𝐿𝑛

|𝑁
𝑛=1 , 𝐷𝐴𝑃𝑎𝑣

=
1

𝑁
∑ |𝐷𝐴𝑃𝑛

|𝑁
𝑛=1                                         (5.18) 

                           𝑉𝑀𝐿𝑎𝑣
=

1

𝑁
∑ |𝑉𝑀𝐿𝑛

|𝑁
𝑛=1  , 𝑉𝐴𝑃𝑎𝑣

=
1

𝑁
∑ |𝑉𝐴𝑃𝑛

|𝑁
𝑛=1                                          (5.19) 

                          𝐴𝑀𝐿𝑎𝑣
=

1

𝑁
∑ |𝐴𝑀𝐿𝑛

|𝑁
𝑛=1  , 𝐴𝐴𝑃𝑎𝑣

=
1

𝑁
∑ |𝐴𝐴𝑃𝑛

|𝑁
𝑛=1                                       (5.20) 

                                     𝑅𝑎𝑛𝑔𝑒 = |𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚|                                                (5.21) 

                           𝐷𝑀𝐿𝑅𝑀𝑆
= √

1

𝑁
∑ 𝐷𝑀𝐿𝑛

𝑁
𝑛=1 , 𝐷𝐴𝑃𝑅𝑀𝑆

= √
1

𝑁
∑ 𝐷𝐴𝑃𝑛

𝑁
𝑛=1                 (5.22) 

                         𝑉𝑀𝐿𝑅𝑀𝑆
= √

1

𝑁
∑ 𝑉𝑀𝐿𝑛

𝑁
𝑛=1  , 𝑉𝐴𝑃𝑅𝑀𝑆

= √
1

𝑁
∑ 𝑉𝐴𝑃𝑛

𝑁
𝑛=1                                    (5.23) 

                               𝐴𝑀𝐿𝑅𝑀𝑆
= √

1

𝑁
∑ 𝐴𝑀𝐿𝑛

𝑁
𝑛=1  , 𝐴𝐴𝑃𝑅𝑀𝑆

= √
1

𝑁
∑ 𝐴𝐴𝑃𝑛

𝑁
𝑛=1                           (5.24) 

The test of normality was conducted using the Shapiro-Wilk test of normality. Depending on 

the result of normality i.e., normally or not normally distributed, the paired sample t-test or the 

Wilcoxon signed rank test was used respectively to compare the sway measures between each 

condition of the mCTSIB to examine if a significant difference existed. 

5.3. Results and discussion  

5.3.1. Results of the comparison of the three methods A, B and C 

A comparison between the result of the unfiltered and filtered angle using the complementary 

filter are shown in Figure 5.5. It represents the vertical inclination angle of the rod at 15 degrees 

in the direction of the y axis.   
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                                                                    (a) 

 

               (b) 

Figure 5.5. Comparison between: (a) unfiltered and (b) the complementary filtered angle 

with 𝛾 inclined at 15 degrees in the direction of the y axis. 

The mean (standard deviation) of the unfiltered and complementary filtered inclination angle 

were 104.39 (0.181) degree, 104.39 (0.059) degree respectively. The standard deviation of the 

filtered angle was lower than the unfiltered angle by approximately 0.122 degrees resulting in 

noise reduction by more than a third.   
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The results of the displacement and angles of the three methods are shown in Table 5.1. 

Methods A, B and C represent the manual measurements, the method developed in this study 

and the method developed in Mayagoitia et al. (2002). Method A was used as the reference for 

both methods as it is manual and is comparable to physical units. As indicated in Table 5.1, the 

displacement values for methods A and B are closely related. The displacement values for 

method C can be observed to deviate largely from those obtained from method A. The graphical 

representations of the means of the measurement in Table 5.1 are shown in the bar graph of 

Figure 5.6. 

Table 5.1. Displacement and angle measurements between methods A, B and C.  

Test 

number 

Method A Angles (𝜸) 

determined 

using 

methods B 

and C 

(degrees) 

Method B Method C 

Angle       

(degrees) 

Displacement 

(cm) 

Displacement 

(cm) 

Displacement 

(cm) 

1 0 0 0.8 1.4 1.4 

2 5 9 5.1 8.9 8.9 

3 9 17 9.1 15.8 16.1 

4 14 26 14.4 24.9 25.7 

5 20 34 20.1 34.4 36.5 

6 25 43 25.0 42.3 46.7 

7 29 50 29.4 49.0 56.2 

8 34 58 34.7 56.9 69.1 

9 40 65 40.3 64.7 84.7 

10 45 70 45.0 70.7 99.9 

11 50.00 78.00 50.39 77.10 120.90 

12 55.00 82.00 55.65 82.60 146.30 

13 60.00 87.00 61.02 87.48 180.60 

14 65.00 91.00 65.06 90.68 215.10 

15 70.00 93.00 71.02 94.56 290.80 

16 75.00 97.00 75.33 96.74 382.00 

17 80.00 99.00 80.48 98.62 596.60 

18 85.00 99.00 84.17 99.48 979.40 

19 90.00 100.00 89.28 99.99 7957.30 

Mean 

(standard 

deviation) 

44.79 

(28.32) 
63.05 (33.18) 

45.07 

(28.20) 
62.96 (33.32) 

595.48 

(1799.25) 
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Figure 5.6. Graphical representation of the displacement of method A (manual method), 

method B (proposed method) and method C (Mayagoitia et al. (2002)) over a range of 90-

degree inclination  

The results of the test of normality using Shairo-Wilk test showed a p-value of 0.058, 0.051 

and 2.47 ×10−8 for the methods A, B and C respectively with the level of significance (α) set 

to 5%. Based on the results of the p-values, methods A and B conformed to normality while 

method C did not meet the requirements of normality. Thus, tests of significant differences 

were carried out using Wilcoxon signed rank test. The result of the test of significant difference 

between the displacement of the methods A and B showed that no significant difference (p-

value = 0.617) existed between the methods. However, the results between method A and C 

showed that significant difference (p-value = 3.4 × 10−4) existed between the methods. Test 

of normality using Shapiro-Wilk test for the values of the inclination angles obtained using 

methods A, B and C showed that the data conformed to a normal distribution. Their p-values 

were 0.549 and 0.474 for methods A and methods B and C respectively. The plots of the 

differences of the displacements and angles of methods B and C with reference to method A 

are shown in Figure 5.7 (a) and (b). The greater the deviation of the differences from zero, the 
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greater the disparity between the methods. The angular inclination results show that the 

protractor and the accelerometery device measurements follow closely.  

 

                     (a)  

 

                    (b) 

Figure 5.7. Comparison between the methods: (a) Displacement differences (b) orientation 

angle 
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Test and retest reliability were carried out using the Bland and Altman’s analysis. The Bland 

and Altman’s analysis was used because the measurements were not repeated (Myles and Cui., 

2007) i.e., the measures were simultaneously obtained from the three methods. The Bland and 

Altman’s plot of the differences between the methods A and B against their corresponding 

means is shown in Figure 5.8. 

 

Figure 5.8. Bland and Altman plot for Method A and B data, with the representation of the 

limits of agreement (Mean ± 1.96 SD) 

The y axis represents the differences between the methods while the x axis represents the 

corresponding means of each sample entry. The smaller the mean of the difference between the 

methods (zero representing the least difference) the greater their agreement. The 95% limit of 

agreement indicated by the line above and below (i.e., the lines representing the Mean ± 1.96 

SD) the mean shows the range of variation between the two methods i.e., how well the two 

methods agree. The smaller the range, the better their agreement. In this case, the range between 

methods A and B (1.71 cm – (-1.53 cm)) was 3.24 cm. The process of conducting the Bland 

and Altman’s analysis for methods A and B is shown in Table 5.2. 
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Table 5.2. Process of Bland and Altman analysis for methods A and B 

Test 

number 

Method 

A 

Method 

B 

Mean ((Method A + 

Method B)/2) 

Differences (Method A – 

Method B) 

1 0.00 1.40 0.70 -1.40 

2 9.00 8.90 8.95 0.10 

3 17.00 15.80 16.40 1.20 

4 26.00 24.90 25.45 1.10 

5 34.00 34.40 34.20 -0.40 

6 43.00 42.30 42.65 0.70 

7 50.00 49.00 49.50 1.00 

8 58.00 56.90 57.45 1.10 

9 65.00 64.70 64.85 0.30 

10 70.00 70.70 70.35 -0.70 

11 78.00 77.10 77.55 0.90 

12 82.00 82.60 82.30 -0.60 

13 87.00 87.48 87.24 -0.48 

14 91.00 90.68 90.84 0.32 

15 93.00 94.56 93.78 -1.56 

16 97.00 96.74 96.87 0.26 

17 99.00 98.62 98.81 0.38 

18 99.00 99.48 99.24 -0.48 

19 100.00 99.99 100.00 0.01 

 
Mean (�̅�) = 0.092cm Standard 

deviation (s) = 0.826 cm 

 

Similarly, the plot of the differences between the methods A and C versus their means are 

shown in Figure 5.9. The Bland and Altman’s plot was not used due to the differences between 

the methods A and C not conforming to a normal distribution. As indicated by the mean of the 

differences (Mean (�̅�) = -532.43cm), method C is 532.43 cm on average greater than method 

A. The upper and lower limits (i.e., the lines representing the Mean ± SD) show the range of 

variation between the two methods. In this case, the range between methods A and B (1255.26 

cm – (-2320.12 cm)) was 3575.38 cm.  
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Figure 5.9. The plot of the differences between the Methods A and C against their means 

(Upper and lower limits (Mean ± SD)) 

Although method A was more similar to method B than method C, the differences between 

methods A and C are negligible at inclination angles of less than 20 degrees as indicated in 

Table 5.1. Thus, method C can still be used for standstill balance analysis as the angle of sway 

for a human subject is typically low, although care must be taking such that the analysis is 

limited to only one direction as sway from one direction is reflected unto the other direction 

even when there is no movement in that direction. The process of the construction of the 

displacement differences between methods A and C against their means are shown in Table 

5.3. 
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Table 5.3. Process of Bland and Altman analysis for methods A and C 

Test number Method A Method C 

Mean 

((Method 

A+Method 

C)/2) 

Differences 

(Method A – 

Method C) 

1 0.00 1.40 0.70 -1.40 

2 9.00 8.90 8.95 0.10 

3 17.00 16.10 16.55 0.90 

4 26.00 25.70 25.85 0.30 

5 34.00 36.50 35.25 -2.50 

6 43.00 46.70 44.85 -3.70 

7 50.00 56.20 53.10 -6.20 

8 58.00 69.10 63.55 -11.10 

9 65.00 84.70 74.85 -19.70 

10 70.00 99.90 84.95 -29.90 

11 78.00 120.90 99.45 -42.90 

12 82.00 146.30 114.15 -64.30 

13 87.00 180.60 133.80 -93.60 

14 91.00 215.10 153.05 -124.10 

15 93.00 290.80 191.90 -197.80 

16 97.00 382.00 239.50 -285.00 

17 99.00 596.60 347.80 -497.60 

18 99.00 979.40 539.20 -880.40 

19 100.00 7957.30 4028.65 -7857.30 

 

Mean(�̅�) = -

532.43cm Standard 

deviation (s) = 

1787.70 cm 
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5.3.2. Analysis of the system on healthy human adult subjects 

Typical results of a subject’s sway in condition one and four of the mCTSIB test in terms of 

the time domain measures of position, velocity, acceleration and the polar plot are shown in 

Figure 5.10 (a) and (b).  

 

                   (a) 

 

      (b) 

Figure 5.10. Typical sway of a subject: (a) conditions 1 and (b) condition 4 of the mCTSIB 

test 
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The displacement measures the sway of the subject from the origin. The velocity measures the 

change in the displacement with time. The acceleration represents the rate of change of the 

velocity. The polar plot is a representation of the subject’s displacement in terms of the radius 

and the angle of the subject. Condition 1 (eyes open standing on ground) represents the scenario 

when all the balance related sensory systems are working together to maintain balance while 

condition 4 represents the scenario when only the vestibular system is used to maintain balance. 

It can be observed from the result of the displacement, velocity, acceleration and polar plot of 

Figure 5.9, that the sway of condition 4 is greater than condition 1. The mean and standard 

deviation of the displacement, velocity and acceleration for the mediolateral (ML) direction 

were 0.4 cm and 0.30 cm, 7.50 cm/s and 5.87 cm/s, 219.92 cm/s2 and 171.14 cm/s2 respectively. 

The mean and standard deviation of the displacement, velocity and acceleration for the 

anterior-posterior (AP) direction were 0.35 cm and 0.26 cm, 3.81 cm/s and 2.80 cm/s, 109.50 

cm/s2 and 80.48 cm/s2 respectively. The radius and angle of the polar plot of the displacement 

for condition 1 are 0.5845 cm and 0.3074 cm, 83.55 degree and 53.60 degree respectively. The 

mean and standard deviation of the displacement, velocity and acceleration for the mediolateral 

(ML) direction for condition 4 were 2.06 cm and 0.54 cm, 12.45 cm/s and 6.79 cm/s, 299.46 

cm/s2 and 179.4284 cm/s2. The mean and standard deviation of the displacement, velocity and 

acceleration for the anterior posterior (AP) direction were 0.79 cm and 0.55 cm, 6.50 cm/s and 

5.60 cm/s, 200.17 cm/s2 and 101.68 cm/s2. The radius and angle of the polar plot of the 

displacement for condition 4 were 2.2541 cm and 0.60 cm, 20.32 degree and 13.74 degree 

respectively. In the polar coordinate, care must be taking when referring to the angles, as 

deviation from 90 is an indication of sway in both directions where larger deviations indicate 

more sway in both directions. Sway in only one direction will have angular values close to 90 

degrees. Thus, for the understanding of sway information using polar plot, it is necessary to 

consider both the radius and the angle. 

The time domain sway measures used for analysing the differences between the four conditions 

are shown in Table 5.3, where a tick mark is used to indicate a significant difference between 

the respective paired conditions. The test of significant difference was conducted using the 

Wilcoxon signed rank test or the paired sample t-test, based on the result of the test of normality 

of the variable. The mean and standard deviation of the sway measures of the various conditions 

from Table 5.3 that performed best in differentiating between the conditions are shown in Table 

5.4. It was observed among all the sway measures that no significant difference existed between 

conditions 2 and 3. The sway measures that provided the greatest differences as indicated in 
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Table 5.5 include the root mean square (rms) velocity and acceleration in the AP direction, 

average velocity and acceleration in the AP direction, and the range of velocity in the AP 

direction.  

Table 5.4. Sway measures used for examining the four conditions of the mCTSIB. A tick 

mark indicates there was a significant difference between the conditions (source: Ojie & 

Saatchi, 2020). 

Measures 
M-CTSIB conditions 

1 and 2 1 and 3 1 and 4 2 and 3 2 and 4 3 and 4 

RMS displacement-ML       

RMS displacement -AP ✓    ✓ ✓ 

RMS velocity-ML       

RMS velocity-AP ✓ ✓ ✓  ✓ ✓ 

RMS acceleration-ML       

RMS acceleration-AP ✓ ✓ ✓  ✓ ✓ 

range of displacement-

ML 
 ✓ ✓  ✓  

range of displacement-AP  ✓ ✓  ✓ ✓ 

range of velocity-ML       

range of velocity-AP ✓ ✓ ✓  ✓ ✓ 

range of acceleration-ML       

range of acceleration-AP  ✓ ✓  ✓ ✓ 

average distance-ML       

average distance-AP       

average velocity-ML       

average velocity-AP ✓ ✓ ✓  ✓ ✓ 

average acceleration-ML       

average acceleration-AP ✓ ✓ ✓  ✓ ✓ 

 

Table 5.5. The mean (standard deviation) of the most effective sway measures for 

differentiating between the conditions of the mCTSIB (source: Ojie & Saatchi, 2020). 

Measures 
M-CTSIB conditions 

1 2 3 4 

RMS velocity-AP 2.3 (0.6) 2.7 (0.8) 2.8 (1.0) 3.6 (1.3) 

RMS acceleration-AP 58.6 (15.0) 65.6 (18.8) 69.6(26.9) 85.9 (31.3) 

Range of velocity –AP 16.3 (3.5) 23.5 (12.2) 24.1 (11.0) 33.7 (18.0) 

Average velocity-AP 1.9 (0.5) 2.2 (0.6) 2.2 (0.8) 2.9 (1.0) 

Average acceleration-AP 47.7 (12.8) 53.5 (15.1) 56.8 (21.0) 70.3 (25.2) 
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5.3. Summary  

In this chapter, the accelerometry algorithms for balance analysis based on the model of an 

inverted pendulum were developed and evaluated using a manual setup designed in similar 

manner to an inverted pendulum. The system was inclined in the range of 0 to 90 degrees with 

the manual and accelerometry measurements of the angle and ground projected sway obtained 

simultaneously. The manual measurements were obtained using a tape rule (to measure the 

ground displacement) and a protractor (to measure the angle). The measures obtained from the 

manual setup and accelerometry system were closely related. The algorithms were further 

utilised in assessing the balance of 15 healthy adult subjects. The ability of the sway measures 

to differentiate between the four conditions of the modified Clinical Test of Sensory Interaction 

and Balance (mCTSIB) were investigated. The sway measures investigated consisted of the 

mediolateral (ML) and anterior posterior (AP) time domain measures of the: root mean square 

velocity and acceleration, average velocity and acceleration, root mean square of the positional 

displacement, the average of the positional displacement, the range of the velocity and 

acceleration and the range of the positional displacement. The results indicated that the AP 

time domain measures of the: root mean square velocity and acceleration, average velocity and 

acceleration and the range of the velocity were more effective in differentiating between the 

conditions. 
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Chapter 6 The effect of centre of mass position on analysing balance  

6.1. Introduction   

The centre of mass position plays a fundamental role in analysing a person’s balance. The COM 

position refers to an imaginary point where the entire body mass can be considered to act 

(Richmond et al., 2021). In balance analysis when using inertial measurement units, the sensor 

is usually placed at the position of the COM to capture the entire sway of the body (Aguilera-

Castells et al., 2020). The COM sway can be used to determine the sensory systems 

contribution to postural control and to estimate their functionalities. When the goal is to 

examine the functionalities of the sensory system for diagnostic reasons, the COM position 

plays an important role in comparing postural sway between people. Since standstill sway 

analysis is a representative of angular deviation, we hypothesised that the same angular sway 

would result in the same ground displacement and similar balances. This hypothesis is made 

for the purposes of comparing the sway of people with balance dysfunction for diagnostic 

reasons such that similar angular sway can imply similar extent to a particular dysfunction and 

in turn produce similar sway on ground.  Sway comparison could be carried out between a 

patient and another patient, a patient and a healthy control, and a healthy control and a healthy 

control.  

To investigate this hypothesis, a system was developed to analyse the effect that varying COM 

position has on postural sway and in turn their balance. The system consisted of 3 plumb bobs 

attached to a metal rod, at one end, at the position of 50 cm, 75 cm and 100 cm above the 

ground surface. The accelerometer transmitting unit was attached onto the metal rod using a 

tie strap and inclined from 0 to 90 degree. Manual measurements of the angle of the rod and 

the projection of the plumb bobs on the ground surface were obtained using a measuring tape 

and protractor respectively. The data from the accelerometer were recorded simultaneously 

with the manual measurements and analysed to determine the angular sways and ground 

displacements. The results obtained was in support of the alternative hypothesis, that the same 

angle of sway does not produce the same ground projected displacement. The displacements 

on ground were in a direct proportional relationship to the COM positions for the same angle 

of inclination. This implies that methods of analysis using either the angle of sway or the 

integration of acceleration to carry out balance analysis without reference to the COM position 

may not produce accurate results. However, normalisation with the COM position can help 

reduce the disparity for comparison purposes although it may affect the accuracy of the results. 
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A greater base of support may be required for people with higher COM positions to maintain 

balance, in the event of a balance problem, in comparison to people with a lower COM.  

In accordance with these findings, we suggest that people of relatively equal COM positions 

are compared; normalisation of sway with the COM position is considered for comparison 

purposes; and greater base of support is provided for people with greater COM positions in the 

event of a balance dysfunction.  

6.2. Chapter related methodology 

6.2.1. Measurement apparatus and data collection  

The devised measurement apparatus consisted of a metal rod, 3 plumb bobs and lines, the 

accelerometry units, a vice, a measuring tape and a protractor. The metal rod was of length 134 

cm and diameter 2 cm. The 3 plumb lines-plumb bobs system were attached to one of its ends, 

at position 1 = 50 cm, position 2 = 75 cm and position 3 = 100 cm to represent the centre of 

mass positions of 50 cm, 75 cm and 100 cm respectively. These positions were chosen as they 

are close to COM positions in children and adults. The accelerometry transmitter unit was 

attached to the metal rod at the height of 105 cm and the metal rod was held by a vice which 

was clamped to a table and enabled the rod to be inclined vertically from 5 to 90 degrees in the 

y axis of the accelerometer.  The measuring tape was used to measure the ground projected 

displacement made by the plumb lines-plumb bobs system for each angle of deviations and the 

protractor was used to obtain the angular deviation of the metal rod. Simultaneously with the 

manual movement of the metal rod to predefined inclination and using the inter-integrated 

transmission protocol (I2C), the data from the accelerometer transmitting unit were sent 

wirelessly to the device’s receiver unit which was connected to a laptop computer via a USB 

connection, for storage and analysis. The data transmitted were the three axes of the 

accelerometer device (x,y,z) and the sampling rate was 60 Hz. The recording duration lasted 

for 60 seconds. The diagram of the device setup with all the necessary components as discussed 

above is shown in Figure 6.1. 
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Figure 6.1.  Test measurement apparatus (source: Ojie et al., 2020) 

6.2.2. Data analysis  

The raw data of the tri-axial accelerometer were digitally low-pass filtered in software using a 

0.5 Hz second-order low pass Butterworth filter. After filtering, the raw data of the tri-axial 

accelerometer were converted to the units of acceleration (i.e., g = 9.8 ms-2) with a full-scale 

range of ±2 gs-2 by dividing by the sensitivity scale factor of 16,384 least significant bit/g. The 

tri-axial accelerations (ax, ay and az) obtained were converted into directional cosines i.e., cos 𝛼, 

cos 𝛽 and cos 𝛾 using Equation (5.2). Using Equation (5.3), the sway displacement on the 

ground in the y directions (𝑑𝑦)  with respect to the origin, were obtained and averaged over the 

number of measured samples, N (N = 60 seconds   60 samples per second = 3,600 samples) 

using Equation (6.1), where 𝑑𝑦𝑎 is the average of the displacement. The inclination angle of 

the accelerometer was obtained from Equation (5.2) by solving for 𝛾 and the average for all 

the samples were obtained using Equation (6.2), where 𝛾𝑎 is the average of the angle of 

inclination.    

                                         𝑑𝑦𝑎 =
1

𝑁
∑ 𝑑𝑦(𝑛)𝑁

𝑛=1                                                                           (6.1) 

                   𝛾𝑎 =
1

𝑁
∑ 𝛾(𝑛)𝑁

𝑛=1                                                                                   (6.2) 
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Data analysis was carried out using MATLAB® and SPSS® statistical packages. Test of 

normality was conducted using the Shapiro-Wilk test of normality with p-value set to 5%. 

Depending on the result of normality i.e., normally or not normally distributed, the paired 

sample t-test or the Wilcoxon signed rank test was used to compare the measures of the 

displacements to examine if a significant difference existed between the manual measurements 

using the physical apparatus and the algorithm’s calculations. Depending on the result of 

normality, Pearson or Kendall tau correlation analysis was used, and linear regression analysis 

were performed to interpret the measurements.   

6.3. Results and discussion 

6.3.1 Results of the manual and accelerometry system 

In total, nineteen measurements were obtained from the inclination of the metal rod from 0 to 

90 degrees in steps of 5 degrees. The accelerometer reading for the displacement at 50 cm, 75 

cm and 100 cm for an inclination angle of 5-degree is shown in Figure 6.2. A variance of 0.15 

degree can be observed from the accelerometer reading of the inclination angle. This is due to 

the noise of the accelerometer measurement as the sensor was in a stationary position and the 

data was filtered using a second order low pass Butterworth filter with a cutoff frequency of 

0.5 Hz. A cut of frequency of 0.5 Hz was used because the sensor was in a stationary position.  
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             (a) 

 

                                                                 (b) 

 

                                                                 (c) 

Figure 6.2. Ground displacement at 5 degrees for position: (a) 50 cm (b) 75 cm and (c) 100 

cm respectively 

The results of the manual and accelerometry measurements are provided in Tables 6.1 and 6.2 

respectively. The displacements in Table 6.1 correspond to the displacements of the plumb 
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lines-plumb bobs on the ground (positions 1: 50 cm, 2: 75 cm and 3: 100 cm) with respect to 

the origin that were obtained by the measuring tape and the angles corresponds to the 

inclination angle made by the metal rod which were obtained by the protractor. The 

displacements in Table 6.2 corresponds to averages of the displacements of the plumb lines-

plumb bobs on the ground (positions 1: 50 cm, 2: 75 cm and 3: 100 cm) with respect to the 

origin that were obtained by the accelerometer and the angles correspond to the averages of the 

inclination angles made by the metal rod as obtained by the accelerometer.   

  

Table 6.1. Manual measurements of the displacements and angles obtained by the measuring 

tape and the protractor (source: Ojie et al., 2020) 

Measurement 

Number 

Angle,   

(degrees) 

Position 1 

(Displacements at 

COM=50 cm) 

Position 2 

(Displacement at 

COM= 75 cm) 

Position 3 

(Displacement 

at COM=100 

cm) 

1 0 0 0 0 

2 5 5 7 9 

3 10 9 13 17 

4 15 12 19 25 

5 20 17 25 34 

6 25 21 31 42 

7 30 25 36 50 

8 35 29 43 56 

9 40 32 50 65 

10 45 35 52 70 

11 50 39 58 77 

12 55 41 60 82 

13 60 44 65 87 

14 65 45 68 90 

15 70 48 70 95 

16 75 48 72 97 

17 80 49 73 98 

18 85 49 74 99 

19 90 50 75 100 

  

Mean=31.5 cm 

Standard deviation 

=16.6 cm 

Mean=46.9 cm 

Standard deviation 

=24.8 cm 

Mean=62.8 cm 

Standard 

deviation =33.3 

cm 

 

 

 



109 
 

 

Table 6.2.  Accelerometry measurements of the averages of the displacement and the 

inclination angles (source: Ojie et al., 2020). 

Measurement 

Number 

Angle, 
  

(degrees) 

 

Position 1 

(Displacements at 

COM=50 cm) 

Position 2 

(Displacement at 

COM=75 cm) 

Position 3 

(Displacement 

at COM=100 

cm) 

1 0.80 0.69 1.04 1.39 

2 5.09 4.44 6.66 8.87 

3 9.12 7.93 11.89 15.85 

4 14.42 12.45 18.68 24.90 

5 20.05 17.14 25.72 34.29 

6 25.01 21.14 31.72 42.28 

7 29.35 24.51 36.76 49.02 

8 34.66 28.44 42.65 56.87 

9 40.27 32.32 48.47 64.63 

10 44.96 35.33 52.78 70.66 

11 50.39 38.52 57.78 77.05 

12 55.65 41.28 61.92 82.57 

13 61.02 43.74 65.61 87.48 

14 65.06 45.34 68.01 90.68 

15 71.02 47.28 70.92 94.56 

16 75.33 48.37 72.55 96.74 

17 80.48 49.31 73.97 98.62 

18 84.17 49.74 74.61 99.48 

19 89.28 50.00 74.99 99.99 

Statistics  

Mean=31.5 cm 

Standard deviation 

=16. 7 cm 

Mean=47.2 cm 

Standard deviation 

=25.0 cm 

Mean=62.9 cm 

Standard 

deviation =33.3 

cm 

 

The means (M) and standard deviations (SD) of the displacements of the manual measurements 

for the plumb line-plumb bob at positions 1 to 3 were: M= 31.5 cm and SD=16.6 cm, M= 46.9 

cm and SD= 24.8 cm, M= 62.8 cm and SD= 33.3 cm respectively. For the accelerometry 

measurements the means and standard deviations of the displacements for the plumb line-

plumb bob at positions 1 to 3 were: M=31.5 cm and SD=16.7 cm, M=47.2 cm and SD= 25.0 

cm and M= 62.9 cm and SD= 33.3 cm respectively. For the 19 measurements the results of the 

accelerometry and manual measurements as inferred from their means and standard deviations 

gave close readings for all three respective positions. The plots of the displacements against 

the angles of the accelerometry measurements of Table 6.2 are shown in Figure 6.3. The 
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maximums of the displacements for each position corresponds to their COM heights of 

placement.  

 

 

         (a) 

 

        (b) 

 

                                                               (c) 

Figure 6.3.  Plot of the displacements vs the angles obtained from the accelerometry unit (a) 

COM of 50 cm (b) COM of 75 cm (c) COM of 100 cm. 
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6.3.2. T-test analysis  

The Shapiro-Wilks test with a p-value of 0.05 was used to determine the distribution of the 

displacement values of the respective COM positions. The result showed that the distribution 

of the data from each group were normal (p > 0.05). Paired sample t-tests (α = 0.05) were used 

to establish whether significant differences existed between the displacement values from the 

three positions i.e., position 1 and 2, position 1 and 3 and position 2 and 3. The results of the 

paired sample t-test showed significant differences existed between the measurements (p < 

0.01), suggesting that the position of the COM has implications on the ground displacements. 

This finding has implications when comparing the sway displacements between individuals of 

different COM heights, with those of greater COM height producing a greater sway 

displacement projected on the ground surface. Similarly, falls due to a balance dysfunction will 

result in taller subjects to be more affected by the impact with the ground as suggested by the 

potential energy (P.E) given in Equation (6.3).  

                                                          P.E = mgh                                                                                         (6.3) 

Where m is the mass of the subject, g is the gravitational acceleration (usually 9.8 m/s2) and h 

is the height above the ground surface.  

 

6.3.3. Correlation and linear regression analysis 

Pearson correlation (r) with confidence interval of 95% (α = 0.05) and linear regression were 

used to investigate the relationships between the three positions of the manual and 

accelerometry displacement measurements. The results of the manual measurements showed 

strong positive correlation between the measurements between positions 1 and 2, r (17) = 0.999 

and p < 0.05, positions 1 and 3, r (17) = 1 and p < 0.05, and positions 2 and 3, r (17) = 1 and p 

< 0.05 (Pearson correlation is represented by the symbol r the number (17) in parenthesis is the 

degree of freedom (df), given by df = n-1, where n is the number of samples). Similarly, the 

results for the accelerometer measurements showed strong positive correlation between 

positions 1 and 2, r (17) = 1 and p < 0.05, positions 1 and 3, r (17) = 1 and p < 0.05, and 

positions 2 and 3, r (17) = 1 and p < 0.05. Figure 6.4 shows the relationship between the 

displacement obtained from each position for the manual and accelerometer data. The related 

gradients can be observed for all the plots of the positions i.e., positions 1 to 3, given as 1.49 

cm, 2.00 cm and 1.34 cm for the manual measurement and 1.50 cm, 2.00 cm and 1.33 cm for 

the accelerometer setup. The equation of the regression line of the displacement measurements 

from both methods suggested that the displacement measurements of position 2 could be 
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obtained from that of position 1 using the formula: 1.5x - 0.003 (where x is the displacement 

measurement of position 1). Similarly, the displacement for position 3 could be obtained from 

position 1 using the equation of the regression line 2.0x - 0.001 (where x is the displacement 

measurement of position 1). 

 

      (a) 

 

      (b) 

Figure 6.4.  The relationship between the displacements of COM positions: (a) manual, (b) 

accelerometry (source: Ojie et al., 2020) 
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Thus, in order to obtain the displacement of position 3, the displacement of position 1 is 

multiplied by 2 and 0.01 subtracted from the result of the multiplication.  Similarly, to obtain 

the displacement of position 3 from position 2, the displacement values of position 2 is 

multiplied by 1.334 and 0.004 added to the result of the multiplication as stated by the 

regression line: 1.334 x + 0.004. The comparison across the positions as shown in each of the 

above plots suggested that the gradients were a representation of the ratio of the position of 

COM heights: 75/50 =1.50 for positions 1 and 2, 100/50 = 2.00 for positions 3 and 1 and 100/75 

= 1.33 for positions 3 and 2 respectively. This indicates that for the same angular sway, the 

higher the COM position, the greater the ground projected sway. For a difference of 25 cm, 50 

cm, between the COM positions of 2 and 1, a gradient of 1.5 cm was observed. Similarly, for 

a difference of 25 cm, 50 cm and 25 cm between positions 2 and 1, 3 and 1 and 3 and 2, the 

gradients were 1.5 cm, 2.00 cm and 1.33 cm respectively. Note that although the difference 

between positions 2 and 1 and positions 3 and 2 were the same i.e., 25 cm, their gradients were 

different i.e., 1.5 cm and 1.33 cm respectively. These variations can introduce a bias in the 

interpretation of postural sway and in sway path measurements as the relationship is not linear. 

The relationships between the accelerometer measurement for the various COM positions i.e., 

positions 1, 2 and 3 for both the manual and accelerometer measurement are further illustrated 

using a box plot as shown in Figure 6.5 (a) and (b).  The measurement statistics of the box plot 

i.e., the median (the horizontal bar inside each box) and interquartile range are in relation to 

the heights of the COM positions. The median and interquartile range value for position 1, 

position 2 and position 3 are 35.33 cm and 30.14 cm, 52.78 cm and 45.2 cm and 70.66 cm and 

60.27 cm respectively. If similar base of supports where to be considered for all the positions, 

the balance for position 1 will be greatest, followed by the balance at position 2 and finally the 

balance at position 3. Thus, an underlying balance condition which produces the same angular 

deviation will result in differing balances across subjects based on their COM positions if all 

other factors that can affect balance are kept constant. 
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         (a) 

 

                                                                  (b) 

Figure 6.5.  Box plots representations for the displacements: (a) manual, (b) accelerometry 

measurements (source: Ojie et al., 2020) 

Therefore, the COM position can be considered as a factor whose presence affects the postural 

sway, balance of a subject and the comparison across subjects. Thus, balance may better be 

treated as a holistic approach where each individual serves as his/her own control. The methods 

that consider sway only at the COM position without projection unto the ground surface may 

not be a suitable representation for an accurate analysis of balance.  For comparison purpose 
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across subjects, the bias introduced by the height of the COM position can be reduced by 

comparing subjects of similar COM positions and by normalization, although normalization 

may not produce an accurate assessment of balance. The process of normalization is shown in 

Figure 6.6. In this case the COM position is set to unity i.e., by setting the value of L in Equation 

(5.7) to 1 cm. This results in the same sway across all the positions for a given inclination angle.    

 

      (a) 

 

                                                                  (b)     

Figure 6.6. The relationship of the normalised displacements between the COM positions: (a) 

manual, (b) accelerometry (source: Ojie et al., 2020) 
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The COM position has an inverse relationship with the angle of sway as shown in Equation 

(5.7). For a dysfunctional sensory system, a higher COM height could put more strain on the 

sensory systems as compared to a lower COM height. In this regard, the COM height could 

affect both the sway angle and the ground displacement. Conversely, although a higher COM 

position produces a greater displacement, it is not the case that a person with higher COM will 

produce greater sway than a person with lower COM as many factors affects a person’s balance. 

Thus, the COM height has a double effect which is non-linear on the sway displacement of a 

subject as it can both affect the angle of inclination and the displacement on ground.  

 

6.4. Summary 

The effect that varying centre of mass (COM) positions has on postural sway and balance was 

discussed in this chapter. A setup was developed to investigate the effects of varying centre of 

masses.  The setup consisted of a metal rod of length 134 cm with a diameter of 2 cm, three 

plumb bobs, three plumb lines and a vice. The plumb bobs were attached to each plumb line 

and tied to the metal rod at the position of 50 cm, 75 cm and 100 cm. These positions 

corresponded to the COM positions of 50, 75 and 100 cm respectively. The rod was inclined 

from 0 degree to 90 degrees with a 5-degree difference between consecutive measurement 

making a total of 19 measurements. Simultaneously, the accelerometer transmitter unit 

developed in chapter 5 was attached to the metal rod to transmit the inclination movement data 

of the rod to the receiver unit. The receiver unit was connected to a laptop computer for 

recording and storing of the data. The recorded data was processed to provide the angle of 

inclination and it corresponding ground displacements.  

The result of the manual measurement and the accelerometry system agreed closely for all the 

three positions respectively. The result suggested that COM height affects postural sway angle 

and sway displacement on ground. Thus, for accurate analysis of balance the projection unto 

ground surface should be considered. Similarly, for comparison across subjects, closely related 

sway should be considered. Although normalisation of the COM height may be considered to 

reduce the bias introduced by the COM position, it may result in inaccuracies in a subject’s 

balance analysis. 
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Chapter 7 Investigation of the sensory interaction in healthy adult subjects 

using principal component analysis 

7.1. Introduction 

Primarily, balance is maintained by the interaction between the sensory systems i.e., the 

visual, proprioceptive and vestibular systems (Mohammadi et al., 2021). A problem with any 

of these systems could lead to balance dysfunctions. For accurate analysis of balance 

dysfunctions, information from the patient’s data is often compared with those of healthy adult 

individuals – where deviations in the pattern or information can be likened to a dysfunction 

(Ojie & Saatchi, 2020). Thus, the aim of this chapter was to investigate the patterns inherent 

in healthy adult subjects using principal component analysis (PCA). Twenty-one healthy adult 

subjects, with mean (standard deviation) of age, height and weight: 24.5 (4.0) years, 173.6 

(6.8) cm, and 72.7 (9.9) kg respectively, participated in the study. The subjects performed the 

four conditions of modified Clinical Test of Sensory Interaction and Balance (mCTSIB). 

These conditions are usually used to assess the behaviour/contribution of the sensory systems 

to balance. Condition one of the test consists of all the sensory systems (i.e. standing on ground 

surface with eyes open), condition two consists of the proprioceptive and the vestibular 

systems (i.e. standing on ground surface with eyes closed, excluding the visual system), 

condition three consists of the visual and the vestibular systems (i.e. standing on a sponge 

surface with the eyes open, excluding the proprioceptive system) and condition four consists 

of only the vestibular system (i.e. standing on a sponge surface with the eyes closed, excluding 

the visual and proprioceptive system). The acclerometry device was attached at the subject’s 

back at approximately the iliac crest. The mediolateral and anterior posterior ground projected 

sway were recorded and eighteen-time domain measures were further obtained from the sway 

that quantified the body’s position, velocity and acceleration. PCA was used to determine the 

observed patterns in the sway variables. Based on the observed patterns, further analysis was 

carried out on the root mean square (RMS) velocity using the Bland and Altman’s analysis 

and other statistical related analysis to verify the structures. The study’s results showed that: 

in a well-lit environment, healthy young adult subjects rely more on their proprioceptive 

system as compared to their visual system, the anterior-posterior direction was more sensitive 

to postural sway of the sensory system as compared to the mediolateral direction and a greater 

coherence in sway information and greater stability was observed in the interaction between 

the proprioceptive and vestibular systems as compared to the interaction between the visual 

and vestibular systems.  
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7.2. Chapter related methodology 

7.2.1 Participants’ information  

Twenty-one healthy adult participants (11 females and 10 males) with no balance dysfunction 

with mean (standard deviation) of age, height, and weight: 24.5 (4.0) years, 173.6 (6.8) cm, 

and 72.7 (9.9) kg took part in the study. The participants declared not to have ingested any 

substance that could affect their balances 48 hours prior to their participation in the data 

recording process and not to have any balance dysfunction. Corrective lenses were worn by 

participants who required them before participating in the exercise. Ethical approval was 

obtained from the university ethical committee and informed consent was provided by all the 

participants.  

 

7.2.2 Recording device  

The devised accelerometry system described in chapter 4 was used here in collecting balance 

information from the subjects.  

7.2.3 Procedure for data recording   

The participants wore the transmitting unit part of the device at the position of approximately 

the iliac crest using a belt that was integrated into the device. Figure 7.1, shows a participant 

with the device at the position of approximately the iliac crest.  

                                             

Figure 7.1. The transmitter unit worn by one of the subjects. The subject stood on a soft 

sponge pad as part of carrying out mCTSIB's conditions 3 and 4 tasks (Ojie & Saatchi, 2020) 
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During the recording process, the participants stood with their shoes off and with their feet 30 

cm apart. The participants were instructed to look at a point on a wall located at a distance of 

1 m at the eyes’ level while performing the tasks associated to the mCTSIB test. The data 

recording for each test condition of the mCTSIB lasted for 30 seconds. The participants were 

provided with a time to rest between each test. During the recording for mCTSIB conditions 

three and four, the subjects were required to stand on a flexible foam surface. The flexible 

surface was used to remove the effect of the proprioceptive system and consisted of 

dimensions 10×50×50 cm corresponding to its thickness, length and width in units of 

centimetre (cm). The sampling rate of the device was 60 samples per seconds and the data 

consisted of the x, y and z directions of the accelerometer's axes contained in 3 columns with 

each column containing 1800 samples of recording i.e., 30 seconds recording at 60 samples 

per second. The data were transmitted wirelessly and stored in the hard disk of the laptop 

computer for further processing.    

7.2.4. Data processing and analysis 

The sampling interval 𝑇 =
1

𝑓𝑠
, where 𝑓𝑠 is the sampling frequency. The sampling frequency of 

the device was 60 samples per second. Filtering of the recorded accelerometer signals were 

performed using a 4th order low pass Butterworth filter with cut-off frequency of 4 Hz to 

remove the unwanted frequency components that could have obscured the analysis. For further 

analysis, the signal was converted to the units of accelerations in g = 9.8 ms-2 by dividing the 

signal by the sensitivity scale factor. In this study, a full-scale range of ±2 g corresponding to 

a sensitivity scale factor of 16,384 least significant bit/g was used. A lower full-scale range 

was used such that the highest sensitivity is obtained that is capable of measuring the small 

changes in postural sway associated to healthy adults. The tri-axial accelerations (ax, ay and 

az) obtained were converted into directional cosines: cos 𝛼 and cos 𝛽 using Equation (5.5). 

Similarly, after the integration of the gyroscope signal to obtain the angle in degrees from the 

x and y axes i.e. pitch and roll angles, the angles were filtered using the high pass Butterworth 

equivalent of the filter used for the accelerometer signal. The angles from the accelerometer 

(𝛼 and 𝛽) were combined to that of the gyroscope (roll and pitch) complementarily using 

Equation (5.15) with the parameter (a) set to 0.7049 for a cut-off frequency of 4Hz.  The result 

of the filtering is shown in appendix 7. 

Using Equation (5.7), the sway positions on ground in the x and y directions, 𝑑𝑥 and 𝑑𝑦 were 

obtained. Time domain measures in the ML and AP directions associated to positions, 
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velocities and accelerations were obtained using Equations (5.16) to (5.24) above. The 

measures include the ranges of the displacements (𝑅𝑎𝑛𝑔𝑒𝐷𝑧), velocities (𝑅𝑎𝑛𝑔𝑒𝑉𝑧) and 

accelerations (𝑅𝑎𝑛𝑔𝑒𝐴𝑧), the averages of the displacements (𝐷𝑧𝑎𝑣
), velocities (𝑉𝑧𝑎𝑣

) and 

accelerations (𝐴𝑧𝑎𝑣
), and the root mean square (RMS) of the displacements (𝐷𝑧𝑅𝑀𝑆

), 

velocities (𝑉𝑧𝑅𝑀𝑆
) and accelerations (𝐴𝑧𝑅𝑀𝑆

), where the subscript z can be substituted for 

either ML or AP, depending on the direction under consideration. The units of position, 

velocity and acceleration are: cm, cm/s, cm/s2 respectively. 

PCA was applied to these time domain features obtained from the 4 conditions associated with 

the mCTSIB. Utilizing PCA, the structural relationships (patterns) of each condition were 

examined and compared based on their similarities and dissimilarities observed from their 

correlated matrices. Condition one was considered as the reference since it represents the sway 

information with all balance-related sensory systems unaffected. The Bland and Altman’s 

analysis was used to further investigate the magnitudes of the relationships. For ease of 

reference, the conditions were represented by their respective acronyms, where GEO 

represented standing on the ground surface with the eyes open (condition one), GEC 

represented standing on the ground surface with the eyes closed (condition two), FEO 

represented standing on a sponge surface with the eyes open and FEC represented standing 

on a sponge surface with the eyes closed. For the purpose of analysis, a linear relationship was 

assumed between the 4 conditions. However, their interaction may not necessary be linear in 

nature. The Shapiro-Wilk test was used for normality testing to determine the distribution of 

the data. The mean or median based Levene’s tests was used when the data met the criteria of 

normality or not. Analysis of significant differences were conducted based on the one-way 

analysis of variance (ANOVA) when the condition of normality and homogeneity of variance 

was met otherwise the Friedman’s test was used. Post hoc analysis was carried out using the 

Wilcoxon signed rank test when the condition of symmetry was satisfied otherwise the Sign 

test was used.  

7.3. Results and discussion 

The results for the displacement (cm), velocity (cm/s) and acceleration (cm/s2) of the sway 

of a subject involved in the performance of the four conditions of the mCTSIB are shown in 

Figure 7.2. Indicated by visual inspection of the variables, there was a greater sway in the ML 

direction as compared to the sway in the AP direction for conditions one and two. In contrast, 

although the displacement for conditions three and four appeared to have shown greater sway 
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occurring towards the ML direction, the velocity and acceleration showed otherwise i.e. 

greater sway occurring in the AP direction as compared to the ML direction. Notwithstanding, 

the displacement variable may not be an accurate estimator of sway information as it indicates 

displacements with respect to the origin.  

        

(a)                                                                        (b) 

        

                                 (c)                                                                         (d) 

Figure 7.2. A subject’s representation of the sway variables of displacement, velocity and 

acceleration for the four conditions ((a) - (d)) of the mCTSIB (Ojie & Saatchi, 2020) 

Eighteen variables from each subject were obtained from the above three variables i.e. 

displacement, velocity and acceleration and processed using PCA. The scree plots from the 

application of PCA to the variables are shown in Figure 7.3. This plot assists in determining 

the number of principal components (PCs) that provide great majority of the variance of the 
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original data.  The selection point is where the plot has its knee. The components utilised for 

analysis were those with eigenvalues above the knee of the plot. Three components were 

extracted considering the plot. The variance represented by each component i.e., PC1, PC2 

and PC3 for the conditions were: condition one, 67.7%, 14.1%, and 9.1%; condition two, 

65.9%, 14.3%, and 9.2%; condition three, 60.9%, 18.3%, and 9. 4% and condition 4, 69.1%, 

11.4% and 10.4% respectively.   

        

(a)                                                                             (b) 

       

                             (c)                                                                                 (d) 

Figure 7.3. The scree plots showing the 18 principal components: (a) condition one, (b) 

condition two, (c) condition three and (d) condition four of mCTSIB (Ojie & Saatchi, 2020) 
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7.3.1. Comparison between conditions one (GEO) and two (GEC) 

Table 7.1, shows the rotated component matrices for the mCTSIB conditions for the eighteen 

variables for conditions one and two.  

Table 7.1. Rotated component matrix for conditions one and two (Ojie & Saatchi, 2020) 

 

Thirteen variables in the ML and AP directions were correlated with the first principal 

component (PC1), with 0.4 utilised as the threshold for minimal correlation significance. As 

a result of their high correlations, the first principal component was considered as the 

representative of the variations in the ML directions i.e. the range of the position (Range𝐷ML), 

velocity (Range𝑉ML), and acceleration (Range𝐴ML), the root mean square (RMS) of the 

velocity (VMLRMS
)  and acceleration (AMLRMS

), the average velocity (VMLav
) and acceleration 

(AMLav
).   

The second principal component (PC2) was observed to be correlated with nine variables in 

the ML and AP directions, i.e. the range of the displacement (Range𝐷ML), acceleration 

(Range𝐴ML) and the RMS displacement in the ML direction (DMLRMS
), the range of the 

velocity (Range𝑉AP)  and acceleration (Range𝐴AP) in the AP direction, the average 

mCTSIB 

 Condition 1 Condition 2 

Number Variables PC1 PC2 PC3 PC1 PC2 PC3 

1 RangeDML 0.780 0.503 -0.064 0.661 0.661 0.097 

2 RangeDAP -0.114 -0.081 0.857 -0.102 0.794 0.327 

3 RangeVML 0.843 0.399 -0.222 0.700 0.632 0.174 

4 RangeVAP 0.175 0.934 -0.096 0.241 0.892 0.240 

5 RangeAML 0.774 0.541 -0.199 0.701 0.614 0.180 

6 RangeAAP 0.172 0.946 -0.100 0.372 0.798 0.348 

7 DMLav 0.459 0.693 -0.050 0.739 -0.224 0.476 

8 DAPav -0.163 -0.050 0.956 0.071 0.317 0.897 

9 VMLav 0.946 0.258 -0.163 0.938 0.238 0.043 

10 VAPav 0.609 0.733 -0.070 0.620 0.419 0.596 

11 AMLav 0.921 0.336 -0.169 0.946 0.215 0.126 

12 AAPav 0.461 0.866 -0.056 0.657 0.274 0.573 

13 DMLRMS 0.491 0.689 -0.047 0.767 -0.166 0.466 

14 DAPRMS -0.180 -0.081 .0962 0.060 0.358 0.890 

15 VMLRMS 0.941 0.278 -0.165 0.918 0.346 0.027 

16 VAPRMS 0.586 0.757 -0.088 0.561 0.576 0.533 

17 AMLRMS 0.911 0.363 -0.169 0.933 0.296 0.121 

18 AAPRMS 0.449 0.876 -0.071 0.628 0.374 0.564 
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displacement in the ML direction (DMLav
), the average velocity (VAPav

) and acceleration 

(AAPav
), the RMS velocity (VAPRMS

) and acceleration (AAPRMS
) in the AP direction. Since 

PC2 is correlated most strongly with the variables in the AP direction, it may be considered 

as a representative of the variation in the AP direction. Similarly, the third principal 

component (PC3) was a representative of the variation in the AP direction using similar 

deduction.  

Condition one of the mCTSIB comprises of all balance related sensory systems and as such it 

was considered as the reference since it is expected to produce the lowest amount of sway due 

to the presence of all the sensory systems. The underlying structural relationships were 

examined based on the correlation differences across the conditions. Similar correlation across 

the conditions indicates structural similarities. One component may be sufficient for analysis 

since the variables were rotated. The first principal component represented the highest amount 

of variance across the conditions and as such the comparisons of its loadings/correlations 

across the conditions are used for analysis. The variables whose correlation ranges appeared 

to be similar with respect to PC1 across both conditions i.e. range of 0.461 to 0.609 for AAPav
 

and VAPav
, range of 0.459 to 0.491 for DMLRMS

 and DMLav
, range of -0.114 to -0.180 for the 

RangeDAP,  DAPav
, and DAPRMS

, range of  0.172 to 0.175 for RangeAAP and RangeVAP, 

range of 0.911 to 0.946 for VMLav 
, AMLav

, VMLRMS
, and AMLRMS

, range of 0.449 to 0.586 for  

VAPRMS
 and VAPRMS

, and range of 0.774 to 0.843 for RangeDML, RangeVML, and RangeAML 

among subjects showed less variations in their standardised equivalents and as such had 

closely related correlations. 

The additional variables that showed significant loadings for condition two of the mCTSIB in 

respect to PC1 are: average displacement (DMLav
) and root mean square displacement 

(DMLRMS
) in the ML direction, average acceleration (AAPav

) and root mean square 

acceleration (AAPRMS
) in the AP direction. The variables that loaded with PC2 include the 

range of the displacement (Range𝐷AP) in the AP direction and the range of the velocity in the 

ML direction (Range𝑉ML). For PC3, the variables that loaded with it were the average velocity 

and acceleration (VAPav
and AAPav

) and the RMS acceleration (AAPRMS
)  in the AP direction. 

Based on their correlations, PC1 describes the sway in the ML direction, PC2 and PC3 

describes the sway in the AP direction. Significant changes occurred in the loading of the 

variables in the AP direction of conditions one and two in comparison to the variables of the 
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ML direction. This was an indication of the effectiveness of the AP direction to represent the 

absence of the sensory information, in this case the visual system. However, due to the small 

changes in the correlations between conditions one and two, a close relationship between the 

conditions can be inferred. Thus, a close relationship in terms of sway exist in the conditions 

where the subjects were standing on a firm surface i.e., conditions one and two.         

The first principal component described the sway in the ML direction, while the second and 

third were defined by the AP direction, based on the strongest correlations. More changes in 

the loadings of a number of variables were observed mainly in the AP direction in the first 

and third principal components. This indicated the effectiveness of the AP direction to capture 

the sensory information of the visual system and highlighted an underlying difference in 

structure. Nonetheless, the component matrix represents the underlying structure of the 

variables in the dataset and does not represent the magnitude. That is variables may have 

similar correlation coefficients in the component matrix and have differing magnitudes. As a 

result, further investigations into the variables were carried out using the Bland and Altman 

plot. For simplicity, the RMS velocity was selected and used for further investigations based 

on its strong correlations with other variables in both the ML and AP direction and its 

sensitivity to sensory information. The similarities between the ML and AP directions for 

conditions one and two are shown by the Bland and Altman’s plot of Figures 7.4 (a) and (b).  

       

(a)                                                                            (b) 

Figure 7.4. Bland and Altman plot of the correlations of variables of the RMS velocity for 

conditions 1 and 2 (a) mediolateral direction and (b) anterior posterior direction (Ojie & 

Saatchi, 2020) 
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The vertical axis represents the differences between the conditions and the horizontal axis 

represents their means. The smaller the mean difference between the variables of the 

respective direction i.e., the RMS velocity in the ML and AP directions, the greater the 

similarity and the lesser the sensitivity of the direction. In this case, the mean difference of the 

RMS velocity between the ML direction of the two conditions were smaller than that of the 

AP direction highlighting that the ML direction was less sensitive to the changes in sway 

introduced by the exclusion of the visual system. The ML direction showed no consistency of 

bias as there were roughly equally distributed points above and below the zero line as 

compared to the bias consistency of the AP direction. Thus, the ML direction suggested with 

less certainty that the sway obtained from both conditions were different. In contrast, the AP 

direction suggested that more sway difference was observed between the two conditions and 

that the sway in condition two of the mCTSIB was more than that in condition one. The 

negative value of the mean difference is an indication that the sway in condition one is less 

than the sway in condition two by its respective values i.e., 0.09 cm/s for the ML direction 

and 0.42 cm/s for the AP direction. The range of the limits of agreement indicates the amount 

of variation between the directions. A greater variation was observed in the sway obtained 

from the ML direction (3.80 cm/s) in comparison to that obtained from the AP direction (2.75 

cm/s). This was an indication of a lower agreement between the sway information obtained 

from the ML direction as compared to that of the AP direction. Comparing the ratio of their 

means, the AP direction was 4.67 times greater than that of the ML direction indicating a 

greater sway occurred in the AP direction as compared to that observed in the ML direction. 

 

7.3.2. Comparison between conditions one (GEO) and three (FEO) 

The result of the rotated component matrix for the conditions one and three of the mCTSIB is 

shown in Table 7.2. The correlated variables in condition three shown in Table 7.2 are similar 

to those observed in conditions one and two as indicated by Table 7.1. However, the 

correlations in the AP direction were observed to be stronger as compared to those of the 

previous conditions i.e., conditions one and two. This indicated more structural changes in the 

variation of the sway between both conditions one and two respectively. The ML direction 

showed smaller changes in the correlated variables between the two previous conditions and 

in comparison, to those observed in the AP direction. The first principal component (PC1) 

was strongly correlated with both the sway variables of the ML and AP directions. The strong 

correlation of the variables was due to their pattern of variation rather than the magnitudes as 
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the variables were all standardised. The variables in the AP direction correlated strongly with 

the second and third principal component (PC2 and PC3) suggesting close similarities to 

condition one.  The percentage variation represented by PC1 was highest (60.87%) among the 

principal components and as such its comparison across both conditions was considered. 

Utilizing the correlation of its ML and AP variables for analysis, a greater variation can be 

observed in the AP direction as compared to the ML direction and as such the AP direction 

indicates more sensitivity to the presence/absence of the sensory input information from the 

proprioceptive system.    

Table 7.2. Rotated component matrix for conditions one and three (Ojie & Saatchi, 2020) 

mCTSIB Conditions 

 Condition 1 Condition 3 

Number Variables PC1 PC2 PC3 PC1 PC2 PC3 

1 RangeDML 0.780 0.503 -0.064 0.568 0.220 -0.002 

2 RangeDAP -0.114 -0.081 0.857 0.396 0.173 0.834 

3 RangeVML 0.843 0.399 -0.222 0.694 0.669 0.065 

4 RangeVAP 0.175 0.934 -0.096 0.284 0.880 0.230 

5 RangeAML 0.774 0.541 -0.199 0.634 0.719 0.099 

6 RangeAAP 0.172 0.946 -0.100 0.331 0.885 0.203 

7 DMLav
 0.459 0.693 -0.050 0.049 0.171 0.167 

8 DAPav
 -0.163 -0.050 .0956 -0.117 0.143 0.964 

9 VMLav
 0.946 0.258 -0.163 0.955 0.208 -0.071 

10 VAPav
 0.609 0.733 -0.070 0.960 0.139 0.123 

11 AMLav
 0.921 0.336 -0.169 0.963 0.205 -0.078 

12 AAPav
 0.461 0.866 -0.056 0.965 0.116 0.096 

13 DMLRMS
 0.491 0.689 -0.047 0.097 0.156 0.158 

14 DAPRMS
 -0.180 -0.081 0.962 -0.085 0.099 0.978 

15 VMLRMS
 0.941 0.278 -0.165 0.939 0.266 -0.055 

16 VAPRMS
 0.586 0.757 -0.088 0.857 0.416 0.180 

17 AMLRMS
 0.911 0.363 -0.169 0.942 0.292 -0.055 

18 AAPRMS
 0.449 0.876 -0.071 0.881 0.388 0.149 
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The Bland and Altman’s plots for comparing the RMS velocities between conditions one and 

three in the ML and AP directions are shown in Figures 7.5 (a) and 7.5 (b).  

        

(a)                                                                       (b) 

Figure 7.5. Bland and Altman plots of the correlations of variables with their components for 

(a) condition one (GEO) and (b) condition three (FEO) (Ojie & Saatchi, 2020) 

The vertical axis represents the differences between the two corresponding variables and the 

horizontal axis shows their respective means. Greater similarities were observed between the 

ML direction as compared to the AP direction as its mean difference (0.03 cm/s) was smaller 

than that of the AP direction (0.85 cm/s).  Taking the ratio of their means for comparison, the 

ML direction was 28.33 times less than that of the AP direction.  

Similar to the result of conditions one and two above, the ML direction showed a smaller bias 

consistency between the conditions indicative of the points being evenly distributed above 

and below the zero line (indicated with the thin dash lines). Thus, presenting less demarcation 

that the sway in condition one was less than the sway in condition three.  

As indicated by the range of the limits of agreement, there existed a larger variation in the ML 

direction (7.42 cm/s) as compared to that of the AP direction (3.91 cm/s). The comparison of 

the mean differences of the AP direction across conditions one and two (0.42 cm/s), and 

conditions one and three (0.85 cm/s) showed that the vestibular system had a greater 

interaction with the proprioceptive system as compared to its interaction with the visual 

system in maintaining standstill balance. Similarly, based on the range of the limits of 

agreement there appeared to be more coherence in the proprioceptive system (2.75 cm/s) as 
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compared to the visual system (3.91 cm/s) as indicated by the interaction of conditions one 

and two, and conditions one and three respectively.  

 

 7.3.3 Comparisons between conditions one and four of the mCTSIB 

The sensory system under consideration in condition four of the mCTSIB test is the vestibular 

system. Its rotated component matrix shown in Table 7.3 indicates greater differences in 

structure (indicated by the correlation coefficients of the variables that loaded with the 

components) as compared to the mCTSIB conditions two and three in relation to condition 

one. However, correlations of the variables in the ML direction of the first principal 

component appeared to indicate small changes, thus suggesting a similar structure exist 

between the conditions. This indicated that the ML direction may be less sensitive to the 

contribution of the vestibular sensory system.  

Table 7.3. Rotated component matrix for mCTSIB's conditions one and four (Ojie & Saatchi, 

2020) 

mCTSIB Conditions 

 Condition 1 Condition 4 

Number Variables PC1 PC2 PC3 PC1 PC2 PC3 

1 RangeDML 0.780 0.503 -0.064 0.657 0.627 0.145 

2 RangeDAP -0.114 -0.081 0.857 0.484 0.356 0.582 

3 RangeVML 0.843 0.399 -0.222 0.850 0.294 0.275 

4 RangeVAP 0.175 0.934 -0.096 0.825 0.216 0.232 

5 RangeAML 0.774 0.541 -0.199 0.880 0.260 0.190 

6 RangeAAP 0.172 0.946 -0.100 0.838 0.153 0.166 

7 DMLav 0.459 0.693 -0.050 0.143 0.977 0.051 

8 DAPav -0.163 -0.050 0.956 0.123 0.018 0.972 

9 VMLav 0.946 0.258 -0.163 0.934 0.262 0.141 

10 VAPav 0.609 0.733 -0.070 0.950 0.104 0.106 

11 AMLav 0.921 0.336 -0.169 0.946 0.194 0.139 

12 AAPav 0.461 0.866 -0.056 0.976 0.054 0.057 

13 DMLRMS 0.491 0.689 -0.047 0.191 0.972 0.068 

14 DAPRMS -0.180 -0.081 0.962 0.146 0.048 0.981 

15 VMLRMS 0.941 0.278 -0.165 0.923 0.269 0.173 

16 VAPRMS 0.586 0.757 -0.088 0.951 0.125 0.153 

17 AMLRMS 0.911 0.363 -0.169 0.939 0.196 0.152 

18 AAPRMS 0.449 0.876 -0.071 0.977 0.072 0.085 

 

The similarities/dissimilarities of the ML and AP directions for RMS velocities between 

conditions four and one are shown by the Bland and Altman’s plots of Figures 7.6 (a) and (b).    
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(a)                                                                       (b) 

Figure 7.6. Bland and Altman plots of the correlations of variables with their components for 

(a) the mCTSIB condition one (GEO) and (b) the mCTSIB condition four (FEC) (Ojie & 

Saatchi, 2020) 

The ML direction showed greater similarity as compared to the AP direction as indicated by 

their respective mean differences of 0.46 cm/s and 1.93 cm/s. This suggested that the ML 

direction was less sensitive in differentiating the sway between the two conditions and may 

produce less information concerning the performance of the vestibular system in comparison 

to the AP direction. Comparing the ratio of their mean differences, the ML direction was 

approximately 4.20 times lower in magnitude than that of the AP direction, suggesting a 

greater sway occurred in the AP direction as compared to the ML direction.  

The consistency of the bias as indicated by the scattering of the points i.e., above and below 

the zero line (indicated by the thin dash line), observed in the ML direction was smaller as 

more points were scattered above and below the zero line in comparison to that obtained in 

the AP condition. This highlighted with lower certainty as compared to the information of the 

AP direction that the sway in condition four was greater than that in condition one. The range 

of the limits of agreement of the ML direction (11.85 cm/s) in comparison to that of the AP 

direction (7.17 cm/s) suggested that there were more variations in the ML direction as 

compared to the AP direction. Based on the analysis of all the sensory systems, the vestibular 

system in comparison with the proprioceptive and visual systems showed smaller coherence 

of sway across the subjects as indicated by the range of the limits of agreement (7.17 cm/s). 

The less coherence of the vestibular system shows that even among healthy subjects, the 

  



131 
 

performance of the vestibular system to balance varies and that this incoherence should be 

taken into consideration when comparing vestibular functions.  

The median and interquartile ranges of the RMS velocities for the four conditions of the 

mCTSIB are shown in Table 7.4. Considering the AP direction, the values of the medians and 

the interquartile ranges (IQR) are in ascending order of magnitude from conditions one to 

four. The IQR indicated that a closely related characteristics of sway were exhibited by 

subjects in condition one as compared to the other three conditions of the mCTSIB. Similarly, 

condition two had less variations as compared to condition three, with the greatest variation 

observed in condition four of the mCTSIB.  

Table 7.4. The median and interquartile range (IQR) of the RMS velocity in ML and AP 

conditions of the mCTSIB (Ojie & Saatchi, 2020). 

Conditions of the modified clinical 

test for sensory interaction with 

balance (mCTSIB) 

RMS velocity in the 

ML direction 

RMS velocity in the 

AP direction 

Median IQR Median IQR 

Condition one (all balance-related 

sensory systems) 
3.56 3.77 3.15 1.18 

Condition two (proprioceptive and 

vestibular systems) 
3.86 3.73 3.50 1.74 

Condition three (visual and vestibular 

systems) 
3.81 2.84 3.59 2.37 

Condition four (vestibular systems) 4.02 3.11 4.24 3.93 

 

The median based Levene’s test showed homogeneity of variance for the ML direction (F 

(3,80) = 0.066, p = 0.978) across the conditions of the mCTSIB test. In contrast the result of 

the median based Levene’s test for the AP direction showed heterogeneity of variance across 

all conditions (F (3,80) = 3.61, p = 0.017).  The test of statistically significant difference using 

the Friedman test across the four conditions of the mCTSIB showed that no statistically 

significant difference existed for the ML direction (𝑥2(3) = 6.52, 𝑝 > 0.05)  while for the 

AP direction, the result showed that a significant difference existed (𝑥2(3) = 32.71, 𝑝 <

0.01). This highlighted that the ML direction was less sensitive to postural sway in 

comparison to the AP directions.  

Using the Sign Test, Post hoc analysis was conducted between the paired conditions (i.e., 

conditions 1 and 2, 1 and 3, 1 and 4, 2 and 3, 2 and 4, 3 and 4) using the RMS velocities in 

the AP direction. The Bonferroni correction was used, resulting in a significant level that was 
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set at p < 0.0083 ( 𝛼 =
0.05

6
 = 0.0083) for significance. The result for the median (IQR) for the 

four conditions were 3.15 (2.71 to 3.89), 3.50 (2.99 to 4.73), 3.59 (2.97 to 5.34) and 4.24 (3.62 

to 7.55) respectively. The result of the Sign test showed no significant difference for the paired 

conditions of one and two (p = 0.027), and two and three (p = 0.383). However, the Sign test 

showed significant differences for the paired conditions of one and three (p = 0.007), one and 

four (p < 0.001), two and four (p < 0.001) and three and four (p = 0.001). This indicated that 

condition one (vestibular, proprioceptive and visual systems) was more similar to condition 

two (vestibular and the proprioceptive systems) as compared to condition three (vestibular 

and visual systems) and four (vestibular system) respectively.      

7.4. Summary 

In this chapter, principal component analysis (PCA) was used to investigate the structural 

relationship (patterns) between the four conditions of the mCTSIB based on the sway 

measures obtained from the mediolateral (ML) and anterior-posterior (AP) sway of 21 healthy 

adult subjects. The measures were obtained from the centre of mass (COM) projected sway in 

standstill position. Using the root mean square (RMS) measure of the velocity and 

acceleration, the actual magnitude of the sway from the various directions were investigated 

using statistical methods such as the Bland and Altman’s method and analysis of variance 

methods to measure their relationship. The results of the study suggested that the interaction 

of the vestibular system with the proprioceptive system contributed more in maintaining 

balance in standstill position than the interaction between the vestibular and visual systems. 

The finding in this study is in agreement with those obtained in Peterka (2002). The findings 

in Peterka (2002) suggested that healthy adults were more dependent on their proprioceptive 

system as compared to their visual system in a well-lit environment (Peterka, 2002; Horak 

2006).  

The AP direction was more sensitive to balance related sensory information than their ML 

counterparts in a standstill position. The finding in this study is in agreement with those 

obtained in della Volpe et al. (2006). In their study, they observed that the average centre of 

pressure (COP) velocity and the RMS of COP in the AP direction was capable of 

differentiating between patients with chronic lower back pain (CLBP) and healthy subjects. 

However, no significant difference was observed in the ML direction between the two groups 

using same measures (della Volpe et al., 2006).  
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The proprioceptive system, showed less variability across the subjects as compared to the 

vestibular and visual systems. The findings in this study agreed with similar findings in 

Fukuoka et al. (2001). In their study, less inter-subjects’ variability was observed with the 

proprioceptive system as compared to the visual and vestibular systems in an upright posture 

using the ankle strategy (Fukuoka et al., 2001).  

The findings of the study could assist in better interpreting accelerometry recorded data 

obtained using mCTSIB test for diagnosing balance dysfunctions and understanding the 

operation of the sensory systems. 
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Chapter 8 Investigation of the interaction of the balance related sensory 

systems for human balance using Kohonen neural network 

8.1. Introduction   

Balance maintenance is a joint process of the interaction between the balance related sensory 

systems and the central nervous system (CNS). The CNS in addition to other activities plays 

an important role of correctly integrating the information from these sensory systems i.e., 

visual, proprioceptive and vestibular systems (Peterka., 2002). The balance related sensory 

systems act as sensors in providing the necessary information pertaining to its specific 

functionality towards maintaining balance (Ojie & Saatchi, 2021). For example, information 

of visual cues are provided by the visual system (Assländer et al., 2015); information of the 

position and movement of the limbs and trunk are provided by the proprioceptive system 

(Proske & Gandevia, 2012); information of the acceleration of the head and spatial orientation 

are provided by the vestibular system (Zalewski, 2015).  

To examine these systems, clinicians commonly use a standstill balance test called the modified 

clinical test of sensory interaction and balance (mCTSIB) (Wrisley & Whitney, 2004; Cohen 

et al., 2019). In balance analysis, sway from these systems are usually represented in the medio-

lateral (ML) and anterior-posterior (AP) directions. These directions contain information that 

are necessary in understanding the behavioural patterns inherent to the sensory systems. Most 

studies have utilised these directions in conducting postural sway analysis. Roh et al. (2021) 

investigated the differences in postural control between healthy young and old people under 

various four gaze tasks (fixation, saccade, pursuit, and vestibular-ocular reflex) using their COP 

mean sway amplitude in the ML and AP directions. The result suggested that postural sway 

significantly reduces with saccade eye movement for both young and old while the vestibular-

ocular reflex results in greater postural sway (Roh et al., 2021). Similarly, Shafizadeh et al. 

(2020) investigated the effect of age and task difficulty on postural sway, variability and 

complexity among children, young adults and older adults using their respective COP sway 

displacement in the ML and AP directions. The result showed that children and older adults 

had greater sway area and complexity and less postural variability in more difficult tasks 

(Shafizadeh et al., 2020).  

In this chapter, Kohonen neural network (KNN) was utilised to investigate the behaviour and 

contribution of the balance related sensory systems in maintaining balance. The KNN was used 

to cluster the respective time domain measures in the ML and AP directions of 23 healthy adult 
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subjects, who were engaged in the mCTSIB. External measures of clustering performances 

such as purity, precision, recall and F-measure were used to examine the resulting clustering 

and to analyse their interactions and behaviours of the sensory systems as it pertains to their 

direction of sway. The results for the parameters of purity, precision, recall and F-measure were 

higher in the AP direction as compared to the ML direction by 7.12%, 11.64%, 7.12% and 

9.5% respectively, with their differences statistically significant (p < 0.05). The result obtained 

showed that the sensory systems mostly affect the AP direction as compared to the ML 

direction. However, the visual system was more effective in reducing the sway in the ML 

direction as compared to the proprioceptive system. Similarly, it was observed that the 

proprioceptive system was more effective in controlling the velocity in the AP direction as 

compared to the visual system. Also, it was observed that the visual system was more effective 

in controlling the acceleration in the AP and ML direction and the ML velocity. Thus, the visual 

system reduces the ML velocity and the acceleration of subjects, while the proprioceptive 

system reduces the AP velocity of subjects.   

8.2. Chapter related methodology  

8.2.1. Data collection 

Twenty-three healthy adult subjects (10 males and 13 females) with mean (standard deviation) 

of age, height and weight: 24.5 (4.0) years, 173.6 (6.8) cm, 72.7 (9.9) kg, took part in the study. 

The subjects were involved in the mCTSIB while the developed accelerometry transmitter 

device discussed in chapter four was attached to each subject at the approximate position of 

the illac crest. The subjects stood on a marked white surface to ensure consistency of the 

distance from the wall and the distance between the feet placement (30 cm apart). Thirty 

seconds of accelerometry data in the ML and AP directions were obtained. Ethical approval 

was obtained from the university ethics committee before carrying out the study.  A subject 

with the device attached to his illac crest  is shown in Figure 8.1. 
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Figure 8.1. A subject standing on a marked white surface with the device attached to the 

position of the illac crest while performing condition two of the mCTSIB test (source: Ojie & 

Saatchi, 2021)  

8.2.2. Data analysis 

The analysis of the data was carried out in three stages: (i) conversion of the raw data from the 

accelerometry device into sway information, (ii) clustering of the sway information and (iii) 

interpretation of the clustering results to examine the information present in ML and AP sway 

directions. 

 

8.2.2.1 Extracting sway information from the accelerometry data 

The digital outputs (units of least significant bits (LSB)) of the accelerometry data consisted of 

the accelerations of the tri-axial accelerometer (x, y and z). The digital outputs were divided by 

the sensitivity scale factor (16384 LSB/g for the full-scale range of 2gs) in units of LSB/g to 

obtained the accelerations in units of gravity (g = 9.8/m2). The accelerometer signals were low 

pass filtered using a Butterworth filter of second order with a cutoff frequency of 4 Hz. The 

resultant acceleration R, the directional cosines and the ground position in the ML (dx) and AP 

(dy) directions were obtained using Equations (5.1) to (5.3) respectively. Subsequently, the 
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RMS values of the position, velocity and acceleration were obtained using Equations (7.6) and 

(7.7) respectively. The RMS measurements were employed due to its effectiveness in sway 

differentiation across the conditions of the mCTSIB test (Ojie & Saatchi, 2020).   

 

8.2.2.2. Clustering of the postural sway information 

Firstly, correlation analysis was conducted on the RMS measures of the position, velocity and 

acceleration of the ML and AP sway to identify variables with strong correlation. The threshold 

for highly correlated variables was 0.85 or greater (Vatcheva et al., 2016). Prior to correlation 

analysis, the Shapiro-Wilk test of normality with significance level set to 0.05 was used to 

establish whether the data were normally distributed. Kendall’s tau correlation was used when 

the data deviated from normality while Pearson correlation was used otherwise (de Winter et 

al., 2016). The clustering of the variables consisted of two stages. The two-stage approach has 

been shown to be computationally more effective (Vesanto & Alhoniemi, 2000). The first stage 

involved clustering of the uncorrelated variables and forming prototype vectors using KNN 

with a 10 by 10 neuron in its output layer. A MATLAB® batch algorithm was used to process 

the data.  Clustering analysis was carried out by pairing each of the three conditions of the 

mCTSIB with condition one as the reference (as condition 1 incorporated all the balance related 

sensory systems). Three pairs were formed in the clustering process i.e., conditions: 1 and 2, 1 

and 3, and 1 and 4. The number of iterations to train KNN was set to 1000 with the default 

initial neighborhood size of 3 neurons. The training and test sets were the same and consisted 

of the entire dataset as the aim was to investigate the interactions and not to use the Kohonen 

network as a data classifier (Ojie & Saatchi, 2021).   

 

The second stage is defined by the use of the K-means algorithm to cluster the prototype vectors 

formed in the first stage by the KNN clustering of the data.  Using the K-means algorithm, the 

dataset is divided into K clusters such that the within cluster sum of square distance is 

minimized (Hartigan & Wong, 1979). To carry out the clustering process, the prototype vectors 

were represented by their centroids and then clustered. The prototype vectors consisted of 

neurons which contains at least one input data point. The number of clusters (K) was 

determined by performing K-means clustering of the centroids for thirty times with K varying 

from 2 to 30, while evaluating the separation between the clusters using the Davies-Bouldin 

(DB) index. The DB index is an internal evaluation measure used to evaluate cluster separation 
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by considering the ratio of within to between clusters (Davies & Bouldin, 1979). The equation 

for calculating the DB index is shown in Equation (8.1).    

 

              𝐷𝐵 =
1

𝑘
∑ 𝐷𝐵𝑖

𝑘
𝑖=1 ,        𝐷𝐵𝑖 = 𝑚𝑎𝑥𝐷𝐵𝑖𝑗,        𝐷𝐵𝑖𝑗 =  

𝜎𝑐𝑖
+𝜎𝑐𝑗

‖𝜇𝑐𝑖
−𝜇𝑐𝑗

‖
                                 (8.1) 

Where  𝜇𝑐𝑖
 is mean of cluster ci,  𝜎𝑐𝑖

 is standard deviation of cluster ci, 𝜇𝑐𝑗
 is mean of cluster cj, 

𝜎𝑐𝑗
 is standard deviation of cluster cj, DBij is an array of DB indices for cluster i with respect 

to the jth cluster, where i ≠ j, j = i+1:k, DBi is DB index for the ith cluster. The number of clusters 

with the minimum DB was used for external evaluation.  

 

The minimum DB index has been suggested not to be the optimal, hence analysis at other local 

optimal were conducted with the number of clusters (K) used for the clustering selected based 

on the highest F-measure (Vesanto & Alhoniemi, 2000). It was assumed that the DB index 

utilised for the clustering between conditions 1 and 4 would be sufficient for other conditions 

since lesser differences are expected. The built in K-means algorithm in the MATLAB® 

software was used for the implementation of the K-means clustering and the default distance 

metric was Euclidean. 

 

8.2.2.3. Clustering performance evaluation  

The K means clustering was conducted using the centroids of the prototype vectors obtained 

from the clustering of the Kohonen neural network. For clustering evaluation, these centroids 

were replaced by their actual data points. The data points were assigned to their respective class 

labels corresponding to the four conditions of the mCTSIB. Each cluster was represented by 

the class label with the majority of the data points present in the cluster and the selected class 

label could also be a representative of another cluster, if it was dominant in the cluster. The 

differences between the conditions of the mCTSIB test were examined using external 

evaluation measures such as purity, precision, recall and F-measure. The purity measure 

describes how coherent the data points are in the cluster i.e., the singularity of the cluster 

(Huang, 2008). The greater the purity measure the more the separation and hence the difference 

between the categories. The precision of a cluster means the same as the purity of the category. 

The recall measure describes the number of points of the majority partition that is scattered in 

other clusters. The higher the recall, the more effective the clustering and hence the greater the 

separation. With the analysis limited to nonempty clusters, the lowest amount of purity is 
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obtained when all the samples converged to one cluster (Ojie & Saatchi, 2021). Similarly, the 

lowest precision is obtained when all the data samples are present in a single cluster. The lowest 

recall is obtained when only one sample is present in the cluster i.e., the recall varies with the 

number of clusters (Ojie & Saatchi, 2021). In the case of two clusters and equal number of 

samples, the lowest attainable value for purity, recall and precision is 0.5 respectively (Ojie & 

Saatchi, 2021). The formulae for these measures are stated in Equations (8.2) to (8.5).       

𝑝𝑢𝑟𝑖𝑡𝑦 =  ∑
𝑛𝑖

𝑛
𝑝𝑢𝑟𝑖𝑡𝑦𝑖,    𝑝𝑢𝑟𝑖𝑡𝑦𝑖 =

1

𝑛𝑖

𝑟
𝑖=1

𝑘
max
𝑗 = 1

{𝑛𝑖𝑗}                 (8.2)                                                                                                                                                         

 𝑝𝑟𝑒𝑐𝑖 =
1

𝑛𝑖

𝑘
max
𝑗 = 1

{𝑛𝑖𝑗} =  
𝑛𝑖𝑗𝑖

𝑛𝑖
                                                               (8.3) 

𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =  
𝑛𝑖𝑗𝑖

𝑚𝑗𝑖

                                                                                 (8.4) 

                                                     𝐹𝑖 =  
2×𝑝𝑟𝑒𝑐𝑖× 𝑟𝑒𝑐𝑎𝑙𝑙𝑖

𝑝𝑟𝑒𝑐𝑖+ 𝑟𝑒𝑐𝑎𝑙𝑙𝑖
=

2𝑛𝑖𝑗𝑖

𝑛𝑖+𝑚𝑗𝑖

                                                    (8.5)                                                                      

where nij is the number of elements of class j in the ith cluster, ni is the total number of elements 

in the ith cluster, n is the total number of elements of the dataset, purityi is the ith purity of the 

clustering. 𝑛𝑖𝑗𝑖
 is the maximum elements of the classes in the ith cluster, preci is the ith precision. 

𝑚𝑗𝑖
 is the number of elements of the resulting maximum jth class of the ith cluster, recalli is the 

recall of the ith  cluster. The F-measure of the clustering was obtained by taking the average 

over all the clusters as shown in Equation (8.6). 

                                                                   𝐹 =  
1

𝑟
∑ 𝐹𝑖

𝑟
𝑖=1                                                                (8.6) 

Fi is the F-measure of the ith cluster. For more details about these measures see Zaki & Meira 

(2020). 

Clustering was carried out 30 times to ensure the reliability of the result and was stoped at 30 

as no changes were observed above 30 repetitions. The corresponding external measures were 

recorded and utilised for further analysis. Statistical test of significance was performed to 

determine whether or not the result of the external measures was significantly different between 

the clustering. Independent sample t-test or Mann-Whitney U test was used depending on the 

result of test of normality. The analysis packages used for clustering and statistical analysis 

consisted of MATLAB® (version 2021a) and SPSS® (version 24) respectively. 
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8.3. Results and Discussion 

8.3.1 Correlation results and determination of the number of clusters  

The correlation results between the variables using the weight planes of the KNN are shown in 

Figure 8.2.  

 

         

(a)                                                                                   (b) 

 

                                  (c) 

Figure 8.2. Weight planes showing the correlation between the variables. (a) RMS position, 

(b) RMS velocity, and (c) RMS acceleration respectively. The neuron positions are indicated 

on the horizontal and vertical axes, with closely related patterns indicating strong correlations 

(Ojie & Saatchi, 2021).  
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The most negative connections are represneted by the black colours, the strongest positive 

connections are represented by the yellow colours and the red colours represented no 

connections between the input of the neurons. Utilizing KNN, the weights planes are used as 

indication of correlations between the variables, where strong correlations are indicative of 

closely related patterns. Strong correlations can be observed between the RMS velocity and 

acceleration as indicated by their closely related colors. The distribution of each variable was 

determined using the Shapiro-Wilk test with p-value set to 5%. The test indicated that the 

variables were not a representative of a normal distribution (p < 0.05). As a result, correlation 

analysis was conducted using the Kendall’s tau correlation and the result showed a significantly 

strong positive correlation between the RMS velocity and RMS acceleration (rτ (21) = 0.929, 

p < 0.01). The correlation between the RMS displacement and RMS velocity showed a 

significantly  weak correlation  (rτ (21) = 0.344, p = 0.022). Similarly, a weak significant 

positive correlation was observed between the variables of RMS displacement and RMS 

acceleration (rτ (21) = 0.32, p = 0.032). Thus several analysis of the clustering relationship was 

carried out using the variables of RMS displacement and RMS velocity, RMS displacement 

and RMS acceleration.     

 

The application of the K- means clustering requires the determination of the number of clusters 

(K). The clustering between conditions 1 and 4 were evaluated using the Davies Boulding (DB) 

index to determine the number of clusters required for the K-means algorithm. The lower the 

DB index the better the clustering. The clustering of conditions 1 and 4 was used as the 

reference because the greatest disparity was expected in these conditions. The results of the DB 

index for clusters K = 2 to 30 are plotted in Figure 8.3. Figure 8.3 illustrates the averages of 30 

repetitions for the clustering with K = 2 to be lowest, although other local minima can be seen 

to exist at K = 4 and 9. Futhermore, the F-measure was used to determine which cluster K=2, 

4 and 9 was most effective. The F-measure was used since it represents the weighted harmonic 

mean between the recall and the precision.  
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Figure 8.3. Davies-Boulding (DB) index values for clusters K, showing K = 2 as the 

minimum (Ojie & Saatchi, 2021) 

The clustering was repeated 30 times each for the number of clusters (K) equals to 2, 4 and 9, 

to ensure the reliability of the result, and the F-measure was obtained for each repetition. The 

mean F-measure for 30 repetitions for the number of clusters (K) equal to 2, 4, and 9 were 

0.717, 0.448, and 0.249 respectively for the AP direction. Similarly, for the ML direction, the 

result of the mean F-measure for 30 repetitions for the number of clusters (K) equal to 2, 4, and 

9 were 0.532, 0.356, and 0.246 respectively. Since the F-measure for the number of cluster (K) 

equal to 2 was higher, subsequent clustering of the K-means were based on two clusters.  

8.3.2. Clustering results  

8.3.2.1. Conditions 1 and 2 

8.3.2.1.1. Clustering using the RMS displacement and acceleration as inputs 

Condtion 2 refers to exclusion of the visual system during the balance test. The clustering using 

the displacement and acceleration variables was carried out due to no strong correlation 

between the variables as indicated above in section 8.3.1. The number of iteration was set to 

1000 and the neighboorhood size was 3 neruon. The result of the clustering using the 

displacment and acceleration variables for conditions 1 and 2 for both the AP and ML 

directions are shown in Figure 8.4.  
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(a)                                                                      (b) 

         

         (c)                                                                            (d)         

Figure 8.4. Plot of neighbourhood distance and input vector hits of conditions 1 and 2. (a, b) 

representing the AP direction, (c,d) representing the ML direction. The positions of the 

neurons are represented by the horizontal and vertical axes. 

The map of the neighborhood distance plot of the AP direction suggested a low level of 

coarseness at the bottom left with a brighter section seen at the top left, top right, and bottom 

right. As indicated by the input plane, the data samples bounded by the coarse sections of the 

neighbourhood map are small (approximately 10 data points) in comparirson to the data 

samples at the finer sections of the map. The brighter/finer sections indicate close similarities 

among the data points and as such a close similarity between the two conditions is noticeable 

in the AP direction. The data sample consisted of 46 data points of which 23 data points belong 

to each condition. However, a mixture of approximately 36 points in the finer section of the 

map was observed. This is an indication of high level of randomness in the clustering.  

Similarly, in the ML direction, it was observed that the clustering as indicated by the 

neigborhood map is less coarse as compared to the AP clustering. The coarse section is located 
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at the right most part of the map. As indicated by the input plane (Figure 8.4 (d) ), almost all 

of the data points of the clustering (approximately 42 data points)  are situated at the finer 

section of the map. This is an indication of poor clustering in the ML direction. The poor 

clustering infers more similarity of the values in this direction and hence infers the occurrence 

of reduced sway differences in comparison with those of the AP direction. The coarser the 

clustering, the lower the connection/similarities between the data points of the conditions i.e. 

conditions one and two. A fine map across almost all the entire data points for both the AP and 

ML conditions can be observed which suggested that the change in position and acceleration 

were similar for most of the participants. However the separation could be among the data 

points of the same group which would infer greater inconsistency in the results. Thus it is 

necessary to evaluate the clustering using external measures such as purity, precision, recall 

and F-measure. As already stated in the data analysis section, the values of these measures in 

this study i.e. purity, precision and recall, varies from 0.5 to 1 for two clusters, with 0.5 been 

the minimum clustering performance and hence refering to the greatest similarity and 1 been 

the maximum clustering performance which infers greatest disparity.  

A visual representation of the median of the clustering result is shown in the bar chart of Figure 

8.5. The median value showed that the external values for the AP direction were higher than 

those of the ML direction by 0.04, 0.08, 0.04 and 0.072 for the purity, precision, recall and F-

measure respectively. 

 

Figure 8.5. Bar chart representation of the external evaluation measures: (a) AP and (b) ML 

directions from the clustering using RMS position and acceleration. 
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In comparison to the mimimum possible value of  0.5, it can be observed that exclusion of the 

visual system affects the change in position and acceleration in both directions, although it 

produces a higher change in AP direction than ML direction. The interquartile range i.e. the 

difference between the 75th percentile and 25th percentile, defines the variability in the 

clustering. The value of the interquartile range for the measures of purity, precision, recall and 

F-measure were 0.044, 0.032, 0.044, and 0.027 for the AP direction and 0.044, 0.045, 0.044 

and 0.044 for the ML direction respectively, thus suggesting similar variability. The result of 

these values are presented in Table 8.1. 

Table 8.1. Values of external measures of the clustering between conditions 1 and 2 using the 

RMS position and acceleration. 

Parameter 

AP Direction ML Direction 

Purity Precision Recall 
F- 

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.544 0.564 0.544 0.554 0.5 0.5 0.5 0.5 

Maximum 0.609 0.637 0.609 0.628 0.609 0.612 0.609 0.610 

Range 0.065 0.073 0.065 0.074 0.109 0.112 0.109 0.11 

Median 0.565 0.603 0.565 0.595 0.522 0.525 0.522 0.523 

Interquartile 

range 
0.044 0.032 0.044 0.027 0.044 0.045 0.044 0.044 

The test of significant difference between the measures were conducted using Mann-Whitney 

U test due to non-conformity to a normal distribution using the Shapiro-Wilk test with the p 

value set to 5%. The result showed that the differences between the external measures of the 

ML and AP direction were significant (p < 0.05). 

 

8.3.2.1.2. Clustering using the RMS position and velocity 

To aid easy reading, KNN neighbourhood maps and the input planes associated to the 

clustering results in this section, have been transferred to appendix 9. The results of the median 

values of the clustering performance measures between the RMS position and velocity are 

shown in Table 8.2.  
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Table 8.2. Values of external measures of the clustering between condition 1 and 2 using the 

RMS postiton and velocity. 

Parameter 

AP Direction ML Direction 

Purity Precision Recall 
F-

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.522 0.535 0.522 0.528 0.5 0.5 0.5 0.5 

Maximum 0.674 0.672 0.674 0.674 0.544 0.576 0.544 0.559 

Range 0.152 0.137 0.152 0.146 0.044 0.076 0.044 0.059 

Median 0.565 0.580 0.565 0.573 
0.522 0.530 0.522 0.526 

Interquartile 

range 
0.065 0.063 0.065 0.059 0.022 0.035 0.022 0.028 

The median value for the purity, precision, recall and F-measure for the AP direction were: 

0.565, 0.580, 0.565 and 0.573 respectively. Similarly, the median values for the purity, 

precision, recall and F-measure for the ML direction were: 0.522, 0.530, 0.522 and 0.526. This 

suggested that the change in position and velocity for the AP direction were greater than those 

for the ML direction. Therefore the AP direction was more sensitive to the exclusion of the 

visual system. Similarly, the greater the interquartile range the greater the clustering 

inconsistency between the two conditions. The interquartile range of the measures for the AP 

direction was 0.065, 0.063, 0.065, 0.059 for the purity, precision, recall and F-measure 

respectively.  The interquartile range for the measures of the ML direction were: 0.022, 0.035, 

0.022 and 0.028 for the purity, precison, recall and F-measure. This inconsistency could be as 

a result of more sway occuring in the AP direction as compared to the ML direction. The values 

of the median of the external measures are shown in Figure 8.6.  
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Figure 8.6. Bar chart representation of the external evaluation measures: (a) AP and (b) ML 

direction from the clustering using position and velocity 

In comparison to the median values of the measures of the clustering performance, the 

acceleration and velocity variables can be seen to produce similar results. However, the 

acceleration variables appears to be slightly more sensitve than the velocity variable in regards 

to the AP direction. Since the position variable is constant in both clustering the changes is due 

to the velocity and acceleration. Thus exclusion of the visual system resulted in a higher 

acceleration than the velocity in the AP direction. The test of significant difference between 

the measures were conducted using Mann-Whitney U test due to non-conformity to a normal 

distribution using the Shapiro-Wilk test with the p value set to 5%. The result showed that the 

differences between the external measures of the ML and AP directions were significant (p < 

0.05).     

8.3.2.2. Conditions 1 and 3  

8.3.2.2.1. Clustering using the RMS displacement and acceleration 

Condition 3 is defined by the subject standing on a sponge surface with the eyes open. In this 

condition the visual and the vestibular system were unaffected while the proprioceptive system 

was excluded. Thus, this condition is defined by the exclusion of the proprioceptive system. 

The result of the clustering of condition one and three of the RMS displacement and 

acceleration are shown in Figure 8.7.  
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(a)                                                                          (b) 

      

                               (c)                                                                              (d) 

Figure 8.7. Plot of neighbourhood distance and input vector hits of conditions 1 and 3. (a,b) 

representing the AP direction, (c,d) representing the ML direction. The horizontal and 

vertical axes are neurons positions. 

The clustering of conditions 1 and 3, along the AP direction as indicated by the neighbourhood 

distance plot, (Figure 8.7 (a)) appear to represent a bright/finer region across the KNN output 

map with only little shades of coarseness most especially at the middle and the bottom left of 

the plot. The input plane suggested that a major section of the data points approximately 39 out 

of 46 are located in the brighter regions. This suggested a poor clustering between conditions 

one and three as they are both divided into 23 data points each. Poor clustering infers close 

similarity between the conditions. In comparison with the neighbourhood distance plot of the 

AP clustering of condition one and two above (Figure 8.4 (a)), a slightly less fine map can be 

observed. This indicates that reduced differences in the acceleration and position occurred in 

the AP direction as a result of exclusion of the proprioceptive system. This does not imply that 

the proprioceptive system results in more acceleration and change in position, but that its 
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presence with the vestibular system is not as effective in reducing the change in position and 

acceleration as compared with the interaction of the visual system and the vestibular system. 

The result implies that the subjects’ change in acceleration and position was reduced because 

of the presence of the visual system. 

Similarly, the neighbourhood distance map of the ML direction (Figure 8.7(c)), appears to 

produce a finer/brighter region across the map, as indicated by only few shades of coarseness 

at the bottom left region which consists of approximately 7 data points. This suggested greater 

similarities between the two conditions and infers a reduced change in the position and 

acceleration values between the conditions in the ML direction. In comparison with the 

neighbourhood distance of the ML direction of the clustering between conditions one and two 

(Figure 8.4(c)), a smaller coarse clustering is observed in this condition. This is an indication 

that the visual system reduces the change in the ML position and acceleration as compared to 

the proprioceptive system.  

The median value shows that the external values for the AP direction was higher than that of 

the ML direction by 0.022, 0.030, 0.022 and 0.026 for the purity, precision, recall and F-

measure respectively. In comparison to the minimum possible value of 0.5, it can be observed 

that exclusion of the proprioceptive system affects the AP directional sway but not the ML 

sway as the median value was 0.5. The median values of the external evaluation measures of 

the resulting clustering are shown in the bar graph of  Figure 8.8. The value of the interquartile 

range for the purity, precision, recall and F-measure were 0.044, 0.076, 0.044, and 0.059 

respectively for the AP direction and 0.022, 0.030, 0.022 and 0.026 respectively for the ML 

direction, thus suggesting a greater variability in the AP direction. The test of significant 

difference between the measures were conducted using Mann-Whitney U test due to non-

conformity to a normal distribution which was obtained by the Shapiro-Wilk test with the p 

value set to 5%. The result showed that the differences between the external measures of the 

ML and AP directions were significant (p < 0.05). The result of these values are presented in 

Table 8.3.     
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Figure 8.8. Bar chart representation of the external evaluation measures: (a) AP and (b) ML 

directions from the clustering using RMS position and acceleration. 

Table 8.3. Values of external measures of the clustering between conditions 1 and 3 using the 

RMS position and acceleration. 

Parameter 

AP direction ML direction 

Purity Precision Recall 
F-

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Maximum 0.545 0.637 0.545 0.587 0.522 0.556 0.522 0.550 

Range 0.045 0.137 0.045 0.087 0.022 0.056 0.022 0.050 

Median 0.522 0.530 0.522 0.526 0.5 0.5 0.5 0.5 

Interquartile 

range 
0.044 0.076 0.044 0.059 0.022 0.030 0.022 0.026 
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8.3.2.2.2. Clustering using the RMS displacement and velocity 

The results of the median values of the clustering performance measures between the RMS 

position and velocity is shown in Table 8.4.  

Table 8.4. Values of external measures of the clustering between conditions 1 and 3 using the 

RMS position and velocity. 

Parameter 

AP Direction ML Direction 

Purity Precision Recall 
F-

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.522 0.525 0.522 0.523 0.5 0.5 0.5 0.5 

Maximum 0.587 0.628 0.587 0.607 0.522 0.556 0.522 0.550 

Range 0.065 0.103 0.065 0.084 0.022 0.056 0.022 0.050 

Median 0.565 0.613 0.565 0.594 0.5 0.5 0.5 0.5 

Interquartile 

range 

0.065 0.070 0.065 0.061 0.022 0.030 0.022 0.026 

The median value for the purity, precision, recall and F-measure for the AP direction were: 

0.565 0.613, 0.565 and 0.594 respectively. Similarly, the median values for the purity, 

precision, recall and F-measure for the ML direction were: 0.5, 0.5, 0.5 and  0.5. This suggested 

that the changes in position and velocity for the AP direction were greater than those for the 

ML direction. Therefore the AP direction was more sensitive to exclusion of the proprioceptive 

system. Similarly, the greater the interquartile range, the higher the clustering inconsistency 

between the two conditions. The interquartile range of the measures for the AP direction were 

0.065, 0.063, 0.065 and 0.059 for the purity, precision, recall and F-measure respectively.  The 

interquartile range for the measures of the ML direction were: 0.065, 0.070, 0.065 and 0.061 

for the purity, precison, recall and F-measure respectively. The values of the median of the 

external measures are shown in Figure 8.9. 
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Figure 8.9. Bar chart representation of the external evaluation measures: (a) AP and (b) ML 

directions from the clustering using RMS position and velocity (Ojie & Saatchi, 2021) 

Higher external measures were observed for the precision and F-measure  in the AP direction 

for the clustering of conditions 1 and 3 as compared to those for the clustering between 

conditions 1 and 2 i.e. 0.613 and 0.594 for the precision of the clustering for conditions 1 and 

3, against 0.580 and 0.573 for the clustering between conditions 1 and 2. This suggested that 

the propriceptive system was more effective in reducing the AP velocity of the subjects as 

compared to the visual system. However, the values of the external meaures for the clustering 

of the ML position and velocity were lower for condtions 1 and 3 as compared to those of  

conditions 1 and 2. This suggested that the visual system was more effective than the 

proprioceptive system in reducing the ML velocity. The test of significant difference between 

the measures were conducted usng Mann-Whitney U test due to non-conformity to a normal 

distribution using the Shapiro-Wilk test with the p value set to 5%. The result showed that the 

differences between the external measures of the ML and AP direction were significant (p < 

0.05).     
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8.3.2.3. Conditions 1 and 4 

8.3.2.3.1. Clustering using the RMS displacement and acceleration 

Condition four involves the use of only the vestibular system to balance. The clustering results 

produced by the Kohonen map are shown in Figure 8.10.  

      

(a)                                                                         (b) 

      

                               (c)                                                                               (d) 

Figure 8.10. Plot of neighbourhood distance and input vector hits of conditions 1 and 4. (a,b) 

representing the AP direction, (c,d) representing the ML direction. The horizontal and 

vertical axes are neurons positions. 

A larger darker section can be seen for the neighborhood distance plot for both the AP and ML 

directions as shown in Figures 8.10 (a) and (c) in comparison with that of the clustering of 

conditions one and two (Figures 8.4 (a) and (c)), and conditions one and three (Figures 8.7 (a) 

and (c)) above. These darker colours shows a coarse clustering for both the AP and ML 

directions. However, the AP direction appears to be coarser, as there are majority of the data 
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points  (indicated by the input vector hits of Figure 8.10 (b))  located in the coarse region. Thus 

more disparity is expected for the AP direction as compared to the ML direction. This is an 

indication of more change in the RMS position and acceleration in this condition. The resulting 

clustering of the external measures perfomance values are shown in Table 8.5.  

 

Table 8.5. Values of external measures of the clustering between conditions 1 and 4 using the 

RMS position and velocity 

Parameter 

AP Direction ML Direction 

Purity Precision Recall 
F-

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.609 0.634 0.609 0.621 0.5 0.5 0.5 0.5 

Maximum 0.652 0.795 0.652 0.717 0.565 0.626 0.565 0.610 

Range 0.043 0.161 0.043 0.096 0.065 0.126 0.065 0.110 

Median 0.630 0.795 0.630 0.675 0.544 0.556 0.544 0.544 

Interquartile 

range 
0.022 0.068 0.022 0.042 0.022 0.046 0.022 0.033 

 

The median values of the external measures for the clustering in the AP direction were given 

as: 0.630, 0.795, 0.630, 0.675 for the measures of purity, precision, recall and F-measure 

respectively. Similarly, the median values of the external measures for the clustering in the ML 

direction were given as: 0.544, 0.556, 0.544, 0.544 for the purity, precision, recall and F- 

measure. As indicated by these values, a greater  change in the position and acceleration occurs 

in the AP direction as compared to the ML direction.  

 

In comparison with the measures for the clustering performance for conditions one and two 

(Table 8.1), it can be observed that the proprioceptive system is effective in reducing the change 

in acceleration and position in both the AP and ML directions. Similarly, in comparison to 

conditions one and three (Table 8.3), we observe a greater difference than those obtained in the 

clustering of conditions one and two. This indicates that the visual system was more effective 

than the proprioceptive system in reducing the acceleration and position sway. The effect of 

the visual system is more noticeable in the ML direction, as it results in the reduction of the 

median value of the clustering performance measures for the purity, precision, recall and F- 

measure to 0.5 for all the measures. The bar graph of the median values of the external measures 

are shown in Figure 8.11. 
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Figure 8.11. Plot of neighbourhood distance and input vector hits of conditions 1 and 4. (a) 

and (b) representing the AP direction, (c) and (d) representing the ML direction. The 

horizontal and vertical axes are neurons positions 

The bar graph shows an increase in the external measures for both the ML and AP directions. 

In comparison of this bar graph with that of conditions one and two above, it can be observed 

that the proprioceptive system helps the control of sway in both the AP and the ML directions. 

However, the proprioceptive system has greater control over the sway of the AP direction than 

the ML direction as indicated by the differences between the external measures. This indicates 

that the other sensory systems i.e., the visual and proprioceptive systems help the vestibular 

system to maintain a reduction in the change in acceleration and position. However, it can also 

be observed that a small change occurs across all the measures in the clustering results using 

only the vestibular system as against its combination with visual and proprioceptive systems. 

Therefore, a good functional vestibular system can help maintain balance to a great extent. 

Thus, it is important that the vestibular system is carefully examined in balance dysfunctions.   

The test of significant difference between the measures were conducted using Mann-Whitney 

U test due to non-conformity to a normal distribution using the Shapiro-Wilk test with the p 

value set to 5%. The result showed that the differences between the external measures of the 

ML and AP directions were significant (p < 0.05).     
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8.3.2.3.2. Clustering using the RMS displacement and velocity 

The results of the median values of the clustering performance measures between the RMS 

position and velocity are shown in Table 8.6.  

Table 8.6. Values of external measures of the clustering between conditions 1 and 4 using the 

RMS position and velocity. 

Parameter 

AP Direction ML Direction 

Purity Precision Recall 
F-

measure 
Purity Precision Recall 

F-

measure 

Minimum 0.609 0.679 0.609 0.675 0.5 0.5 0.5 0.5 

Maximum 0.696 0.795 0.696 0.730 0.565 0.613 0.565 0.600 

Range 0.087 0.116 0.087 0.055 0.065 0.113 0.065 0.1 

Median 0.652 0.795 0.652 0.717 0.522 0.542 0.522 0.532 

Interquartile 

range 

0.044 0.014 0.044 0.033 0.022 0.055 0.022 0.040 

The median values for the purity, precision, recall and F-measure for the AP direction were: 

0.652, 0.795, 0.652 and 0.717 respectively. Similarly, the median values for the purity, 

precision, recall and F-measure for the ML direction were: 0.522, 0.542, 0.522 and  0.532 

respectively. This suggested that the change in position and velocity for the AP direction were 

greater than those for the ML direction. Therefore the AP direction was more sensitive to the 

exclusion of the visual and proprioceptive systems. Similarly, the greater the interquartile 

range, the greater the clustering inconsistency between the two conditions. The interquartile 

range of the measures for the AP direction were 0.044, 0.014, 0.044 and 0.033 for the purity, 

precision, recall and F-measure respectively.  The interquartile range for the measures of the 

ML direction were: 0.022, 0.055, 0.022 and 0.040 for the purity, precison, recall and F-measure 

respectively. The values of the medians of the external measures are shown in Figure 8.12. 
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Figure 8.12. Bar chart representation of the external evaluation measures: (a) AP direction 

and (b) ML direction from the clustering using RMS position and velocity (Ojie & Saatchi, 

2021). 

The test of significant difference between the measures were conducted using the Mann-

Whitney U test due to non-conformity to a normal distribution using the Shapiro-Wilk test with 

the p value set to 5%. The result showed that the differences between the external measures of 

the ML and AP directions were significant (p < 0.05). 

8.3.2.4. Clustering using a combination of the variables of the ML and AP directions 

The results of the external measures of the clustering obtained by combining the ML and AP 

variables of the RMS position and velocity are shown in Figure 8.13. As indicated by the bar 

graph a reduced overall change was found in conditions 1 and 2, conditions 1 and 3 and finally 

conditions 1 and 4.  The median and interquartile range of the values of the measures are shown 

in Table 8.7.   
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Figure 8.13. Bar chart representation of the external evaluation measures of the combination 

of the AP and ML position and velocity (Ojie & Saatchi, 2021). 

Similarly, the result of the external measures of the clustering obtained by combining the ML 

and AP variables of the RMS position and acceleration are shown in Figure 8.14. As indicated 

by the bar graph a reduced overall change is noticeable in conditions 1 and 2, conditions 1 and 

3 and finally conditions 1 and 4.   

 

Figure 8.14. Bar chart representation of the external evaluation measures of the combinations 

of the AP and ML position and acceleration.  
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Therefore, a combination of the ML and AP variables result in reduced disparities between the 

conditions. This may be due to the existence of a mutually exclusive relationship between the 

two directions. As a person is swaying in one direction, say the AP direction, no sway occurs 

in the ML direction. Similarly, as a person is swaying in the ML direction, no sway occurs in 

the AP direction. Combining both directions could result in a reduced amount of sway as they 

counterbalance each other. Thus, it is necessary to determine the direction that represents the 

majority of the postural sway of the subject rather than combining the results, as this could 

affect the interpretation of the subject’s balance and could hide inherent patterns. However, the 

major direction of sway does not necessarily mean the direction with the largest magnitude of 

sway but the direction that represents the COM sway for a longer duration of time.  

8.4. Summary   

In this chapter, the patterns inherent in the sensory systems based on their direction of sway 

i.e. the mediolateral (ML) and anterior-posterior (AP) directions, were explored. Twenty-three 

healthy adult subjects of mean age (standard deviation): 24.5 (4.0) years, mean height (standard 

deviation): 173.6 (6.8) cm, mean weight (standard deviation): 72.7 (9.9) kg, with no previous 

history of balance dysfunction participated in the study. Kohonen neural network was used in 

carrying out the clustering between the conditions of the mCTSIB. The patterns inherent to the 

sensory systems were examined by using the external clustering performance measures i.e., 

purity, precision, recall and F-measure. The results obtained suggested that the visual system 

was more effective in reducing the acceleration of the subjects in both directions and the 

velocity in the ML direction. However, the proprioceptive system was more effective in 

reducing the velocity in the AP direction as compared to the visual system but had no effect in 

the ML velocity. 
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Chapter 9 Conclusion and further work 

9.1. Conclusion  

In this study, the applications of accelerometry with machine learning and statistical modelling 

methods were used to enhance the analysis of human balance. The cohort of subjects involved 

in the study were young healthy adults with mean (standard deviation) of age, height and 

weight: 24.5 (4.0), 173.6 (6.8), and 72.7 (9.9) kg respectively. The aim of the study was to 

develop computerised accelerometry techniques that will facilitate better understanding of 

human balance.  

To achieve the aim of this study, the following objectives were met:  

• Evaluated accelerometry based on the inverted pendulum to accurately quantify human 

balance with respect to actual physical units of length and angle.  

• Devised a setup that was used to investigate the effect of the centre of mass (COM) 

position to balance.  

• Obtained time domain balance related data from 23 healthy young adult subjects with 

the devised setup and algorithms.     

• Determined the time domain measures that are sensitive to the information of the 

sensory system. 

• Utilised principal component analysis (PCA), Bland and Altmans analysis method, and 

hypothesis testing to obtain information about the characteristics of the sensory systems 

in healthy young adult subjects.    

• Applied Kohonen neural network, K-means clustering and clustering evaluation to 

obtain information about the contribution and behaviour of the sensory systems to 

balance in subjects included in the study. 

9.1.2. Contributions to knowledge  

The contributions to the study are: 

I. Development of mathematical techniques to project the COM sway of the human body to 

the ground surface to allow accurate balance analysis. Trigonometry methods were adapted 

in these developments. Their evaluations were carried out using a devised setup that could 

compare both the manual measurement obtained from the setup and the calculated 

accelerometry measurements. Comparison of the methods were conducted using the Bland 
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and Altmans analysis method, and relevant statistical methods. The results confirmed the 

accuracy of the devised accelerometry techniques in characterising human balance.  

II. The effect of the COM position on postural sway was studied. From this, it was 

hypothesised that similar angular sways should produce similar ground displacements. To 

show this effect, an inverted pendulum system consisting of three plumb lines-plumb bobs 

system attached to a metal rod at 50, 75 and 100 cm at one of its ends, was devised. The 

devised accelerometry system was also attached to the metal rod and the setup was inclined 

at angles 0 to 90 degrees with 5 degrees between consecutive measurement. The angles and 

ground displacements were obtained manually, using protractor and measuring tape, and 

automatically, using the accelerometry system. The results of the angles and displacements 

from both methods were similar.  The result indicated that for a similar angle of inclination, 

the displacement on the ground surface differed with respect to the actual COM position of 

the plumb lines and bobs. This suggested that the COM position can affect the comparison 

of sway across subjects, with subjects of higher COM position tending to have larger sway 

and less stability. This in turn suggested that the base of support (BOS) for subjects with a 

higher COM should be greater than those with smaller COM position. To reduce the 

obscuring effect of the COM position for comparison purposes, the displacement should be 

normalised with the COM position, if the inverted pendulum model is employed. The result 

also suggested that methods of accelerometry that uses the integration of acceleration to 

obtain velocity and displacement without projection to the ground surface may not 

accurately represent the balance of a subject.  

III. The underling relationship between the interaction of the sensory systems to balance were 

investigated on 21 healthy adult subjects. The devised acceleromtery method was used to 

obtain time domain measures with the potential of representing balance while the subjects 

were involved in the four conditions of the modified Clinical Test of Sensory Interaction 

and Balance (mCTSIB). Principal component analysis (PCA) and other statistical methods 

were applied to the time domain measures to investigate the underlying behaviour of the 

performance and interaction of the sensory systems to balance. For the PCA analysis, the 

correlations obtained from the rotated component matrix were used in investigating these 

relationships, where similar correlation inferred close relationships in the behaviour of the 

sensory systems in the conditions under consideration. The results showed that the 

interaction of the proprioceptive and vestibular systems resulted in less sway as compared 

to the interaction of the visual and vestibular systems. The result also suggested that healthy 

adults relied more on their proprioceptive system to maintain balance in a well-lit 
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environment; the anterior posterior (AP) direction was more sensitive to the changes in the 

sensory systems than the mediolateral (ML) direction; and less variability among the 

subjects was observed in the interaction between the proprioceptive and the vestibular 

systems as compared to those of the visual and vestibular systems. The highest variability 

was observed with the vestibular system.  

This suggested that the proprioceptive system was more uniform among subjects than the 

visual and vestibular systems respectively. 

IV. The effects of the sensory systems to balance were evaluated on 23 healthy adult subjects 

using the sway data in the ML and AP directions and the application of Kohonen neural 

network (KNN), K-means clustering, clustering evaluation methods and related statistical 

methods. The subjects were engaged in the four conditions of the mCTSIB. Their resulting 

root mean square (RMS) sway of the position, velocity and acceleration in the ML and AP 

directions from the four test conditions of mCTSIB were used as inputs for the clustering 

process. The result suggested that the body sway associated with the sensory systems was 

more towards the AP direction. However, the ML direction was more sensitive to the 

inclusion/exclusion of the visual system while the AP direction was more sensitive to all 

of the balance related sensory systems, most especially the proprioceptive and vestibular 

systems. It was also observed that the visual system was more efficient in reducing the 

acceleration of the subjects as compared to the effect of the proprioceptive system. 

However, the proprioceptive system was more effective in reducing the AP velocity than 

the visual system.  Thus, to examine these systems, the AP velocity sway should mostly be 

used for the proprioceptive and vestibular systems while for the visual system, the ML 

velocity sway and accelerations in both directions should mostly be used.  

 

The findings and recommendations of this study are listed in the following headings. 

9.1.3. Accelerometry accuracy and time domain measures for balance analysis 

The accelerometry devised method in this study when evaluated against the setup used to 

measure ground projected sway and angles, based on physical units of measurement of cm and 

degrees respectively, showed excellent agreement between their results. This suggested that 

accelerometry can be used to measure sway accurately and reliably. 
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Using the devised accelerometry methods, the time domain measures capable of differentiating 

between the information of the sensory systems were investigated on fifteen healthy adult 

subjects with mean (standard deviation) of age, weight and height: 22.5 (3.4), 70.9 (7.5) kg, 

173.5 (9.8) cm respectively, using the modified Clinical Test of Sensory Interaction and 

Balance (mCTSIB). The time domain variables considered were the sways measures of the 

average, root mean square, and range of the position, velocity and acceleration in the AP and 

ML directions. The most effective variables for differentiating between the information of the 

sensory systems were the average, root mean square and range of velocity and acceleration in 

the AP direction. 

It was also observed that no significant difference occurred between the subjects in conditions 

two and three of the mCTSIB. This infers that healthy adult subjects utilise both the visual and 

proprioceptive system in similar manner to maintain balance.  

9.1.4. Centre of mass effect on postural sway analysis  

By analysing the effect of the centre of mass on postural sway using a devised inverted 

pendulum approach, it was observed that for the same angle of inclination, the ground protected 

displacement differed. This variation of the ground displacements has implications on the 

comparison of postural sway responses across subjects and for balance interpretations and 

interventions.  

This also implied that across similar base of supports, the balance of people with higher COM 

positions are expected to be less stable, if similar conditions existed among them. In this regard, 

differing interventions may be required. For example, the base of support and mechanical aid 

could be increased for people with higher COM positions to accommodate the COM interplay. 

Differing strategies to balance may also be introduced according to the COM position. 

For comparison of postural sway across subjects, it may be necessary to investigate people with 

similar COM positions, standardise the results of sway with the COM position of each subject, 

and to make comparison with the base of support of each subject. Comparing subjects of similar 

COM positions ensures the reliability and applicability of the sway analysis. Normalisation 

with the COM positions reduced the effect that the COM positions had on the results. However, 

this may affect the accuracy of the analysis as the COM is no longer taking into consideration. 

Comparison with the base of support is a holistic approach and ensures that the balance of the 

subject is taking into consideration.  
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9.1.5. Investigation of the sensory systems interaction 

By applying PCA and other statistical methods to investigate the interaction of the sensory 

system, it was observed that in a well-lit environment, young healthy adult subjects, relied more 

on the interaction between the proprioceptive and vestibular systems in comparison to the 

interaction between the vestibular and the visual systems. It was also observed that the AP 

direction was more sensitive to the information of the sensory systems as compared to the ML 

direction. Less variability in sway across the subjects was observed for the proprioceptive 

system as compared to the visual and vestibular systems.  

Thus, it may be necessary to enhance proprioceptive perception for young healthy adult 

subjects. Proprioceptive perception can be improved using proprioception training. With 

problems with the sensory systems, steps should be taking to accommodate the sway in the AP 

direction. This may include improving/enlarging the base of support towards the AP direction.  

Clinicians should be aware of the variability in these systems when interpreting their results 

and should following a holistic approach to balance analysis. This can be ensured by making 

reference to the base of support of the individual in examining these systems. 

9.1.6. Behavioural characteristics of the sensory systems  

By applying Kohonen neural network (KNN), K-means clustering and clustering evaluation 

methods on the root mean square time domain measures of position, velocity and acceleration 

obtained from twenty-three healthy young adult subjects, it was observed that the 

exclusion/inclusion of the proprioceptive system had no effect on the ML direction of the 

position velocity and acceleration. However, noticeable changes were observed in the velocity 

of the AP direction. 

This indicated that the proprioceptive system for young adult subjects is a velocity controlling 

variable in the AP direction. Thus, enhancing the proprioceptive system can help reduce the 

velocity in the AP direction. Similarly, the examination of the effectiveness of the 

proprioceptive system to balance can be carried out using the AP velocity. 

The result also suggested that the exclusion of the visual system increased the velocity in the 

ML direction and the acceleration in both the ML and AP directions. In contrast, the exclusion 

of the proprioceptive system showed no changes on the ML velocity and had a lesser effect on 

the acceleration in the AP direction. This implies that the visual system is an acceleration 

controlling variable and reduces ML sway. Thus, enhancement of the visual system is 
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important to control the acceleration of a subject and to reduce the ML sway. The acceleration 

and ML sway should be used to assess the functioning of the visual system for balance analysis.  

Finally, the result suggested that the vestibular system affects more of the AP velocity and 

acceleration, as compared to the ML velocity and acceleration. Thus, the AP direction of sway 

should be used to access the functioning of the vestibular system for balance analysis. 

9.1.7. Limitation of the study 

Possible limitations of this study include the small sample size, and reduced measurement 

accuracy due to the manual setup used for evaluating the accelerometry system.    

9.2. Further work  

In this study, standstill balance analysis was investigated. However, human balance analysis 

can be considered in both static and dynamic conditions. Thus, further study will evaluate 

dynamic balance using the algorithms developed in this study. The proposed system will 

consist of several sensors which will be located at the different segments of the body. Also, in 

this study time domain measures were used. In further studies, frequency domain and spectral 

analysis could be used. The behaviour of these measures on healthy adult subjects will be 

determined and used as the basis for comparison. In further study, inclusion of larger 

participants can be considered. Similarly, the verification of the methods will be carried out on 

children and older adult groups to understand their balance characteristics. The study can also 

be extended to clinical trials to verify the methods on patients.  

The validation of the method against existing balance diagnostic methods such as force 

platform and camera-based methods can also be carried out. The refinement of the 

accelerometry device for ease of use in clinical environment can be carried out and the 

commercial aspects of the device, cost and its competitiveness can be explored. The system 

will require adaptation of medical devices regulatory issues and CE marking. The integration 

of the accelerometry device into the Cloud for data storage and Internet of Things (IoT) for 

ease of data access can be explored. The development of a customised software for diagnostic 

features can be developed. The end goal is to develop a medical device to assist clinicians in 

diagnosing balance related dysfunctions. 
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Appendix 2: Informed consent in paediatric research  
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Appendix 3: Introduction to good clinical practice eLearning (primary care)  
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Appendix 4: Research passport  
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Appendix 5: Participant information sheet  
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Appendix 6: Participant consent form  
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Appendix 7: Filtering from the gyroscope and accelerometer sensor and sway 

parameters of some subjects.  

 

(a) 

 

(b) 

Figure 7.1. Angle of the accelerometer signal: (a) Raw signal (b) filtered signal. 
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(a) 

 

(b) 

Figure 7.2. Angle of the gyroscope signal: (a) Raw integrated signal (b) filtered signal. 

 

                                  Figure 7.3. Angle of the complementary filter  
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(a)                                                               (b) 

  

 

                             (c)                                                              (d)  

Figure 7.3. The mCTSIB conditions for subject 1: (a) condition 1, (b) condition 2, (c) 

condition 3 and (d) condition 4 

 

The figure shows reduced values for the condition one, followed by condition two and three, 

with condition four showing the greatest amount of variation in values. There is more spread 

towards the ML direction for the displacement, velocity and acceleration in condition two than 

in condition three. This suggested that the removal of the visual system (condition 2) results in 

a greater change in the velocity of the ML direction. Similarly, more spread is seen in the AP 

direction for condition three than in condition two. This suggested that the proprioceptive 

system results in more AP spread.         
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(a)                                                              (b) 

 

                                                  (c)                                                                              (d)  

Figure 7.4. The mCTSIB conditions for subject 2: (a) condition 1, (b) condition 2, (c) 

condition 3 and (d) condition 4 
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Appendix 8: Box plot of the external measures for the clustering using the rms position 

and velocity  

    

                    (a) 

 

    (b) 

  

(c) 

Figure 8.1. Box plot of the resulting clustering of the external measures for the ML direction, 

conditions: (a) 1 and 2 (b) 1 and 3 (c) 1 and 4. The red line indicates the median value 
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(a) 

 

  (b) 

 

      (c) 

Figure 8.2. Box plot of the resulting clustering of the external measures for the AP direction 

conditions: (a) 1 and 2 (b) 1 and 3 (c) 1 and 4. The red line indicates the median value 
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Appendix 9: Kohonen clustering using rms position and velocity 

   

(a)                                                              (b) 

            

        (c)                                                     (d) 

Figure 9.1. Plot of neighbourhood distance and input vector hits of conditions 1 and 2. (a,b) 

representing the AP direction, (c,d) representing the ML direction. The horizontal and 

vertical axes are neurons positions. 
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(a)                                                                  (b) 

    

   (c)                                                                    (d) 

Figure 9.2. Plot of neighbourhood distance and input vector hits of conditions 1 and 3. (a,b) 

representing the AP direction, (c,d) representing the ML direction. The horizontal and 

vertical axes are neurons positions. 
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(a)                                                           (b) 

                 

                                               (c)                                                                  (d) 

Figure 9.3. Plot of neighbourhood distance and input vector hits of conditions 1 and 4. (a,b) 

representing the AP direction, (c,d) representing the ML direction. The horizontal and 

vertical axes are neurons positions. 

 

 

 

 

 

 

  

 
 



222 
 

 

 

 

 




