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Abstract

Multi-component fluid flows are frequently seen in both nature and industry, such
as gas-liquid flows (air-water) and liquid-liquid flows (oil-water). The accurate
simulation of such fluid flows requires models to: (i) solve the governing fluid
dynamics equations; (ii) reproduce known boundary behaviour at the free surface
between the fluids; (iii) embed known surface physics representative of that of the
target fluid object, i.e., surface tension when simulating drops. Here, meso-scale
modelling techniques offer attractive options for simulating such flows, where due
to working at a smaller scale than macro-scale approaches, one can investigate
more detailed interactions and phenomena, whilst also recovering the continuum
fluid dynamics equations.

The development of the lattice Boltzmann method (LBM), a bottom-up kinetic
scale Navier-Stokes solver, furnishes the ability to model such macro-scale properties
whilst allowing for the inclusion of meso-scale physics. The chromodynamic multi-
component extension of this (cMCLBM) treats the fluids as separate species, with
a diffused interfacial region (de facto surface), where discrete immersed interface
forces can be applied to embed known physics of the fluid object. Theoretically, such
a modelling approach should be capable of simulating a range of fluid objects, for
example: liquid drops, vesicles (erythrocytes), and capsules, by manipulating the
treatment of the interface.

This work explores extensions to the cMCLBM, with a final objective of modelling
vesicles (tailored towards erythrocytes) using this essential approach. Before this,
however, it is sensible to confirm the fundamental foundations of the model, i.e., the
model’s kinematics and dynamics. As such, work first focuses on the simulation of
less complex fluid objects (drops), investigating the utility of the model when applied
to fluid flows with a density contrast, where stability is strained. Here, the kinematics
and dynamics of the model are assessed in detail through both mathematical
analysis and simulation data, to quantify its compliance with known continuum
hydrodynamic conditions such as: mutual impenetrability, the no-slip condition,
and stress balance across the interface. Following the enhanced understanding of
the cMCLBM gained from this work, the simulation of vesicles is targeted. The
primary outcome of this work is the development of a single framework approach to
modelling vesicle hydrodynamics, with promising possibilities for future applications
within haemorheology and microfluidics.
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1.1 Background and Motivation

The class of fluid mixtures described as immiscible fluids —fluids which are insoluble
in each other —can be found in a variety of physical fluid flows, the classic example
being that of oil and water. The understanding and modelling of such immiscible
fluid flows presents itself as an important objective in many fields, where such
flows are prominent, e.g., food rheology, geophysics, micro-fluidics, the study of fuel
cells, etc. Flow in all these systems are most often addressed in the continuum
limit of hydrodynamics. We ask in this thesis, can this same continuum limit,
albeit subject to interpretation, be used to encapsulate the dynamics, in computer
simulation, of more complex, hybrid objects? Specifically, by working in an adapted
continuum limit, a final objective is set for the modelling of flowing red blood cells
(RBCs, erythrocytes, or, more neutrally, vesicles), by treating them (erythrocytes)
as one immiscible fluid (cytoplasm) submerged in a background fluid (plasma), with
the membrane treated as an appropriate boundary between the two fluids (i.e., a
quasi-two-dimensional surface —the interfacial region between the fluids in diffused
interface models, although considered and treated as essentially two dimensional,
has a small and finite thickness). Such an enquiry is permitted as a consequence of
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the natural separation of length scales in the description, the physical erythrocyte
membrane having a thickness of order nm, the erythrocyte itself having a width of
order µm. This scale separation means mesoscale fluid dynamic simulation techniques
are attractive options for modelling. Of course, this approach to vesicle modelling
necessarily "integrates out" some microscopic detail (e.g., the biochemical properties of
the membrane) which is replaced in this work with a concept currently introduced as
a "shape energy description" of the local membrane. Once this concept is established,
we will ask if appropriate vesicle behaviour accrues from a computationally viable
model, conceived along the lines outlined above.

If one were to successfully establish this continuum view of vesicles, then the resulting,
enhanced ability to understand and model immiscible fluids acquires even greater
technological importance, as further applications, in fields such as bioengineering
and chemical engineering, will fall within range of simulation. A question then
arises as follows. If both liquid drops and vesicles are to be retained within the
same essential approach (i.e., considering vesicles as immiscible fluids with a diffused
interface within the continuum approximation) then in what ways must the modelling
approach differ? One would naturally assume that a vesicle model would have to
include more complex mesoscale physics to describe the more elaborate behaviour of
vesicles (which will, presumably, be derived from coarse-grained approximations of
more detailed microscopic physics) but the additional physics must also rely upon
an underlying stratum of ideas common to both vesicle and drop simulation. Put
another way, a single framework methodology’s vesicle limit and its drop limit (if
they exist) might well both rely on common physical and dynamical principles. To
address this issue, here, we are motivated to clarify the origins, within our essential
method (of lattice Boltzmann simulation- see below) of the kinematic and dynamical
boundary conditions (which relate the velocity and stress profiles across an interface).
Put another way, with a broad spectrum of applications in view, compliance with
a core set kinematic and dynamic conditions must be assured. Accordingly, the
behaviour at the liquid-liquid surface is a recurrent theme throughout this thesis.

For the discussed reasons, a model which allows the simulation of such immiscible
fluids, where meso-scopic physics may be incorporated, to develop an accurate
continuum scale description of the fluids, is very desirable. There is only a small
class of fluid solvers, appropriate for tackling the simulation of such flows. A
relatively new and attractive modelling technique is the lattice Boltzmann Method
(LBM), which uses a kinetic scale evolution equation to describe the hydrodynamics
of fluids, consistent with the weakly compressible Navier-Stokes equations. The
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multi-component extension of LBM (MCLBM), which allows for the simulation
of multiple immiscible fluids, presents itself as a natural candidate to tackle such
an investigation. The chromodynamic MCLBM (cMCLBM) variant is the one
implemented throughout all the work presented here.

1.2 Aims and Contribution of this Work

The broad aims of this work and the associated contribution to knowledge in the field
centre around the extension of a MCLBM variant, namely cMCLBM —the reasons for
using this variant are discussed in Chapter 2. This research focuses on the progressive
development and analysis of a suite of cMCLB models, to allow for the simulation
of more or less complex immiscible fluids (such as vesicles (complex —structured
membrane) and drops (less complex —no membrane)), whilst providing an enhanced
understanding of the simulation technique. The aims of this work, and the associated
contribution to knowledge, can be stated explicitly in three, progressive tiers:

(i) Assess the model’s kinematics and dynamics, as well as the coupling between
the two, to provide a better understanding of the methodology.

– An important component of simulating immiscible fluids at the mesoscale
is the accurate simulation of the boundary between the fluids (the interface
in cMCLBM). Hence, confirmation that the interface meets the kinematic
and dynamic hydrodynamic boundary conditions (introduced in Chapter 2)
and any subsequent understanding from this analysis, e.g., effects on
the stability of the method in certain flows, will provide an important
contribution to the field and enhanced methodological understanding.
To achieve this, both mathematical analysis of the methodology and
examination of simulation data on compliance with kinematical and
dynamical boundary conditions is presented.

(ii) Investigate the applicability of the method to immiscible fluids with a large
density contrast.

– Following (i), the applicability of the method to different flow scenar-
ios is tested, mainly as a proxy for stability, aiming to express the
model’s strengths and limitations. Again, with focus on compliance with
kinematical and dynamical boundary conditions, building on the work
in (i). Specifically, the aim here is to further investigate the model’s
suitability for simulating fluids with large density contrasts, curved
interfaces, small Reynolds numbers flows, density stratified flows and
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pseudo three-dimensional flows (i.e., axially symmetric two-dimensional
flow). In doing so, this will highlight current limitations and strengths
of the model, providing an enhanced understanding of the method and
reveal new directions for future work.

(iii) Development of a single-framework, three-dimensional cMCLBM for simulating
vesicle hydrodynamics.

– Following the enhanced understanding and conformation of our model’s
kinematics and dynamic from (i) and (ii) above, the cMCLBM method is
extended to the simulation of vesicle hydrodynamics in three-dimensions.
The utility of such a model is discussed further in Chapter 5, however,
this work presents itself as potentially the most appropriate and appealing
application of the cMCLBM in its current form. Developed here is a
novel, transparent, single-framework methodology for simulating vesicle
hydrodynamics, tailored towards human RBCs, which has the future
potential to be extended to many vesicle simulations through previously
developed methodologies. The understanding of the model’s kinematics
and dynamics stemming from aims (i) and (ii), helps develop the model,
as well as confirm its accuracy.

1.3 Thesis Outline

To start this thesis, Chapter 2 gives necessary background on both hydrodynamics
and lattice Boltzmann method, in order to to provide context, with further chapter-
specific literature found at the start of Chapters 3, 4 and 5. Chapter 3 presents
work to fulfil aim (i) and is the main methodology section of this thesis. From
this, Chapter 4 seeks to address aim (ii), as well as further the work in aim (i).
Finally, Chapter 5 distills preceding work around aim (iii), which utilises model
understanding from aims (i) and (ii). This work encapsulates the primary output
from this research, which is the development of the chromodynamic model for the
simulation of vesicles, tailored towards RBC dynamics. The significance of the
findings in these three Chapters is then discussed and evaluated in Chapter 6, where
future directions for the work are also given.
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2.1 Introduction

This chapter will provide much-needed background to support this thesis as follows.
In the present context, an exhaustive survey is inappropriate; what is called-for is a
contextualisation of the novel work presented. Accordingly, the content of this chapter
is sub-divided into two sections: first the broader topic of hydrodynamics and, then,
second, the more novel area of lattice Boltzmann equation simulation. The former
gives an overview of key hydrodynamics relevant to the work. Therefore, the governing
fluid dynamics equations, that describe the motion of the fluid at the relevant length
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scales will be introduced, followed by a consideration of important non-dimensional
quantities commonly used in fluid dynamics (which are reviewed throughout). To
conclude our hydrodynamics survey, kinematic and dynamic hydrodynamic boundary
conditions will be discussed, since a large proportion of the work herein alludes to
these boundary conditions. The second half of this background chapter will focus
on the topic of lattice Boltzmann equation simulation. Here we commence with
the relevant history, development and fundamentals of the method, introducing and
comparing salient collision operators and also multi-component lattice Boltzmann
method (MCLBM) variants commonly implemented. To close this section, simulation
boundary conditions are discussed, which will be referenced throughout the simulation
results presented in the remainder of this thesis.

In order for one to discuss the relevant hydrodynamics and simulation techniques
for their work, one must first be aware of the relevant length and time scales of
target phenomena. Fluid flows are described at varying length and time scales
and, depending upon the target scale at which one aspires to work, the governing
equations of the fluid and the modelling technique that may be implemented will vary.
Figure 2.1 presents the various length and time scales used within the mathematical
modelling of materials and fluid flows. As the work in this thesis focuses on the
investigation of immiscible drops, as well as erythrocytes (with a characteristic scale
of µm), it is logical, from Figure 2.1, that the modelling technique should span the
mesoscale.

Researchers interested in representing the behaviour of atoms and molecules would,
perhaps, deploy molecular dynamics (MD) [1, 2], which could be used to describe
the evolution of a system over time, where detailed forces and interactions between
molecules can be simulated. In order to produce significant results, the time scale of
the simulation must be adequately long enough to model the system and associated
phenomena. Due to this, and also the large number of degrees of freedom within
simulations, MD simulations have high comparative computational cost and are
therefore restricted in application to shorter time and length scales.

On the mesoscale, researchers interested in fluid flows that may contain some
physics characteristic of smaller length scales may still wish to address moderate time
and length scales. Such workers may opt for modelling techniques such as lattice
Boltzmann Method (LBM) [3, 4, 5, 6], Dissipative Particle Dynamics (DPD) [7, 8, 9]
and Smoothed Particle Hydrodynamics (SPH). In the case of LBM, a kinetic scale
evolution equation -effectively the equation of motion of a single particle probability
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Figure 2.1: Schematic outlining the hierarchy of length and time scales effective within the
modelling of materials and fluid flows, highlighting the scales where different descriptions
operate.

distribution function - is used to describe the time evolution of the latter, over an
Eulerian lattice. Importantly, the method has been shown to recover the continuum
Navier-Stokes equations (through a Chapman-Enskog procedure, soon to be discussed

—section 3.3.1). Dissipative Particle Dynamics (DPD) is more akin to that of MD
(and hence, potentially, a more suitable approach for workers from this background)
where fluid particles are essentially treated as clusters, or groups of molecules —which
can be considered a coarse grained approach —where Newton laws are enforced and
particle-particle interactions are simulated [7, 8]. Another Lagrangian, mesh free,
fluid dynamics technique is Smoothed Particle Hydrodynamics (SPH) [10, 11], which
was originally developed for astrophysical problems (where a boundary often does
not exist) and later applied to fluid dynamics. Within SPH, the domain is populated
by a set of particles that have material properties (such as mass and velocity), with
these particles’ interactions within the domain being controlled by what is known as
a smoothing function. In SPH, the Navier-Stokes equations are discretised in relation
to these particles, allowing the governing fluid dynamics equations to be solved. One
potential advantage over DPD, is that SPH has specific physical parameters (such as
viscosity), due to its direct derivation from the Navier-Stokes equations [12]. Clearly,
both DPD and SPH are natural contenders for the hydrodynamic simulation of
Lagrangian objects such as the vesicles and drops we consider; accordingly, some
of the issues which determine our choice of LB simulation a vehicle (other that of
an existing expertise, of course) is appropriate.
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When considering the relative computational cost of mesoscale simulation tech-
niques, the coverage of published comparative studies has, until recently, been sparse.
There has been a good deal of formal work comparing DPD and molecular dynamics
(MD) and there is recent work comparing LBM with SPH. We return below to the
comparison of DPD and LBM.
A great majority of comparative studies involving DPD relate DPD to MD and aim
to show the benefits of scaling up to the meso-scale (canonically, the use in DPD
of a soft conservative potential greatly increases the length of the simulation time
step). Alternatively, comparing SPH and LBM, there is seemingly no great difference
in the computational expense of both approaches. Within the work by Kajzer et
al. [13], LBM was found to be the more efficient approach when applied to single
fluids (note) large-eddy simulation (LES) results of 3D Taylor-Green vortex flow;
meanwhile, in the work by Tafuni et al. [14], better performance was seen from SPH
for various flows when compared to an LB approach —with both methodologies
comparing well against more mature approaches (such as volume of fluid and higher
order difference schemes) [14]. Work such as that reported in [15] concluded that
the LBM offered a better order of convergence and higher accuracy than SPH when
examining multi-phase flows, although the authors stated that SPH has a larger
stability range (and in particular is more suitable to higher Mach number flows).
Note, both methodologies are suitable for parallel implementation due to their
locality and explicit nature. For the low Re, multi-component applications of this
thesis in view, there is therefore, no significant computational advantage to either
method. However, the simulation of immiscible fluid flows, supported by LBM has a
large community, with already-defined, developed and documented models (to be
discussed shortly), all encapsulated within amenable frameworks. This essentially
logistic argument -of convenience- means that LBM is a good choice for the target
application of the simulation of human RBCs, compared with SPH.

There remains the question of DPD versus LBM simulation. Certainly, DPD has
been used to simulate capsules much smaller than erythrocytes, with applications to
drug delivery vectors. Here, though, a quantitative comparison of the efficiency of
DPD and LBM for our target application is not straightforward, for the equivalence of
a DPD bead and an LB distribution function component (both, notionally mesoscale
objects, note) is an open question, the address of which should precede a comparative
efficiency study. Since such an investigation is an end in itself, we again fall-back
on pragmatism (experience and available tools) to justify our choice of LBM as a
tool. Working at this length scale allows complex boundary and interface physics
to be encapsulated within models in a natural and intuitive manner, whilst still
developing, on balance, a computationally efficient model (traditionally, with LBM,
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one cites the opportunity to avoid explicit tracking of immiscible fluid species and
ready parallelisability, but is beset by criticism of the method’s profligate use of
computer memory).

Where larger length and time scales need to be simulated, macro-scale modelling
techniques such as traditional computational fluid dynamics (CFD) (finite volume
method [16], finite element method [17], etc.) present a clear way forward. Unlike
LBM, which may be described as a bottom-up approach to fluid dynamics, traditional
CFD solves macroscopic equations of mass and motion, normally through discretisa-
tion of partial differential equations. Accordingly, these methods are often referred to
as top-down approaches. Such methods are computationally efficient, mature, widely
implemented, optimally efficient and very capable of simulating larger length and
time scales of particular problems, but can often lose the ability to include important
physics that originates at smaller length scales.

The differing scales and corresponding modelling techniques often interface with
each other through multi-scale modelling. Multi-scale models at different length
scales, help to build a more complete picture of the system being investigated.
Of course, this approach aligns with physical reality, where materials and living
organisms consist of a series of complex coupled systems at different length scales
[18], a salient example being the meso-scale dynamical flow properties of a RBC
and the micro-scale processes occurring within its membrane, that dictate properties
which, in turn, influence the dynamics [19, 20].

The primary interest of this work is modelling of immiscible drops and ery-
throcytes, where the complex relationship at the boundary, between the fluids, is
to be investigated. Hence, by using bottom-up, meso-scale modelling approaches,
the interface between the fluids may be encapsulated with much higher accuracy,
compared to at the macroscale, allowing detailed interface physics to be encapsulated,
assessed and optimised. A natural candidate, then, for such an investigation, is
the LBM. The benefits of using such a method for this work will, hopefully, be
readily apparent; at any rate, they will be made explicitly clear in the remainder
of this chapter.

2.2 Hydrodynamics

2.2.1 Governing Equations

Within the continuum description of fluid mechanics, governing fluid dynamics
equations describe the macroscopic conservation of mass and momentum in a system.
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Unlike at the molecular level, where the fluid is comprised of molecules undergoing
random Brownian motion, at the continuum scale, a single velocity value is assigned
at every point in the fluid. (As an aside remark, the continuum concept of a fluid
parcel contains many fluid molecules). Analytical solutions to these equations can
only be found for very simple cases (such as flow between two parallel plates) [21],
leading to the development of numerical methods to solve these equations for more
complex geometries, i.e., porous media. LBM is an indirect Navier-Stokes solver,
that uses a kinetic scale evolution equation to describe particle distributions, which
can be shown to recover the macroscopic fluid dynamics equations to be outlined. In
this section, the governing equations (Continuity, Cauchy Momentum and Navier-
Stokes equations) are identified in preparation for further discussion (on how these
equations link with LBM) in sections 2.3 and 3.3.1. This section will not provide
detailed derivations, rather aim to present an overview —for further information
the reader is referred to references [21, 22, 23, 24].

2.2.1.1 Continuity Equation

A fundamental equation descriptive of a fluid system is the continuity equation.
Simply put, it is a continuum level description of the fact that, in a fluid system,
mass is conserved. The derivation of this equation follows by considering the change
of mass within a control volume, by appeal to the divergence theorem [25]. The
continuity equation is given in two separate forms in Eqs. (2.1) and (2.2), with
the time derivative in Eq. (2.1) giving the change in mass in the system and the
divergence relating to the flow in and out of the control volume.

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

where ρ, u and ∇ are the fluid density, fluid velocity vector and gradient operator.
An alternative form of Eq. (2.1) may be given as:

Dρ

Dt
+ ρ∇ · u = 0, (2.2)

above, the material derivative Dρ
Dt

denotes the rate of change in density of a fluid
element following the motion and is commonly used when describing fluid dynamics
systems. The mathematical definition of the material derivative (of function f) is:

Df

Dt
= ∂f

∂t
+ u · ∇f.

If the fluid is incompressible, i.e., ρ does not vary in time and space, then Eq. (2.1)
can be simplified to:

∇ · u = 0. (2.3)

Hence, Eq.(2.3) is the incompressible continuity equation. Note, that an incompress-
ible fluid flow is identified based of its Mach number (see section 2.2.3).
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2.2.1.2 Incompressible Cauchy Momentum Equations

The general equations of motion describing the non-relativistic momentum con-
servation in the moving fluid can be derived from Newton’s second law, F = ma.
One obtains the eponymous Cauchy momentum equations, by considering flow
and forces in an infinitesimal fluid element (a parcel). A full derivation can be
found in [24]. The resulting incompressible Cauchy momentum equations are
given in component form as:

ρ
Duα
Dt

= ∂σ̃αβ
∂xβ

+ ρFα, (2.4)

where α, β = x, y, z, Fα is an external force, i.e., gravity and σ̃αβ is the nine-component
stress tensor. Stress is defined as a force per unit area acting on a surface element -
which contains a magnitude and a direction (there being both tangential and normal
stresses). Where, the eigenvalues of the stress tensor give the principle stresses which
relate to the principle stress directions (stress tensor eigenvectors). Note, all terms
in the above equation are on a per-unit volume basis. The first term in Eq. (2.4)
represents the temporal and spatial change in momentum at a point, the second
term is the total stress and the third term any force density, i.e., gravity.

In order to close Eq. (2.4), one must know the form of stress tensor σαβ. The
effective definition of the stress tensor varies with the material one is modelling.
For fluids, it will vary depending upon the fluid’s classification as Newtonian or
Non-Newtonian. This work deals entirely with the simulation of Newtonian fluids,
i.e., water, oil etc., where the viscous stresses are related to the local strain rate. As
such, the stress tensor, or constitutive equation for an incompressible Newtonian
fluid may be given as [26]:

σ̃αβ = −pδαβ + ν

(
∂uα
∂xβ

+ ∂uβ
∂xα

)
, (2.5)

where p is hydrostatic pressure, δαβ is the Kronecker delta function and ν is the
dynamic viscosity of the fluid. Note that, viewed as a continuum, fluid mixtures
such as considered here, which contain deformable vesicles (e.g., blood, milk) are
famously styled non-Newtonian. Non-Newtonian behaviour is emergent; of course,
the components on which such mixtures are based are, intrinsically Newtonian.

2.2.1.3 Incompressible Navier-Stokes Equations

As stated, this work pertains to the simulation of incompressible, Newtonian fluids.
Therefore, the equation that describes the momentum for such fluids is given by
the incompressible form of the Navier-Stokes equations. These equations can be
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derived from the Cauchy Momentum equations, Eq. (2.4), by substituting in the
constitutive equation for an incompressible Newtonian fluid, Eq. (2.5) into Eq. (2.4).
After simplifying, the resultant incompressible Navier-Stokes equations are:

ρ
Du

Dt
= −∇p+ η∆u+ F , ∇ · u = 0, (2.6)

where, ν is the kinematic viscosity and the Laplacian operator is:

∆ = ∇ · ∇ = ∂2

∂xβ∂xβ
.

The significance of the incompressible Navier-Stokes equations, given by Eq. (2.6),
can not be overstated. They allow for the description of the motion of a fluid,
abstracted as infinitely divisible; therefore, these equations only remain valid while a
continuum description holds —while the concept of a fluid parcel as many individual
molecules (or atoms) is valid and the view of individual molecules’ motions as having
been in some sense averaged is not challenged.

With the equations that describe the fluid behaviour now outlined, the boundary
conditions at both liquid-solid and liquid-liquid interfaces need to be discussed.

2.2.2 Boundary Conditions

Alongside the governing partial differential equations that describe the fluid macro-
scopic properties over the domain, boundary conditions are needed to close fluid
dynamics problems —providing vital information about how the fluid behaves at
domain boundaries. As such, they need to be considered with the same attention.
When looking at immiscible multi-component fluid flows —fluid flows containing
multiple immiscible fluids —it is important to consider interfacial boundary condi-
tions, imposed at a fluid-fluid interface (free surface), which should be recovered
in simulation if one is to correctly capture physically consistent hydrodynamics.
This section introduces two principle boundary conditions for this case, namely,
the kinematic and dynamic boundary conditions. For clarity and future reference,
Figure 2.2 shows two immisicble fluids, f1 and f2; the interface between the two
fluids f1-f2 is curved, with the unit normal to the interface, n̂, directed outwards,
towards fluid f2. Hypothetically, the diagram could depict an immiscible oil drop f1

submerged in water solution f2. It should be noted that boundary conditions in the
case of multi-phase flows, or where a phase transformation occurs, are not considered
in this work.

For the following section of work, consider a three-dimensional case of the two-
dimensional scenario depicted in Figure 2.2, such that a position on the interface
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Figure 2.2: Schematic showing an immiscible drop, fluid f1, submerged in a background
fluid, f2. Where, lighter orange rim shows the boundary of fluid f1, and the unit normal of
the interface, n̂, is orientated pointing from f1 towards f2 as shown (although this choice
is arbitrary)

.

between the two fluids f1 and f2 over time can be given by some function F (x, y, z, t) =
0. Assume that an excerpt of the surface is represented by a local manifold, or
Monge patch and that the x,y axes are in the tangent plane of the surface excerpt.
Then, by implicit function theory, a point on the interface can be given by a height
function, h, meaning direction z is defined as z = h(x, y, t). Also note that for the
following work, subscript 1(2) denotes fluid 1(2), i.e., u1 is the velocity of fluid 1.

2.2.2.1 Kinematic Boundary Condition

The kinematic boundary condition encapsulates principles of mass transfer, across
the interface. The two salient kinematic boundary conditions are: (i) the normal
component of velocity is continuous across the interface —meaning that no holes
develop in the interface, and (ii) the tangential component(s) of velocity across the
interface is continuous, i.e., tangential components of velocity balance, on either side
close to the interface, to avoid separation. The reader is directed to [23, 27], for
further information regarding these conditions.

Mutual Impenetrability
Starting with condition (i), a fluid parcel —a fictitious infinitesimal volume of fluid
matter, whose shape can be distorted over time but the mass of the parcel remains
constant (isochoric flow) —on the interface; such a parcel must remain in the interface,
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as the flow develops over time, for there is no relative motion perpendicular to the
interface to act to remove it. The total mass of that fluid parcel must not change,
as matter cannot be created or destroyed. This means that the interface surface
must be a material invariant and as such [23]:

DF

Dt
= ∂F

∂t
+ u · ∇F = 0, (2.7)

where, u is equal to the velocity either side of the interface, i.e., u1 = u2 close to
the interface. It is understood that for an implicitly defined surface, the normal to
the surface may be determined by taking the gradient of the surface, where, here, it
is assumed that the direction of the normal aligns with that in Figure 2.2 (points
from f1 into f2). The unit normal to the surface is therefore given by:

n̂ = ∇F
|∇F |

. (2.8)

Rearranging Eq. (2.8) and substituting into Eq. (2.7), results in the following
general kinematic condition:

u1 · n̂ = u2 · n̂ = − 1
|∇F |

∂F

∂t
, (2.9)

in which it follows that for the case where the interface has no time dependency,
the kinematic condition simplifies to the following:

u1 · n̂ = u2 · n̂ = 0. (2.10)

Equations (2.9, 2.10) state the normal component of velocity must be equal either side
of the interface and are often referred to as the condition of mutual impenetrability.
Here, Eq. (2.10) states that the normal component of velocity is zero either side of
the interface; this is the case for interfaces which are not time dependent and also
for boundaries between a solid, impermeable material and a fluid. Equation (2.9)
represents the case where the normal component of velocity either side of the interface
at a point is equal, but not necessarily zero. This results in either of two outcomes:
(a) the whole interface is moving at the same velocity, thus maintaining shape and
translating with the local background fluid, or (b) the normal component of velocity
either side of the interface is balanced, but varies with position on the interface. This
means for case (b), there would be an expected deformation of interface shape [27].

No-Slip
Condition (ii) states that the tangential component of velocity at either side of the
interface must balance, and is hence continuous across the interface, this is to avoid
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an unphysical, infinite shear at the boundary. It should be noted that this condition
is often referred to as the no-slip condition and it only applies to viscous flows,
where continuum descriptions of the fluid are valid. The tangential component of a
vector can be defined as the original vector with its normal component projected
out: vt = v − n̂ · (v · n̂), where vt is the tangent component of vector v. As such,
the no-slip boundary condition may be given as:

u1 − n̂ · (u1 · n̂) = u2 − n̂ · (u2 · n̂), (2.11)

where, Eq. (2.11) is applied only in the interfacial region and u1 (u2) denotes
the fluid velocity close the interface in fluids f1(f2). Equation (2.11) simplifies
to the following when a fluid-solid boundary interaction is considered, where the
surface has zero velocity:

u− n̂ · (u · n̂) = 0, (2.12)

which states that, at a solid boundary, with zero velocity, the fluid in contact with
that boundary must have no tangential component of velocity (and no normal
component of velocity if the solid surface is impermeable from Eq. (2.10)).

2.2.2.2 Dynamic Boundary Condition

The dynamic boundary condition for the case of a fluid-fluid interface states that
there is continuous stress across the interface between the fluids (free surface). Using
this statement one can formulate a stress balance between the fluids at the free
surface in the normal direction [23, 27]:

n̂ · σ̃1 = n̂ · σ̃2, (2.13)

where, σ̃
α

is the stress tensor for fluids α = 1, 2. Although Eq. (2.13) describes the
stress balance between two fluids at the free-surface, it only does so adequately for
flat interfaces. For curved interfaces, one must also consider the influence of surface
tension as described by the Young-Laplace equation [28, 29, 30]:

∆p = σ∇n̂

= σ
( 1
R1

+ 1
R2

) (2.14)

where, ∆p is the pressure difference across the interface, σ is the surface tension (note,
unrelated to the stress tensor with notation σ̃) and R1, R2 are the principle radii of
curvature. This equation describes the pressure jump at the interface between two
fluids, influenced by the shape (curvature) of the interface. Surface tension σ drives
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the surface area of the free surface to a minimum, creating an increased internal
pressure. For a spherical interface such as the one depicted in Figure 2.2, the interior
fluid f1 would have a higher pressure than the exterior fluid f2 due to surface tension.
As such, the normal stress balance at the free surface between fluids needs to include
this description of the pressure difference and hence the effect of surface tension.
Therefore, the dynamic condition of Eq. (2.13) may be adapted to the following:

n̂ · σ̃1 − n̂ · σ̃2 = −σ
( 1
R1

+ 1
R2

)
n̂. (2.15)

This description is now termed a dynamic fluid-fluid boundary condition, since the
physics of surface tension is encapsulated.
There must also be tangential stress balance across the interface. This condition can
be given in the following form (where the simplification that the normal component
of velocity at the interface is zero has been used —Eq. (2.9)):

η1
∂ut1
∂n

= η2
∂ut2
∂n

, (2.16)

where, ut1 corresponds to the tangential component of velocity for fluid f1, ∂
∂n

corresponds to the derivative in the normal direction to the interface and η1 the
dynamic viscosity of fluid f1.

Equations (2.9), (2.11), (2.15) and (2.16) correspond to the key kinematic and
dynamic boundary conditions discussed throughout this work. The following section
will examine relevant non-dimensional quantities, which are also utilised within work.

2.2.3 Non-Dimensional Quantities

Non-dimensional quantities and non-dimensional numbers are used to analyse and
classify flow behaviour in relation to the system being investigated within fluid
mechanics. They also are utilised within LB methodology itself, when setting
simulation parameters, analysing system stability and calibration of the system
(law of similarity). Identified here are four key non-dimensional quantities that
are discussed and used throughout different sections of this work, which are the:
Reynolds (Re), Mach (Ma), Weber (We) and Capillary (Ca) numbers.

The Reynolds number (Re) is a group which quantifies the ratio of inertial to
viscous forces (resistance forces between the fluid layers when subject to a shear).
Its value can indicate if the flow is laminar (lower Re) - where fluid particles flow
in parallel layers or turbulent (larger Re) - where the fluid suffers random changes
in velocity and pressure. The Reynolds number is defined as:

Re = ul

ν
= inertial forces

viscous forces , (2.17)
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where u, l and ν are the characteristic flow velocity, characteristic length scale
and kinematic viscosity of the fluid.

The Mach number (Ma) is another important group that describes the ratio of
flow velocity to the speed of sound in the medium being simulated. It is defined as:

Ma = u

cs
, (2.18)

where u, cs is the local flow velocity and speed of sound. Generally, if the flow
is isothermal and Ma≤ 0.1, then the flow is considered to be incompressible, i.e.,
compressibility effects can be ignored. This bounds the regime of viscous flow
describable by the weakly compressible Navier-Stokes equations. The importance of
these two dimensionless numbers within lattice Boltzmann will be further discussed
shortly; these groups will also be used in subsequent work, within this thesis.

The Weber number (We) can be used to describe the ratio of inertial forces
to cohesion forces (e.g., surface tension), between liquid-liquid interfaces. It can
help determine if a drop will break up within a flow into small drops (i.e., larger
Weber number flows —where inertial forces dominate), or maintain its shape due to
dominant surface tension forces (i.e., smaller Weber number flows). It is defined as:

We = ρu2l

σ
= inertial forces

cohesion force , (2.19)

where ρ, u, l, σ are density, velocity, characteristic length scale and surface tension.
Finally, the Capillary number (Ca) quantifies the relationship between viscous drag
and surface tension forces; it is defined as:

Ca = µu

σ
= Viscous drag

surface tension , (2.20)

where µ, u and σ are dynamic viscosity, characteristic velocity and surface tension.
Both the We and the Ca numbers can be used to quantify the deformation between
two immiscible liquids, where inertial and viscous forces act to deform the drop,
with surface tension forces working against these forces to maintain and preserve
drop shape. As such, these dimensionless quantities play an important role in
understanding drop behaviour in different flows and their importance will be discussed
further in Chapter 4, when considering flow past a liquid drop, in which they are
used to help predict drop shape.
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2.3 Lattice Boltzmann Equation Simulation

2.3.1 Development and Fundamentals

The lattice Boltzmann method (LBM) was developed from the method of lattice gas
cellular automata (LGA), first introduced in 1973 by Hardy et al. [31]. The LGA HPP
model used Boolean algebra to represent a particle either being present or not present
at a given site on a square lattice where akin to the LBM, particles movement was
restricted to a finite number of directions—four in this case. In order to calculate the
macroscopic hydrodynamic quantities of mass and momentum, ensemble averaging
was required to reduce that statistical noise which led to increased computational
expense. Due to the method not recovering the Navier-Stokes equations of motion,
as well as a lack of Galilean invariance, intrinsic noise and unphysical velocity
dependent pressure [32], it serves only as a milestone. The idea was matured by
Frisch, Hasslacher & Pomeau (1986) [33], who developed the FHP LGA, based on a
hexagonal mesh that recovered the Navier-Stokes equations and allowed mass and
momentum conservation. This was done by ensuring a certain lattice symmetry,
affording the ability to model an isotropic fluid [34]. Following this, a further
advancement of the LGA towards the LBM was the removal of the statistical noise,
through the introduction of a pre-averaged distribution function as the primary
quantity, replacing the Boolean operation within LGA models [3]. This work was
then advanced by Higuera & Jiménez (1989) [4], who substituted the continuous,
non-linear collision operator for a discrete collision rule. Since then, various collision
operators have been developed, with the simplest and most popular the Bhatnagar-
Gross-Krook (BGK) variant [35], discussed in the following subsection.

The LBM is an unconventional bottom-up approach to modelling fluid dynamics
based on kinetic theory, whereas traditional top-down CFD starts with macroscopic
equations of motion which are then discretised. Although LBM is a Navier-Stokes
solver, it functions indirectly, with the lattice Boltzmann equation (LBE) regarded
as a discretised approximation for solving the Boltzmann equation —which describes
the dynamical behaviour of dilute gases in the thermodynamic limit. The LBM can
be shown to recover the Navier-Stokes equations by appealing to Chapman-Enskog
procedure, see section 3.3.1 for a full explanation. The method uses a discrete,
Eulerian lattice —fixed reference grid —where particle distributions (or particle
populations), representative of groups of fictitious particles, are evolved and are
tracked over the lattice, as described by a time dependent distribution function
fi(r, t). This approach to modelling fluids is justified through the argument that
microscopic behaviour of individual particles does not impact the dynamics of the

18



2. Background in Hydrodynamics and Simulation Techniques

fluid, whereas the collective behaviour of many of these individual particles (particle
distributions) does describe the fluids dynamics appropriately. The fluid is assumed
to be close to equilibrium locally on the lattice, with the equilibrium distribution
of the fluid derived from a truncated, uniformly translating Maxwell-Boltzmann
distribution (for particle velocities in an ideal gas) [6]. The distribution function
fi(r, t), represents the probability of finding a fluid particle travelling in lattice
direction i, at lattice site r at a particular time step t (in lattice units). The number
of directions the fluid particle can move in, indexed by i, depends upon the size and
dimensions of the lattice used. The common labelling convention for lattice models
within LBM is DaQb, where ‘a’ is the dimension of the lattice and ‘b’ is the number
of lattice links—formally the number of discrete lattice velocities. The two lattice
structures used within this work are the D2Q9 lattice and the D3Q19 lattice. These
lattice structures are shown in Figure 2.3.

Figure 2.3: Schematic showing the two lattice structures used within this work and link
labelling, with (left) being the D2Q9 lattice and (right) the D3Q19 lattice.

i 0 1 2 3 4 5 6 7 8
cix 0 -1 0 1 1 1 0 -1 -1
ciy 0 1 1 1 0 -1 -1 -1 0
ti t0 t1 t2 t1 t2 t1 t2 t1 t2

Table 2.1: D2Q9 lattice structure, showing lattice link (i), lattice velocity vector (ci)
components and lattice weights (ti). Here, t0 = 4

9 , t1 = 1
36 , t2 = 1

9 .

The lattice Boltzmann equation, or evolution equation, is given as:

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Ω, (2.21)

where r corresponds to lattice site position, t is the time (in lattice units), ci
is the lattice velocities, ∆t corresponds to the time interval/ step and Ω is the
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cix 0 1 1 0 -1 -1 -1 0 1 0 1 0 -1 0 0 1 0 -1 0
ciy 0 0 -1 -1 -1 0 1 1 1 0 0 1 0 -1 0 0 1 0 -1
ciz 0 0 0 0 0 0 0 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
ti t0 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t2 t2 t2 t1 t2 t2 t2 t2

Table 2.2: D3Q19 lattice structure, showing lattice link (i), lattice velocity vector (ci)
components and lattice weights (ti). Here, t0 = 1

3 , t1 = 1
18 , t2 = 1

36 .

collision operator. There are different forms the collision operator can take; these
are discussed further in section 2.3.2.

Equation (2.21) encapsulates two key stages within the LBM: (i) streaming; (ii)
collision. In streaming, particle populations move to neighbouring cells over a time
interval ∆t and collision occurs when particles collide locally inside each grid cell and
then are redistributed. Pictorially, Figure 2.4 represents the streaming and collision
stages within an interior node, on the lattice, which shows the particle distribution
functions propagating, colliding and redistributing over a single time step.

Figure 2.4: Schematic showing the streaming and collision process for one node on the
domain over one time step on a D2Q9 lattice. (Left) pre-streaming stage. (Middle) post
streaming where particle distributions propagate into the interior node. (Right) post
collision, where particle distributions have collided and been redistributed.

During the collision process, particle distributions are relaxed towards a local
equilibrium, where the equilibrium distribution function, f (eq)

i (ρ, u), is given as:

f
(eq)
i (ρ, u) = tiρ

(
1 + uαciα

c2
s

+ uαuβciαciβ
2c4
s

− u2

2c2
s

)
, (2.22)

where ρ is the fluid density, u is the fluid velocity at position r, uα is the α component
of the fluid velocity, ciα is the α component of the lattice velocity in the ith direction,
cs is the speed of sound of the model and ti is the lattice link weights. The lattice link
weights are specific to the lattice model (i.e., DaQb) and are such to meet isotropy
conditions, with these conditions being given later in section 3.3.1. For the lattice
link weights used in the D2Q9 and D3Q19 models, see Tables 2.1 and 2.2.
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To calculate local macroscopic quantities, i.e., density, momentum and momentum
flux, one takes the moments of the distribution function and sums them locally, at
lattice sites over the lattice links. Density is found from the zeroth moment of the
distribution function, momentum from the first moment and momentum flux from
the second moment. These equations are expressed here:

∑
i

fi = ρ,∑
i

ficiα = ρuα,∑
i

ficiαciβ = Παβ,

where Παβ is the momentum flux tensor.
The above-outlined technique can be shown to have asymptotic behaviour as

follows: the weakly compressible Navier-Stokes equations as the equations of motion
of the macroscopic quantities ρ and uα, with an isothermal equation of state —under
the low Mach number limit assumption (see section 3.3.1). Consequently, this imposes
a restriction on the velocity magnitude, with |u| ≪ cs.

2.3.2 Collision Operators

Collision within LBM describes the relaxation of the distribution function towards
an equilibrium distribution given by the uniformly translating Maxwell-Boltzmann
equilibrium distribution. Physically, this reflects the collision of particles which
pushes the system towards an equilibrium state. This collision process in the LBE
(Eq. (2.21)) can be characterised using different collision operators Ω, with three of
the most commonly implemented algorithms in literature being: Bhatnagar Gross
and Krook (BGK) [35], two-relaxation time (TRT) [36, 37] and multiple relaxation
time (MRT) [38] schemes. Each operator has unique advantages and drawbacks,
with differing levels of complexity (conceptually and computationally). This section
aims to briefly introduce these different approaches of characterising the collision
step, discussing which will be implemented in this work and why.

2.3.2.1 BGK

The first and simplest collision operator commonly implemented within LB schemes
is the Bhatnager-Gross-Krook (BGK) operator [35]. The use of the BGK collision
operator was extremely valuable in advancing the LBM as the approximation of
the collision process reduced the mathematical difficulty involved with working with
the method. The BGK approximation is still one of the most widely implemented
approximations, with its popularity stemming from the fact that it retains the
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non-linearity of Boltzmann’s equation whilst providing a vast simplification [6].
The BGK collision operator, aiming to represent the inter-particle collisions that
drive the system towards equilibrium, eliminates fi distributions and replaces them
with equilibrium f

(eq)
i distributions relative to a single relaxation rate for all scales.

The BGK operator is given as follows [35]:

Ω = −fi − f
(eq)
i

τ
, (2.23)

where f (eq)
i is the local equilibrium distribution (approximately the uniformly translat-

ing Maxwell-Boltzmann distribution) [6] and τ is a constant value for the relaxation
time —the characteristic time for the fluid to reach an equilibrium distribution locally

—which is much simpler than the complex relaxation time functional introduced
in the Boltzmann equation. Since the relaxation is only dependent upon τ , it is
sometimes referred to as the single-relaxation time (SRT) scheme. Through Chapman-
Enskog analysis, in section 3.3.1, the relaxation time can be seen to determine the
kinematic viscosity ν (and vise-versa), with the relationship between the two imposing
a resultant constraint on τ —in order to get a physical (non-negative) kinematic
viscosity—for a simple scheme being:

ν = 1
3

(
τ − 1

2

)
, τ >

1
2 . (2.24)

Following the constraint opposed on τ , the value of τ will affect how the fluid
is relaxed towards equilibrium. Table 2.3 characterises the relaxation based on
varying the τ value [39]:

τ value relaxation classification
0.5 < τ < 1 over-relaxed

τ = 1 fully-relaxed
1 < τ under-relaxed

Table 2.3: Table showing how the τ value affects how the fluid is relaxed to equilibrium
within the BGK collision operator.

The main advantage of the BGK operator is its simplicity and hence transparency,
which makes it easy to implement. However, due to the simplicity, relaxation
towards equilibrium takes place at a single rate for all hydrodynamic quantities,
the relaxation process is not tuneable and has issues with stability for certain flows
(large Reynolds number flows where one needs to avoid τ → 0.5) and complex
geometries (e.g., porous media, where τ affects wall location, when bounce-back
boundaries are implemented [39]).
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2.3.2.2 TRT

The two-relaxation time collision operator (TRT) was introduced by Ginzburg in
2005, here relaxation involves two parameters [36, 37]. The development of the TRT
collision scheme arose from the more complex MRT scheme, where the number of
relaxation parameters was reduced to one fixed and one tuneable (kinetic) relaxation
parameter. Collision is now performed on symmetric and anti-symmetric parts of
the distribution function. These distribution functions are defined as follows:

f
(eq)
is = f

(eq)
i + f

(eq)
−i , f

(eq)
ia = f

(eq)
i − f

(eq)
−i ,

fis = fi + f−i, fia = fi − f−i,
(2.25)

where, subscript s and a correspond to symmetric and anti-symmetric, subscript i
and −i correspond to link direction i and opposite link direction −i. By using two
relaxation parameters, it allows for a larger toleration of fluctuations from equilibrium
compared to that of the BGK collision operator.
The TRT collision operator, corresponding to the evolution equation in Eq. (2.21),
is now defined as:

Ω = −∆t
τs

(
fis(r, t) − f

(eq)
is (ρ, u)

)
− ∆t
τa

(
fia(r, t) − f

(eq)
ia (ρ, u)

)
. (2.26)

The extra degree of freedom compared to the BGK scheme affords stability gains,
connected to a magic-parameter relating to the truncation error, that can be tuned
depending upon the flow being simulated [40]. Additionally, a reduction in the need
to tune individual relaxation relates to different modes within the MRT scheme
helped retain the simplicity of the BGK scheme. A disadvantage of the TRT collision
scheme is that the operator’s mathematical derivation and presentation can make
it hard to interpret and understand. Knowing this, recent efforts have been made
to articulate the method and its implementation in a more transparent way [41].
This barrier, as well as the fact that the method is: (i) neither the simplest collision
operator —due to needing to relax symmetric and anti-symmetric links as opposed
to the single relaxation rate in the BGK operator; and (ii) not sufficiently tuneable

—due to only having one free, tuneable parameter in comparison to the MRT model
which has multiple, can be seen as drawbacks.

2.3.2.3 MRT

The final collision scheme needed to be discussed is the multi-relaxation time (MRT)
scheme. Multiple-relaxation time schemes, as the name suggests, involve the use
of multiple relaxation parameters, allowing the individual tuning of the relaxation
of hydrodynamic quantities such as density, velocity and momentum fluxes, as well
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as some additional non-hydrodynamic “ghost” modes —modes which contain no
hydrodynamic (physical) information, that can be tuned for further stability [38, 42,
43, 44, 45, 46]. An ability to relax modes at differing rates is physically consistent
and thus may be seen as a more physically accurate treatment of the collision process
compared to that of the BGK operator [47].

The first MRT collision scheme was introduced by D’Humières [38] as a way of
removing instabilities, stemming from the BGK collision operator. Since this time,
many researchers have contributed to MRT scheme literature: Lallemand et al., [42]
produced an analysis which explored the tuneability of the relaxation parameters to
enhance the stability of the scheme; Dellar [48] continued work considering how the
non-hydrodynamic modes relate to method stability; Halliday et al. [49] developed
a D2Q9 MRT collision scheme based on this prior art, with the inclusion of a Guo
forcing, which was then extended to D3Q19 by Xu et al. [50].

Multi-relaxation time schemes differ from TRT and BGK schemes, where in-
stead of performing the relaxation of distribution functions towards equilibrium
in population space, relaxation occurs within moment space. First, to recover key
hydrodynamic properties such as density, momentum and stress, appropriate terms
are projected on the distribution function basis, creating a projection matrix of left
row eigenvectors. The size of the projection matrix, and thus the number of modes,
depends upon the chosen lattice structure, i.e., for the D2Q9 model there are nine
modes in which only 6 are hydrodynamic modes, (having physical significance), the
remaining 3 modes being the“ghost” modes [45, 46]. The collision operator for the
MRT scheme, corresponding to evolution equation (2.21) is given as:

Ω =
∑
j

Aij
[
f

(0)
j (r, t) − fj(r, t)

]
, (2.27)

where Aij is the collision matrix i,j element. To highlight the transformation from
population space to moment space, as well as the collision process, it is convenient
to follow the analysis in [49] by defining the evolution equation for this MRT scheme
as such, combing Eq. (2.21) and Eq. (2.27):

fψ = f + A
(
f (0) − f

)
, (2.28)

where fψ, f and f (0) are column vectors for the post collision distribution, distribution
and equilibrium distribution functions. A is the collision matrix, which is constructed
of left row eigenvectors effectively defining of hydrodynamic and non-hydrodynamic
moments and their corresponding eigenvalues. The following short analysis aligns
with that presented in reference [49]. A projection matrix M —containing left
row eigenvector modes which, when projected onto the distribution function set,
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recover the correct hydrodynamic properties —is projected onto Eq. (2.28) and
simplified as follows [49]:

M f+ = M f +M A
(
f (0) − f

)
,

M f+ = M f +M AM−1
(
M f (0) −M f

)
,

M f+ = M f + Λ
(
M f (0) −M f

)
,

(2.29)

where, due to M containing left row eigenvectors of A, the eigenvalue definition that
Λ = M AM−1 has been used. The outcome is a set of mode-specific lattice Boltzmann
Bhatnagar–Gross–Krook (LBGK) style evolution equations, where hydrodynamic
and non-hydrodynamic moments can be relaxed individually, in moment space.
Following the relaxation in Eq. (2.29), the modes are converted back to population
space, by inverting M . The MRT scheme is explained in more detail during its
implementation in Chapter 4.

The benefits of using the MRT collision schemes is the enhanced stability one
can gain, due to the ability to tune the relaxation of modes individually. The
drawbacks of the method are its increased complexity and additional computational
cost compared to the simplistic BGK collision scheme. Although, it is possible to
only see a 15-20% computational overhead compared to the BGK scheme [43, 39].

2.3.2.4 Comparison of the Collision models

In conclusion, the collision operator one chooses to implement will highly depend
upon a few factors, such as, the computational performance one is willing to accept,
the complexity of the flow that is being simulated and the extent to which simulating
flow close to boundaries accurately is important.
The BGK collision operator is the most transparent and simplest to implement, with
just one relaxation parameter. However, it is the least stable scheme, with viscosity
limitations being imposed, due to its relationship with the relaxation parameter τ .
Furthermore, when using the BGK collision operator in LB schemes, errors when
simulating no-slip boundary conditions can become more severe, due to oscillations
in flow fields and inaccurate boundary location, caused by the choice of τ [51]. The
TRT operator retains some of the BGK model’s simplicity in comparison to the
MRT scheme, as well as enhanced stability, due to an extra, tuneable, relaxation
parameter. There is, of course, a computational downside to using the TRT collision
operator over the BGK model, with reported CPU time being around 15 % quicker
in the LBGK schemes [51].

The MRT collision scheme provides the greatest stability out of the three collision
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operators, but is the most complex to implement, with more tuneable parameters.
Because this research investigates multi-component flows, the implementation of
an MRT operator would furnish welcomed, additional stability, in the face of more
complex flows, and as such, we chose to implement it in a majority of the simulations.
It will also produce a more physically accurate representation of flow close to no-slip
boundaries. That said, in certain cases, the BGK collision scheme is utilised, in
order to provide comparison across collision models, as well as transparency in
mathematical analysis’ —such as the Chapman-Enskog procedure.

Now the LBM collision schemes chosen for this work have been considered,
we proceed to consider the other obvious degree of freedom available to us. The
three most popular lattice Boltzmann methods for the simulation of immiscible
multi-component fluid flows will be discussed, with emphasis placed on the selection
of the most suitable method.

2.3.3 Multi-Component Lattice Boltzmann

The work in this thesis focuses on the simulation of isothermal immiscible multi-
component fluid flows at the mesoscale, with attention to the simulation of two-
component (binary) fluid flows. The definition of a multi-component fluid flow is a
flow containing two or more different fluids (i.e., a two-component fluid flow could be a
mix of water and oil). A multi-phase fluid flow, in contradistinction contains multiple
phases (gas, liquid and solid). Some flows can be classified as multi-component and
multi-phase flows, but this work adheres strictly to the simulation of isothermal
immiscible multi-component fluid flows performed within the regime of arrested
coalescence. At the continuum scale, the interface between two immisicble fluids
is discontinuous. At the mesoscale, within LB models, the interface between two
immiscible fluids is diffused —sometimes LBM is classified as a diffused interface
model, there existing a quasi two-dimensional interfacial region between the fluids.
The accurate simulation of this interfacial region is extremely important, examined
through the lens of recovering correct interfacial kinematics and dynamics —see
section 2.2.2.

The dynamics of the fluids in a multi-component flow can be described by the
governing equations (Continuity and Navier-Stokes) and also the physics of surface
tension. Surface tension was briefly introduced, above, when discussing the dynamical
boundary condition between two fluids, in order to help describe the pressure jump
between fluids at a free surface. Surface tension, or interface tension between
two fluids reflects the forces between molecules of the same and opposing fluid
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species within the interfacial region, i.e., the surface formed by the fluids. Consider
an immersed air bubble in a water solution, the interfacial tension describes the
intermolecular forces between the molecules at the boundary between the air bubble
and the water. Here, the pressure on either side of the interface must balance, to
avoid holes forming, even though in equilibrium the pressure on the inside of the air
bubble will be larger than that of the external fluid. This difference in pressure is
described by the Young-Laplace equation, given in Eq. (2.14) [28, 29].

One of LBM’s strengths is its ability to simulate multi-component and multi-phase
flows, with little extra computational difficulty and expense. Taking the original
Rothman and Keller immisicble lattice gas cellular automata model [52], Gunstensen
et al., developed the first multi-component lattice Boltzmann model [53, 54]. Their
model used the innate ability of LBM to simulate both fluids individually, by splitting
up the distribution function, into the different species and then segregating the fluids
afterwards, in a separate algorithmic step. This was the first colour-gradient model
developed. Since the development by Gunstensen et al., several distinct methods
of simulating multi-component flows using LBM have been outlined, which can be
conveniently classified based on their physical contents [55]. The first colour-gradient
or chromodynamic model [53, 54, 56, 57, 58, 59], has been enhanced since it was
introduced by Gunstensen et al., and uses an immersed boundary force and an
segregation rule, to simulate multi-component flows. The second, the Shan-Chen
method [60, 61, 62, 63], incorporates intermolecular interactions between particle
distributions and, as such, is suited to workers from a molecular dynamics background.
The third, the Free-energy model [64, 65, 66], uses a thermodynamically consistent
free energy functional which encapsulates the thermodynamics of the system. These
are currently three of the most popular multi-component lattice Boltzmann methods
implemented and, as such, they will be briefly introduced in the following sections,
the choice of one of these methods for this work being justified, as well as their
strengths and limitations examined. For further detail of the methods, we refer
the reader to the original model papers already cited, as well as references such
as [6, 67, 47, 39] and review articles: [68, 69].

2.3.3.1 Shan-Chen Pseudopotential Model

The Shan-Chen pseudopotential model developed by Shan and Chen [60, 61] is
capable of simulating multi-phase and multi-component flows and does so through the
inclusion of intermolecular interactions between particle distributions encapsulated,
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in a forcing term. For transparency, continuing with the BGK collision operator, the
forced evolution equation for the Shan-Chen pseudopotential model is given by:

f
(σ)
i (r + ci∆t, t+ ∆t) = f

(σ)
i (r, t) − ∆t

τ (σ)

(
f

(σ)
i (r, t) − f

eq(σ)
i (r, t)

)
+
(

1 − ∆t
2τ (σ)

)
F

(σ)
i (r, t)∆t,

(2.30)

where, superscript σ denotes the fluid component, hence τ (σ), F (σ)
i are the corre-

sponding relaxation time and forcing term for the fluid component σ. It is important
to note that appropriate pairing of a force representative of the intermolecular
interactions between particle distributions is crucial to the model. Shan-Chen first
presented a forcing that resulted in an altered equilibrium velocity, that included
the interaction force [60, 62]. It has been shown that this approach of including the
forcing in the model is unphysical, due to a reliance of the surface tension on the
relaxation a parameter, τ , with some issues relating to stability and spurious currents’
magnitude for certain relaxation values [69]. The second approach is through the
use of Guo forcing [70] that removed the dependency on τ for the surface tension,
where [71] adapted the approach for the Shan-Chen pseudopotential model. Outlined
here is the Guo forcing approach of [71].

The forcing term F
(σ)
i is given by [71, 39]:

F
(σ)
i = ti

(
ciα
c2
s

+ (ciαciβ − c2
sδαβ)ubβ

c4
s

)
F SC(σ)
α , (2.31)

where ubβ is the barycentric velocity of the fluid mixture [71]:

ub = 1
ρ

∑
σ

(∑
i

f
(σ)
i ci + F SC(σ)∆t

2

)
, ρ =

∑
σ

ρ(σ) (2.32)

The following Shan-Chen interaction force density allows for interactions between
different fluid components, i.e., σ ̸= σ̄ [39]:

F SC(r) = −ψ(σ)(r)
∑
σ̃ ̸=σ

Gσσ̃
∑
i

tiψ
(σ̃)(r + ci∆t)ci∆t, (2.33)

where, when simulating two immiscible fluids, the interaction force between compo-
nents σ and σ̃ must be negative, in order to repel the fluids and hence interactions’
strength Gσσ̃ must be positive.

As with other MCLBM variants, the original Shan-Chen model suffers with spu-
rious currents stemming from discretisation error in gradients causing an unphysical
flow to form around the phase change between fluids, with the magnitude of the
error increasing as the density difference between the fluids increases [69]. This
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method, in general, contains no thermodynamic consistency, with authors presenting
enhanced models with thermodynamic coupling [72], although some of the developed
thermodynamic models have issues with achieving larger density and viscosity ratios
[69]. It is also worth noting that in order to achieve the simulation of immiscible
fluids, the value of Gσσ̃ must be increased above a critical value to insight separation.
Increasing this value does increase the sharpness of the interface, however, there are
stability issues associated with this and therefore a limit on how large this value
can be. Thus, as with all diffused interface models, the simulations are not truly
immiscible, and the thickness of the interface may be larger in comparison to other
multi-component methods depending upon the situation being simulated.

2.3.3.2 Free Energy Model

A thermodynamically consistent multi-component and multi-phase lattice Boltzmann
variant was introduced by Swift et al., [64, 66] and is known as Free-Energy or
Oxford LBM. The following outlines the key points for a Free-Energy LB model,
simulating binary, immiscible fluids. Free-Energy models use a free energy functional,
which is thermodynamically consistent, that forces the system towards a free energy
minimised thermodynamic equilibrium. This free-energy functional is dependent
upon an order parameter, ϕ, that describes the concentration of fluids over the
domain (see Eq. (2.35)). For a two-component system, Eq. (2.34a) represents the free
energy functional consisting of the: bulk free energy ψb, interfacial region free energy
ψg and fluid-solid interaction information ψs. There are varying models for these
terms, presented in Eqs. (2.34b, 2.34c) is a simple case corresponding to Landau
Free energy [73]. Note, for the following, fluid-solid interactions are excluded:

Ψ =
∫
V

[ψb + ψg] dV +
∫
A
ψs dA, (2.34a)

ψb = c2
sρ ln ρ+ A

2

(
ϕ4

2 − ϕ2
)
, (2.34b)

ψg = σ

2 (∇ϕ)2 , (2.34c)

where, A controls fluid miscibility, A > 0(A < 0) fluid is immisicble (miscible) and
σ is a surface tension parameter. The order parameter ϕ can be seen to heavily
influence Eqs. (2.34b, 2.34c) —as expected, ϕ relating to fluid concentration. The
order parameter is defined as such:

ϕ = ρ1 − ρ2

ρ1 + ρ2
(2.35)

where ρα is the density of fluid component α ∈ [1, 2] and ϕ = 1(-1) corresponds to
the bulk fluid phases 1(2).
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When simulating multi-component flows, an additional distribution function gi is
introduced, which can be evolved over time, using the same processes of collision and
streaming, as within the standard LB evolution equation. This additional distribution
function relates to the fluid concentration, given by order parameter ϕ as such:

∑
i

gi = ϕ. (2.36)

To couple the thermodynamics properties described in Eq. (2.34a) with the LBM,
the method uses a thermodynamically consistent pressure tensor which is recovered
through modification of the equilibrium distribution function, introduction of forcing
[70] or a mixture of both [39].

The free energy models suffer from the same microcurrent problem common amongst
multi-component lattice Boltzmann models, stemming from the use of numerical
stencils to calculated derivatives. Due to the need for a second distribution function,
there is some additionally computational cost as well as increased complexity
compared to other models. The method does however allow the interface width
to be parameterised, with restrictions being introduced on the magnitude of the
surface tension value. A clear advantage of this method is its built in thermodynamic
consistency, which is not present within the forms of the other models outlined
in this chapter.

2.3.3.3 Colour-Gradient/Chromodynamic Model

The colour-gradient or chromodynamic (chromo – colour) multi-component lattice
Boltzmann method (cMCLBM) for simulating multiple fluids was first introduced
by Gunstensen et al. [53] based of work in [52]. The method defines the fluids by
attaching a colour label to the species, for instance for two-component fluid flows,
one fluid would be defined Red Ri and the other Blue Bi, where Ci denotes the
distribution function of species colour C ∈ [R,B]. The original method introduced
surface tension via a perturbation to the collision step, with a recolouring step being
used to prevent the mixing of the immiscible fluids, due to the notoriously highly
diffusive nature of the LBM itself –streaming of particle populations. Since the
original colour-gradient model introduced by [53], there have been several advances
to the method: Grunau et al., [56] presented a modified equilibrium distribution
function, allowing some variation in density across the fluids’ interface, Latva-Kokko
and Rothman [74] removed the artefact of lattice pinning, by using a deterministic
(formulaic) segregation step, Lishchuk et al., [57] replaced the perturbation step and
enforced surface tension by using a discretised body force distribution, applied in
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the interfacial region. These same authors [75] then implemented a post-collision
post-recolour segregation rule, based of that of Latva-Kokko and Rothman [74] and
D’Ortona et al. [76]. The extension of the methodology, to allow for the simulation
of fluids with density contrasts, is discussed further in Chapters 3 and 4.

Proceeding to outline, now, the cMCLBM presented by Lishchuk et al., and Burgin
et al., [75, 77], for the simulation of two immisicble fluids. The single distribution
function fi is now split up into Red and Blue species as follows:

fi(r, t) = Ri(r, t) +Bi(r, t), (2.37)

where the distribution functions are evolved using a forced evolution equation [70]:

fi(r + ci∆t, t+ ∆t) = fi(r, t) + Ωi + ∆tFi, (2.38)

where Fi is a forcing term written as a power series, see [70].
The macroscopic quantities are calculated as follows, with an altered velocity

calculation and inclusion of a body force density [70]:

ρR(r, t) =
∑
i

Ri(r, t),
∑
i

ρB(r, t) = Bi(r, t), ρ = ρR + ρB, (2.39)

u =
∑
i

1
ρ
fi(r, t)ci + 1

2ρF
(l), (2.40)

where F (l) (for the case of drops) is the force that applies the physics of interfacial
tension, defined as follows [57],[78]:

F (l)(r) = 1
2σH∇ρN . (2.41)

The above force term is applied locally, within the interfacial region, based on the
gradient of the phase-field, ρN (will be discussed shortly). Variation in the phase-field
is only significant in the interfacial region, where a non-zero value is returned for the
gradient; there is little variation in colour in the bulk of the fluids. The parameter σ
allows the surface tension between the fluids to be tuned, and H is the local mean
curvature of the interface, and can be formulated straightforwardly as follows:

H = ∇ · n̂, (2.42)

in which, the interface unit normal n̂, is found in terms of the gradient of the
phase-field, which will be perpendicular to the interface:

n̂ = ∇ρN

|∇ρN |
. (2.43)
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The phase-field ρN is an effective order parameter that identifies what phase one
is in, i.e., where within the interface between the fluids one lies. It is defined as
such for fluids without a density contrast:

ρN(r) ≡ ρR − ρB
ρR + ρB

, (2.44)

where values of 1 (-1) are found in the Red (Blue) bulk sites, and any variation
between -1 and 1 is the interfacial region where there is a mix of Red and Blue
fluids at that lattice site. The profile of Eq. (2.44) has been shown to resemble
that of a tanh(βr) profile, in which a segregation parameter β controls interfacial
width and is linked to stability (see Chapter 3).

A crucial component of the chromodynamic scheme is the inclusion of a segregation
rule. The LBE is inherently dispersive, as such, poses a complication when simulating
immiscible fluids. To prevent the mixing of species, a post-collision, post-recolour
segregation rule is applied, that locally redistributes particle distributions normal
to the interface, and is an adaptation of the original method [52], [76] presented
by Halliday et al., in 2007 [58]:

Cψψ
i (r, t) = ρC(r, t)

ρ(r, t) fi(r, t)
ψ ± βti

ρR(r, t)ρB(r, t)
ρ(r, t) n̂ · ci∆t. (2.45)

Above C ∈ [R,B], superscript ψ (ψψ) denotes a post-collision (post re-colour)
quantity, plus (minus) corresponds to the Red (Blue) species and β is a chosen
segregation parameter. A check that colour species and mass are conserved during
segregation can be performed by summing each side on both direction and colour.

For the cMCLBM outlined, a limitation is its lack of thermodynamic consistency,
which unlike the Free-Energy method, limits application to isothermal flows. Ad-
ditionally, like the previously mentioned MCLBMs, unphysical spurious currents
appear in the velocity fields, stemming from rounding and sampling errors [49]. It
is however possible, in certain cases, to remove the micro-current and this will be
discussed further in Chapter 4. The strengths of the method are its: transparency,
mass conservation, ease of implementation in code and ability to apply forces
encapsulating important physics without obstructive complication (will be discussed
more in Chapters 4 & 5), a directly paramterisable interfacial tension, low micro-
current and an amenability to analysis.
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2.3.3.4 Review of the models

Three of the most popular lattice Boltzmann methods variants for simulating multi-
component, immiscible, fluid flows have been considered. In review, they can
be briefly summarised based on how they approach the task of simulating multi-
component fluid flows: Shan-Chen —incorporating meso-scopic interactions between
the different fluid particles, Free-Energy —use a free energy functional to describe
the minimisation of the system’s free energy, where a thermodynamic pressure tensor
is built-in, Chromodynamic —using a kinetic scale segregation rule that segregates
the fluids post-collision, with surface tension affects applied through Guo forcing [70]
in the interfacial region. One could also differentiate the Shan-Chen and Free-Energy
models by considering where the phase interaction-inducing forces are introduced,
with the Shan-Chen method incorporating microscopic interactions through the
first moment of distribution function and the Free-Energy method incorporating
meso-scopic interactions through the second moment of the distribution function

—its pressure tensor [47].

For researchers with a background in molecular dynamics, the Shan-Chen pseudopo-
tential model may be preferable, due to its foundations in microscopic interactions,
which could be argued is the most physically representative of interactions between
fluid elements at the mesoscale. For those interested in the thermodynamics of
multi-component fluid flows, then the Free-Energy model is an obvious choice,
due to its built in thermodynamic consistency. If one is interested in interfacial
kinematics and dynamics, one may opt for the chromodynamic model, due to its
ease of parameterisation of the interfacial region and verifiable interface kinematics
and dynamics [77].

When considering which model to choose, one must consider the application of
the work and which models fit that best. The work in this research considers
the interfacial kinematic and dynamic boundary conditions between isothermal
immisicble fluids, with the interfacial region being of critical importance. This is
especially clear when aiming to simulate vesicles where the interfacial region needs
to incorporate the much more complex physics associated with vesicles. In knowing
this, the chromodynamic model presents itself as a clear option due to its transparent
approach, control of the interfacial region, strict mass and momentum conservation
and ability to include immersed forces through Guo forcing [70] with minimal
complexity. With the benefits of choosing this approach becoming increasingly
apparent when simulating vesicles in Chapter 5.
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2.3.4 Boundary Conditions

In order for computational fluid dynamics techniques to be capable of simulating
hydrodynamics accurately, they must contain appropriate simulation boundary
conditions that reflect the physics of how the fluid behaves at domain boundaries,
e.g., solid impermeable walls. Not only do the boundary conditions implemented affect
the flow dynamics close to the boundary wall, but they can also have a large impact
on the bulk fluid dynamics, even when simulating over larger domains. Additional
to adequate boundary representation, it is common practice to use chosen boundary
conditions as a way of reducing the computational run time of the simulation, e.g., by
implementing periodic boundary conditions. This section will highlight the simulation
boundary conditions applied within this thesis, but for further literature on different
boundary conditions used in LB simulation, see references [6, 39, 79, 80].

2.3.4.1 Periodic Boundary Conditions

Periodic boundary conditions are one of the simplest boundary conditions to
implement and can be understood simply as follows: to achieve a description of a
bulk fluid, the fluid that leaves the computational domain at a given side, the fluid
will immediately re-enter the domain (as though originating in a spatially tessellating,
period replica of the explicitly simulated system) at the opposing side. This means
that periodic boundary conditions can be used when trying to simulate a system
where the flow solution is periodic within a specific direction, for example, the north
and south boundaries representing flow in a long tube, in two dimensions. The
physicality of periodic boundary conditions is questionable, however; its justification
is based on the examination of a finite section of a flow field where the flow solution
is periodic [39].

Consider a situation such as flow in a long channel, where the flow solution is
periodic through the pipe. The periodic boundary conditions for this problem may
be considered at the north and south boundaries of the domain, replicating a long
channel. Figure 2.5 shows a schematic of these periodic boundary conditions.

2.3.4.2 No-Slip: Bounce Back Boundary Conditions

A common boundary encountered in hydrodynamics is that of a solid impermeable
wall. Such boundaries have flow physics described by the no-slip condition (discussed
in section 2.2.2), which states that the solid surface is impenetrable (i.e., the normal
component of velocity close to the wall (u · n̂ = 0)) and the tangential velocity of the
fluid in contact with wall must be the same as that of the wall itself. An example
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Figure 2.5: Schematic showing Periodic Boundary Conditions at the North and South
boundaries. Note, lattice size not to scale.

where such a boundary may have relevance in this work is when simulating a channel
with solid walls, i.e., a drop or vesicle in a confined passage.

One of the strengths of LBM is that the implementation of no-slip solid wall
boundaries can be quite simplistic, meaning geometries such as porous media, can be
simulated without the difficulty seen in other CFD techniques. The most commonly
implemented boundary in LB to mimic that of a solid wall are bounce-back boundary
conditions (BBBCs). Within BBBC variants, particle distributions that stream
toward the solid impenetrable wall, bounce back in the direction at which they
approached the wall.

The first bounce-back boundary condition is shown within Figure 2.6 and is often
referred to as either On-Grid or Full-Way bounce back (OGBB) [81, 82, 67]. The
boundary is placed on lattice nodes where streaming distributions are reflected back
in the direction which they approach the wall. Through Chapman-Enskog procedure,
it can be shown that the accuracy of this BC is 1st order [34, 39]. The error stems
from the influence of the relaxation parameter τ in LBGK schemes on the boundary
position, (which is not the case for TRT and MRT schemes), where Inamuro et al.
[83] found that the error is close to 2nd order for appropriate τ and lattice resolution.

A more accurate bounce back variant was proposed by Ziegler [82] called Mid-Grid or
Half Way bounce back (MGBB), which can be shown to be 2nd order accurate. Like
the OGBB BC, particle distributions are reflected back in the direction they stream
towards the boundary wall, however now the boundary wall is located between two
lattice sites (note: accuracy of the wall is still not guaranteed for LBGK schemes).
This process is highlighted in Figure 2.7.
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Figure 2.6: Schematic displaying the process of On-Grid bounce back boundary conditions.

Figure 2.7: Schematic displaying the process of Mid-Link bounce back boundary
conditions.

2.3.4.3 Slip Boundary Conditions

The final boundary condition introduced in this section is the Slip Boundary condition.
Slip boundary conditions are often used to reflect the inclusion of a symmetry
condition (axis) such as may be implemented by mid-link specular reflection. This
concept is similar to that of the previously discussed mid-link bounce back boundary
condition, except now distribution functions are reflected back off the boundary in
a direction related to the collision angle with the wall. In this application it can
be considered as a ‘perfect’ slip, where the angle in which the distribution function
collides at the wall is the same as the reflection angle, such that the distribution
function exerts no shear on the wall and conserves tangential momentum [84].

The implementation of this boundary condition can be used to introduce a symmetry
plane and leads to the reduction of computational cost, essentially by halving the
extent of the domain. This condition is applied in Chapter 4, as a means of using a
two-dimensional system to capture the hydrodynamics of a three-dimensional system.
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Figure 2.8: Schematic displaying the process of of Mid-Link specular reflection boundary
conditions (perfect slip).

2.4 Simulation of fluids using LBM

Throughout this work, focus is on the methodological developments of the class
of chromodynamic multi-component lattice Boltzmann models, as such, this thesis
leans towards the mathematical and developmental aspect of LB. However, the
computational encapsulation of our methodologies is clearly important, not least
because it facilitates validation of the models. Accordingly, this short section gives
an overview of the code structure, flow simulation protocols and data post-processing
used.

Code Structure
The models developed within this thesis were encapsulated within C programming
language and were written ab initio, with emphasis on the clarity of algorithmic
encapsulation and the ease with which it (the underlying algorithm) can be ma-
nipulated. Accordingly, transparency of the sequential (non-parallel) codes was
prioritised over optimisation and execution efficiency. All codes follow the same
essential structure, treated as compartmentalised (modular) sections (see Figure 2.9
which shows the base structure of all codes used within this work). To start with,
the lattice and fluids (represented by the primary object, the distribution function
component set) are initialised for the domain. For example, in the microcurrent tests
in section 4.2.3.1, a spherical drop is initialised surrounded by a background fluid in a
square domain, or in section 5.3.3.3, two vesicles are initialised in line with each other
within a three dimensional domain. Following this, within module ‘Calc_Fields_1’
the fluid’s scalar hydrodynamic observables (densities) are calculated, by summing
the distribution functions on lattice links (Eq. (2.39)); first dependencies like the
phase fields (ρN fields) and interface curvatures are then calculated, using previously-
derived macroscopic densities (Eq. (2.44)). Next, the forcing that is to be applied is
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Figure 2.9: Flow chart showing the base structure of the C codes used throughout this
work, which allow the encapsulation of the developed models.

calculated, for instance, surface tension when simulating drops (Chapters 3 and 4)
and surface tension, bending rigidity and area conservation forces when simulating
vesicles (Chapter 5). Once these forces are assigned, the hydrodynamic velocity can
be calculated, module ‘Calc_Fields_2’. Now, after the macroscopic density and
velocity have been calculated, the equilibrium distribution function can be calculated
(see Eq. (2.22)), and the distribution functions then collided (either through use of a
BGK or MRT collision scheme). Following collision, the post-collision distribution
functions are segregated using Eq. (2.45). These two steps are conducted within the
module ‘Collide and Segregate’. Finally, the distribution functions are propagated (see
Figure 2.4), the time step increased, and the process iterated back to ‘Calc_Fields_1’.
This process corresponds to a single time-step (evolution) of the system. It is then
repeated until the time step count has advanced until the set final time step. Note,
all simulations reported are formally unsteady.
For all data reported, the SHU Beowulf cluster was used. Although codes are serial,
the cluster allowed for a processor farm approach, in this multiple independent object
codes generate data concurrently —for example, when conducting an assessment of
the phase space; the search for a bicuspid parameterisation within the vesicle model
(Chapter 5) may be efficiently performed within this approach.

Code run time was very variable, with some two-dimensional codes executing
in minutes and with some three-dimensional multiple vesicle codes which required
minimum levels of spatial resolution for computational stability taking days (e.g. the
four vesicle sedimentation test shown in Chapter 6). Execution time was not deemed
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to be an impediment as a vast majority of applications reduce to parameterisation and
calibration exercises which were readily amenable to a processor farm methodology.
The use of serial codes means discussions surrounding computational expense and
optimisation of simulations are deemed of secondary importance and are generally
omitted in the following work.

Flow Setup
Data is structured such that simulation lattice populations are base type global
variables being defined at the start of the code, to allow for easy manipulation of the
flow geometry being simulated. A general overview of the setting up of an arbitrary
flow are as follows: (i) set the domain geometry (lattice size); (ii) set suitable initial
fluid positions (i.e., where on the lattice does each fluid start, and then initialise); (iii)
set the time duration of the simulation; (iv) set fluid properties (i.e., fluid densities,
viscosities, surface tensions etc.); (v) set any fluid forcing (i.e., a buoyancy force);
(vi) set data output files (decide what information of the flow needs outputting, i.e.,
velocity fields).

Data Processing
In order to process the data, the required fields are exported to csv files and
viewed with commercial software (ParaView, MATLAB, Excel). For example, when
examining the steady microcurrent (see Chapter 3), the velocity field over the domain
is outputted to a csv file; when examining time modalities of e.g. vesicle shape
evolution, the ρN field was sampled at chosen times and exported to a sequence
of appropriately-named csv files. The general structure of these files are given by
columns of position (x,y,z columns) and then lattice properties (i.e., ρN (phase field
value) or ux,uy,uz (lattice velocity components)). These files are then used to examine
flow data by either performing post-processing in software such as MATLAB, or
visualisation of the outputted data in either Excel, MATLAB or ParaView – where
the use of ParaView becomes prominent when extending to three-dimensional flows.

2.5 Concluding Remarks

This chapter has outlined the fundamental hydrodynamics and lattice Boltzmann
theory and reviewed leading work in these fields, such that the work reported in the
remainder of this thesis will have context. The focus of this work is the simulation
of drops and vesicles at the mesoscale, where the interface between the fluids is of
interest. The hydrodynamics of the flow in such simulations at this scale —where one
is considering the interior of the drop/ vesicle as one fluid and the exterior as another
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—can be described by the incompressible Navier-Stokes and Continuity equations,
outlined in section 2.2. The fundamental boundary conditions at the free-surface
between the fluids —kinematical and dynamical —have been discussed, explained
and referenced with their importance seen throughout this thesis. Finally, non-
dimensional quantities which allow specific flows to be categorised were introduced
and will be used without further discussion in the following chapters.

The lattice Boltzmann method presented itself as an obvious choice for this work due
to: appropriate length and time scale, computational efficiency, Galilean invariance
(the laws of motion are the same in all inertial frames), ability to simulate multi-
component flows, recovery of the weakly compressible Navier-Stokes equations and
diffused interface (discussed further throughout, primarily in Chapter 5). The
background theory relating to LBM: history and development, the evolution equation,
collision operators and simulation boundary conditions, were all reviewed. The
choice of a multi-component lattice Boltzmann variant for this research being the
cMCLBM has been justified and explained, with the main reasons being: control of
the interfacial region, transparency, ability easily to encapsulate mesoscale physics
through Guo forcing [70] and that thermodynamics are not being investigated in this
work. Additionally, the collision models chosen to be implemented (BGK and MRT)
within the cMCLBM model have been discussed and justified (section 2.3.2.4) with
transparency and stability in mind.

From this chapter, it should be clear to the reader what the relevant hydrodynamics
for this work are, as well as the simulation technique being implemented and its
applicability to the simulation of drops/vesicles at the mesoscale. The remainder
of this thesis now focuses on novel advancements to the cMCLBM methodology,
keeping in focus the fundamental hydrodynamics outlined here. Note, Chapter
specific literature is presented at the start of each chapter, where it is relevant to
provide background regrading that specific area, i.e., Chapter 5 contains literature
regarding the simulation of RBCs.
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3.1 Introduction

Immiscible fluid flows can be found in both nature and industry, often with a density
contrasts between the fluids —such as oil and water, where oil is less dense than water.

Flows with such moderate density contrasts are often found when studying micro-
fluidics, which considers the behaviour of fluids at the microscale, where, unlike

41



3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

at the macroscale, physical forces such as surface tension have a large impact on,
e.g., the microscale fluid behaviour [85]. Understanding this behaviour and using
this understanding to control the fluids has many applications in biotechnology
and biomedicine. For example, droplet-based micro-fuidics can involve the study of
how immiscible drops behave during collisions, whilst suspended in different fluids
(which have differing densities), facilitating an increased understanding, resulting
in the improved design of bioanalytical devices [86]. We note that some biomedical
applications study micro-fluidic flows involving density contrasts, examples being
drug delivery and cell encapsulation [87].

Industrial fluid flows like those occurring in fuel cells and batteries, which involve
the conversion of chemical energy to electricity, contain multi-scale flow transport
phenomena [88]. Proton exchange membrane fuel cells (PEMFCs) are regarded
as a viable option for power sources in vehicles. Droplet coalesce within PEMFC
flow channels is also an area of interest in understanding the channel blockages in
PEMFCs [89]. Hence, using MCLBMs to simulate how droplets deform and coalesce
in these channels is extremely useful. Again, such droplets often have a large density
contrast, compared to the fluid they are suspended in, so the inclusion of this density
ratio in simulation needs to be considered, for accurate representation of the physical
processes.

The previously stated flows all have an interface between the different fluids. This
interfacial region is often scaled in units of nanometres; at this scale top-down
macroscale computational techniques would treat this interface as discontinuous.
However, so-called mesoscale diffused interface approaches, such as MCLBM (all
variants), treat this interfacial region as continuous —a diffused interface where the
fluid blends from one fluid, to the other. In doing so, one avoids potential singularities,
and the study of such immiscible flows becomes more appropriate and attainable by
bottom-up approaches, MCLBM presenting itself as an attractive option, because:

(i) it can be easily adapted to span the appropriate length scales;
(ii) it has capacity to incorporate integrated micro-scale physics;
(iii) it has the ability for code parallelisation;
(iv) it recovers the fluid macroscopic governing equations.

An example of where this approach has great traction is when studying triple contacts,
between three mutually immiscible fluids. Here, an accurate relationship between
the surface tensions of the fluids, their resultant affinity towards each other and
hence their segregation, can be imposed with reasonable accuracy —with correct
treatment of the triple contact according with Young-Laplace Law physics [90, 91,
92, 93]. Clearly then, given the method’s existing functionality, its extension to the
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simulation of immiscible fluids with larger density contrasts would extend its utility,
allowing for the simulation of a larger variety of the fluid flows seen in nature and
industry.

The development of MCLBMs for the simulation of immiscible fluids with density
contrasts has been studied using the previously discussed variants in section 2.3.3

—(i) Shan-Chen pseudopotential (SC), (ii) Free Energy (FE), (iii) Phase-field and
(iv) Colour-Gradient or Chromodynamic.

The multi-component multi-phase SC model was first introduce by Shan et
al. [60, 62]; it had several limitations identified in section 2.3.3.1. The original
SC model was improved by Yuan and Schaefer [94] who addressed the task of
connecting the pressure in the fluids’ equations of state (EOSs) with the pressure in
the SC model. The outcome of this work was that both the Peng-Robinson [95] and
Carnahan–Starling [96] EOSs were found to be effective in modelling large density
ratios, with minimised (but still significant) spurious velocities. Zhang and Tian [97]
contested that Yuan and Schaefer’s approach lacked physical foundation, however,
Zhang and Tian’s approach is accepted to have underperformed compared to that
of Yuan and Schaefer’s approach, which had smaller spurious velocities and could
simulate larger density contrasts. Yet even with these improvements, the spurious
velocity level still limits the application of the model, to cases where these velocities
do not overpower flow behaviour. For instance, the various SC models were found
to be unsuitable for the simulation of Marangoni convection, for this reason [98].
Furthermore, the interface width has been reported to be larger than that in other
MCLBM variants (a significant issue, for continuum scale applications, of course) and
the method has stability issues [68]. Lycett-Brown and Luo [99, 100] developed a SC
model with a new forcing scheme, allowing the simulation of large density contrasts
O(1000), with increased stability, implementing a cascaded-MRT collision operator.
Note, their model also afforded the ability to tune surface tension, independent of
density contrast —a previous problem in SC models, which was first addressed in [101].

The free energy model developed by [64, 66] has also been enhanced and extended
for the simulation of immiscible flow with density ratios. Inamuro et al. [102] outlined
a two-phase immiscible free-energy model, capable of simulating fluids with a large
density contrast. In 2006, Zheng et al. [103] advanced a free-energy model that
recovers the Cahn-Hilliard equation, side stepping an algorithmic pressure correction,
by using a particle distribution for the mean density and momentum [104]. The
so called ‘phase-field’ models, which are not dissimilar to the free-energy models,
have also been used to simulate immiscible fluids with large density ratios (above,
they are discussed with free-energy models, due to the similarity of the two). In
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2013, Zu et el. [105] presented a phase-field based lattice Boltzmann method for
the simulation of binary fluid systems with density contrasts. This method was
then enhanced by Fakhari et al. [106], improving upon numerical stability and
model efficiency and then, further again by Mitchell et al. [107], who extended
the methodology to three dimensions.

Colour-Gradient (CG) and Chromodynamic models also present themselves as an
attractive option for simulating immiscible fluids with a density contrast. Following
several advancements to the initial CG model, in 2007, Reis et al. [108] introduced
a two-dimensional CG model for simulating immiscible binary fluids with density
and viscosity contrasts. In 2013, Liu et al. [109] extended this by presenting a CG
model for the simulation of binary fluids with density and viscosity contrasts in
three-dimensions. At a similar time, Leclaire et al. [110] introduced a CG model with
an enhanced equilibrium distribution function, capable of simulating density ratios
up to O(1000). Ba et al. [111] provided a benchmark for CG models, by outlining a
model capable of simulating two-phase flows at high density and Reynolds numbers.
Recently, Wen et al. [112] presented an improved CG model for the simulation of
fluids with density contrasts, eliminating error terms that appear in the macroscopic
equation by modifying the equilibrium distribution function.

All of the MCLBM variants extended to the simulation of immiscible fluids with
a density contrast should meet the kinematical conditions at the free surface (or
interface) between the fluids —outlined in section 2.2.2.1. If this condition is not
met, numerical instability may ensue, and worse, the physics of the flow will not
be accurately represented. To enforce the kinematic condition, colour-gradient and
chromodynamic models [109, 111, 112, 77] use a kinetic scale segregation rule to
prevent fluid mixing and to maintain the integrity of the interfacial region between
the immiscible fluids. To understand the impact of extending the cMCLBM to large
density contrasts on the method’s ability to comply with the kinematical condition
required at the interface, mathematical analysis of the segregation rule (model
kinematics) and verifiable recovery of the macro-scale continuum fluid dynamics
equations (dynamics) is clearly needed. Therefore, this chapter tackles the analysis
of both the kinematics and dynamics of the cMCLBM methodology, revealing the
coupling between the two and enhancing the understanding of the methodology. This
is achieved by assessing the kinetic scale segregation rule. It should be noted that the
segregation is controlled at the kinetic scale, but the kinematic condition refers to
the continuum scale behaviour of the interface, and as such, an analysis must seek to
relate the kinetic scale and the continuum scale observables in an appropriate manner.
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The structure of this chapter is as follows. First, the cMCLBM will be outlined,
explaining in detail the extension of the methodology for the simulation of fluids
with a density contrast [77]. From this, the extension of the methodology from
binary fluid flows to many fluids will also be discussed and reviewed. Having
postulated a methodology, a mathematical analysis consisting of two interlinking
sections (Dynamics and Kinematics) will be presented, to address the impact of the
extension to large density ratios on the method’s ability to correctly recover the
governing fluid dynamics equations and principal interfacial kinematic condition, as
well as model stability. To support the findings, simulation data will be presented,
further to highlight the utility of the model. Finally, concluding remarks will be
made, bridging into the work presented in Chapter 4.

3.2 Methodology
This methodology section will outline the cMCLBM used for the simulation of
immisicble, isothermal, binary fluid flows with a large density contrast, focusing
on the methodological extensions to incorporate the density difference. Aiming
to provide as transparent an account as possible, of this extension and its impact
on the model, the collision operator implemented here is the BGK operator [35]

—which simplifies the analysis that will be presented in section 3.3.1. Additionally,
although only two-component flows are examined in this chapter, the extension to
the simulation of many fluids will be briefly presented, in order to provide further
understanding of the methodology, as well as providing a point of reference for
the upcoming work in Chapter 5.

3.2.1 Isothermal cMCLBM for Binary Fluid Flows with a
Density Contrast

For a binary fluid flow, the distribution function in LB can now be expressed
as a summation of the two distribution functions for the species designated red
and blue as follows:

fi(r, t) = Ri(r, t) +Bi(r, t). (3.1)

The evolution equation, incorporating forcing after Guo et al. [70] and the BGK
collision operator can be expressed for the model as follows:

fi(r + ∆tci, t+ ∆t) = fi(r, t) − ∆t
τ

(fi(r, t) − f
(0)
i (ρ, u)) + ∆tFi, (3.2)

where the source term (Fi = F1i+F2i) can be split up into two separate contributions:
F1i —a correction needed due to the introduction of a density contrast between the
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fluids and F2i —an immersed boundary force containing surface tension physics (see
section 3.3.1). The equilibrium distribution function has to be adapted to aid the
simulation of density contrasts by the introduction of a parameter ϕi, developed
over time in [108, 113, 111], to be discussed shortly. The equilibrium distribution
function now has the following form:

f
(0)
i (ρ, u) = ρϕi + tiρ

(
uαciα
c2
s

+ uαuβciαciβ
2c4
s

− u2

2c2
s

)
. (3.3)

Identical to the unit density ratio model, the macroscopic properties are calculated
using a force adjustment, outlined by Guo et al. [70]:

ρR(r, t) = Ri(r, t), ρB(r, t) = Bi(r, t), ρ = ρR + ρB, (3.4)

u =
∑
i fi(r, t)ci

ρ
+m

F (l)

ρ
, (3.5)

here, F (l) is the surface tension inducing Lishchuk force [57], and m is a constant to
be determined. Throughout this work the following notations are used; ρ, ρR, ρB, i,
∆t, ciα, ti, u and cs denote the overall nodal density, red fluid nodal density, blue
fluid nodal density, link-index, time step, the α component of the ith lattice basis
vector, the weight for link i, fluid velocity and the colour-blind speed of sound.
The inclusion of ϕi within Eq. (3.3) affects mass activation. It does this by
redistributing the mass on each of the nine links and has a relationship linked
with the two ideal gas components’ speed of sound [108, 113, 111, 77]:

ϕi =


αRρR

ρ
+ αBρB

ρ
, i = 0

(1 − αR) siρR

ρ
+ (1 − αB) siρB

ρ
, i ̸= 0

(3.6)

where si = kti is a weight factor, determined by the lattice link weights, ti, and a
constant k, determined by the lattice dimensionality (k = 9

5 for the D2Q9 lattice
structure). The colour-blind parameters αR and αB can be tuned to give the desired
density ratio between the two species, as well as having a linking to algorithmic
stability [77]. The following equation states the relationship to density ratio, Λ [56]:

Λ ≡ ρ0R

ρ0B
= c2

sB

c2
sR

= 1 − αB
1 − αR

, (3.7)

where, the density contrast Λ is expressed as the density of the two species deep
within their respective phases, i.e., ρ0C where C ∈ [R,B].
The isothermal equation of state for a BGK model is given by p = ρc2

s. As such,
using Eq (3.7) and the interfacial condition that pressures must be balanced at the
interface, an equation of this pressure balance can be expressed as:

ρ0R(1 − αR) = ρ0B(1 − αB). (3.8)
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The interface between the two fluids is now adapted for the inclusion of a density
contrast between the fluids, through normalisation of the fluid densities, resulting in
the following equation for the phase field —which as discussed below —resembles
a tanh(βr) profile:

ρN ≡

(
ρR

ρ0R
− ρB

ρ0B

)
(
ρR

ρ0R
+ ρB

ρ0B

) . (3.9)

Finally, the kinetic scale segregation rule, that aims to maintain interface integrity
and prevent mixing of the fluid species has also been adapted for the inclusion of
a density contrast. Below, ϕi is included in the segregation term, to bias mass
distribution on the lattice links, with the segregation rule applied here an adaptation
of the original method [76] presented by Halliday et al. [58]:

Cψψ
i (r, t) = ρC(r, t)

ρ(r, t) fi(r, t)
ψ + β

ϕi(r, t)ρR(r, t)ρB(r, t)
ρ(r, t) n̂ · ∆tĉi, (3.10)

where, again C ∈ [R,B], superscript ψ (ψψ) denotes a post-collision (post re-colour)
quantity and β is a chosen segregation parameter. It is essential that mass and
colour is conserved during this stage, which can be checked by summing each side
on both direction (index i) and colour.

3.2.2 Extension to Many-Component Fluid Flows

The methodology outlined previously is for the simulation of binary immisicble fluids
with a density contrast, i.e., two-component fluid flows. However, the method is
extendable to the simulation of many-components and many drops. This subsection
will discuss the considerations one must make when extending to many fluids, with
this issue and other considerations being further addressed in Chapter 5.

The extension to three-components or higher has been carried out using all the
MCLBM variants discussed within this thesis [114, 115, 116, 117, 90, 91, 118, 92]. The
colour-gradient or chromodynamic MCLBM class of models have distinct advantages
when simulating ternary fluid systems, such as their strict mass conservation and
ability to tune surface tension values for each fluid easily and accurately. This control
over a range of surface tension values is extremely important when modelling the
physics of three-phase contacts. The static mechanics of a three phase contact is
given by Neumann’s triangle, which describes the force at this contact, based on
the surface tensions of the fluids [119, 120]. In simple terms, the triangle relates
to the surface tension forces of the fluid pairs (lengths of the triangle) at a point
in space where a triple contact forms (three fluid meeting) where the angles in the
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triangle correspond to the contact angles of the fluids. Again, meaning for such
a triple contact, the ability to apply a variable surface tension in the cMCLBM

—individual surface tension values for each fluid interface —allows control over
Neumann’s triangle, as shown in Figure 3.1.

Figure 3.1: Neumann’s triangle for a triple contact between three fluids, denoted: Red
(R), Blue (B) and Green (G). The surface tensions between the fluids are given by σCC′

and contact angles by θCC′ , where C ∈ [R, B, G] and C ′ ∈ [R, B, G], with C ̸= C ′.

The importance of compliance with Laplace-Law triple contact physics and the
Neumann’s triangle is clear when simulating fluids which have different wettability
and, further, fluids which are completely immisicble. In cMCLBM however, applying
only the variable surface tension values will not guarantee correct behaviour due
to the inherent dispersion of the lattice Boltzmann algorithm. The segregation
rule outlined previously is also needed to minimise fluid mixing in the interfacial
region. The segregation rule has been adjusted and enhanced over time, to treat this
triple contact [90, 91, 92]. Yuan et al. [92] outlined an enhanced segregation rule,
which recovered convincing results of three-phase simulations, the following is an
overview of this segregation process. The segregation parameter (or interface width)
between two fluids C and C ′ is given by βCC′ and is now variable in relation to the
surface tension values between the fluids. The value of βCC′ is calculated through
first evaluating whether a Neumann’s triangle is present in Eq. (3.11a), then using
this value to determine how the interface width between fluids C and C ′ should be
perturbed to give correct wettability of the fluids —Eqs. (3.11b,3.11c). The steps
for this, then, were given by Yuan et al., in 2019 [92]:

XCC′ = σ2
C′′C + σ2

C′′C′ − σ2
CC′

2σC′′CσC′′C′
, (3.11a)
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βCC′ = β0 + β0min
(

35ρCρC′ρC′′

ρ3 , 1
)
g(XCC′), (3.11b)

g(XCC′) =


1, XCC′ < −1.
1 − sin(arccos(XCC′)), −1 ≤ XCC′ < 0
sin(arccos(XCC′)) − 1, 0 ≤ XCC′ < 1
−1, XCC′ < 1.

(3.11c)

where, C ̸= C ′ ̸= C ′′ are three separate fluids.
The downside of the current multi-phase and multi-fluid methodologies is that,

although the cMCLBM allows high tune-ability and control of the surface tensions
and fluid-fluid contacts, with only small increase in methodological complexity, it
comes at an increase of computational cost. Currently, interfaces between each
pair of fluids are defined, and as such the number of interfaces needed dramatically
increases with the number of fluids, where the number of interfaces in relation to
the number of fluids n, can be given by:

No. of interfaces = n(n− 1)
2 . (3.12)

From this result, it follows that the amount of storage needed increases quickly
as the number of fluids increases, as well as computational run time due to the
need to loop over more interface pairs when calculating the phase-fields, unit
normals, segregation etc.

Clearly then, addressing this problem would increase the scalability and reduce
computational expense of the cMCLBM models. Through making well-justified
assumptions and neglecting redundant contact physics, it is possible to reduce
computational expense and the number of interface pairs. This observation will be
discussed further in Chapters 5 and 6 when simulating multiple red blood cells.

3.3 Analysis
This section investigates performing two interlinked sets of analyses —dynamics and
kinematics. These analyses provide an enhanced understanding of cMCLBMs, which
are applied to the simulation of binary fluids with a density contrast. As will be
shown below, the kinematics and the dynamics of the model are coupled, and as
such, one could pose an argument for showing the kinematics analysis before the
dynamics analysis or vice versa. Here, the latter approach is taken in the light of
recovering an expression for the force contribution needed for the density difference
correction F2i introduced in Eq. (3.2).

Pursuant to a consideration of the dynamics and kinematics of the model, our
aim is to quantify the utility of this class of cMCLBM models when simulating
large density contrasts, with strengths and limitations of the model exposed from
this analyses being discussed.

49



3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

3.3.1 Dynamics

Presented here is the means of recovering the weakly compressible Navier-Stokes
equations from the lattice Boltzmann equation given in Eq. (3.46), using the Chapman-
Enskog procedure for the two component cMCLBM with density contrasts between
the fluids outlined previously. Note, the reasons for recovering the weakly compressible
Navier-Stokes equations over the incompressible Navier-Stokes equations are discussed
within this analysis; they essentially relate to a sonic velocity which is only of
order unity; with careful parameterisation, however, the advent of the associated
compressibility error may be satisfactorily controlled in the low Mach number limit.
In essence, Chapman-Enskog procedure is a perturbation expansion of the distribution
function about its equilibrium. This work will outline a process which will be referred
to when modifying the methodology through inclusion of an MRT collision operator
and also a pseudo three-dimensional system in Chapter 4. Due to this, a BGK
collision scheme is implemented here, in order to increase transparency, with extra
detail also being provided. From this analysis, correct dynamics will be verified and
an important correction term will be recovered, which has implications on the system
kinematics (discussed further in the proceeding section).

The methodology chosen for present purposes, is one which follows the overall
structure of the analyses outlined by Guo et al. [70]. This methodology is chosen as
it is clear and concise and it facilitates comparison between other collision models
and schemes, which will be discussed later. Again, the presented analysis uses the
D2Q9 model and labelling convention showed in Figure 2.3.

Starting by defining the form of the source term given in Eq. (3.2) after that
of Guo et al. [70]:

Fi = ti

[
A+ Bciα

c2
s

+ C
ciαciβ − c2

sδαβ
2c4
s

]
, (3.13)

where the source term Fi must meet the following properties (solvability conditions):
∑
i

Fi = A,
∑
i

ciαFi = B = nFα,
∑
i

ciαciβFi = Ac2
sδαβ + 1

2 (Cαβ + Cβα) ,

(3.14)
in which A, B, the correction tensor C and constant m in Eq. (3.5) are to be deter-
mined.

The key lattice properties (isotropies) used throughout are given as:
∑
i

ti(1, (ciα)2p+1 , ciαciβ, ciαciβciγciδ) = (1, 0, c2
sδαβ, c

4
s∆αβγδ),
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where p ≥ 0. The defined equilibrium distribution function f
(0)
i in Eq. (3.3) may

hence be shown to have the following properties, which again, are necessary if one
is to recover correct hydrodynamics:

∑
i

f
(0)
i (1, ciα, ciαciβ) =

(
ρ, ρuα, (2ϕ1 + 4ϕ2)ρδαβ + ρuαuβ

)
. (3.15)

Functions ϕ1 and ϕ2 depend upon the chromodynamic field (see Eq. (3.6)) and
hence the spatial-temporal variation of the isotropic term of the second moment
can be modified to:

∑
i

f
(0)
i ciαciβ =

[3
5 ((1 − αR)ρR + (1 − αB)ρB) δαβ + ρuαuβ

]
. (3.16)

Now, we introduce the Chapman-Enskog expansion that will be used for the kinetic
equation and distribution function. The expansion splits the distribution function
and time derivative into perturbed contributions, at different orders:

fi = f
(0)
i + ϵf

(1)
i + ϵ2f

(2)
i + · · · , (3.17)

∂

∂t
= ϵ

∂

∂t0
+ ϵ2 ∂

∂t1
, ∇ = ϵ∇1. (3.18)

The expansion parameter, ϵ, is proportional to the ratio of the lattice spacing to the
characteristic flow length. It should be noted that terms of order ϵ2 or greater, in
Eq. (3.17), are ignored in the proceeding analysis, due to only the two lowest orders
being needed to recover the Navier-Stokes equations [39]. The approach taken when
expanding the time derivative in Eq. (3.18) differs between authors, where, e.g., Guo
and Mohammed [70, 121] treat the expansion as a linear composition of fast t0 and
slow t1 time and Kruger and Succi [39, 122] rather as an infinite expansion of the
time derivative [123].
Here, the same assumptions as Guo et al. [70] are applied:

∑
i

f
(p)
i = 0,

∑
i

f
(p+1)
i ci = 0, p ≥ 1, (3.19)

and it now follows that:

ρu =
∑
i

fici +mF∆t ⇔
∑
i

f
(1)
i ci = −mF∆t. (3.20)

The first step towards recovering the hydrodynamic behaviour of the model is to
Taylor expand and apply Chapman-Enskog expansion (Eqs. (3.17,3.18)) to Eq. (3.2):

(ϵ∂t0 + ϵ2∂t1 + ci.ϵ∂α)(f 0
i + ϵf 1

i ) + ∆t
2 (ϵ∂t0 + ϵ2∂t1 + ci.ϵ∂α)2(f 0

i + ϵf 1
i )

= − 1
τ∆t

(
f 0
i + ϵf 1

i + ϵ2f 2
i − f

(eq)
i

)
+ ϵFi.

(3.21)
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First, evaluating the most rapid behaviour in the model, with equivalent equation
in Guo et al.’s analysis [70] being Equation (9b), giving:

O(ϵ) : (ciα∂α + ∂t0)f (0)
i = − 1

τ∆tf
(1)
i + Fi. (3.22)

Now, proceeding to Equation (9c) of [70] (which is the expansion to O(ϵ2)), it is
possible to obtain straightforwardly the following equation:

O(ϵ2) : ∂t1f
(0)
i +

(
1 − 1

2τ

)
(ciα∂α+∂t0)f (1)

i = − 1
τ∆tf

(2)
i + ∆t

2 (ciα∂α+∂t0)Fi. (3.23)

Starting with the O(ϵ) equation, the zeroth and first moments are taken. The
zeroth moment is:

∑
i

(ciα∂α + ∂t0)f (0)
i =

∑
i

− 1
τ∆tf

(1)
i +

∑
i

∆tFi,

∂t0ρ+ ∂αρuα = ∆tA,
∂t0ρ+ ∂αρuα = 0, (3.24)

where in order to retrieve the continuity equation, let A = 0, similar to the analysis
in [70].
The first moment of Eq. (3.22) is evaluated as follows:

∑
i

(ciα∂α + ∂t0)f (0)
i ciβ =

∑
i

− 1
τ∆tf

(1)
i ciβ +

∑
i

∆tFiciβ,

∂αΠ(0)
αβ + ∂t0ρuβ =

(
m

τ
+ n

)
Fβ. (3.25)

where, assuming that Bβ = nFβ, n is a constant to be determined and Π(0)
αβ =

(2ϕ1 + 4ϕ2)ρδαβ + ρuαuβ is the zeroth-order momentum flux tensor. To recover the
Euler equations, the following constraints must be met:

A = 0, n+ m

τ
= 1. (3.26)

We proceed to evaluate the zeroth and first moments of the O(ϵ2) equation. The
zeroth moment of Eq. (3.23) is:

∂t1
∑
i

f
(0)
i +

(
1 − 1

2τ

)∑
i

(ciα∂α + ∂t0)f (1)
i = − 1

τ∆t
∑
i

f
(2)
i + ∆t

2
∑
i

(ciα∂α + ∂t0)Fi

∂t1ρ+
(

1 − 1
2τ

)
(∂α (−mFα∆t)) = −∆t

2 (∂αBα)

∂t1ρ+
(

1 − 1
2τ

)
(∂α (−mFα∆t)) = −∆t

2

(
∂α

(
1 − m

τ

)
Fα

)
∂t1ρ = −∆t

(1
2 −m

)
∂αFα. (3.27)
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Next, the first moment of the O(ϵ2) equation:

∂t1
∑
i

f
(0)
i ciβ +

(
1 − 1

2τ

)∑
i

(ciα∂α + ∂t0)f (1)
i ciβ = − 1

τ∆t
∑
i

f
(2)
i ciβ (3.28)

+ ∆t
2
∑
i

(ciα∂α + ∂t0)Ficiβ

∂t1 (ρuβ) +
(

1 − 1
2τ

) (
∆t∂t0(−mFβ) + ∂αΠ(1)

αβ

)
= −∆t

2

(
∂t0B + ∂α

(1
2 (Cαβ + Cβα)

))
∂t1 (ρuβ) = ∆t

(
m− 1

2

)
∂t0Fβ + ∂α · σ′

αβ,

(3.29)

where σ′
αβ = −

(
1 − 1

2τ

)
Π(1)
αβ − ∆t

4 (Cαβ + Cβα). After Guo et al. [70], the following
constraint on m has to be imposed, in order eventually to obtain physically correct
target dynamics for the system:

m = 1
2 . (3.30)

Subsequently, there result the two following equations for the zeroth moment and
first moment of the O(ϵ2) equation and also an updated constraint on n:

∂t1ρ = 0, (3.31)

and the updated first moment equation is:

∂t1 (ρuβ) = ∂α · σαβ, (3.32)

where it is now possible to express n as follows:

n = 1 − 1
2τ . (3.33)

To evaluate Eq. (3.32), an expression for the first order momentum flux tensor Π(1)
αβ ,

is needed. Rearranging Eq. (3.22) for f (1)
i and then taking the second moment by

multiplying through by ciαciβ and summing on both sides ∑i.

Π(1)
αβ =

∑
i

f
(1)
i ciαciβ

=
∑
i

τ∆t
(
− (∂t0 + ciγ∂γ) f (0)

i + Fi
)
ciαciβ

Π(1)
αβ

τ∆t = −∂t0 [(2ϕ1 + 4ϕ2) ρδαβ] − ∂t0(ρuαuβ) − c2
s∂γ (uδρ) ∆αβγδ + 1

2 (Cαβ + Cβα) .
(3.34)

For transparency, each term on the right hand side of Eq. (3.34) will be evaluated
individually. The time derivative in the first term on the right hand side can be
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removed using the kinematical condition that color is a material invariant on the
shortest time scales (Eq. (3.58)) as follows:

−∂t0 [(2ϕ1 + 4ϕ2) ρδαβ] = −∂t0
3
5 [(1 − αR) ρR + (1 − αB) ρB] δαβ

= −3
5 (1 − αR) ∂t0 [ρR + ΛρB] δαβ

= 3
5 (1 − αR)uγ∂γ [ρR + ΛρB] δαβ.

(3.35)

Simplifying the second term on the right hand side now. Here, the product rule
and then substitution from Eqs. (3.24), (3.25) and (3.16) will be used to remove
time derivatives from the equation:

−∂t0(ρuαuβ) = −uα∂t0(ρuβ) − (ρuβ)∂t0uα

= uα∂γΠ(0)
βγ − uαFβ + uβ∂γΠ(0)

αγ + uβFα − uαuβ∂γuγρ

= −(uβFα + uαFβ) + (uα∂β + uβ∂α) [(2ϕ1 + 4ϕ2) ρδαβ] +

+ uα∂γ (ρuβuγ) + uβ∂γ (ρuαuγ) − uαuβ∂γ(ρuγ),

= −(uβFα + uαFβ) + (uα∂β + uβ∂α) 3
5 (1 − αR) ∂γ [ρR + ΛρB] , (3.36)

where, uα∂γ (ρuβuγ) + uβ∂γ (ρuαuγ) − uαuβ∂γ(ρuγ) = ∂γ(ρuαuβuγ). This term is
approximated to zero under the assumption of the low Mach number limit —the
assumption that fluid velocity is much smaller than the speed of sound, meaning
that this term is negligible (see Eq. (2.18)).
Next, evaluating the third term on the right hand side, using the tensor properties
defined at the start of this analysis and, by utilising the product rule:

−c2
s∂γ (uδρ) ∆αβγδ = − c2

s∂γ (uδρ) (δαβδγδ + δαγδβδ + δαδδβγ)

= − c2
s∂γ (uγρ) δαβ − c2

sρ∂α (uβ) − c2
suβ∂α (ρ) +

− c2
suα∂β (ρ) − c2

sρ∂β (uα) . (3.37)

Substituting the simplified expressions, given by Eqs. (3.35, 3.36, 3.37) back into
the expression for the first-order momentum flux tensor, Eq. (3.34):

Π(1)
αβ

τ∆t = 3
5 (1 − αR)uγ∂γ [ρR + ΛρB] δαβ + 1

2 (Cαβ + Cβα) − (uβFα + uαFβ)+

+ (uα∂β + uβ∂α) 3
5 (1 − αR) ∂γ [ρR + ΛρB] − c2

suγ∂γ (ρ) δαβ+

− c2
sρ∂γ (uγ) δαβ − c2

s∂α (uβ) − c2
suβ∂α (ρ) − c2

suα∂β (ρ) − c2
sρ∂β (uα) .
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Simplifying the above, by collecting terms together:

Π(1)
αβ

τ∆t = −ρ

3 (∂αuβ + ∂βuα) + 1
2 (Cαβ + Cβα) − (uαFβ + uβFα)+

+ uα∂βΦ′ + uβ∂αΦ′ + uγ∂γΦ′δαβ+

− ρ

3∂γuγδαβ

= −ρ

3 (∂αuβ + ∂βuα) − uα (Fβ − ∂βΦ′) − uβ (Fα − ∂αΦ′) +

+
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ + 1

2 (Cαβ + Cβα) ,

(3.38)

where, for simplicity, the following definition is used: Φ′ = 3
5 (1 − αR) (ρR + ΛρB)−1

3ρ.

Now, using the definition of the viscous stress tensor σ′
αβ, and substituting the

expression from Eq. (3.38) for Π(1)
αβ , results in:

σ′
αβ = −

(
1 − 1

2τ

)
Π(1)
αβ − ∆t

4 (Cαβ + Cβα) ,

=
(
τ − 1

2

)ρ
3 (∂αuβ + ∂βuα) + uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)

+

−
(
τ − 1

2

) [
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ − τ

2 (Cαβ + Cβα) .

(3.39)

Only the first term on the right hand side is consistent with the Navier-Stokes
equations. It is therefore possible to infer an error as follows:

Eαβ =
(
τ − 1

2

)uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)
+

−
(
τ − 1

2

) [
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ − τ

2 (Cαβ + Cβα)
(3.40)

Therefore, in order to eliminate the error, the following choice of correction tensor
Cαβ is made (eliminates the error):

Cαβ =
(

1 − 1
2τ

)(
uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′) −

[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

)
.

(3.41)
Note that by setting αR = αB, Λ → 1, ∂δΦ′ → 0, Eq. (3.41) will reduce to Equation
(16) of [70].
Finally, consider Equations (6) and (20) of Guo et al., for the evolution equation source
term. It has been found that, in the additional presence of large density gradients
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(which now characterise the inter-facial region), the BGK source term becomes:

Fi ≡ ti


(

1 − 1
2τ

)
Fαciα
c2
s

+

+ 1
2c4
s

(
1 − 1

2τ

)uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′) −
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

×

(
ciαciβ − c2

sδαβ
).

(3.42)

Separating the source term into two components F1i and F2i, where F1i contains
the density-difference corrections and F2i contains the immersed boundary force
(drop dynamics —surface tension), we have:

F1i = 1
2c4
s

(
1 − 1

2τ

)
ti

−uα∂βΦ′−uβ∂αΦ′−
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

 (ciαciβ − c2
sδαβ

)
.

(3.43)

F2i = ti

(
1 − 1

2τ

) [
Fαciα
c2
s

+ (uβFα + uαFβ) (ciαciβ − c2
sδαβ)

c4
s

]
. (3.44)

Finally, the macroscopic equations of motion can now be recovered. For the continuity
equation, combining Eqs. (3.24), (3.26), (3.27) and (3.30), we have:

∂tρ+ ∂αρuα = 0, (3.45)

and by combining Eqs. (3.25, 3.26, 3.28, 3.30, 3.39, 3.41), the weakly compressible
Navier-Stokes equations are recovered:

∂tρuα + ∂β(ρuαuβ) = −∂αp+ ∂βη (∂βuα + ∂αuβ) + Fα, (3.46)

where pressure is defined as: p = ρc2
s and for the BGK collision scheme used in

this LBE variant, the viscosity is defined as:

η = ρ

3

(
τ − ∆t

2

)
. (3.47)

In conclusion, the weakly compressible Navier-Stokes equations have been recovered
as desired. However, the extension to the simulation of binary fluids with a density
contrast led to more error terms in relation to the unity density contrast model [70].
The fallout from this is that alongside the source term that applies the immersed
boundary force (Eq. (3.44)) found in the analysis in [70], there is now another source
term that contains the corrections needed due to the extension of the model for the
simulation of fluids with a density contrast (Eq. (3.43)). As such, it is important
now to assess to what extent this new correction source term impacts the model,
and importantly, its compliance with the continuum kinematical interface condition.
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3.3.2 Kinematics

Multi-Component lattice Boltzmann method variants all contain a diffused interfacial
region between the fluids when aiming to simulate immiscible fluid flows; this,
of course, introduces an unphysical length scale into continuum simulations. In
cMCLBM models, this interface scale is relatively easily tuneable; it is defined by a
phase-field that catalogues the phase one is in over the lattice. This interfacial region
has large importance, with immersed forces being applied in this region, aiming to
enforce or, rather, manufacture, flow physics characteristic of the situation under
consideration, i.e., surface tension at the interface between fluids, when modelling
drops. This interface should be subject to a continuum kinematic condition, which
we choose to state as follows: the interface should advect with the fluids locally
(physically, if fluid1 recedes from fluid2 quicker than fluid2 catches fluid1, a cavity
will form). To check the interfaces’ compliance with the kinematic condition, one
must transform -pass- from the kinetic description of the fluid segregation to a
continuum description. Here, an analysis is presented that provides a framework
for investigating the model’s compliance with this continuum kinematic condition,
by assessing the segregation rule that helps maintain the interface —potentially the
most crucial methodological step in color-gradient and chromodynamic models.

The following analysis provides a framework which is referenced in both Chapters 4
and 5, as well as having relevance to the whole class of chromodynamic models.
The analysis considers a uniformly translating flat interface between two effectively
immisicble fluids. Specifically, the interfaces mean curvature is given by H = 0.
Through setting H = 0, this removes the dynamics from the model (soon to be
discussed), therefore testing the pure kinematics of the model. Note, letting H ̸= 0 in
the proceeding analysis would take away from the transparent outcome of this work,
resulting in an over-elaborate perturbation of the solution soon to be given. Figure 3.2
shows a schematic of the interfacial region and the postulated flow in question:

Starting with the red fluid (say), colour conservation is applied to the node lying
at position r, time t + ∆t, to post collision, post re-colour red link populations
on adjacent nodes at the previous time step t:

ρR(r, t+ ∆t) =
∑
i

Rψψ
i (r − ci∆t, t). (3.48)

Substitute the post collision (post re-colour) rule for the red fluid, Rψψ
i , into Eq. (3.48)

ρR(r, t+ ∆t) =
∑
∀i

ρR(r − ∆tci)
ρ(r − ∆tci)

(
f

(0)
i (ρ, u) + Fi

)
+
∑
∀i
β
ϕi(r − ∆tci)ρR(r − ∆tci)ρB(r − ∆tci)n̂ · ∆tci

ρ(r − ∆tci)
.

(3.49)
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Figure 3.2: Schematic of a uniformly translating, flat interface in the direction shown
by the white arrows. Black arrows show the interface unit normal n̂, where the mean
curvature of the interface is set to zero (H = 0) [77].

Note, because we are concerned with a uniformly translating fluid in the interfacial
region, where H = 0, the surface tension immersed boundary force equals zero,
Fα = −1

2σH∂αρ
N = 0. As such, from the source terms defined from the dynamics

analysis (section 3.3.1) in Eqs. (3.43, 3.44), it follows that fψi = f
(0)
i (ρ, u) + F1i (for

steady flow), where F2i = 0 due to presence of zero interfacial curvature. The result
is that the source term is given by Fi = F1i; this therefore removes the surface tension
from the analysis (dynamics), resulting in a pure kinematics test, as desired. For
transparency, Eq. (3.43) is given in compressed form, for purposes of this analysis:

F1i = Fαβ
(
ρR, ρB, ρ

N ,Λ, u
)
ti
(
ciαciβ − c2

sδαβ
)
. (3.50)

Substituting the expression for the equilibrium distribution function, f (0)
i (ρ, u), into

Eq. (3.49) and also Fi = F1i, we obtain the following:

ρR(r, t+ ∆t) =
∑
∀i

ρR(r − ∆tci)
ρ(r − ∆tci)

ρ(r − ci∆t, t)ϕi + tiρ(r − ci∆t, t) ×

(
uαciα
c2
s

+ uαuβciαciβ
2c4
s

− u2

2c2
s

)
+ F1i


+

∑
∀i
β
ϕi(r − ∆tci)ρR(r − ∆tci)ρB(r − ∆tci)n̂ · ∆tci

ρ(r − ∆tci)
,

ρR(r, t+ ∆t) =
∑
∀i

[
ρRϕi + ρR

ρ
F1i

]
r−∆tci

+
∑
∀i

[
tiρR

(
uαciα
c2
s

+ uαuβciαciβ
2c4
s

− u2

2c2
s

)]
r−∆tci

+ ∆tβ
∑
∀i

[
ϕi

(
ρRρB
ρ

)
nβciβ

]
r−∆tci

. (3.51)
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Taylor expanding about t and r up to second order, there results the following expres-
sion:

ρR + ∆t ∂
∂t
ρR + 1

2∆t2 ∂
2

∂t2
ρR =

∑
i=0

(ρR − ∆tciβ∂βρR + 1
2∆t2ciβciγ∂β∂γρR

)
ϕ0


+

∑
∀i ̸=0

(ρR − ∆tciβ∂βρR + 1
2∆t2ciβciγ∂β∂γρR

)
ϕi


+

∑
∀i

(ρR − ∆tciβ∂βρR + 1
2∆t2ciβciγ∂β∂γρR

)
F1i


+

∑
∀i

[
ti

(
ρR − ∆tciγ∂γρR + 1

2∆t2ciγciδ∂γ∂δρR
)
uαciα
c2
s

]

+
∑
∀i

[
ti

(
ρR − ∆tciγ∂γρR + 1

2∆t2ciγciθ∂γ∂θρR
)

×

+ uαuβciαciβ
2c4
s

]

−
∑
∀i

[
ti

(
ρR − ∆tciγ∂γρR + 1

2∆t2ciγciθ∂γ∂θρR
)
u2

2c2
s

]

+ ∆tβ
∑
i=0

ρRρB
ρ

− ∆tciα∂α
(
ρRρB
ρ

)
+

+ ∆t2
2 ciαciβ∂α∂β

(
ρRρB
ρ

)ϕ0 × nγciγ


+ ∆tβ

∑
∀i ̸=0

ρRρB
ρ

− ∆tciα∂α
(
ρRρB
ρ

)
+

+ ∆t2
2 ciαciβ∂α∂β

(
ρRρB
ρ

)ϕi × nγciγ

.
In order to simplify the above expression, one must appeal to lattice isotropy and lat-

tice weight ti properties. Accordingly, the following lattice tensor conditions are used:

∑
∀i
ti
[
(ciα)2p+1, ciαciβ, ciαciβciγciθ

]
= (0, c2

sδαβ, c
4
s∆αβγθ), (3.52)

∑
∀i ̸=0

si
[
(ciα)2p+1, ciαciβ, ciαciβciγciθ

]
= (0, kc2

sδαβ, kc
4
s∆αβγθ), (3.53)

where, again, k = 9
5 for the D2Q9 lattice structure. Using Eqs. (3.52, 3.53), the

compressed form of F1i in Eq. (3.50) and the definition of ϕi in Eq. (3.6) to simplify
Eq. (3.52), and removing terms that will sum to zero, we have:

ρR + ∆t ∂
∂t
ρR + 1

2∆t2 ∂
2

∂t2
ρR = ρR

(
αRρR
ρ

+ αBρB
ρ

)
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+
∑
∀i ̸=0

(ρR + 1
2∆t2ciβciγ∂β∂γρR

)
(1 − αR) siρR

ρ


+

∑
∀i ̸=0

(ρR + 1
2∆t2ciβciγ∂β∂γρR

)
(1 − αB) siρB

ρ


+

∑
∀i

(ρR + 1
2∆t2ciγciδ∂γ∂δρR

)
ti ×

kfjhdfFαβ
(
ρR, ρB, ρ

N ,Λ, u
) (
ciαciβ − c2

sδαβ
) 

−
∑
∀i

[
ti (∆tciγ∂γρR) uαciα

c2
s

]

+
∑
∀i

[
ti

(
ρR + 1

2∆t2ciγciθ∂γ∂θρR
)
uαuβciαciβ

2c4
s

]

−
∑
∀i

[
ti

(
ρR + 1

2∆t2ciγciθ∂γ∂θρR
)
u2

2c2
s

]

− ∆tβ
∑
∀i ̸=0

 (1 − αR)
∆tciα∂α

(
ρRρB
ρ

)siρR
ρ
nγciγ


− ∆tβ

∑
∀i ̸=0

 (1 − αB)
∆tciα∂α

(
ρRρB
ρ

)siρB
ρ

nγciγ

.
(3.54)

Now, expanding the summation over lattice links i, there results the following:

ρR + ∆t∂ρR
∂t

+ 1
2∆t2∂

2ρR
∂t2

= αRρ
2
R

ρ
+ αBρBρR

ρ

+ (1 − αR)
[
ρ2
R

ρ
+ ∆t2

2 ∂α∂β

(
ρ2
R

ρ

)
kc2

sδαβ

]

+ (1 − αB)
[
ρRρB
ρ

+ ∆t2
2 ∂α∂β

(
ρRρB
ρ

)
kc2

sδαβ

]

+ ρRFαβ
ρ

(
c2
sδαβ − c2

sδαβ
)

+ ∆t2
2 ∂γ∂δ

(
ρRFαβ
ρ

)(
c4
s∆αβγδ − c4

sδαβγδ
)

− uγ
c2
s

[∆t∂αρR] c2
sδαγ

+ uαuβ
2c4
s

[
ρRc

2
sδαβ + ∆t2

2 ∂γ∂δρRc
4
s∆αβγδ

]

− u2

2c2
s

[
ρR + ∆t2

2 ∂α∂βρRc
2
sδαβ

]

− ∆tβ(1 − αR)
[
∆t∂α

(
ρ2
RρB
ρ2

)]
nγkc

2
sδαγ

60



3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

− ∆tβ(1 − αB)
[
∆t∂α

(
ρRρ

2
B

ρ2

)]
nγkc

2
sδαγ. (3.55)

Expanding brackets and canceling terms in the above gives a final result as:

∆t∂ρR
∂t

+ 1
2∆t2∂

2ρR
∂t2

+ ∆tuγ∂γρR =∆t2
2 (1 − αR)kc2

s

[
∇2

(
ρ2
R

ρ

)]
∆t2
2 (1 − αB)kc2

s

[
∇2

(
ρRρB
ρ

)]

+uαuβ2 ∆t2 [∂α∂βρR]

−∆t2β(1 − αR)kc2
s

[
∂α

(
ρ2
RρB
ρ2

)]
nα

−∆t2β(1 − αB)kc2
s

[
∂α

(
ρRρ

2
B

ρ2

)]
nα

+2c4
s∆t2∂α∂β

(
ρRFαβ
ρ

)
, (3.56)

in which the last term on the right hand side (in Eq. (3.56)) originates in the
density difference correction term, F1i. Neglecting this term, i.e., considering the
case of unit density ratio, results in:

∆t∂ρR
∂t

+ 1
2∆t2∂

2ρR
∂t2

+ ∆tuγ∂γρR

= k

2 c
2
s(1 − αR)∆t2∇2

(
ρ2
R

ρ

)
+ k

2 c
2
s(1 − αB)∆t2∇2

(
ρRρB
ρ

)

+1
2∆t2uαuβ∂α∂βρR

−∆t2β(1 − αR)kc2
snγ∂γ

(
ρ2
RρB
ρ2

)

−∆t2β(1 − αB)kc2
snγ∂γ

(
ρRρ

2
B

ρ2

)
. (3.57)

A similar equation to Eq. (3.57) can be produced for the blue fluid, which just
exchanges R ↔ B and β ↔ (−β) in the preceding analysis.
If the most rapid colour dynamics is evaluated by considering very small ∆t (which
corresponds to spatial and temporal resolution), the resulting equations show that
ρR and ρB are material invariants on the shortest time scales, satisfying the first
order wave equation (advection equation), as:

∂ρC
∂t0

+ u · ∇ρC = 0, C ∈ [R,B]. (3.58)

This result is, subsequently, quoted as an assumption, in the dynamics analysis, as
such, it has a direct impact on the derivation of the model dynamics. Equation (3.58)
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is the first order wave equation in which ρC satisfies with solution ρC(r, t) = f(r−ut).
This result shows that colour is a material invariant on the shortest time scales, in
which the normal to the interface has no impact on the kinematics at this time scale.
Again note, this result is derived by neglecting the inclusion of a density contrast
in the model, as a consequence of assigning F1i = 0.

Proceeding now, we seek steady and unsteady solutions to Eq. (3.56).

3.3.2.1 Steady Solution

First, seek a steady solution to Eq. (3.56). Here it will be possible to recover
an exact solution. Due to considering the system at steady state, the following
simplification can be made:

u = 0, and ∂ρR
∂t

= ∂2ρR
∂t2

= 0,

therefore, F1i = 0 (see Eq. (3.43) for further understanding). Applying these
simplifications to Eq. (3.56) and rearranging, results in the following:

kc2
s

1
2∇2

(
ρ2
R

ρ

)
+ 1

2
(1 − αB)
(1 − αR)∇2

(
ρRρB
ρ

)

− βnγ∂γ

(
ρ2
RρB
ρ2

)
− β

(1 − αB)
(1 − αR)nγ∂γ

(
ρRρ

2
B

ρ2

) = 0.
(3.59)

Now, search for a solution for ρR and ρB, such that the above equation is satisfied.
Using the trial solution shown below, and by substituting it into Eq. (3.59), it is
possible to show the solution to this equation is given by [77]:

ρR(r) = ρ0R

2 (1 + tanh(βn̂ · r)) ,

ρB(r) = ρ0B

2 (1 − tanh(βn̂ · r)) .
(3.60)

This, therefore, provides an exact solution for any density ratio between the two
steady, immiscible fluids, with any orientation of their flat interface.

3.3.2.2 Unsteady solution

Seeking a solution to Eq. (3.56) for the case where the fluids are uniformly translating,
now. Due to the final term on the right hand side of Eq. (3.56) —which encapsulates
the density difference correction —an exact solution cannot be found. Hence, the
approximation of small density contrast is taken. This approximation means that the
second derivative of the density correction term Fαβ is small and can be neglected

—this assumption is further considered shortly.
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Straightforwardly, the solution to the approximate unsteady, problem of Eq. (3.57)
is found by modifying the steady solutions given by Eqs. (3.60) as follows [77]:

ρR = ρ0R

2
{
1 + tanh [βn̂ · (r − ut)]

}
,

ρB = ρ0B

2
{
1 − tanh [βn̂ · (r − ut)]

}
,

ρ = ρR + ρB, (3.61)

where, similarly to the steady solutions, the solutions can be checked via substitution
into Eq. (3.57).
Accordingly, a phase field defined following equation (21) of Ba et al. [111], will now
furnish physically correct behaviour under the approximation of small density ratios.

ρN ≡

(
ρR

ρ0R
− ρB

ρ0B

)
(
ρR

ρ0R
+ ρB

ρ0B

) → tanh [βn̂ · (r − ut)] (3.62)

3.3.2.3 Density difference error

The result given by Eq. (3.62) corresponds to the assumption that only a small
density contrast is present between the fluids. Evidently, this will introduce an
error into the system when trying to simulate larger density ratios. Therefore, it is
now appropriate to analyse this error, by investigating it in more detail. Isolating
the neglected term in Eq. (3.57):

E = 2c4
s∆t2∂α∂β

(
ρRFαβ
ρ

)
. (3.63)

Through substitution of the definition of Fαβ from Eq. (3.43) in section 3.3.1 and
using the solutions for the density profiles given in Eq. (3.61), after lengthy algebra,
it is possible to arrive at the following expression for the error term [77]:

E = −2∆t2
(

1 − 1
2τ

) [
∂α∂β

ρR
ρ

(uα∂βρ+ uβ∂αρ+ uγ∂γρδαβ)
]

(3.64)

= −4β∆t2
(

1 − 1
2τ

)( 1
ρ0B

− 1
ρ0R

)
×
(
(n̂ · ∇) (u · ∇) + n̂ · u∇2

) [ρ2
RρB
ρ

]
.

Evidently, when n̂ · u = 0 the advection error term will vanish. This means, that
in cases where flow is tangent to the interface, there is no advection error, and the
approximate solution is actually exact in this geometry. We are compelled to assume,
at this point, that this method will be more stable for flows parallel to the interface.
This hypothesis will later be examined further through simulation.
We investigate when the error is largest, by using the first equation in Eq. (3.65); it
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may be postulated that derivatives in ρ will take their largest value mid interface,
which can be expressed as follows:

∂βρ ≈ Λρ0B − ρ0B
1
β

= β (Λ − 1) ρ0B.

Following algebraic simplification, and taking the maximum value of ρR

ρ
, which is 1, it

is possible to find an upper, maximum value for the advection error quantified as such:

E <
(

1 − 1
2τ

)
βu(Λ − 1)ρ0B. (3.65)

This term will be discussed in more detail within the results section.

3.3.3 Dynamics and Kinematics Coupling

Summarising now, the findings from the previous analysis of the developed cMCLBM.
From the dynamics analysis shown in section 3.3.1; it was found that in order to
retrieve correct hydrodynamic behaviour (the weakly compressible Navier-Stokes
equations), a new source term denoted F1i had to be included. This source term
contains the corrections needed to eliminate the propagated consequences of an error
originating from the density contrast between the fluids. By including this new
source term, the correct macroscopic governing equations were recovered.

Following the updated source term, the interface’s compliance with the continuum
kinematical condition –that the interface should be embedded within the local fluid
and advect at the same speed locally –was analysed. This involved analysis of
the post-collision kinetic segregation rule which is in common amongst the class
of chromodynamic models and is designed to maintain interface integrity through
reducing fluid dispersion. The segregation rule was analysed by applying colour
conservation at a node lying at position r, time t + ∆t, to post collision, post re-
colour red link populations on adjacent nodes at the previous time step t, seeking
expressions for the fluid densities ρR, ρB and fluid phase-field ρN for a uniformly
advecting flat interface. The resulting analysis showed that an error term was present,
that propagated from the new source term F1i needed to recover correct dynamics.
The inclusion of this error did not impact the steady solution (where this error went
to zero and an exact solution for the densities was recovered). However, the unsteady
solution was found by approximating the fluid density contrast as small —resulting
in the source term F1i ≈ 0. However, this source term will produce an error when
considering larger density contrasts, when it can not be approximated to zero. This
error was then bounded and approximated, with the result shown in Eq. (3.65). The
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error can be seen to increase with sharpness of the interface β, velocity u and density
contrast between the fluids Λ.

In summary, the correction needed to recover correct hydrodynamic behaviour
(i.e., retrieve the weakly compressible Navier-Stokes equations) is affecting the
ability for the interface to meet the kinematical condition, due to an error term
introduced from the source term correction. Thus, there is a circular relationship
between the models kinematics and dynamics. With this relationship understood
and its error approximated, simulation results will now proceed to consider the
impact of this finding on the model’s stability and applicability in flows containing
large density contrasts.

3.4 Results

3.4.1 Spurious Current

All MCLBM variants are known to suffer from a spurious, unphysical velocity signal
–a micro-current –which is most prominent close to the interfacial region between the
fluids, where physically, in zero applied flow, the velocity field should be zero. This
unphysical velocity can be troublesome if the magnitude of the micro-current is close
to that of the characteristic velocity of the flow being investigated (such as in low Re
number investigations), where in such a case it can be hard to distinguish the physical
flow. The introduction of micro-current in the system stems from discretisation
errors as well as the effect of discrete application, node by node, of the continuous
immersed force [49] around which the algorithm is developed. The phenomenology
of the effect is as expected, given its origins; the magnitude of the effect can be seen
to increase with immersed force magnitude (i.e., for drops, the increase in surface
tension) and also with any increase in density contrasts between the fluids [124].
Attempts have been made during the development of MCLBM models to reduce
the micro-current level, through modification of equilibrium distribution function
and gradient calculations [125], particularly the use of increased isotropy in the
gradient operator [126]. Halliday et al. [49] investigated the micro-current within the
chromodynamic class of MCLBM models. They showed that the two causes of the
micro-current: (i) anisotropic gradient stencil contributions (investigated previous for
the SC model in [126]) and (ii) sampling error in the continuous immersed boundary
force; the outcome of the work being that the most appropriate way to reduce
micro-current activity in a way which is not algorithmically and computationally
restrictive is simply to use higher order isotropic stencils [49].
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It is therefore important to examine the micro-current level within the outlined
cMCLBM for the simulation of binary fluids with a density contrast, though
protracted and elaborate attempts to reduce the micro-current are beyond the
scope of this work. The following content considers the micro-current level, with
results showing the impact of density contrasts on its magnitude and also the effect
of calculating the curvature —needed for the computation of the immersed boundary
force. A single two-dimensional drop (radius R = 20) is placed in the centre of a
domain (lattice size: 80 × 80) and left to evolve for a million time steps. Density
contrasts over the range Λ = [0.001, 1000] were simulated, as well as two different
methods of defining the mean curvature of the surface: (i) a fixed surface curvature
value shown in Eq. (3.66a) and (ii) a numerically calculated surface curvature
following that of Lishchuk et al. [57] in Eq. (3.66b).

H = 1
R
, (3.66a)

H = nxny (∂xny + ∂ynx) − n2
y∂xnx − n2

x∂yny. (3.66b)

Here, Eq. (3.66a) expresses the fact that a perfect circle (such as the drops simulated
in this test, shortly) has a curvature defined by its reciprocal radius. Equation. (3.66b)
corresponds to a curvature calculation that can be used for non-circular drop
geometries as well, where the mean curvature is defined by taking gradients of the
interface normal, then projecting-out surface normal contributions of the gradient. To
numerically calculate the gradients in Eq. (3.66b), a compact 4th(O) accurate stencil
was implemented as a good compromise between accuracy and implementability/
computational cost [49]:

∂αf = 1
c2
s

∑
i

tif(r + ci)ciα +O(c4
i ). (3.67)

The results of this test can be seen in Table 3.1, which shows the density contrast
used in the simulation Λ, the micro-current maximum velocity value, when using
Eq. (3.66a) |u|Hf

max and the maximum velocity value when using Eq. (3.66b) |u|Hc
max.

The table shows that maximum micro-current value increases with density contrast,
with the maximum value across all density contrasts being of the order 1 × 10−4

lattice units. Taking Λ = 0.1, it can be seen that the maximum micro-current value
is an order lower when the curvature is defined from initial drop radius, compared to
when it is defined by the surface gradient of the normal in Eq. (3.66b), whereas at
larger density ratios, the order of the micro-current amplitude becomes comparable
between the two definitions of curvature. This suggests that, as the density difference
increases, the numerical error involved in simulating a large density contrast is having
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a dominant effect on the micro-current level. It should be noted, that although micro-
current levels were recorded for density difference in the range Λ = [0.001, 1000], for
σ = 1 × 10−5, the integrity of the interfacial region started to break down at density
ratios ≥ 100, which can be stopped through the use of a larger surface tension value.

BGK collision operator:
Static drop maximum microcurrent values

Λ αB αR |u|Hf
max |u|Hc

max

0.001 0.9995 0.5 1.04 × 10−4 2.54 × 10−4

0.01 0.995 0.5 6.93 × 10−7 5.92 × 10−5

0.1 0.95 0.5 2.60 × 10−7 2.68 × 10−6

10 0.5 0.95 6.02 × 10−8 8.21 × 10−8

100 0.5 0.995 3.48 × 10−6 4.51 × 10−6

1000 0.5 0.9995 9.61 × 10−5 9.61 × 10−5

Table 3.1: Maximum microcurrent velocity (in lattice units) for a static drop of initial
radius R = 20 in a domain of 80 × 80, for Λ ∈ [10−3, 103], β = 0.67 with surface tension,
σ = 1 × 10−5. Two different maximum microcurrent values are shown: (i) |u|Hfmax and (ii)
|u|Hc

max, where Hf corresponds to mean curvature given by Eq. (3.66a) and Hc corresponds
to mean curvature given by Eq. (3.66b).

Consider now the micro-current field in more detail; Figures 3.3 and 3.4 show
the micro-current plots over the lattice for a density contrast of Λ = 0.1, i.e., blue
fluid has density 10 times that of the red fluid, in which Fig 3.3 corresponds to the
simulation, where curvature is defined by Eq. (3.66a) and Fig 3.4 corresponds to the
simulation where curvature is defined by Eq. (3.66b). These figures were obtained
by plotting the velocity field over the domain for the test explained prior, where
the drop surface was defined by using a contour taken at contour ρN = 0. Note,
visualisation software ParaView was used to produce these plots. Considering the
left images of both figures, which show the micro-current magnitude over the lattice
|u|, we see that the micro-current is an order of magnitude larger when calculating
the curvature (essentially from surface gradients of the normal) and also there is a
larger diffusion of the micro-current effects across the domain, unlike when using a
fixed curvature value, based of the initialised drop radius —this is likely due to the
numerical errors introduced by using the stencil given by Eq. (3.67). This tentative
conclusion is also confirmed by the data presented in the right panels of both figures,
that displays the top right quadrant of the lattice and the unscaled velocity vectors
that highlight the micro-current flow. Here, Fig 3.4 highlights a larger diffusion of
the micro-current field, compared to that in Fig 3.3.

As presented by Halliday et al. [49], the micro-current level also relates to a sampling

67



3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

Figure 3.3: Microcurrent profiles over the lattice for a density contrast Λ = 0.1 and when
the mean curvature is given by Eq. (3.66a). (left) shows surface plot of the microcurrent
where white circular contour corresponds to ρN = 0 plot. (right) shows the top right
quadrant of the lattice, showing microcurrent surface plot, superimposed vector field of u
(not scaled) and white contour corresponding to ρN = 0 plot.

Figure 3.4: Microcurrent profiles over the lattice for a density contrast Λ = 0.1 and
when the mean curvature is calculated by Eq. (3.66b). (left) shows surface plot of the
microcurrent where white circular contour corresponds to ρN = 0 plot. (right) shows the
top right quadrant of the lattice, showing microcurrent surface plot, superimposed vector
field of u (not scaled) and white contour corresponding to ρN = 0 plot.

error of the continuous immersed boundary force. Clearly then, the magnitude of the
immersed boundary force will affect the magnitude of the micro-current. To evidence
this, Table 3.2 shows the maximum micro-current magnitude at a density difference of
Λ = 100 for σ ∈ [5 × 10−5, 1 × 10−2], using Eq. (3.66b) for the curvature. The results
in Table 3.2 show increasing maximum micro-current level with increasing surface
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BGK collision operator:
Static drop maximum microcurrent values

for a range of surface tension values
σ Λ |u|Hc

max

5 × 10−5 100 9.05 × 10−6

1 × 10−4 100 1.45 × 10−5

5 × 10−4 100 4.21 × 10−5

1 × 10−3 100 5.81 × 10−5

5 × 10−3 100 8.37 × 10−5

1 × 10−2 100 9.74 × 10−5

Table 3.2: Maximum microcurrent velocity |u|Hc
max (in lattice units) for a static drop of

initial radius R = 20 in a domain of 80 × 80, for Λ ∈ [10−3, 103], β = 0.67 with surface
tension in the range σ ∈ [5 × 10−5, 1 × 10−2].

tension. This is as expected, with a contributing factor to the micro-current being an
error associated with the sampling of the immersed boundary force [49]. The integrity
of the interface and ability to maintain the circular shape of the drop increases with
surface tension value, although does cause increased micro-current level. However,
even at σ = 0.01, the maximum micro-current level is |u|Hc

max = 9.74 × 10−5, which
is comparable to the results presented by Ba et al. [111].

3.4.2 Kinematical Condition

Within the analyses of section 3.3, work focused on the assessment of the compliance
of the model with the continuum kinematical condition (that the interface must
advect at the same speed as the locally advecting fluids, recall). From this, an error
term was also highlighted, which could potentially impact the ability of the model
to meet this condition and hence affect model stability. This section considers the
testing of the utility of the model in dynamic flows, focusing on the maintenance
of correct interface profile —defined in Eq. (3.62).

3.4.2.1 Flat interface pushed perpendicular to the interface

To test our model’s stability at increasing density ratios in non-static situation,
the following test was used. The two fluids were separated by a flat interface and
pushed perpendicular to that interface at a velocity u0. Stability of the model
might then be argued, based on the quality of the maintained interface (smoothness,
adherence to the expected tanh profile, etc.). To assess whether the interface had a
correct profile, the kinematic condition discussed in section 2.2.2.1 is considered. The
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principle kinematic condition, that the interface should advect with the fluids, with no
cavitation, leads to the following equations for the profiles of the red and blue fluids:

ρR(x)
Λ = 1

2 (1 + tanh(x− u0t)) ,

ρB(x) = 1
2 (1 − tanh(x− u0t)) ,

(3.68)

where, in this test, the red fluid has a larger density than the blue fluid, which has a
deep phase density set to ρ0B = 1. The red density profile was normalised, to allow
for easier visual comparison with the blue density profile, with the first quantitiy
being divided by the density ratio, Λ.

Simulations were run to equilibrium, before moving the fluid, to damp transients
within the system. The then equilibriated, flat interface was centred on x ≈ 20
and a uniform flow applied, with velocity u0, and the interface allowed to advect
20 lattice sites. The predicted interfaces, shown by Eqs. (3.68), were then fitted to
the simulated interfaces by using least squares regression, with the quantification
of the error between the actual and the predicted interface shape of the red fluid
being calculated in the following way:

∆(t)2 ≡
∑
i

(
ρR(xi, t) − ρ0R

2 (1 + tanh(xi − u0t))
)2
, (3.69)

where, the summation occurs over a range larger than the interfacial region, 40
locations, to ensure any deviation from the predicted profiles was captured. To fit
the predicted profile against the analytical solution for the profile, t was allowed
to vary to provide the best fit, minimising the error value. From this, any result
that had ∆(t)2 < 1.36 × 10−3 was deemed stable and any above this value deemed
unstable. It is also worth noting that throughout this test, it was found that the
denser profile —Red —departed from that of the predicted profile before the lighter
fluid —Blue. Therefore, it is assumed that the error in the denser profile will be
larger at a given time compared to that of the lighter fluid.

Figure 3.5 shows the data from this test, which has all been normalised as discussed
above. It can be seen that the data provide very good agreement with the profiles,
for the interface given by Eqs. (3.68), and for the density ratios and flow velocities
tested. Quantitative data for this test are given in Table 3.3, showing the full range
of density ratios and flow velocities tested and the stability of the parameterisations
based on the criteria: ∆(t)2 < 1.36 × 10−3. From this, it is seen that the system
is stable over a wide range of density ratios and flow velocities, with large density
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Figure 3.5: Data from the advecting fluid test perpendicular to the interface, simulation
data given by the points and analytical solution by the solid lines. Both densities ρC are
equilibriated by dividing by the respective deep phase densities ρ0C , with the interfaces
initialised centrally around x = 20 lattice units. The interface was allowed to advect 20
lattice units as a result of applying flow u0êx. The data show a range of density differences
Λ tested with increasing values for the velocity of the flow u0 [77].

ratios achievable in slow moving flow (lower flow velocities u0). The system, as
expected, becomes more unstable at higher density differences and also higher u0

values. Note however, within LB models there is a constraint on the maximum
velocity stemming from the Mach number limit umax < 0.15cs.

Λ
u0
cs

1 10 25 50 100 1000
0.15 stable unstable unstable unstable unstable unstable
0.015 stable stable stable stable unstable unstable
0.0015 stable stable stable stable stable stable
0.00015 stable stable stable stable stable stable

Table 3.3: This table displays at which density ratios and flow velocities the system
is stable and unstable. The black (red) text cells correspond to the stable (unstable)
simulations. Stable cells have error values defined by: ∆(t)2 < 1.36 × 10−3 [77].
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Figure 3.6 shows an example where the system has become unstable and departed
from the predicted profiles for the two fluids:

Figure 3.6: Normalised density profiles ( ρC
ρ0C

where C ∈ [R, B]) for the Red and Blue
fluids. The line plots correspond to the equations for the density profiles Eqs. (3.68), and
the circles to simulation data after the fluids have advected perpendicular to this interface.
Here, the density ratio is Λ = 10 and applied flow velocity u0 = 0.15cs. Colour Red (Blue)
corresponds to the Red (Blue) fluid [77].

Here, the profiles given from simulation data (shown by the circles) correspond to
a level of deviation from the predicted profiles that is deemed as unstable. Based on
this result, and that of the unstable simulation in Table 3.3, it is clear there is a link
between the density ratio achievable in simulation and the velocity of the fluid. The
following section investigates this further through analysis of the kinematics error
Eq. (3.65) stemming from the dynamics, density difference correction in Eq. (3.43).

3.4.2.2 Error Analysis

As discussed, a kinematical advection error was found in section 3.3.2, which,
intuitively, is set to impact the stability of the system. In an attempt to bound
the error, through manipulation and simplification, an approximation of the upper
bound of the error was found:

∆ <
(

1 − 1
2τ

)
βu (Λ − 1) ρ0B. (3.70)

From Eq. (3.70), it is evident that parameters β, u, Λ and ρ0B will all impact the
size of the advection error. To increase stability of the system, one could reduce β.
Lowering β increases the interfacial width and thus increases its effective resolution,
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i.e., the number of lattice points within the interfacial region, reducing the advection
error. However, this means that, in order to obtain a physically correct system,
the lattice size would need to be increased to ensure the relative thickness of the
interface is low —introducing additional computational expense. As such, for current
purposes, the tuning of β to reduce the advection error is discounted. For practical
purposes, understanding the relationship between the density ratio Λ and the fluid
velocity u0 is most important, as it will help define the utility of the model. The
correlation between Λ and u0 for stability is supported by both Eq. (3.70) and the
results in Table 3.3.

To investigate the relationship between density ratio, velocity and the stability
of the system, the density ratio would be set, and then the flow velocity u0 at which
the system becomes unstable identified. Instability was identified by normalising
the density profile, using a least squares regression test and deeming the system
unstable when the profile departed more than 5% of that of the predicted profile
given by Eq. (3.68). Density ratios in the range of Λ = [10, 170] were simulated,
with the resultant point of instability plotted on a scatter graph along with a line
of best fit, displayed in Figure 3.7.

Figure 3.7: Scatter plot showing the correlation between the velocity the fluid is pushed
at perpendicular to the interface (ux) against 1

Λ−1 . Where the circles show the point of
instability when the density profile departs more than 5% of that of the predicted profile,
and the black line shows a regression line fitted through the origin using least squares
regression [77].

The data present results that show that, as the density ratio increases, the
maximum attained velocity before the system becomes unstable decreases, put another
way, at higher flow velocities the maximum density ratio achievable in simulation
decreases. These data support the understanding of the interface instability, due
to the advection error in Eq. (3.70), in showing there is a relationship between
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the density ratio and flow velocity, which is linked to stability. The implication of
these observations is that the analyses in section 3.3 have revealed a kinematical
error, induced by pursuing correct dynamical behaviour, which as a result, limits
the applicability of the model through decreasing its stability. This, then, needs
to be considered if one is interested in simulating fluids with a large density ratio
in rapid flow perpendicular to the interface, where current results show interface
integrity will start to break down.

3.4.2.3 Flat interface pushed parallel to the interface

From the analysis in section 3.3.2, an advection error was found given in full form by
Eq. (3.65). Looking, now, at flow perpendicular to the interface, i.e., n̂ · u = 0, the
advection error in Eq. (3.65) will equal zero in this geometry. This, then, means there
is no error induced on the kinematical interfacial condition from the model dynamics.
To assess the impact of this, a range of density ratios and flow velocities were tested
for the flow geometry given in Figure 3.8 and flow profiles from simulation data
compared against the profiles given in Eqs. (3.68), with error and hence stability
being determined by Eq. (3.69). The results of this investigation were that, for
a range of density contrasts up to order O(1000), and a range of flow velocities
below those that break the Ma number limit, the simulation remained stable and
interfacial profiles from data matched that of the expected profiles. Therefore, for
flows parallel to the interface, the model met the continuum interface kinematical
condition for fluids with a large density ratio.

Figure 3.8: Schematic of the two fluids (red and blue) with a flat interface (solid black
line) and white arrows representing the direction the velocity u0 is being applied.
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3.5 Concluding Remarks

The development of computational models that focus on the simulation of immiscible
fluid flows which have a density contrast is of importance in both industry and
nature, where such fluid flows are seen to be present. These models must meet
general criteria, in order to be viable, with the desire for these models to be: stable,
robust, applicable to a wide range of flow regimes, include physics appropriate of the
length and time scale being simulated, and be computationally practical foremost.
Mesoscale, diffused interface models, which utilise techniques such as LBM and
DPD present themselves as attractive options for modelling such flows, compared
to traditional continuum CFD techniques, which treat the interface between the
fluids as discontinuous —which can lead to singularities and an inability to include
more complex physics with origins at smaller length scales.

Based upon the data presented here, multi-component lattice Boltzmann methods
are highly suitable for the simulation of immiscible fluids with density differences, due
to their native, appropriate length and time scale (the interface being treated as a
sharp but diffused region), ability to incorporate key physics (such as surface tension),
computational efficiency (intrinsic parallisability) and ability to simulate complex
geometries (such as porous media). Both the Shan-Chen and Free-Energy/Phase-field
MCLBM variants have been applied successfully to the simulation of immiscible
fluids with large density ratios [102, 99, 100, 107], as well as a class of colour-gradient
or chromodynamic MCLBMs [109, 111, 112, 77] that forms our principal content in
this chapter. The latter variant class all use a kinetic scale segregation rule, in order
to prevent fluid mixing and to maintain integrity of the interfacial region between
the immiscible fluids.

The work in this chapter evidenced the development and analysis of a two-dimensional,
two-component chromodynamic multi-component lattice Boltzmann model for the
simulation of isothermal, binary fluids with a density ratio [77]. Specifically, we
maintained a focus on understanding the kinematics and dynamics of the model, by
investigating the kinetic scale segregation rule which is a common step in colour-
gradient and chromodynamic MCLBMs. Here, the model’s compliance with the
continuum kinematical condition (that the fluids interface should advect at the same
speed as the locally advecting fluids) is evaluated. Starting with the dynamics, a
Chapman-Enskog procedure was used to recover the Navier-Stokes equations from the
evolution equation, following the methodology of Guo et al. [70]. Due to extensions of
the model (outlined at the start of the chapter), which incorporate the density ratio
between the fluids, an additional correction term was identified and implemented in
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the dynamics in order to recover the Navier-Stokes equations. The resultant source
term was then found to impact the kinematical behaviour of the model. To assess
the continuum kinematical behaviour of the model, the segregation rule was analysed
in section 3.3.2. This analysis provided solutions for the profiles of the blue and red
fluid densities at the continuum scale. It was found that an exact solution was only
possible in steady flow, whereas an error term —stemming from the new source term
needed to retrieve correct dynamics —meant that only approximate solutions were
possible in un-steady flow, for fluids with small density contrasts. As such, there is a
coupling between the model’s kinematics and dynamics, which in the current form,
is unavoidable.

The impact of this coupling on the model’s ability to meet the kinematical interface
condition was assessed through direct simulation. To do this, two different flow
geometries were tested for an advecting interfaces: (i) flow perpendicular to the
interfacial (ii) flow parallel to the interface. Note, these tests contained flat interfaces
only, as a result, this removes the affects of surface tension, allowing focused
investigation of the model’s compliance with continuum kinematical conditions
(with curved interfaces later addressed in Chapter 4). To quantify the stability of
the model and compliance with the interfacial kinematical condition, the simulation
data profiles in tests (i) and (ii) were compared against analytical solutions for
the density profiles, with a significant departure from the analytical result defining
an instability. For flow parallel to the interface, the advection error found in the
kinematical analysis is evidently zero, due to the fact that n̂ ·u = 0 —with the density
difference source term F1i having a prefactor of n̂ · u (see Eq. (3.65)). Data from
this test showed that the simulation remained stable, with the kinematical condition
met for a large range of flow velocities and density contrasts, up to order O(1000).
Considering flow perpendicular to the interface, it was found that the model became
unstable when trying to simulate large density contrasts and/or large flow velocities.
Analysing and approximating the advection error, it can be seen in Eq. (3.70) that
the error depends upon the density contrast and flow velocity. This observation was
then investigated further by examining at what flow velocity the simulation became
unstable, for various density ratios over the range Λ = [10, 170]. Figure 3.7 showed
the outcome of this investigation, where a clear correlation between the achievable
flow rate and density ratio was present. Overall, this showed that when the advection
error approached zero —such as for flow parallel to the interface —the model had
increased stability, whereas when the advection error was present —such as for flow
perpendicular to the interface —limitations on both flow velocity and density ratio
achievable were imposed.
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3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

At the broadest level, the outcome of this work is a better understanding of the class
of chromodynamic MCLBMs, their kinetic scale segregation rule and its ability to
meet the kinematical continuum interface condition, as well as the limitations and
strengths of the proposed model. It is evident that if one wishes to simulate fluids
with density ratios of O(100) or greater in rapid flow, then the coupling between the
model’s dynamics and kinematics needs to be addressed to remove the advection
error found in this work. The removal of this coupling is not straightforward, with
no obvious solution that would seemingly not require significant changes to key
parts of the base methodology. Two potential options may be to alter: (i) how
the forcing is applied, or (ii) the distribution of lattice weights in the forcing term
such that it cancels in the kinematics.

Future work should build upon the enhanced understanding of the model presented
herein. Although there are seemingly limitations in rapid flow, at large density ratios,
in its current form, one could consider the application of the model to low Reynolds
number flows, where stability issues would be reduced, by minimising the advection
error. This regime may also present one of the best opportunities for a strict review
of our models compliance with principal kinematic and dynamic boundary conditions,
due to the presence of analytical solutions —allowing for quantitative verification
of our model. In addition, upgrading the model through the inclusion of a multi-
relaxation time (MRT) scheme seems sensible, with most MCLB models presented in
literature taking this approach to enhance stability. One may also consider extending
the model to three-dimensional flows. The following chapter addresses these ideas,
using the research from this chapter to improve the presented BGK-model, and
further verify the models kinematics and dynamics.
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4.1 Introduction

The work in this chapter is a continuation of that presented in Chapter 3, aiming
to enhance the developed LBGK isothermal, multi-component chromodynamic
lattice Boltzmann method for simulating fluids with a density contrast. This work
encapsulates two key extensions. First, the extension to the methodology through
incorporating a multi-relaxation time (MRT) collision operator (see section 4.2),
where the reasons for this step, and contextualised prior work on MRT cMCLBMs, are
discussed within this section. Here, the overall goal is to leverage stability gains via
increased tuneability, with the work in Chapter 3 serving as a foundation. From this
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work, conclusions will be drawn on the utility of the developed model and will lead
into the work in section 4.3, which seeks extensions to the model for the simulation
of three-dimensional fluid flows. Second, in section 4.3, work investigates simulating
axially-symmetric three-dimensional two-component fluid flows, by developing a
pseudo three-dimensional (two-dimensional) MRT-MCLBM based on the work in
section 4.2.

Throughout, emphasis is made on investigating the model’s compliance with kine-
matical and dynamical interface boundary conditions at density contrasts between
the fluids. To establish the extent to which these conditions are met by the model,
comparisons are made to existing analytical theory, to facilitate benchmarking,
especially of the boundary physics. From doing this, an improved understanding is
gained of this class of cMCLBM, with the applicability of the model, its advantages
and its drawbacks being better resolved.

4.2 MRT Two-dimensional System

4.2.1 Introduction

The model introduced in section 3 used the BGK collision operator, with the decision
to do so being made on the basis of increased methodological transparency when
investigating the model’s kinematics and dynamics. Although the BGK collision
scheme offers simplicity and transparency, it does not offer the stability that TRT
and MRT collision operators provide; an observation stemming from their increased
tuneability and degrees of freedom. The choice to implement the MRT collision
operator in the following work is made due to it offering the largest tuneability. The
inclusion of an MRT collision operator has been seen as almost a necessity when
simulating flows with large density contrasts, where MCLBMs are susceptible to
increased instability [127], with many authors opting for such a collision scheme [128,
129, 130, 131, 132, 111, 133, 127, 112, 134, 135]. Leclaire et al. [130] developed a
cMCLBM with an MRT collision scheme, using an enhanced equilibrium distribution
function in order to improve stability. Ba et al. [111] presented an two-dimensional
MRT-cMCLBM, with a modified equilibrium distribution function from that of Li
et al. [136], seeking to benchmark higher Reynolds number fluid flows with large
density contrasts. Here, the modified equilibrium distribution function results in
the off-diagonal elements of its third moment, now canceling a previously unwanted
error term identified by Huang et al. [137]. The resultant outcome of the model is
increased stability, due to the removal of the error term and the use of the MRT
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collision scheme. The model provides good results and can simulate density ratios
approaching order O(1000) for static drops and layered flow, but only presents results
of a largest density ratio of Λ = 3, for Rayleigh-Taylor instability. In 2019 Wen et
al. [112] presented a three-dimensional MRT-cMCLBM, which again utilised the
approach of Li et al., to obtain the desired equation for the third moment of the
distribution function, with the additional unwanted terms from this being removed
via a correction to the collision operator. Again, results show the ability to simulate
large density ratios in static and layered flow, with low density ratios simulated for
the Rayleigh-Taylor instability. Accordingly, current conclusions could be drawn
to the limitations of this group of multi-component models, with applications most
suited to liquid-liquid interface or liquid-gas interfaces at very low Reynolds numbers.
The chromodynamic BGK model presented by Burgin et al. [77] also encounters
such limitations in its current form, with the rise of an unwanted error term in the
model’s kinematics, which limits the density contrasts achievable in rapid flow. To
assess this further, Spendlove et al. [134] considered implementing an MRT scheme
into the model of Burgin et al., in order to seek stability gains and advance the
model. This work is presented and discussed in this section, again with emphasis on
investigating the model’s kinematics and dynamics, through simulations where both
flat and curved interfaces are encountered.

The MRT collision scheme of Halliday et al. [138] is implemented here; it is similar
to that of Dellar [48, 139] and that of the three-dimensional MRT scheme presented
by Xu et al. [50]. The evolution equation for the enhanced scheme is adapted
from that of the BGK-model presented in Eq. (3.2) of Chapter 3, where the BGK
collision operator is replaced with the MRT collision matrix of [138], resulting in
the following kinetic equation:

fi (r + ci∆t, t+ ∆t) = fi(r, t) +
∑
j

Aij
[
f

(0)
j (r, t) − fj(r, t)

]
+ ∆tFi, (4.1)

where, Aij is the collision matrix and Fi is the source term which, following the work
in Chapter 3, will be separated into two components Fi = F1i + F2i shortly.

It is worth noting before continuing, that, due to the use of the MRT collision
operator, the definition of the kinematic viscosity is different to that of the BGK-
model. As the value of the index ρN (r, t) (phase field) identifies the fluid component
at a point in the domain, it can be used to control the fluid’s kinematic viscosity.
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This is achieved by introducing λ3 (will be discussed further shortly), which has
a dependence on ρN(r, t), as follows [138]:

ν(ρN) = 1
6

(
2

λ3(ρN) − 1
)
. (4.2)

The kinematic viscosity is referenced when discussing simulation data, which ac-
counts for our outlining of this equation here. λ3, a parameter related to the
collision process, is discussed in the following subsection which outlines the multi-
relaxation time scheme.

4.2.2 Extension of Methodology

This section provides a detailed description of the model’s enhancement (the inclusion
of the MRT collision operator). It also follows the general structure of that
presented by both Halliday et al., and Xu et al. [138, 50, 134]. To increase
transparency and readability, Table 4.1 provides a representation of the notation
used, alongside the eigenvector, eigenvalues’ components, projection, eigenvalues,
modes and modal equilibria for the MRT scheme [58, 50, 134], which are discussed
throughout this work.

eigenvector component projection eigenvalue, λp mode, m(p) equilibrium
h(0) h

(0)
i ti 0 ρ ρ

h(1) h
(1)
i ticix 0 ρux ρux

h(2) h
(2)
i ticiy 0 ρuy ρuy

h(3) h
(3)
i tic

2
ix λ3 Pxx Π(0)

xx

h(4) h
(4)
i tic

2
iy λ3 Pyy Π(0)

yy

h(5) h
(5)
i ticixciy λ3 Pxy Π(0)

xy

h(6) h
(6)
i gi λ6 N N (0)

h(7) h
(7)
i gicix λ7 Jx 0

h(8) h
(8)
i giciy λ7 Jy 0

Table 4.1: Collision matrix eigenspectrum notation table. Here the left row eigenvec-
tors, eigenvector components, projection components, eigenvalues, corresponding modal
projections and equilibria are given for the collision matrix A. Where, m(p) ≡

∑
i h

(p)
i fi,

p ∈ [0, 8].

Collision within the MRT scheme takes place in modal space, not population space
—‘modal space’ refers to the abstract space spanned by the hydrodynamic mode
vectors (which represent observables such as density, velocity and momentum flux), in
contradistinction to ‘population space’, which refers to the distribution functions (or
populations). Therefore, to transform to modal space, a projection matrix M needs
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to be defined, which when projected onto the evolution equation, will recover the
correct hydrodynamic modes. The scheme presented by Halliday et al. [138] extends
that of Dellar [48, 139] which does not include a source term. This model utilises
Guo et al. [70] forcing, as in the previous BGK-model, in order to include immersed
boundary forces such as surface tension etc. The projection matrix is given by
linearly-independent left row eigenvectors of the collision matrix as follows [49, 134]:

M ≡
(
h(0), h(1), · · · , h(8)

)T
, (4.3)

where the resulting hydrodynamic and non-hydrodynamic modes are:

m = M f = (ρ, ρux, ρuy, σxx, σyy, σxy, N, Jx, Jy)T , (4.4)

where modes N , Jx and Jy are ghost modes, which contain no hydrodynamic
information. Projecting with the eponymous projection matrix M on to Eq. (4.1),
we recover the modes shown in Table. 4.1:

M fψ = M f +M A
(
f (0) − f

)
+M F, (4.5)

where F denotes the column vector source term, f is the distribution function where
superscript (0) and ψ denotes the equilibrium distribution function and post collision
equilibrium distribution function, respectively.

Following the assumption that the h(n) elements are left row eigenvectors of
A, meaning M A = Λ M , we have:

Λ = M A M−1, Λ = diag(λ0, λ1, · · · , λ8), (4.6)

where λp are the eigenvalues corresponding to the collision matrix. Here, the
eigenvalues have the following definitions: λ0 = λ1 = λ2 = 0, in order to get correct
hydrodynamics (i.e., meet density and velocity conservation laws), and λ3 = λ4 = λ5

and λ7 = λ8, to be discussed. It is now possible to rewrite Eq. (4.5) in its modal
components, in the following way:

m(p)+ = m(p) + λp
(
m(0)(p) −m(p)

)
+ S(p), p = 0, 1, ..., (Q− 1) (4.7)

To define Eq. (4.7), the modal source contribution S(p) needs evaluating:

S(p) =
8∑
i=0

MpiFi. (4.8)

Calculating the individual modal source components S(p) (where Fi is given in
Eq. (3.13)):

S(0) = h(0) · F =
∑
i

h
(0)
i Fi = A ≡ 0,
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S(1) = h(1) · F =
∑
i

h
(1)
i Fi =

∑
i

cixFi = nFx∆t,

S(2) = h(2) · F =
∑
i

h
(2)
i Fi =

∑
i

ciyFi = nFy∆t,

S(3) = h(3) · F =
∑
i

h
(3)
i Fi =

∑
i

c2
ixFi = Cxx,

S(4) = h(4) · F =
∑
i

h
(4)
i Fi =

∑
i

c2
iyFi = Cyy,

S(5) = h(5) · F =
∑
i

h
(5)
i Fi =

∑
i

cixciyFi = 1
2(Cxy + Cyx), (4.9)

S(6) = h(6) · F =
∑
i

h
(6)
i Fi =

∑
i

giFi = 0,

S(7) = h(7) · F =
∑
i

h
(7)
i Fi =

∑
i

gicixFi = 0,

S(8) = h(8) · F =
∑
i

h
(8)
i Fi =

∑
i

giciyFi = 0.

It can be seen that the source term Fi contains important force contributions to the
hydrodynamic modes, but has no projection onto the non-hydrodynamic modes N ,
Jx, Jy.

Now, calculating the modal projection of the equilibria, we have:

h(0) · f (0) =
∑
i

h
(0)
i f

(0)
i =

∑
i

1if (0)
i = ρ,

h(1) · f (0) =
∑
i

h
(1)
i f

(0)
i =

∑
i

cixf
(0)
i = ρux,

h(2) · f (0) =
∑
i

h
(2)
i f

(0)
i =

∑
i

ciyf
(0)
i = ρuy,

h(3) · f (0) =
∑
i

h
(3)
i f

(0)
i =

∑
i

c2
ixf

(0)
i = Π(0)

xx

h(4) · f (0) =
∑
i

h
(4)
i f

(0)
i =

∑
i

c2
iyf

(0)
i = Π(0)

yy ,

h(5) · f (0) =
∑
i

h
(5)
i f

(0)
i =

∑
i

cixciyf
(0)
i = Π(0)

xy , (4.10)

h(6) · f (0) =
∑
i

h
(6)
i f

(0)
i =

∑
i

gif
(0)
i = 9

5αRρR + 9
5αBρB − 4

5ρ = N (0),

h(7) · f (0) =
∑
i

h
(7)
i f

(0)
i =

∑
i

gicixf
(0)
i = 0,

h(8) · f (0) =
∑
i

h
(8)
i f

(0)
i =

∑
i

giciyf
(0)
i = 0.

Following the results in Eqs. (4.9) and (4.10), the evolution equation for the
individual modes can be formulated by evaluating Eq. (4.7):

i = 0 : ρ+ = ρ, (4.11)
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i = 1 : (ρux)+ = ρux + nFx∆t, (4.12)
i = 2 : (ρuy)+ = ρuy + nFy∆t, (4.13)

i = 3, · · · , 5 : (Pαβ)+ = Pαβ − λ3
(
Pαβ − Π(0)

αβ

)
+ ∆t

2 (Cαβ + Cβα), (4.14)

i = 6 : N+ = N − λ6(N −N (0)), (4.15)
i = 7, 8 : J+

α = Jα − λ7Jα, (4.16)

where subscripts α, β = x, y. The eigenvalues λ0 = λ1 = λ2 = 0, in order to retrieve
correct hydrodynamics for these modes. Additionally for the non-hydrodynamic
modes N , Jx, Jy, it can be seen that if λ6 = λ7 = 1, the latter reduce to N+ = N (0)

and J+
x = J+

y = 0.

Having determined the forced evolution equations for all the modes m(p), they
must now be converted back to population space from their modal space definitions.
First, defining column vectors k(n) for n = 0, 1, ..., 8, which are formulated through
Gram-Schmidt orthogonalisation [138, 134]:

k
(0)
i = 2ti − 3

2ti
(
c2
ix + c2

iy

)
, (4.17)

k
(1)
i = 3ticix, (4.18)
k

(2)
i = 3ticiy, (4.19)

k
(3)
i = 9

2tic
2
ix − 3

2ti, (4.20)

k
(4)
i = 9

2tic
2
iy − 3

2ti, (4.21)

k
(5)
i = 9ticixciy, (4.22)

k
(6)
i = 1

4giti, (4.23)

k
(7)
i = 3

8giticix, (4.24)

k
(8)
i = 3

8giticiy. (4.25)

Where, by definition, the following condition is met:

h(i) · k(j) = δij. (4.26)

Hence, it is possible to define the following:

M−1 =
(
k(0), k(1), · · · , k(8)

)
. (4.27)

Having determined M−1, to get an expression for the post-collision distribution
function vector f+, we set:

f+ = M−1 m+, (4.28)
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which, using Eqs. (4.7), (4.28), gives the following final result, after straightforward
algebra[138, 134]:

f+
i = (M)−1

ij m+
j

= ti


[
2 − 3

2
(
c2
ix + c2

iy

) ]
ρ+ 3

(
(ρux)+cix + (ρuy)+ciy

)
+9

2
(
P+
xxc

2
ix + 2P+

xycixciy + P+
yyc

2
iy

)
− 3

2
(
P+
xx + P+

yy

)
+1

4giN
+ + 3

8gi
(
J+
x cix + J+

y ciy
).

Above, (ρux)+, (ρuy)+, ρ+, P+
xx, P+

xy, P+
yy, N+, J+

x and J+
y are determined in Eqs. (4.11

- 4.16) above. Now the post-collision distribution function has been recovered, the
post-collision segregation rule given by Eq. (3.10) can be applied, so colour is, as
previously, re-allocated to reduce fluid mixing.

In conclusion, this section has highlighted the extension of the methodology from
the BGK-model presented in Chapter 3, to the development of an MRT-model with
enhanced tuneability —owing to the ghost modes (free parameters) that can be
tuned to improve numerical stability of the system within different flow scenarios

—providing a detailed mathematical description of the scheme. From this, the
emergent dynamics and kinematics of the model can be assessed through both
mathematical analysis and simulation data.

4.2.2.1 Dynamics and Kinematics

After the method of Chapter 3, in order for our MRT cMCLBM model to have correct
dynamics, the Navier-Stokes equations must be recovered. It was seen in section 3.3.1,
that in order to recover the weakly compressible Navier-Stokes equations through
Chapman-Enskog analysis, a correction term was needed, which is incorporated in
the source term Fi. A brief dynamics, Chapman-Enskog analysis following that
presented in section 3.3.1 is given in Appendix A.1.1 for the MRT-model. The
principal outcome of this is the source term Fi. Comparing the resulting source term
from the BGK-model, and the MRT-model, where the superscript denotes the source
term’s corresponding collision model:
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BGK-model source term:

FBGK
i ≡ ti


(

1 − 1
2τ

)
Fαciα
c2
s

+

+ 1
2c4
s

(
1 − 1

2τ

)uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′) −
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

×

(
ciαciβ − c2

sδαβ
).

(4.29)

MRT-model source term:

FMRT
i = ti

Fαciαc2
s

+

1
2c4
s

(
1 − λ3

2

)uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′) −
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

×

(
ciαciβ − c2

sδαβ
).

(4.30)

Considering both source terms, it is seen that within the MRT-model, λ3 replaces 1
τ

in
the analysis. However, there is another difference within the first term in Eqs. (4.29)
and (4.30), where there is now no dependence on the relaxation parameter in the
MRT-model. This difference is due to the constraint that arises in the BGK-model:(
n+ m

τ

)
= 1, shown in [70], which does not arise in the analysis of MRT dynamics.

This difference is evident in the component of the source term responsible for
applying the surface tension force, not in the terms involved in the density difference
corrections. As such, the analysis of the model’s kinematics in section 3.3.2 will
be identical to that in this model, with the exception of λ3 replacing 1

τ
. Here, the

resulting approximation of the upper bound of the advection error when there is a
flat interface between the fluids, due to the inclusion of large density contrasts
in the model, is given as:

∆ <

(
1 − λ3

2

)
βu (Λ − 1) ρ0B. (4.31)

The outcome of this is that the inclusion of the MRT scheme produces little difference
on the resultant advection error present in the BGK model outlined in Chapter 3, other
than the change in relaxation parameter. Consequently, to draw further conclusions on
the stability of the model and its compliance with interface kinematics and dynamics,
simulation data will be compared against the theory relating to these conditions.
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4.2.3 Results
4.2.3.1 Microcurrent

The first test of our two-component MRT chromodynamic model for the simulation
of fluids with density contrasts, is the analysis of its microcurrent level —which,
as discussed, is common across all multi-component lattice Boltzmann models. An
identical test to that outlined for the BGK-model in Chapter 3 is used here, allowing
for comparison between the two models. The test evaluates a static drop of radius
R = 20 within a lattice of size 80 × 80 lu (lattice units). The microcurrent level
is examined over a range of density ratios between Λ = 1

1000 and Λ = 1000, with
the surface tension value for these simulations given by σ = 1 × 10−5. Simulations
were run until steady state was reached, which was checked by inspecting when
the modulus of the velocity across the lattice became steady. At the end of each
simulation, the maximum velocity modulus over the domain was recorded, with
results then presented within Table 4.2 (discussed shortly). Additionally, the effect
of using a constant curvature value on the microcurrent level, versus calculating
the curvature numerically, was again assessed. This motivated an assessment of the
impact of using stencils to calculate numerical gradients needed for the curvature
calculations within the model.

Figures 4.1 and 4.2 display the microcurrent field for the full lattice (left) and
top-right quadrant of the lattice (right), where the drop (Red fluid) has density
10 and the external fluid (Blue fluid) has density 1. Figure 4.1 corresponds to a
fixed value for the curvature and Figure 4.2 a numerically calculated curvature. A
further quantification of this microcurrent level can be seen in Table 4.2, which
shows the maximum microcurrent level over a range of density contrasts for both
curvature definitions used.

Figures 4.1 and 4.2 show that, when the curvature is defined by the drop radius
(results in Figure 4.1), the microcurrent level is lower and also more localised at the
drop interface. In contradistinction, results in Figure 4.2 show when the curvature is
calculated through the use of numerical stencils, the microcurrent level is larger and
more dissipated from the interfacial region. The larger microcurrent and increased
dissipation is due to numerical cut-off errors in the stencils used for the gradients,
which could be further reduced through higher order numerics. Table 4.2 shows
that the microcurrent levels become more comparable between the two curvature
definitions at larger density ratios, with the maximum microcurrent value, over the
lattice, being identical for the two curvature definitions at density ratios of order 1000.
This result is due to the microcurrent level being dominated by errors introduced by
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Figure 4.1: Microcurrent profiles over the lattice for a density contrast Λ = 10 and
when the mean curvature is given by Eq. (3.66a). Left Figure shows surface plot of the
microcurrent where white circular contour corresponds to the ρN = 0 contour. Right
Figure shows the top right quadrant of the lattice, showing microcurrent surface plot,
superimposed vector field of u (not scaled) and white contour corresponding to the ρN = 0
contour.

Figure 4.2: Microcurrent profiles over the lattice for a density contrast Λ = 10 and
when the mean curvature is calculated by Eq. (3.66b). Left Figure shows surface plot of
the microcurrent where white circular contour corresponds to the ρN = 0 contour. Right
Figure displays the top right quadrant of the lattice, showing microcurrent surface plot,
superimposed vector field of u (not scaled) and white contour corresponding to the ρN = 0
contour.

the large density contrast between the fluids, hence, the impact of the less dominant
numerical stencil error is unseen. Comparing the results of both the BGK-model’s
and MRT-model’s microcurrents by examining Tables 3.1 and 4.2, it can be seen
that the maximum microcurrent magnitudes are comparable across both models.
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MRT collision operator:
static drop maximum microcurrent values

Λ αB αR |u|Hf
max |u|Hc

max

0.001 0.9995 0.5 1.13 × 10−4 1.13 × 10−4

0.01 0.995 0.5 9.89 × 10−6 3.28 × 10−5

0.1 0.95 0.5 2.92 × 10−11 1.22 × 10−6

10 0.5 0.95 1.01 × 10−9 1.95 × 10−7

100 0.5 0.995 1.96 × 10−5 1.98 × 10−5

1000 0.5 0.9995 7.91 × 10−5 7.91 × 10−5

Table 4.2: Maximum microcurrent velocity (in lattice units) for a static drop of initial
radius R = 20 in a domain of 80 × 80, for Λ ∈ [10−3, 103], β = 0.67 with surface tension,
σ = 1 × 10−5. Two different maximum microcurrent values are shown: (i) |u|Hfmax and (ii)
|u|Hc

max, where Hf corresponds to mean curvature given by Eq. (3.66a) and Hc corresponds
to mean curvature given by Eq. (3.66b).

Each model has a largest microcurrent magnitude of the order 1 × 10−4, which is
similar to that seen in the model produced by Ba et al. [111]. However, the MRT
model does have the lowest maximum microcurrent magnitude compared to the
BGK model, with a lowest value in the order of 1 × 10−11. The overall microcurrent
level across density contrasts is acceptable and not so large that it is deemed to
dominate or disrupt physical flow effects where applied flow velocities have larger
magnitudes than the microcurrent. Although, particular care may need to be taken
in low Reynolds number flows (Re ≈ 0) where flow velocities become of a similar
order or lower than the microcurrent level. Flows in this regime are considered
in detail in section 4.3. With this caveat in mind, the following tests proceed to
investigate the application of the model in two-component fluid flows.

4.2.3.2 Steady, pressure-driven flow with density stratification

The no-traction (or no-slip) kinematical boundary condition states that velocity
tangent to the interface must be continuous across the interface, i.e., equal on either
side of the free surface. To test this for our model, a steady-state test similar to that
conducted by Ba et al. [111] is used. Here, two-dimensional layered pressure driven
flow with transverse density stratification is examined, i.e., density of the fluids varies
in the transverse (horizontal) x direction. The geometry of this flow is depicted in
Figure 4.3, where a central fluid (Blue) is confined by another fluid (Red), where
the areas of the total Blue and total Red fluids initialised on the lattice are equal,
with no-slip boundary conditions placed at the East and West boundaries. Flow
is then applied parallel to the flat interfaces between the fluids (y direction) and
the simulation then ran to steady state. To benchmark this test, the y-component
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of velocity over the lattice is compared against a semi-analytical solution to this
problem given in Appendix A.2.2. This differs from that of Ba et al., who compare
against a solution for discontinuous variation in density, whereas the solution in
Appendix A.2.2 contains continuous transverse variation in density.

Figure 4.3: Schematic representation of the flow being simulated. The central fluid (Blue)
is initialised between the outer fluids (Red), with both fluids occupying equal area on
the lattice. The Blue fluid has density defined ρ0B and Red fluid density ρ0R, with the
density being continuous across the interface. The fluids are confined by no-slip boundary
conditions at the East and West boundaries (represented by the black walls), with periodic
boundary conditions at the North and South. Simulation parameterisations are as follows:
x lattice length Lx = 200 = H, αB = 0.2, αR = 0.9, Λ = 1

8 , νR = νB = 0.333, β = 0.4,
applied flow velocity U0êy = 1 × 10−7 [134].

Simulation data for this initial test, where the Blue fluid has a density of ρ0B = 8
and the Red fluid density of ρ0R = 1, are given in Figure 4.4.

The results in Figure 4.4 show that the developed model predicts the velocity
profile of the flow well, given by the continuous black line. The achievable density
ratios within this test were not as large as those presented by Ba et al., but the model
performed much better than the original colour-gradient model, which struggled
to predict such profiles [111]. The data show that our model is less accurate at
the interfacial region between the fluids, seen at x = 50 and x = 150 lattice sites,
however, still maintains sufficient accuracy. It was found necessary to implement
higher order stencils, to calculate the numerical gradients, in order to reduce this
error close to the interface, which, in turn, increased computational expense [134].
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Figure 4.4: Comparison of the transverse variation of the y-component of velocity between
simulation data (crosses) and the semi-analytical solution (solid line), for the simulation
depicted in Figure 4.3 (which also states simulation parameters) [134].

Overall, this test provides an initial benchmark that the model can predict correct
velocity profiles for such a flow at limited density ratios in comparison to other
models. Although the no-traction or no-slip boundary condition is recovered at the
free surface, this test only evidences the steady state behaviour of the model, not
dynamical behaviour. It therefore remains necessary to assess the model’s ability to
meet the required free surface boundary conditions within unsteady flow.

4.2.3.3 Transient uni-directional flow with transverse density stratifi-
cation

In order to provide a strong conformation of compliance with the kinematic and
dynamic boundary conditions outlined in Chapter 2, one must check these in unsteady
flow. Consider a case where two fluids of equal area are separated by a flat interface,
with transverse variation in density in the x direction, and are confined by bounce-back
boundary conditions at the East and West walls and periodic boundary conditions at
the North and South walls. A velocity of U0 is then applied in the positive y direction

—parallel to the interface —to one of the fluids (Red), and in the inverse direction to
the other fluid (Blue). This geometry is explained pictorially in Figure 4.5. Once
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steady state has been reached, the flow velocities are switched off, allowing the
system to recover. During this recovery, the flow velocity should be continuous across
the interface —due to the no-slip condition and mutual impenetrability condition
(section 2.2) —there also being instantaneous stress transmission across the interface
(dynamic boundary condition).

Figure 4.5: System geometry and initial conditions for flow being simulated. The two
binary fluids (Blue and Red) are separated by a flat interface, with no-slip boundary
conditions located at the East and West boundaries (highlighted by a thick black line). The
segmented flow has transverse density and velocity variation, with Red (Blue) fluid density
ρ0R(ρ0B) and Red (Blue) flow velocity u0êy (−u0êy). There is translational invariance in
the y-direction, and both fluids inhabit equal area on the lattice [134].

In order to check this, a semi-analytical solution was found for the time-dependent
velocity profile over the domain within the sharp interface limit, i.e., the interface
between the two fluid is considered discontinuous. This analytical solution was
found through the use of Sturm-Liouville theory, with the solution given in full in
Appendix A.2.1. By obtaining an analytical solution for this scenario within the
sharp interface limit, it provides a valuable way of benchmarking simulation data and
validating the developed MRT MCLB model in unsteady flow through evaluating the
decay of the velocity profile over time. To do this, the velocity profile was examined
at increasing time steps t =(1000, 10000, 20000, 50000) (lattice units) after the flow
was switched off. The density ratio between the fluids was also varied between unity
and 50, with the denser fluid (Red) being on the right-hand side of the domain.
The results presented in Figure 4.6 reveal that the simulation data provide strong
agreement with that of the analytical solution for the velocity profile across all time
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steps and density ratios shown. It validates that there is instantaneous transmission
of stress across the interface within this model by testing model dynamics, which
is a more stringent test than steady-state compliance, of course.

Figure 4.6: Comparison of the transverse variation of the y-component of velocity between
the simulation data (crosses) and semi-analytical solution (lines) over increasing time steps,
where black, green, blue, red correspond to 1000, 10000, 20000, 50000 time steps. The
headings of the subplots show the density ratio of the simulation Λ, where shear viscosity,
η = constant and kinematic viscosity, ν = η

ρ . The interface centres on x = 500 and no-slip
boundary at x = 0 and x = 1000 lattice units, with the fluid on the right being the denser
[134].

To provide numerical validation of the strength of simulation data and its fit
to the analytical solution, the domain-average relative error between the semi-
analytic solution for the stream-wise velocity, u(x, t), and the simulated solution,
u∗(x, t) was calculated as follows:

ϵ(t) =
∑H
x=0 |u(x, t) − u∗(x, t)|2

max(u∗(x, t))2 , (4.32)

where x denotes the discrete, “on-lattice” value of the transverse co-ordinate, and H
is the last lattice site of the x domain (East boundary). The relative error at each
time step for density ratios greater than unity were then recovered and could be seen
in Table 4.3. Table 4.3 provides quantitative data that support the results presented
in Figure 4.6, showing that the simulation data provide excellent prediction of the
semi-analytic solution for the stream-wise velocity. This is confirmed by the relative
error never exceeding 1% over all time steps and density ratios investigated. There is a
slight loss of accuracy at higher density ratios, as well as a larger relative error towards
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Relative error (%) between data and analytical
solution: relating to results in Fig 4.6

time (lu) Λ = 20 Λ = 31.25 Λ = 50
1000 0.560 0.754 0.979
10000 0.199 0.252 0.300
20000 0.135 0.167 0.196
50000 0.075 0.092 0.115

Table 4.3: Table of relative (%) error shown in Eq. (4.32) relating to the density ratios
and time steps in Fig 4.6. Results were normalised by dividing by the maximum velocity
within the system at the corresponding time step.

the beginning of the simulation, due to the larger flow stresses and the larger flow
velocities. At larger density ratios, the lighter fluid on the left (Blue) is dragged by the
denser fluid on the right (Red), causing a slower decay of the Red fluid’s velocity and
an quicker increase in the Blue fluid’s velocity at larger density contrasts. These data
provide strong conformation that there is instantaneous stress transmission across
the interface, with flow velocity being continuous across the interface at the range of
density ratios tested, causing a dynamical response between the fluids. However, this
test only examines the case of a flat interface between the fluids, with the impact of
non-zero interface curvature yet to be established and needed to be tested.

4.2.3.4 Transient rotational multi-component flow with radial density
stratification

Following on from the previous test, here, the compliance with correct interface
kinematics and dynamics of continuous velocity and instantaneous stress transmission
across the interface is examined for curved interfaces. To assess this, imagine a
circular fluid domain defined by a polar co-ordinate system (r, ϕ) in which r ≤ R.
An internal fluid (Red) is given by a circle of radius r = R0 (where R0 < R), and an
external fluid (Blue) occupies the remaining domain —giving an interface of curvature
1
R0

between the fluids. A no-slip boundary is applied at r = R, representing a solid
wall. A rotational flow is then applied to the internal fluid (Red) only uϕ(r)êϕ and
the external fluid (Blue) velocity is set to zero, resulting in a tangentially sheared
interface. A schematic highlighting the described geometry is given in Figure 4.7.

Similar to the test in section 4.2.3.3, the temporal decay of the flow is observed, but
now for a curved interface. To achieve this, an analytical solution has been obtained
for the tangential velocity component in the sharp interface limit —discontinuous
density change across the interface —which is presented by Spendlove et al. [134].
Once steady state has been reached, the rotational flow is switched off, and the
simulation is left to recover. During its recovery, the tangential velocity over the
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Figure 4.7: Schematic of system geometry and initial conditions. Here, the fluids are
sheared, with the internal fluid (Red) having an initial rotational flow given by uϕ(r)êϕ,
and the external fluid (Blue) being at rest. The Red (Blue) fluid has density given by ρ0R
(ρ0B), where in the presence of a density contrast, the Red fluids density is larger [134].

domain is compared against the analytical solution for this flow (given in Appendix
C of [134]) at increasing time steps t = (2000, 4000, 6000, 8000). The range of density
contrasts simulated between the fluids was Λ ∈ [1, 5], where density ratios greater
than unity correspond to the internal fluid (Red) being denser than the external fluid
(Blue). Subsequently, testing the ability to meet kinematic and dynamic interface
boundary conditions over a limited range of density ratios. The results of this test
can be seen in Figure 4.8, which show the predicted and actual tangential components
of velocity across the radius of the domain from r = 0 to r = R, for increased time.

Figure 4.8 shows that the simulation data (crosses) conform with that of the
analytical solution (lines) at all time steps and density ratios presented. As time
increases, the tangential component of velocity starts to decay. However, as the
density of the internal fluid increases, the decay of the velocity is slower over time
due to the fluid’s momentum being larger for larger densities. This also results in
the increased dragging of the external fluid —highlighted by the sharper gradient
of the red line and increased external fluid velocity at higher density ratios. This
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Figure 4.8: Comparison of the transverse variation of the tangential component of
velocity between the simulation data (crosses) and semi-analytical solution (lines) over
increasing time steps (where black, green, blue, red correspond to 2000, 4000, 6000, 8000
time steps). The headings of the subplots show the density ratio of the simulation Λ, where
the shear viscosity, η = constant and kinematic viscosity, ν = η

ρ . The interface centres on
r = 120 = R0, with a no-slip boundary present at r = 360 = R lattice units. Here, the
fluid on the left (Red fluid) is the denser fluid, see Figure 4.7 for flow geometry [134].

result shows that tangential velocity is continuous across the interface —compliance
with the no-slip kinematic boundary condition, but also that stress transmission
across the interface is instantaneous, confirming the interface dynamics through the
dragging of the external fluid. To provide quantitative evidence of the accuracy
of the developed model in this test, the maximum relative error of the tangential
velocity over the radial slice for the data in Figure 4.8 is calculated as follows:

ϵ(t) = max(|u(x, t) − u∗(x, t)|)
max(|u∗(x, t)|) . (4.33)

The results of this error analysis are presented in Table 4.4.
The data in Table 4.4 highlight that the maximum relative error: (i) increases

with density ratio and (ii) decreases as time increases. These results are as expected,
with (i) due to the associated errors in the model from simulating density contrasts
and (ii) due to the flow stresses acting on the fluids decreasing over time, i.e., flow
velocity decreases once rotational flow is turned off. Although the error values appear
large, this is the maximum error, not the average error, which would be much smaller.
It is clear that for a curved interface, the associated accuracy of the methodology
decreases, resulting in the ability to only simulate lower density ratios accurately.
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Maximum relative error (%) between data and analytical
solution: relating to results in Fig 4.8

time (lu) Λ = 1 Λ = 2 Λ = 3 Λ = 5
2000 6.35 8.51 10.4 12.9
4000 5.48 6.92 8.57 10.7
6000 5.39 6.67 8.04 10.0
8000 5.11 6.15 7.50 9.33

Table 4.4: Table of relative (%) error shown in Eq. (4.33) over differing time steps and
density ratios. Results were normalised by dividing by the maximum velocity within the
system at the corresponding time step.

This point is highlighted by the fact that the previous test, using a flat interface,
simulated density contrasts up to Λ = 50.

These data hint at limitations of the developed model in simulating curved interfaces
between fluids with large density contrasts. However, as discussed by evaluating the
kinematical error of the model —the magnitude of the kinematical error is influenced
by flow velocity and density contrast (a relationship shown in Figure 3.7). Therefore,
the application of the model within low Reynolds number flow (Stokes’s Regime)
may furnish the model’s most applicable area. Stokes flow, often called creeping flow,
corresponds to flows where viscous forces between fluid layers dominate advective
inertial forces, hence low Reynolds number (see Eq. (2.17)). Where, from the results
on the model’s microcurrent, further analysis is needed if one is to extract the physical
flow due to the low velocity values found in Stokes flow, more on this shortly.

4.3 Pseudo Three-dimensional System

4.3.1 Introduction

Following on from the two-dimensional MRT-model developed and analysed in
section 4.2, the next extension of the methodology allows for economic simulation of
three-dimensional fluid flows. As found in the preceding work, when investigating
curved interfaces, the model is most applicable to low Reynolds number flow. As
such, we here consider simulating axial-symmetric three-dimensional, low Reynolds
number, two-component fluid flows with a density contrast. Nominally, to do
this, one could extend the lattice grid to a three dimensional lattice, i.e., D3Q19,
D3Q27 etc., or proceed, as here, to use a two-dimensional system to simulate
axially-symmetric three-dimensional flow. By doing so, one enhances computational
efficiency —reducing computational expense by two-orders of magnitude —while
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also allowing the behaviour of three dimensional flows to be explored. In line
with the above, this section focuses on the validation of the fundamentals of the
methodology —compliance with interface kinematics and dynamics, when applied to
three-dimensional axial-symmetric flows with curved interfaces. To tackle this, our
MRT-model as presented in section 4.2 is extended, with the resultant model then
being validated against analytical benchmarks for the target flow regime.

The layout of this section is as follows. First, the extension of the two-dimensional
MRT-model will be outlined, which is split into three interlinking parts: (i) The
reduction from a three-dimensional system to a pseudo three-dimensional system (a
two dimensional system which is used to encapsulate the flow physics of an axially-
symmetric three dimensional system —rotational symmetry about an axis). (ii) The
inclusion of velocity dependent force distributions in the scheme. (iii) The inclusion
of an additional source term F3i needed due to work in (i). Following this, simulation
data will aim to address flow past a spherical and deforming drop, assessing the
ability of our model to meet known kinematical and dynamical interface boundary
conditions for this flow. Here, comparison against analytical solutions allow for
further benchmarking of the model. Before continuing, it should be noted that
in this section the following notation will be used to distinguish between discrete
lattice co-ordinates and physical co-ordinates:

discrete lattice co-ordinates : (x∗, z∗)

physical co-ordinates : (x, z)

4.3.2 Extension of Methodology
4.3.2.1 Two-dimensional representation of axially symmetric three-dimensional

system

To accurately simulate an axially symmetric three-dimensional domain using two-
dimensional system, the geometry of the flow must be embedded. Panel (A)
of Figure 4.9 shows the three-dimensional system in question in Cartesian co-
ordinates, where variables x-y span the cross-section of the passage, with long
axis aligned parallel to the z-axis. There is rotational invariance about the z-
axis (i.e, axially symmetric about z). In other words, considering this system in
cylindrical polar co-ordinates (r, z, ϕ), then there is invariance on the ϕ coordinate.
The governing hydrodynamic equations (Navier-Stokes equations and continuity
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equation for incompressible flow) are expressed as as follows in cylindricals [140]:
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Due to the axial-symmetry of the system about the z-axis (see Figure 4.9), the azimuth
ϕ is ignorable, and the continuity and Navier-Stokes equations therefore simplify:
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Using transformations r −→ x and z −→ z, the continuity and Navier-Stokes
equations are expressed in a form which brings correspondence with their rectangular
forms, the difference terms being attributed to what we designate a geometrical
forcing and a geometrical source term:
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ρ
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ρ
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To transform the geometrical force terms and continuity source term in Eq (4.37), to
forces with units of Newtons (Nm−3), we multiply by ρ. This allows the modified
forces to be applied with the immersed body force framework, in the equations
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Figure 4.9: Schematic representing the reduction from the three-dimensional flow scenario
to the corresponding two-dimensional system. Panel (A) shows the three-dimensional
system with axial-symmetry about the z axis. Panel (B) corresponds to the pseudo
three-dimensional system that aims to simulate that of panel (A). The following boundary
conditions are enforced: (i) specular reflection is applied at the West wall, lattice site
x∗ = 0 (corresponding to position r = 0.5 in panel (B)), (ii) periodic boundary conditions
at the North and South walls (periodic in the z direction) and (iii) mid-link bounce back
applied at the East wall. Here, the red semi-circles in panel (B) corresponds to the red
three-dimensional drop in panel (A) [135].

for the relative macroscopic velocities, as seen by Eq. (3.46). Consequently, this
results in the following extended force terms, which may be applied in Guo’s forcing
framework within the lattice Boltzmann method (see section 4.3.2.2):

Fx = η
∂

∂x

vx
x
, Fz = η

x

∂vz
∂x

. (4.38)

Additionally, we have the following continuity source term, which will be incorporated
within the forcing term Fi (see appendix A.1.2):

A = −vx
x
. (4.39)

Equation (4.39) amounts to a novel continuity equation source/sink, which can be
understood by considering the geometry of the system. Panel (B) of Figure 4.9
represents the reduction from the three-dimensional system in panel (A) to the
two-dimensional representative (which will be further discussed shortly). Take the
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spherical, three-dimensional drop given in red in panel (A) of Figure 4.9, with a small
volume element given by rdϕdz. The mass flux between the outer curved exterior
and the interior of the element may be given by (r + dr)dϕdz, where it is assumed
that density ρ =constant and vr = constant. The difference in mass flux across these
surfaces gives rise to the continuity source/sink (expressed per unit volume), which
is given as such for the two-dimensional, pseudo Cartesian domain:

ρvrrdϕdz − ρvr(r + dr)dϕdz
rdϕdz

= −ρvr
r

→ A(u). (4.40)

This is interesting, as the inclusion of the fact that an increase in r, (r + dr), in the
two-dimensional system (panel (B) of Figure 4.9), corresponds to a volume increase
in the three-dimensional system (panel (A) of Figure 4.9).

Within Eqs. (4.38), it is clear that the body force densities have a velocity
dependence. The inclusion of velocities within these forces, and what implications
this has for the model is analysed now.

4.3.2.2 Velocity dependent forces in lattice Boltzmann

Equations. (4.38) show that the body force densities have a velocity dependency,
which has impact on their implementation within the algorithm. Following Guo
et al. [70], force densities are applied as an adjustment to the first moment of the
distribution function —the lattice fluid’s macroscopic velocity. This is the crux of
the problem. As defined previously, following Guo et al., the relationship between
the force density and macroscopic velocity is:

ρu =
∑
i

fici + 1
2F . (4.41)

If F is dependent upon u, such as seen in Eqs. (4.38), there is an implicit relationship.
Splitting up the force density (F = F (u) + G) into velocity dependent F (u) and
independent G contributions:

ρu =
∑
i

fici + 1
2 (F (u) +G) , (4.42)

Substituting in Eqs. (4.38) and rewriting Eq. (4.42) in component form results in
a system of two de-coupled, partial differential equations for u:
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Through redefinition, the above equations are expressable as:
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= Sx, (4.44a)
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where, the following quantities have been defined:
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2Gx, Sz =

∑
i

ficiz + 1
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∑
i

fi = ρ. (4.45)

Seeking ux

Substituting Eq. (4.45) into (4.44a) to eliminate ρ and using the following relationship
between dynamic and kinematic viscosity η = νρ. Eq. (4.44a) becomes:

S0ux = Sx + 1
2S0ν

∂

∂x

(
ux
x

)
. (4.46)

Note here, evaluating Eq. (4.46) as x −→ ∞, results in:

S0ux −→ Sx ⇐⇒ ux −→ Sx
S0
.

Rearranging Eq. (4.46), we have:

ux = Sx
S0

+ ν

2
∂

∂x

(
ux
x

)
,

ν

2
∂

∂x

(
ux
x

)
− ux = −Sx

S0
,

∂

∂x

(
ux
x

)
− 2
ν
ux = −2

ν

Sx
S0
,

1
x

∂vx
∂x

− 1
x2ux − 2

ν
ux = −2

ν

Sx
S0
,

∂ux
∂x

−
(1
x

+ 2x
ν

)
ux = −2x

ν

Sx
S0
. (4.47)

To solve Eq. (4.47), an integrating factor is introduced:

integrating factor = exp
(

−ln(x) − x2

ν

)
= 1
x

exp
(

−x2

ν

)
. (4.48)

Using Eq. (4.48), Eq. (4.47) can be rewritten as

∂

∂x

(
ux

1
x

exp
(

−x2

ν

))
= −2x

ν

1
x

exp
(

−x2

ν

)
Sx
S0
.

Now, integrating:

ux
1
x

exp
(

−x2

ν

) ∣∣∣∣∣∣
∞

x0

= Sx
S0

∫ 1
x

∂

∂x
exp

(
−x2

ν

)
dx+ ϕ(z).
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We now use integration by parts; also simplifying:

1
x
uxexp

(
−x2

ν

) ∣∣∣∣∣∣
∞

x0

= Sx
S0

1
x

exp
(

−x2

ν

) ∣∣∣∣∣∣
∞

x0

−
∫ ∞

x0
− 1
x2 exp

(
−x2

ν

)
dx

 ,
1
x
uxexp

(
−x2

ν

) ∣∣∣∣∣∣
∞

x0

= Sx
S0

[(
0 − 1

x0
exp

(
−x2

0
ν

)
+
∫ ∞

x0

1
x2 exp

(
−x2

ν

)
dx

)]
,

− 1
x0
ux(x0)exp

(
−x2

0
ν

)
= Sx
S0

[
− 1
x0

exp
(

−x2
0
ν

)
+
∫ ∞

x0

1
x2 exp

(
−x2

ν

)
dx

]
,

ux(x0) = Sx
S0

− Sx
S0
x0exp

(
x2

0
ν

)∫ ∞

x0

1
x2 exp

(
−x2

ν

)
dx. (4.49)

Substituting x2

ν
= w2 into Eq. (4.49), we obtain the following expression for ux

ux(x0) = Sx
S0

− Sx
S0

exp
(
x2

0
ν

)
x0√
ν

∫ ∞

x0√
ν

1
w2 exp

(
−w2

)
dw.

The above may be rewritten as:

ux(x0) = Sx
S0
ξ(ν, x), (4.50)

where
ξ(ν, x) = 1 − exp

(
x2

0
ν

)
x0√
ν

∫ ∞

x0√
ν

1
w2 exp

(
−w2

)
dw. (4.51)

It is evident that, to calculate ξ(ν, x), numerical integration is necessary. This step
will be discussed shortly.

Seeking uz

Substituting Eq. (4.45) into (4.44b) to eliminate ρ and using η = νρ, equation. (4.44b)
becomes:

S0uz = Sz + 1
2S0ν

1
x

∂uz
∂x

,

−uz + ν

2
1
x

∂uz
∂x

= −Sz
S0
,

∂uz
∂x

− 2x
ν
uz = −2x

ν

Sz
S0
. (4.52)

Therefore, using the following integrating factor:

integrating factor = exp
(

−x2

ν

)
, (4.53)

and using Eq. (4.53), Eq. (4.52) becomes:

∂

∂x

(
uzexp

(
−x2

ν

))
= −2x

ν
exp

(
−x2

ν

)
Sz
S0
.
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Now, integrating:

uzexp
(

−x2

ν

)
= Sz
S0

∫ ∂

∂x
exp

(
−x2

ν

)
dx,

uzexp
(

−x2

ν

)
= Sz
S0

exp
(

−x2

ν

)
.

The resultant of this process of integration is an explicit equation for uz:

uz = Sz
S0
. (4.54)

Both components of the velocity are now defined as ux and uz (Eq. (4.50) and
Eq. (4.54)). It was found that in order to compute ux, numerical integration was
needed —given in term ξ(ν, x) (Eq. (4.51)). Figure 4.10 shows data for ν = 1

6 , where
Eq. (4.51) has been evaluated numerically using Simpson’s rule. Apparently, the
integrand in ξ(ν, x) decays very rapidly, thus supports neglecting spatial variation
in the quantity Sx

S0
. As such, the the pre-factor ξ(ν, x∗) is calculated and stored

pre-computation of ux(x∗, z∗) for x ≤ 11 within the code —where ξ(1
6 , 11∗) = 0.999.

Figure 4.10: Scatter plot showing the result of the evaluation of Eq. (4.51) through
numerical integration (Simpson’s rule) for ν = 1

6 [135].

In this section, the impact of using velocity-dependent force densities and the
application of them within the expression for the macroscopic velocity equation,
as defined by [70], has been evaluated. It was shown that for this scenario, the
coupled partial differential equations can be solved for the respective velocities, thus
representing the assignment of an appropriate velocity in a quasi three-dimensional
system. This work also more generally provides an example of how to treat such
velocity dependent forces, which may arise in other lattice Boltzmann methods
utilising Guo et al. forcing, for example in Coriolis’s force in geophysical applications
(where LB has considerable untapped potential) or in magnetohydrodynamcs.
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4.3.2.3 Dynamics

The dynamics of the two-dimensional model must now reflect that of the axial-
symmetric three-dimensional system being simulated. As such, the macroscopic
governing fluid dynamics equations derived in section 4.3.2.1 in Eqs. (4.36a,4.36b)
must be considered. There is a clear impact to the model’s dynamics, with the
force densities given in Eq. (4.39) coupled into the macroscopic velocity which was
discussed in section 4.3.2.2. The effect of the continuity source (A) however propagates
throughout the dynamics analysis in Appendix A.1.2, which results in an additional
source term. Where the source term is now split up (Fi = F1i + F2i + F3i) into a
density difference correction term F1i, a term containing surface tension and force
densities from Eq. (4.39), F2i, and also a term including the new continuity source F3i:

F1i = ti
2c4
s

(
1 − λ3

2

){1
3ρ∂γuγδαβ − (uα∂βΦ′ + uβ∂αΦ′ + uγ∂γΦ′δαβ)

}(
ciαciβ − c2

sδαβ
)
,

(4.55)

F2i = ti

{
Fαciα
c2
s

+ 1
2c4
s

(
1 − λ3

2

)
(uαFβ + uβFα)

(
ciαciβ − c2

sδαβ
)}

(4.56)

and
F3i = tiA−

(
1 − λ3

2

)
Auαuβ − 1

3Aδαβ. (4.57)

The overall outcome of this transformation process is that, to simulate correct three-
dimensional dynamics, an extra source term is required in addition to the density
difference correction source term, alongside the more advanced velocity coupling
(discussed previously in section 4.3.2.2).

4.3.3 Results

To test the utility of the outlined model, simulations are run for two cases: (i)
flow past a tethered spherical drop and (ii) light deformation of a sedimenting
drop. These two tests allow for the benchmarking of the developed model, by again
checking compliance with kinematics and dynamics principles, through comparison
against known solutions.

Simulations conducted are within Stokes’s regime, which evidently introduces
complications, due to the nature of multi-component lattice Boltzmann models (to
be discussed), but based on prior work may be the most appropriate flow regime for
this model. Here, a method which allows the microcurrent to be subtracted from
the flow, to expose the physical flow field (phase-field freezing) is presented. (Such a
step is only available within the linear Stokes’s regime of course, where solutions to
the governing equation are superposable). However, it is worth noting that the range
of density contrasts simulated is much lower than that of prior work in this thesis.
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The density contrast is kept below Λ = 10, with the importance of this work being
the model’s ability to meet crucial boundary conditions, not the extent to which it
can simulate large density contrasts.

Simulation set up
Returning to Figure 4.9, panel (B) represents the simulation set-up (not to scale),
of the two-dimensional (pseudo three-dimensional) system representing the axial-
symmetric three-dimensional system in panel (A). Here note, the discrete lattice
simulation co-ordinates of x∗ = 0, 1, ..., 199, z∗ = 0, 1, ..., 299 correspond to the
Cartesian co-ordinates in Figure 4.9 of x = 0.5, 1.5, ..., 199.5, z = 0, 1, ..., 299. The
reason for the offset of the origin of the drop in pseudo-Cartesian co-ordinates, by
x = 0.5, is to avoid a potential singularity introduced by the continuity source/sink
in Eq. (4.39). Periodic boundary conditions are applied at the North and South walls,
i.e., simulating an infinitely long domain in the z direction. To reflect the symmetry
of the system, a mid-link bounce back slip boundary condition is applied to the West
wall (the so called specular reflection —discussed within section 2.3.4) and a mid-link
bounce back no-slip condition was applied at the East wall, to represent a solid
boundary. Viscosity within the simulations is defined as stated in the simulation data
captions using the relationship to the MRT eigenvalue λ3 (as defined by Eq. (4.2)).
To simulate the liquid drop (Red fluid) in the following flows, a buoyancy force is
applied in the z direction U0ρRêz, where the factor (ρR) applies this force to the
liquid drop (Red fluid) only. Note, the value of the buoyancy force magnitude U0

is sufficiently small to maintain the front back symmetry —required within pure
Stokes’s regime —with the value increasing slightly as we move away from pure
viscous flow, to invoke deformation in the latter test.

4.3.3.1 Flow past a tethered spherical drop

The first test of our model is flow past a tethered spherical liquid drop in Stokes’s
regime, which evaluates the model’s capacity to recover correct kinematics, in
particular, the kinematic property of mutual impenetrability assumed through the
use of the kinetic scale segregation rule analysed in section 3.3.2.
By working within Stokes’s regime, where viscous forces dominate, it follows that
Re ≈ 0 and Ca ≈ 0. The Reynolds (Re) and Capillary (Ca) numbers are defined as:

Re = uL

ν
, Ca = ηV

σ
, (4.58)

where, u = velocity of the fluid with respect to the object, L = characteristic length
scale, ν = kinematic viscosity, η = dynamic viscosity, V = characteristic velocity and
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σ = interfacial tension. To work within the desired regime, the applied buoyancy
force U0 is kept low and the surface tension σ large enough to reduce the Capillary
number and, also, prevent deformation of the drop. An artefact of working in this
regime is that the microcurrent within the model will become increasingly apparent,
due to: (i) the small physical flow value and (ii) the large surface tension value used,
which increases the amplitude of the microcurrent. Subsequently, this presents a
problem which needs to be addressed if one wishes to evaluate the physical flow field
which may be infected by the parasitic signal.
The simulation geometry is that described within the simulation set up, with
simulation specific parameters given in the figure captions. To attempt to provide
the most transparent data, the flow external to the drop will be masked, with only
the internal flow being shown. Furthermore, the assumption of uniform kinematic
viscosity across the system is used, meaning the shear viscosity can be related to
the density contrast as follows:

ηB
ηR

= νρ0B

νρ0R
= 1

Λ . (4.59)

The following parameters were used for this simulation: interfacial parameter
β = 0.67, buoyancy parameter U0 = 8.0 × 10−9, Red drop radius R = 20 and
kinematic viscosity ν = 1

6 .

Removal of micro-current from flow
Before proceeding, a method (named phase-field freezing hereafter) of extracting
the rest frame physical flow field of the drop through Galilean transformation and
subsequent microcurrent vector subtraction is presented. Phase-filed freezing is
necessary in order to remove the dominant error signal (microcurrent) from the
flow, subsequently allowing comparison of the flow field against analytical solutions
(presented shortly). This process is highlighted within Figure 4.11, where the
external flow (Blue fluid) is neglected in the figure, with intent of focusing on the
drop’s internal flow (Red fluid).

The first step of the phase-field freezing involves transforming the drop into rest
frame. This is done by running the simulation until the flow velocity has reached
steady state —determined by a constant residual velocity —where in the simulation
in question, the internal fluid (Red) is pushed through the external fluid by a small
buoyancy force U0ρRêz. Once steady state is reached, the momentum of the drop is
then subtracted via a Galilean transformation to the rest frame of the drop, applied
to the direction of the flow, i.e., in this case the z component of velocity. To achieve
this, the average velocity of the Red fluid was subtracted, which was computed
through summing contributions from annular mass volume increments:
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vz → (vz − ⟨vz⟩), (4.60)

where,

⟨vz⟩ =
∫∫
r,z 2πρR(r, z)vz(r, z)rdrdz∫∫

r,z 2πρR(r, z)rdrdz →
∑
x∗,z∗ x∗ρR(x∗, z∗)vz(x∗, z∗)∑

x∗,z∗ x∗ρR(x∗, z∗) , (4.61)

where Eq. (4.61) shows both spherical polar co-ordinates and the corresponding
transformed computational co-ordinate system. This Galilean transformation shows
how the simulation flow field was translated to the approximate rest frame of the
drop and corresponds to the data shown within panel (A) of Figure 4.11. It is clear
still that, in panel (A), the microcurrent dominates the flow signal.
To remove the microcurrent from the flow, it must first be computed for a precisely
corresponding simulation. To do this, the buoyancy parameter U0, is set to zero and
the simulation evolved with no forcing, where the corresponding flow field for this
simulation now represents the microcurrent signal for the flow simulated prior. Again,
steady state for this simulation was verified by examining the residual velocity within
the flow field. Panel (B) within Figure 4.11 displays the result of this which is the
microcurrent signal corresponding to flow in panel (A). Finally, the microcurrent field,
panel (B), is subtracted from the flow field, panel (A), to expose the physical flow
field shown in panel (C) (vector field) and panel (D) (streamlines) of Figure 4.11.

The result of the phase-field freezing approach applied to flow past an effectively
tethered drop, from initial inspection, is very encouraging. The rest frame flow field
for the internal drop, post-Galilean transformation, shown in panel (A), is clearly
dominated by the microcurrent signal —noting that there is flow perpendicular to the
interface at the drop boundary (black line) —resulting in the physical flow not yet
being distinguishable. Through vectoral subtraction of the microcurrent in panel (B)
from the corresponding rest frame flow field in panel (A), it is possible to reveal the
physical flow within Stokes’s regime [49], given in panels (C) and (D). The impact
here is clear, with the physical flow in the rest frame now presented by a vector field
and computed flow streamlines in panels (C) and (D), in which flow is now apparently
parallel to the interface. This highlights compliance with the principle kinematical
interface conditions of mutual impenetrability and no-slip condition perhaps more
strikingly than in preceding chapters. Apparently, the phase-field freezing method
provides a viable way of extracting the physical flow when working in the challenging
Stokes’s regime which has increased microcurrent impact. However, this result needs
to be validated against data in order to confidently validate both the developed
cMCLBM and the phase-field freezing approach.
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Figure 4.11: Data showing the process of the phase-field freezing method for simulation
of flow past an effectively tethered drop. Panel (A) shows the rest frame of the drop’s
internal flow field —computed using Galilean transformation given in Eq. (4.61). Panel
(B) shows the internal steady state microcurrent corresponding to the flow in panel (A).
Panels (C) and (D) show the physical flow vector field and streamlines found by subtracting
(B) from (A). Simulation parameters are as follows: x∗ = [0, 199], z∗ = [0, 299], ν = 1

3 ,
β = 0.67, R∗ = 20, G0 = 8 × 10−9, Re = <uz>R

ν < 3.0 × 10−4. Red fluid is the drop and
Blue fluid is the external fluid [135].

Analytical comparison
Following from the results of the phase-field freezing approach to removing the
microcurrent to reveal the internal flow field of the Red drop, the accuracy of the
result must be determined through comparison with theory. Analytical calculations
in [141, 142, 143] align with this work, with reference to kinematic and dynamic
boundary conditions. Here, low Reynolds number flow past an axial-symmetric
sphere is considered, such that the flow pattern is symmetric front to back. There is
no explicit reference to interfacial tension within the theory —which does not effect
this current work examining an undeformed drop —although it is assumed to be
large enough to prevent deformation. In spherical co-ordinates, the velocity field is
given by the following equation, where the origin is taken as the drop centre [143]:

vsr = cos(θ)
(

Λ
1 + Λ

)
U0

2

(
1 − r2

s

R2

)
, (4.62a)

vsθ = sin(θ)
(

Λ
1 + Λ

)
U0

2

(
1 − 2r2

s

R2

)
, (4.62b)

vsϕ = 0, (4.62c)

where it follows that U0êz is the constant speed of the external flow (Blue fluid), at
a large distance from the spherical drop (Red fluid), rs =

√
r2 + z2 = the spherical
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polar distance from the origin. Here, the stagnation point, which corresponds to the
centre of the internal vortex of the velocity field, is always located at:

stagnation point: rs = R√
2
, θ = π

2 −→ x = R√
2
, z = 0. (4.63)

Equation. (4.63) shows the stagnation point in both a spherical polar co-ordinate
system and equivalent Cartesian system. Interestingly, the stagnation point location
has no dependence on the density contrast between the two fluids, meaning it should
remain fixed in space, for all simulations conducted within this test.

Simulation data
The following results are intended to benchmark and validate our model by using
the test of flow past a tethered spherical drop, i.e., compare the results to theory.
This process amounts to using the phase-field freezing approach to remove the
microcurrent from the velocity field to expose the physical flow, and then comparing
the resultant simulation data against the analytical result outlined in Eqs. (4.62a,
4.62b,4.62c). Figure 4.12 shows the comparison of simulation data for the flow field
panel (A), with analytical solution for the flow field panel (B), where a density
contrast of Λ = 5 is used (with remaining parameters listed in the figure caption):

Figure 4.12 shows that the simulation data compare well with that of the analytical
solution for the drop’s internal flow field, for the test of flow past a spherical liquid
drop. This is evidenced by both panels having similar flow profiles, as well as the
location of the stagnation point —the centre of the drop’s internal vortex having
the correct location. In addition, the operation of kinematic interfacial boundary
conditions of mutual impenetrability and no-traction (or no-slip) condition is clearly
confirmed, with flow being tangent to the interface around the perimeter of the
liquid drop. These data further highlight compliance of the developed methodology
with these physical boundary conditions. This qualitative result however contains no
evidence with regards to the accuracy of the flow velocity magnitude, at each lattice
site within the drop, with the vector plots having no relative scaling.

In order to provide quantitative data of how accurate the flow velocity is within
the drop, a complimentary figure to Figure 4.12 is presented. Figure 4.13 compares
the velocity field components that were given by analytical solution and theory in
Eqs. (4.62a, 4.62b,4.62c), with that of simulation data from the result of panel (A)
of Figure 4.12. The panels in Figure 4.13 show comparison of simulation data
and theory for:

(A) Spherical polar tangential velocity, measured along the equator from spherical
drop center.
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Figure 4.12: Comparison of the drop flow field between simulation data (A) and an
analytical solution (B) for flow pushed past an effectively tethered spherical drop. The
result within panel (B) corresponds to the analytical solution displayed in Eqs. (4.62a,
4.62b,4.62c), which has been translated appropriately in the z-axis to allow for comparison.
The result in panel (A) shows the microcurrent adjusted simulation data. The solid black
line shows the phase field ρN = 0. The parameters for these data are as follows: R = 20,
x ∈ [0.5, 199.5], z ∈ [0, 299], β = 0.67, G0 = 8.0 × 10−9 and ν = 1

6 [135].

(B) Spherical polar radial velocity, measured along a line located at angle π
4 from

spherical drop center.

(C) Spherical polar tangential velocity, measured along a line located at angle π
4

from spherical drop center.

To allow a more transparent, quantitative, comparison of theory against simulation
data, the velocity components are normalised against flow velocity U0 and a factor
of f(Λ) = 1+Λ

Λ is used to scale the results:
Starting with the the velocity field for an equatorial section, panel (A) of

Figure 4.13 shows a correct velocity profile, with tangential flow at the origin
(having normalised magnitude of 1) and the flow close to the perimeter (i.e. r → R)
tending towards (0, 0,−1), the flow being in the opposing direction to the origin. It is
also seen that the stagnation point (when vs

θ = 0) is very close to that of the predicted
location. Furthermore, it was found that the radial component of flow was zero at
all location across the equatorial slice, i.e, vs

r = 0 —as expected. With v(R)s
r = 0

required to comply with the kinematical condition of mutual impenetrability if
the drop is not translating or expanding. Panels (B) and (C) show the radial and
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Figure 4.13: Accompanying velocity field data to Fig. (4.12). In all panels the continuous
black line corresponds to theory, and scatter points to simulation data. Panel (A) shows
comparison of the spherical polar radial velocity Eq. (4.62b), measured along the equator
from spherical drop center. Panel (B) shows comparison of the spherical polar radial
velocity Eq. (4.62a), measured along a line located at angle π

4 from spherical drop center.
Panel (C) follows panel (B) but measures the tangential component of velocity [135].

tangential components of velocity along a line taken at an angle of θ = π/4, where the
profiles have been multiplied by a factor of

√
2 to normalise the plots. The profiles

are as expected, with the radial component of velocity (panel (B)) being largest close
to the origin, and zero at the interface —required for the mutual impenetrability
condition. The tangential component of velocity (panel (C)) shows that the velocity
is largest and positive close to the origin of the drop, and has a negative tangential
velocity towards the perimeter of the drop —as expected.
Across all panels, the simulation data correspond very well with theory. It is also
clear that the accuracy of the data becomes weaker as r → R, due to the continuous
interface which is somewhat diffused. However, even with the diffused nature
of MCLBM interfaces, the magnitude and direction of the flow align favourably
with a sensible interpretation of the relevant continuum no-traction and kinematic
conditions.

Following confirmation of drop flow field profile in Figure 4.12 and, subsequently,
quantitative confirmation of normalised velocity values for the tangential and radial
components over the drop in Figure 4.13, a range of density ratios are now tested, to
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evaluate the ability of the model to meet the correct physical kinematic boundary
condition at varying density contrasts. Data shown in Figure 4.14 show the internal
flow of the spherical drop (Red fluid) after the corresponding microcurrent has been
subtracted, using the phase-field freezing method, for density ratios Λ = 1, 3, 5, 7.5
corresponding to panels (A,B,C,D), where for all data the flows have Re < 2 × 10−4.

Figure 4.14: Simulation data of the un-scaled internal flow field for varying density ratios
of flow pushed past a spherical liquid drop, where the density ratio in panels (A),(B),(C),(D)
are Λ = 1, 3, 5, 7.5. Data correspond to post application of phase-field freezing —translation
to the rest frame and removal of microcurrent. All flows here are of Re < 2 × 10−4 [135].

Figure 4.14 provides validation of the model, through confirmation that the
stagnation point of the internal drop compares well with that of theory and does
not change position as Λ varies, from inspection. Once again, returning to the
compliance of the model with the kinematic condition of mutual impenetrability,
which is apparent, now, at varying density contrasts with flow being tangent to the
interface at relevant points. This point will be returned to later in the conclusion of
this chapter. In addition, the clarity of the data at larger density ratios becomes
more difficult to interpret, due to the stability of the method and the increased
microcurrent signal as the density contrast increases.

From the results in this section, for flow past a tethered spherical drop at low
Reynolds and Capillary numbers, we see very favourable results. Clearly, these data
correspond to a undeformed drop. A more representative, practical test of the model
would be of the drop under some level of shear-induced deformation.

4.3.3.2 Flow induced deformation of a sedimenting drop

So far, the developed method has been tested for a spherical liquid drop. Here, the
model is examined when a small level of deformation is seen —still assuming, for
practical purposes, a low Reynolds number approximation. Here we consider flow
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past an effectively tethered, slightly deformed liquid drop —in essence, a liquid drop
sedimenting (falling) vertically, at a speed consistent with the low Reynolds number
regime, which results in small levels of deformation to the liquid drop.

To further explain this test, see Figures 4.15 and 4.16, where data are presented as
a meridonal plane —in which the lattice has been reflected about the z-axis to show
a full slice of the still-axial-symmetric three-dimensional drop under simulation.

Figure 4.15: Both panels show a lightly deformed drop sedimenting vertically downward.
Left panel shows Stokes’s stream-function over the domain, where colour corresponds to
velocity magnitude (with non-dimensional units scaled). Right panel shows the pressure
field, in lattice units. Note, domain reflected in the z-axis for the schematic, where the drop
contour is taken at the ρN = 0 contour. The parameter set for these data are: β = 0.3,
Λ = 1, R = 50, x∗ = 0.5, 1.5, ..., 300, z∗ = 0, 1, ...400, ν = 1

6 = constant [135].

Figure 4.16 shows the time evolution of the sedimenting liquid drop at increasing
time steps t = 0, 25000, 50000 (Red, Blue, Green contours), when a buoyancy force
U0ρRêz = −5 × 10−7 is applied to the drop (Red fluid) —note the increase in force
magnitude compared to the spherical drop case. As the drop sediments in the
negative z-direction overtime, the liquid drop is deformed due to drag of the external
fluid. Accompanying figure, Figure 4.15 (Left) shows the velocity magnitude field over
the lattice and (Right) internal pressure field within the liquid drop, both taken in
the meridonal plane at a time step where minimal deformation has occurred. Results
from Figures 4.15 and 4.16 provide good initial evidence of correct kinematics and
dynamics, with the velocity streamlines of the drop’s internal fluid showing correct
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Figure 4.16: Data showing time evolution of a sedimenting liquid drop in low Reynolds
number regime, which is surrounded by an external quiescent fluid —where data are shown
by a meridonal section. The figure shows the drop surface (ρN = 0 contour) at increasing
lattice time steps t = 0, 250000, 500000 (Red, Blue, Green lines), with the Green contour
representing the steady state result. Here, simulation parameters are as follows: Λ = 5,
β = 0.3, R∗ = 50, x∗ = 0, 1, ..., 600, z∗ = 0, 1, ..., 400, σ = 6.0 × 10−4, We≤ 2.0 × 10−2 and
Re < 0.1 [135].

circulation, with external streamlines moving around the perimeter of the drop. This
flow can then be seen in Figure 4.16 to cause appropriate levels of deformation within
the simulated regime, providing qualitative evidence of correct behaviour consistent
with understanding. The next logical step would be to seek a method of quantifying
the accuracy of the developed methodology for simulating this flow, although doing
this for a deforming drop presents further challenges.

Analytical Solution
To confirm that the developed model does produce correct hydrodynamics and
flow field for flow past a slightly deforming drop through quantitative analysis, the
existing analytical solution for this problem, developed by Taylor and Acrivos [144],
is considered. Note at this point, that this solution is harder to interpret than that
previously explored for flow past a spherical drop, as discussed below.
Taylor and Acrivos found a solution to a drop under low Reynolds number motion
within an unbounded, motionless external fluid at rest. Their perturbation solution
predicted drop shape under light deformation, due to drag —where they considered
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an axial-symmetric system. Here, in simulation, equal kinematic viscosity is used.
Applying this constraint, the deformed drop radius at spherical polar zenith angle
θ (using equation (30) derived from reference [144]) is given as:

R(θ)
R

= 1 − a2P2(cos(θ)) − a3P3(cos(θ)) + ..., (4.64)

with expansion co-efficients as follows [144]:

a2 = λWe, a3 = 3λ(11Λ + 10)
70(Λ + 1)

We2

Re , (4.65)

where P2(x) etc. is the second order Legendre polynomial [140] and λ is given as:

λ = 1
4(Λ + 1)3

[81
80Λ3 + 83

30Λ2 + 103
40 Λ + 5

6

]
. (4.66)

Above, λ is independent of that used elsewhere, in chapters dealing with the MRT
scheme, where it denotes collision matrix eigenvalues. No confusion should arise from
this and we deem it sensible to use established notation within the present context.

The result in Eq. (4.64) provides a solution in which our model can be bench-
marked against, when looking at comparing data with the predicted shape (level of
deformation), for an axial-symmetric liquid drop deformed in low Reynolds number
flow.

Simulation Data
Here, we perform limited benchmarking of the model against the analytical solution
for shape profile of the axial-symmetric liquid drop deformed in low Reynolds number
flow, using simulation data. Before proceeding, one must compute the location of the
drop perimeter R(θ) at angle θ in Eq. (4.64) in terms of discrete simulation values R∗

and (θ∗), as well as expressing the Weber (We) and Reynolds (Re) numbers required
in Eq. (4.64). Within simulation, these numbers were computed as follows:

We = ρB < vz >
2

∆p , Re = R < vz >

ν
, (4.67)

where ∆p is the measured pressure step across the drop interface. The pressure can
be calculated from the first term in the expression of the zeroth order momentum
flux tensor shown by Eq. (3.16).

To calculate the centre of mass of the liquid drop as it sediments in the negative
z-direction, the following definition was used (expressed in spherical polars and
computational co-ordinate system):

⟨z⟩ =
∫∫
rz 2πzρR(r, z)rdrdz∫∫
rz 2πρR(r, z)rdrdz −→

∑
x∗,z∗ x∗ρR(x∗, z∗)z∗∑
x∗,z∗ x∗ρR(x∗, z∗) . (4.68)
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This value could also be used to fit to Eq. (4.64). The drop surface was defined by
seeking points in the interface range ρN ∈ [−0.2, 0.2], as ρN = 0 may not necessarily
be represented by a discrete point (x∗, z∗). From this, the radial distance and
zenithal angle were computed as follows:

R(θ∗) =
(
(x∗ + 0.5)2 + (z∗− < z >)2

)1/2
, (4.69a)

θ∗ = cos−1
(
z∗− < z >

R∗

)
. (4.69b)

The analytical solution for the deformed drop profile in Eq. (4.64) is now to be com-
pared against the calculated drop profile from simulation given by Eqs. (4.69a.4.69b).
Here, the scenario of a sedimenting drop was tested for three density ratios Λ =
(0.5, 1.0, 2.0). The results of shape profile at steady state from these simulations
are shown in Figure 4.17, where scatter points correspond to interface points in
the range ρN ∈ [−0.2, 0.2]:

Figure 4.17: Data showing accuracy of simulating a slightly deformed drop by comparing
interface data (scatter) calculated by Eqs. (4.69a,4.69b) and perturbation calculation show
in Eq. (4.64) (red line) for predicted drop profile. Panel (A) is for density ratio Λ = 0.5,
panel (B) Λ = 1.0 and panel (C) Λ = 2.0. The parameters for these data are: β = 0.3,
R∗ = 50, x∗ = 0, 1, ..., 600, z∗ = 0, 1, ..., 400, σ = 6.0 × 10−4, We≈ 2.0 × 10−2 and Re ≈ 0.01
for all simulations [135].

Figure 4.17 shows encouraging correspondence with theory in general, with
simulation data appearing to follow a similar trend to that of theory. Due to the
distributed nature of the interface within multi-component lattice Boltzmann models,
the data are harder to interpret, as it introduces a larger spread of data points within
the interfacial region. However, this provides quantitative conformation that the

117



4. Extended cMCLBM for the Simulation of Drops within Stokes Flow

correct drop profile can be appropriately recovered in simulation for an effectively
axially-symmetric three-dimensional liquid drop deforming in low Reynolds number
flow. The result strongly implies operation of correct dynamic boundary condition
(of stress-transmission across the interface —which is clearly central to producing
an appropriate shape —caused by the drag on the drop as it sediments). The data,
however, do not show the instantaneous transmission of stress, as in previous tests
conducted with the 2D MRT-model, and, also, it is clearly limited to small density
contrasts, with the largest density ratio shown being of magnitude 2.

4.4 Concluding Remarks

Within this chapter, the BGK cMCLBM developed and presented in Chapter 3 has
been extended by replacing the BGK collision operator with an MRT collision opera-
tor, as well as extending to the simulation of three-dimensional axially-symmetric fluid
flows. The justification for introducing the MRT collision operator stems from the
desire for increased stability in the face of more complicated forcing, which the MRT
is accepted to offer in comparison the BGK scheme, due to the increased tuneability
reposing in additional degrees of kinetic freedom. Clearly, then, this last step is
not a unique extension; a majority of multi-component lattice Boltzmann models
opt for more sophisticated collision operators such as MRT and cascade-MRT for
stability gains —the former being chosen due to the increased complexity in cascade-
MRT schemes. Following this, our particular MRT cMCLBM was extended to the
simulation of three-dimensional axial-symmetric flows, which increases applicability of
the method by being able to capture three-dimensional fluid dynamics but, crucially,
brings complex but intuitively clear validation of the interfacial boundary conditions
so much at issue in this work within scope of stringent validation. Put another
way, the ability to simulate axial-symmetric three-dimensional flows means that a
two-dimensional model can be conveniently used to simulate the flow, leveraging
computational gains to observe the operation of boundary physics. Additionally,
the model’s handling of geometrical forcing imparts, furthers the understanding of
the ability of LB models to handle continuity flow sources and sinks, as well as the
inclusion of velocity dependent forces.

The aim of this work was to analyse the fundamentals of our model —its compliance
with principle kinematics and dynamics. Starting with the two-dimensional MRT-
model outlined in section 4.2, it was found that there is very little difference between
the resultant kinematics and dynamics in comparison to the BGK-model, apart from
the change in collision parameters present in the source terms needed to recover
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correct dynamics. To assess the model’s kinematics and dynamics, a flat interface
was first tested. Here, both steady state and dynamical tests investigated compliance
with interface kinematics and dynamics by shearing the fluid tangent to the interface
and comparing against developed analytical solutions (tests in sections 4.2.3.2 and
4.2.3.3). The results here were that the model showed compliance with: (i) the
kinematical interface conditions —with flow being continuous across the interface, and
(ii) compliance with the dynamical boundary conditions —by showing instantaneous
stress transmission across the interface through transient data showing fluid dragging
in the test in section 4.2.3.3. Here, density ratios showed good agreement with
analytical solutions for density contrasts of up to around Λ ≈ 50. Next looking at
curved interfaces, the test in section 4.2.3.4 investigated transient rotational flow
by shearing the fluids tangent to their interface. The results of this test again
showed compliance with both kinematical and dynamical boundary conditions, with
instantaneous stress-transmission (dynamics) present. However, there was seen to
be a loss in the achievable density contrast, with results showing best compliance
up to density ratios around Λ = 5. These data support findings from Chapter 3, in
that there are stability issues, which become prominent at larger density contrasts,
in rapid flow and also when a curved interface is present.

From these findings, the most appropriate application of the our essential model
must be the simulation of liquid-liquid interfaces at low Reynolds number, where
flow velocities are low. From this, section 4.3 targeted the simulation of three-
dimensional axial-symmetric fluid flows within Stokes’s regime (where Re → 0,
We → 0), with low density ratios between the fluids. To develop this model, the
Navier-Stokes equations in cylindrical polar co-ordinates were decomposed under
the assumption of axial symmetry, resulting in a spatially reduced system. The
MRT-model from section 4.2 was then adjusted to recover the correct dynamics
of a three-dimensional axially-symmetric system, by developing velocity dependent
geometrical forces together with a continuity source/sink. The outcome was a pseudo
three-dimensional model, capable of simulating axial-symmetric three-dimensional
fluid flows. When working within Stokes’s regime using cMCLBM, the microcurrent
level dominates the physical flow field, prompting our development of a method
(phase-field freezing) which removes the microcurrent, to reveal the physical flow.
This approach was then used intuitively to validate the model’s kinematics and
dynamics in two well documented test scenarios: (i) flow past a spherical drop and
(ii) flow past a deforming drop. In test (i), data were compared against an existing
analytical solution for the velocity field, showing correct kinematics —with flow being
tangent to the interface at all relevant points and well-aligned with the analytical
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solution. Again in test (ii), simulation data were compared against an analytical
prediction of the deformed drop shape, with data (although harder to interpret due
to the diffused interface of the method), providing good conformation of correct
dynamics, i.e., the flow stresses deforming the drop appropriately. However, we found,
again, the achievable density contrast was much reduced relative to flat interfaces,
with the modest maximum density contrast found to be around Λ = 10.

The overall material -deliverable- outcome of the work in this chapter is the
development of an MRT cMCLBM method capable of simulating axially-symmetric
three-dimensional flows with a density contrast. However, the operation of this
model has furnished possibly our most significant results which confirm -very visibly-
the fundamental compliance with known, target interface kinematics and dynamics
conditions, facilitated through comparison with theory across many tests. Similar to
other cMCLBMs, the achievable density contrast is not as high as reported in other
models (such as the Shan-Chen and Free-Energy models), which report simulations of
buoyancy-driven flow of drops with density contrasts of up to order O(1000) [99, 100,
145]. Our method, however, leverages separate advantages such as ease of control
over interface width and surface tension, ability to simulate large viscosity contrasts
and strict mass conservation. It must be repeated that if one wishes to simulate
larger density ratios using our model, the flow regime should be restricted to Stokes’s
flow.

Extrapolating from the outcomes of this chapter, future work should consider tackling
stability issues surrounding the simulation of larger density contrasts. This requires
addressing the advection error, arising in the kinematics and dynamics coupling,
as well as general stability issues, introduced by using an athermal equation of
state —where, at larger density contrasts, compressibility effects can start to become
apparent. Very recently, Lafarge et al. (2021) [146] presented an improved colour-
gradient method for the modelling of two-phase flows. These authors introduce an
arbitrary equation of state, to address the stability issues stemming from the use
of the athermal equation of state. In addition, a correction term was also inserted
as a forcing term to improve stability. The outcome of this is enhanced stability
at larger density ratios in comparison to the chromodynamic model presented in
this chapter, by tackling the stability issues which are also evident in our model.
Their work represents the next step in the present workflow, moving towards the
simulation of liquid-gas flows using cMCLBM.

Another avenue for future investigation would be to use the enhanced under-
standing of the class of cMCLBMs to apply the model to fluid flows where density
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contrasts are minimal, reliable (correct) model kinematics and dynamics is essential
and analytical tractability and transparency is desired. Such an application is the
content of the next chapter, where it will be seen that, indeed, the transparency and
reliability of the fluid segregation step is, perhaps, the central requirement. Before
proceeding, however, we remark that the fertile application of the next chapter is
not the only home for the cMCLBE vehicle developed so far. For instance, it was
reported by Liu et al. that viscosity contrast limitations are present within the Free-
energy models (with a maximum viscosity contrast of 8) [147]; accordingly, important
viscosity contrasts flows may be more suitable targets for the use of cMCLBMs. In
addition, the knowledge we have so far gained in this chapter on the kinematics,
treatment of velocity coupling and microcurrent elimination could also have wider
implications in the development of models to be applied in biomedical science.

Setting our sights on the application of the next chapter, mammalian red blood
cells can be considered (within the continuum limit approximation) as an internal
immisicble incompressible fluid (cell cytoplasm), surrounded by an external immiscible
fluid (blood plasma), with there only being a minimal density difference between
the separated fluids. Here, the control over interface width, application of immersed
forces (using methods such as Guo forcing [70]) and correct kinematics and dynamics
must all be present before extensions targeting enhanced interface -membrane-
physics should be considered. As such, directed and re-assured by the findings
documented throughout preceding chapters, this thesis’s workflow shifts towards
the development and application of our essential method towards the simulation of
fluid-filled vesicles, with particular focus on a biologically significant entity - the
human erythrocyte or red blood cell.
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In this chapter, understanding, methodology and critique of previous chapters’
content are utilised to develop, then verify and, to a limited extent, validate a further
extended cMCLBM model. The extensions presented focus on, in what previous
chapters show is its most promising area of application, the low density contrast regime
and, while retaining the essential kinematics, the model dynamics is substantially
extended, to facilitate the simulation of vesicles. The work in Chapter 3 developed
and analysed a chromodynamic MCLBM for simulating immiscible fluid flows with
a density contrast, studying compliance with fundamental model kinematics and
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dynamics. Chapter 4 then extended this work, by incorporating an MRT collision
scheme and applying it to simulating axially-symmetric three-dimensional flows
within Stokes’ regime. The salient conclusion of the work in these chapters was
the assurance that the errors introduced within the model, due to the kinematics
and dynamics coupling, reduced the applicability of the model (in its current form)
to flows with low density contrasts, that said, it showed good compliance with
kinematical and dynamical conditions at density contrasts of unity —with higher
stability, due to the absence of error from simulating density contrasts.

Guided by an enhanced understanding of the model’s kinematics and dynamics
coupling, a cMCLBM will be developed, for simulating vesicles —with intent of
parameterising the vesicles for RBC behaviour. The assumption of unit density
contrast is used —which is fully consistent with RBCs —and an MRT collision
scheme, similar to the one within Chapter 4, is implemented to enhance stability in
the face of increased algorithmic complexity. The strengths of the cMCLBM: interface
control, parameter tunability, controlled address of immiscibility, mass conservation
and ease of immersed boundary force coupling, are all utilised in this Chapter;
the result is an attractive model for simulating vesicles. The core methodology
resembles that of Chapter 3 (with the removal of density contrasts between the
fluids, i.e., effectively setting ρ0R = ρ0B and ϕi = ti), as does the inclusion of an
MRT collision scheme (Chapter 4). The principal methodological enhancement of
this chapter relates to the immersed boundary force, which now does not only need
to enforce surface tension effects; it also forces more complex behaviour, consistent
with vesicle membranes. Therefore, this chapter has a significant focus on this
immersed boundary force, providing detailed explanation of the extensions to the
previously outlined methodology. All simulation data work towards providing an
initial validation of the model, aiming to justify its development and its relation
to current models within the field.

5.1 Background and Motivation

5.1.1 Vesicle Physics

This chapter focuses on the simulation of vesicles tailored towards human RBCs, in
which the developed foundations of the model are outlined and discussed in detail.
It is key to explain RBC physics and how this relates to the mechanics of a vesicle,
as it is these effects which researchers are trying to capture in all models that aim to
simulate vesicles such as RBCs.
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In a mechanical equilibrium, a RBC assumes a biconcave (bicuspid) shape, being
approximately 6-8µm in diameter and having a maximum thickness of 2µm [148].
It consists of a structured, external membrane, enclosing a viscous, effectively
incompressible fluid (cytoplasm) [149]. Micro-structurally, the two key components
of its membrane are a phospholipid bi-layer, and protein strands, which form a
“skeleton”, interlinking a set of anchoring points, within the bilayer. Figure 5.1
displays a schematic representation of a RBCs membrane structure, taken from
[150], which highlights these components as well as the protein channels within
the lipid bilayer. The membrane is incompressible, resisting changes in its surface
area, with the bilayer also imparting bending elasticity to the membrane elasticity
[151]. The thickness of the bilayer and cytoskeleton is approximately 10nm, hence it
has been considered to be a two-dimensional manifold, embedded within the three
dimensional space [152]. RBCs are highly resistant to changes in volume, but are
highly deformable (they pass through narrow capillaries, with a smaller diameter
than RBCs themselves). Because the RBCs resist changes in volume, due to the
incompressibility of the enclosed fluid, and also have a constant surface area —with
the energy required to expand or compress the bilayer area being orders of magnitude
greater than the bilayer bending energy [153], all deformation is isochoric [149]. In
view of the above, it is hypothesised that the membrane may also be modelled as
a quasi-two-dimensional fluid. The cytoskeleton, laying on the interior of the cell
close to the phospholipid bilayer, impacts the shear resistance of the membrane,
although it is considered to have little relevance to the bending rigidity of the cell
[154, 153]. The shear modulus of the RBC is not explicitly modelled in this work, but
it is assumed that its behaviour can be recovered from bending rigidity and surface
tension effects (which can only be justified a posteriori; this matter will be discussed
later within this chapter). As such, this work simulates vesicles —no explicit shear
resistance is included and the cytoskeleton not modelled —meaning the bending
energy of the model (due to the lipid bilayer) can be described via the Helfrich’s
bending energy [155] (discussed further shortly).

Later within this Chapter, the simulation of multiple RBCs is targeted —in order
to highlight the future extendability of the model to multiple RBC flows. The
interaction between the RBCs in this model is controlled by the surface tension
values between the RBCs and also the RBC-background fluid (explained further
later in this Chapter), i.e., the interaction is considered from a purely hydrodynamic
standpoint. However, a repulsive potential is present between cells, stemming from
the negatively charged surfaces of the RBCs due to the surface glycoproteins [156]
(see Figure 5.1). Forces such as this however takes place at length scales smaller than
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that simulated with this model, as such, are not included in the current work —with
a detailed study of the interactions of multiple RBCs being a goal of future work. The
assumption to neglect this behaviour is consistent with the assumption of the RBC
description used throughout this work (modelling the membrane as an effectively
two-dimensional surface) and the central investigation of model hydrodynamics.

Figure 5.1: A schematic of the structure of a RBC membrane, highlighting the
phospholipid bilayer and the protein skeleton (cytoskeleton) [150].

5.1.2 Existing Methods

The modelling of RBCs and their surrounding fluid span many length scales, across
the micro-, meso- and macro- scales [12]. One must first decide what the principal
purpose of the desired RBC model is, i.e., the simulation of dense suspensions, or the
accurate modelling of a RBC on a molecular level. This can then be used to inform
one at what length scale the model should operate, and which models are appropriate.
However, there are a variety of models to choose from, all with differing strengths
and weaknesses. Here, what follows is a brief review of such models that operate
at the mesoscopic to macroscopic scales, i.e., where the membrane is considered a
continuous 2D surface. This should also help provide clarity on where this model
sits alongside others in the field and its significance.

Mesoscopic modelling techniques for the simulation of RBCs are popular, due to their
bottom-up approach. By starting with equations that characterise a smaller length
scale, which also recover continuum momentum equations, it allows physics of smaller,
sub-lattice scales to be included in a partially integrated —or low-order —form, which
then projects appropriate vesicle behaviour. A common mesoscopic approach uses a
mass-spring network of membrane-embedded nodal connections (this is the so-called
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lattice spring method (LSM)). The use of a mass-spring system for the simulation of a
RBC membrane was first applied at the spectrin level, where such models encountered
computational constraints, due to the number of vertices of their mesh [157]. This
essential approach was soon expanded to the simulation of multiple erythrocytes
via Dupin et al. [19] in 2007, who achieved LBM-based simulations containing 200
vesicles, at a volume fraction of 30%. Dupin et al., introduced a coarse grained
Lagrangian LSM, paired with single-component LBM, which required only 400 nodes
for the RBC surface. Here, the mechanics of the advecting, deformable body was
characterised by the use of point masses, connected via Hookean spring elements.
The vesicle surface was comprised of triangular, tessellated surface elements, with
the Hookean spring elements lying tangent to these facet edges and the masses being
located at the vertices of this mesh. This mesh was then embedded in a single fluid,
simulated via the LBM (LBGK variant), and it (the membrane mesh) then being
independently tracked during simulation. Dupin’s multi-framework approach is, in
this sense, very much a pre-cursor of later, finite-element based, so called LBM-FEM
methods. Various multi-framework, mass-spring approaches for the simulation of
large suspensions have since been developed [158, 159, 160], with many models being
incorporated into very high performance interfaces such as the Hemocell solver [159,
160]. The immediate advantage of such methods is the ability to simulate dense
suspensions at reasonable computational expense. However, due to these models
adopting the mass-spring system, their ability to simulate high levels of deformation
accurately is a recurrent criticism, as is their robustness and —we contend —the
trade-off between the physical fidelity of their representation and their computational
efficiency. We hope that the work reported in this this chapter provides an alternative
perspective on this trade-off.

Another popular RBC membrane modelling approach, perhaps more closely related to
that we report, is more clearly located at the continuum scale —with constitutive laws
being used to describe the membrane, there being various material models available
for the vesicle forces [161, 162, 163]. The governing equations for the membrane
material are then discretised, using techniques such as finite element method (FEM),
these discretised equations then being linked to the chosen fluid solver (which
might well be LBM [164, 154], discrete particle dynamics (DPD) simulation or
boundary element method (BEM) [165, 166, 167, 168]). Note, models using the
BEM fluid solver are restricted to Stokes’ regime. Some variants link the fluid solver
to the equations for the deformable body via the immersed boundary method (IBM)
introduced by Peskin [169, 170]. Essentially, the Lagrangian marker nodes, advecting
on the membrane surface (which are not conformed —or co-registered —to the
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fluid mesh, note) are linked to the fluid solver via distribution of the membrane
forces, interpolated onto the local Eulerian nodes of the fluid solver. Such models as
the aforementioned are recognised for their increased accuracy in simulating RBCs
and their enhanced stability, compared to mass-spring systems, at larger levels of
deformation —although care is needed when reviewing the LB lattice and FEM mesh
spacing (which should be relatively similar). However, they remain multi-framework
and are computationally expensive, hence, they do not suit the simulation of very
dense suspensions as well the mass-spring system models discussed above. There
are also resolution constraints, such as the need for an appropriate density ratio of
Eulerian nodes to Lagrangian nodes, in order to accurately interpolate correct local
forces. Of course, the simulation of multiple vesicles within this framework would
require additional processing, to underwrite the integrity of the individual objects.
Very recent efforts have improved the computational efficiency of these models, in
order to allow for the simulation of many vesicles [171]. However, due to the modular,
multi-framework approach —the need for multiple modelling techniques —there is a
lack of transparency in their theoretical support. Here we seek to establish a method
with the following advantages: (i) being single-framework; (ii) can capture the
requisite physics transparently, verifiably and elegantly; (iii) the relative resolution
of the membrane and the coupled fluid is equitable and directly controllable; (iv) the
computational overhead acquired when dealing with multiple vesicles is very low.

At the moment, there is no universal model used for the simulation of RBCs.
The model for which one opts will depend upon the application of the method,
the target application and the required accuracy. The two key RBC modelling
methodologies aforementioned serve as examples as follows. One would more than
likely opt for the mass-spring models when simulating dense suspensions at scale, due
to the computational efficiency, but, maybe, select continuum models when requiring
increased accuracy, and low RBC flows. The model outlined here aims to provide a
novel, third route, which has high accuracy, stability, verifiable physical fidelity and
the future ability to be extended to the simulation of dense suspensions. Its final
claim to novelty is that it introduces a single framework methodology —only one
modelling technique is used, for both the fluid and deformable body.

5.1.3 Chromodynamic MCLBM approach

In the previous section, two popular approaches for modelling RBCs at the continuum
and mesoscopic scale were outlined. As discussed, both groups of models had
particular strengths. The remainder of the chapter now focuses exclusively on the
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development and validation of a novel, three-dimensional chromodynamic MCLBM,
capable of simulating RBCs. This approach uses a similar chromodynamic MCLBM
to that outlined in Chapter 3, to underwrite the kinematics, but now extended to
three spatial dimensions, with the density ratio between the fluids conveniently set
to unity (Λ = 1) and with upgraded interface physics (specifically, a rather more
complex force density, to be developed).

When extending to a three-dimensional model, the lattice structure employed
is the D3Q19 lattice, where there are 19 lattice velocity vectors, ci (including the
one at rest). Table 5.1 shows the lattice link label, i, the lattice velocity vector
components, and the two lattice weights (ti, gi).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
cix 0 1 1 0 -1 -1 -1 0 1 0 1 0 -1 0 0 1 0 -1 0
ciy 0 0 -1 -1 -1 0 1 1 1 0 0 1 0 -1 0 0 1 0 -1
ciz 0 0 0 0 0 0 0 0 0 1 1 1 1 1 -1 -1 -1 -1 -1
ti t0 t1 t2 t1 t2 t1 t2 t1 t2 t1 t2 t2 t2 t2 t1 t2 t2 t2 t2
gi g0 g1 g2 g1 g2 g1 g2 g1 g2 g1 g2 g2 g2 g2 g1 g2 g2 g2 g2

Table 5.1: D3Q19 lattice structure, showing lattice link (i), lattice velocity vector (ci)
components and lattice weights (ti, gi). Here, t0 = 1

3 , t1 = 1
18 , t2 = 1

36 and g0 = 1, g1 = −2,
g2 = 1.

Continuing with the typical colour label convention for fluid components, when
simulating vesicles in this work, the internal fluid (cytoplasm) is designated red and
the exterior fluid (plasma) denoted blue. The interfacial region is representative of
the surface (de facto membrane) of the vesicle and this is where appropriate immersed
boundary forces (to be determined) are applied. Figure 5.2 displays a schematic of this
colour naming convention used, as well as the physical representation of the fluids.

In contradistinction to previous Chapters (3 and 4), this model uses a density ratio
between the fluid of unity, i.e., ρ0R = ρ0B. As such, the mass activation parameter
ϕi no longer appears, and we revert to the LBM equilibrium distribution function,
cMCLBM phase-field (interface) [57] and chromodynamic segregation rule as follows:

f
(eq)
i (ρ, u) = tiρ

(
1 + uαciα

c2
s

+ uαuβciαciβ
2c4
s

− u2

2c2
s

)
, (5.1)

ρN(r, t) ≡ ρR(r, t) − ρB(r, t)
ρR(r, t) + ρB(r, t) ∈ [−1, 1], (5.2)

Cψψ
i (r, t) = ρC(r, t)

ρ(r, t) fi(r, t)
ψ ± βti

ρR(r, t)ρB(r, t)
ρ(r, t) n̂ · ci∆t, (5.3)

where all terms have the same meanings as in the previous schemes described
in Chapters 3 and 4.
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Figure 5.2: Schematic outlining the assignment of the fluids in the chromodynamic
MCLBM for simulating vesicles. Here, the red fluid corresponds to the cytoplasm (or the
vesicle), the blue fluid the plasma (or external fluid) and the grey region to the interfacial
region (or vesicle-fluid surface).

The critical change in our methodology, from simulating drops to simulating
vesicles, stems from the inclusion of a more sophisticated body force —containing
key surface metrics such as the principle curvatures of the surface —which aims to
accurately embed vesicle behaviour. These forces are introduced as a variable body
force density (or distribution) in the Navier-Stokes equations for the interfacial fluid
(which is a patch within what is effectively a single fluid, note), see Eq. (5.30), and as
such are incorporated in the scheme at a mesoscopic level through the macroscopic
velocity relation correction [172, 70] and source terms in the kinetic scale evolution
equation. The total force (decomposed by contribution) weighted by the phase-field
(to allow for local application of the membrane effects in the interfacial region),
are defined as follows: [57, 173, 155, 20]:

F (t) = 1
2∇Xρ

N
(
F (a) + F (b) + F (l)

)
, (5.4)

where:

F (a) = −αH (A− A0)An̂, (5.5a)

F (b) = −κB
(3

2∆SH +H3 −KH
)
n̂, (5.5b)

F (l) = 2σHn̂, (5.5c)

and contributions F (t), F (a), F (b), F (l) are the total force contribution, membrane
area conserving force, membrane bending rigidity force and membrane surface tension
force [155]. All three individual forces and their parameters will be explained in detail,
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in the succeeding section; for now, note that H and/or K (the mean and Gaussian
membrane surface curvatures of the surface) appear in all force contributions.

This model provides a novel approach, encapsulated in a single framework
structure, where no other modelling technique is needed to simulate the deformable
body. The extensions to the methodology of preceding chapters, specifically the
enhanced immersed boundary force (Eq. (5.4)), will now be detailed. We summarise as
follows. A new approach to simulating RBCs is postulated, which: (i) is transparently
encapsulated in a single framework (cMCLBM), (ii) uses an appropriate, easy to
compute body force, reliant on key surface curvatures of H and K, (iii) is capable of
vesicles accurately and (iv) can be extended to the simulation of multiple vesicles.

5.2 Extension of Methodology

In this section, the single framework methodology developed for simulating vesicles
using chromodynamic MCLBM will be presented. Due to the need for minimal
changes in the method relative to the chromodynamic MCLBM schemes already
introduced in Chapters 3 and 4, in the present chapter, work focuses on the inclusion
of the requisite membrane physics in the scheme and the efficient implementation
of the immersed boundary forces that encapsulate that physics. Therefore, the
membrane forces used to introduce interface fluid behaviour consistent with vesicle
membranes will be explained in detail, as well as how these forces are implemented
efficiently in simulation. It will become obvious to the reader that a suitable method
of calculating the surface curvatures is central for the computation of these forces,
leading to the work in section 5.2.3.

5.2.1 Immersed Boundary Force

The main difference between using chromodynamic MCLBM for simulating drops
and vesicles, was the upgraded immersed boundary force. The force is applied locally
in the interfacial region (de facto membrane) using a weight function, related to
the phase-field, in which ρN = 0 corresponds to mid-interface. Here, the immersed
boundary force is discussed in more detail, including its relation to vesicle physics
and the principle curvatures of the surface. Principally, the three forces characterised
as area conserving, bending rigidity and surface tension forces all contribute to the
final vesicle shape, however, all should be regarded as practically independent of
each other for present purposes (notwithstanding that all must, presumably, derive
from a single free constitutive theory of the membrane, which is, beyond the scope
of the present work). As such, each force, although interrelated in the sense that
they all effect vesicle behaviour, can be tuned individually.
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5.2.1.1 Area Conservation

When distinguishing between drop and erythrocyte dynamics, the conservation
of surface area and volume of the internal fluid in erythrocytes is crucial. The
conservation of volume stems from the membrane impermeability to cations, and the
conservation of surface area is due to resistance in changes in area per molecule of the
membrane bilayer [174]. The conservation of erythrocyte surface area, and volume
of the incompressible fluid when subject to deformation in flow is characterised as
an isochoric deformation [149]. Due to this constraint, the surface area to volume
ratio is an important parameter of relative deformation, for it restricts the types of
deformation available to the vesicle. Notably, a healthy human RBC has surface
area much greater than that of a sphere with the same volume [175]. Here, an
appropriate membrane area conservation force is outlined, that aims to conserve
global surface area, but not local area, i.e., the overall area of the surface will be
constant but local patch areas may, in principle, fluctuate. A volume constraint
force is not required, as chromodynamic MCLBM inherits strict mass conservation,
meaning volume is conserved.

For our derivation, the following assumptions about the membrane surface are
made. It is isotropic, has zero preferred curvature, compressibility is controlled by
a single parameter α (see Eq. (5.12)), differential strain at all locations is equal
and it relaxes strains rapidly in the tangential direction (this is consistent with the
assumption of globally conserved area) [20]. It is therefore taken that we neglect the
tangential components of F (a) (more on this shortly).

Take a small excerpt of vesicle surface, which when not constrained, is flat, and
has area dA′ = dxdy, such that the surface spans the limited range x ∈ [0, dx],
y ∈ [0, dy]. In this analysis, the surface (a two-dimensional manifold in a three
dimensional space) is represented as a Monge surface [176], i.e., kinematically, the
movement of the manifold in space is always orthogonal to the plane. A given
position on that surface is then defined by u(x, y). At a given point on the surface,
such as where x, y intercept, the two orthogonal tangents are given by ux and uy

(where uα = ∂
∂α
u). The normal at this point is then straightforwardly calculated via

the cross product n = ux × uy. Figure 5.3 shows the surface excerpt in question, and
corresponding differential geometry. The strained area with curvilinear co-ordinates
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Figure 5.3: Schematic showing an excerpt of vesicle surface, represented by a Monge
patch, where position on the surface is given by u(x, y) and the surface has unstrained
area given by dA′ = dxdy. The orthogonal tangent vectors at a point on the manifold
are given by uδ = ∂

∂δu where δ ∈ [x, y] (black arrows), in which the normal vector is then
straightforwardly calculated as such: n = ux × uy (red arrow) [20].

can thus be calculated by the following:

dA′ = |ux × uy|dxdy, (5.6)

= |ϵijk(uj)x(uk)y|dxdy,

=
√
ϵijkϵilm(uj)x(uk)y(ul)x(um)ydxdy,

=
√

(ux · ux)(uy · uy) − (ux · uy)2dxdy,

in which the identity ϵijkϵilm = δjlδkm − δjmδkl has been used [140]. Following the
usual practice, the previous equation can be rewritten using the coefficients of the
first fundamental form of the surface, I [177]:

dA′ =
√
EG− F 2dxdy,

where:
E = ux · ux, G = uy · uy, F = ux · uy, (5.7)

and therefore the unit normal is defined as:

n̂ =
ux × uy√
EG− F 2

. (5.8)
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Generalising and using this notation, the area, ∆A, of any finite part of the membrane
can be formally calculated by a surface integral:

∆A =
∫∫ √

EG− F 2dxdy, (5.9)

where the integration is taken over a finite range of parameters x ∈ [0,∆x], y ∈ [0,∆y].
It is also necessary to state the below approximations that will be used shortly:

∆A ≈
√
EG− F 2∆x∆y, ∆A0 ≈ ∆x∆y. (5.10)

The corresponding change in area for the constrained surface element, from the
unconstrained surface element, can be examined as follows:

∆S = ∆A− ∆A0,

=
√
EG− F 2∆x∆y − ∆x∆y,

= (
√
EG− F 2 − 1)∆x∆y,

thus, the change in local area can be characterised by the following surface integral

∆S =
∫∫

(
√
EG− F 2 − 1)dxdy, (5.11)

where the surface integral is over the finite range x ∈ [0,∆x], y ∈ [0,∆y]. It follows
that the free-energy density, As, associated with the deformation of a finite element
of vesicle surface, can be written as:

As = α

2

∫∫
F(x, y, u, ux(x, y), uy(x, y))dxdy, (5.12)

where a multi-variate functional, F of x, y, is now defined as:

F(x, y, u, ux(x, y), uy(x, y)) =
(√

EG− F 2 − 1
)2
. (5.13)

Note that F does not depend, explicitly, on x, y and u.
In order to constrain the surface area of the vesicle, one must minimise the free-energy
associated with the deformation of a general finite element of vesicle surface, given
in Eq. (5.12). In order to do this, the calculus of variations are used; put another
way, the multi-variate Euler-Lagrange equation for multi-dependent variables in
Eq. (5.12) give the appropriate variational derivatives which are set to zero. Noting
F is dependent upon uk(x, y), (where k = 1, 2, 3), we now minimise, i.e., seek δAs

δuk
.

An expression for the kth component of a membrane area conserving force can thus
be found by taking a variational derivative:

F
(a)
k = δAs

δuk(x, y) = ∂F
∂(uk)

− ∂

∂x

∂F
∂(uk)x

− ∂

∂y

∂F
∂(uk)y

,

= − α

2
∂

∂x

∂

∂(uk)x

(√
EG− F 2 − 1

)2
− α

2
∂

∂y

∂

∂(uk)y

(√
EG− F 2 − 1

)2
.

(5.14)
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For clarity, the derivatives of the first term on the right hand side of Eq. (5.14)
will be evaluated separately:

α

2
∂

∂x

∂

∂(uk)x

(√
EG− F 2 − 1

)2
= α

∂

∂x

[(√
EG− F 2 − 1√
EG− F 2

)(
(uk)xG− (uk)yF

)]
,

= α
∂

∂x

(√
EG− F 2∆x∆y − ∆x∆y√

EG− F 2∆x∆y

)
×

+
(uk)xG− (uk)yF

,
≈ α

(
∆A− ∆A0

∆A

)
∂

∂x

(
(uk)xG− (uk)yF

)
.

(5.15)

Under the assumption that tangential stress relaxes rapidly —the relative straining
of a surface area element is ∆A = ∆x∆y is constant over all surface locations (x, y)

—the factorisation in the last line of Eq. (5.15) is justified. By similar analysis, the
second term on the right hand side of Eq. (5.14) can be given as:

α

2
∂

∂y

∂

∂(uk)y

(√
EG− F 2 − 1

)2
≈ α

(
∆A− ∆A0

∆A

)
∂

∂y

(
(uk)yE − (uk)xF

)
. (5.16)

Using the evaluated expressions, Eq.(5.15) and Eq.(5.16), to rewrite Eq. (5.14):

F
(a)
k = −α

(
∆A− ∆A0

∆A

)
×

 ∂
∂x

(
(uk)xG− (uk)yF

)
+ ∂

∂y

(
(uk)yE − (uk)xF

)
= −α

(
∆A− ∆A0

∆A

)
×

E(uk)yy +G(uk)xx − 2F (uk)xy + (uk)x(Gx − Fy)+

+ (uk)y (Ey − Fx)
.

(5.17)

Following the assumptions previously introduced —that tangential stress relaxes
rapidly and the surface is isotropic —the membrane is not differentially strained.
The normal component of the force, i.e., the force perpendicular to the interface, is
now projected out. The following definition for the normal component of the
force is obtained:

F
(a)
k n̂k = −α

(
∆A− ∆A0

∆A

)
×

 (En̂k(uk)yy +Gn̂k(uk)xx − 2Fn̂k(uk)xy) +

+ n̂k(uk)x (Gx − Fy) + n̂k(uk)y (Ey − Fx)
,
(5.18)
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where, from Eq. (5.8), n̂k(uk)x = n̂k(uk)y = 0. Further simplifying:

F (a) · n̂ = F
(a)
k n̂k = −α

(
∆A− ∆A0

∆A

)
×
(
En̂k(uk)yy +Gn̂k(uk)xx

= −2Fn̂k(uk)xy
)
, (5.19)

= −α
(

∆A− ∆A0

∆A

)
(EN +GL− 2FM) ,

where N , L and M are the coefficients of the second fundamental form of the
membrane surface, usually denoted II, and used in conjunction with the first
fundamental form to calculate principle curvatures of a surface [177]:

N = (uk)yy · n̂k, L = (uk)xx · n̂k, M = (uk)xy · n̂k. (5.20)

The mean curvature of a surface can be defined using the coefficients of I and II
(the fundamental forms), shown in Eqs. (5.7) and (5.20), as follows:

H = 1
2 (κ1 + κ2) ∝

(
EN +GL− 2FM

EG− F 2

)
. (5.21)

Therefore, we use the definition of the mean curvature, H, in Eq. (5.21), to
rewrite Eq. (5.19):

F (a)
n ∝ −αH (∆A− ∆A0)

∆A (EG− F 2).

It is now possible to use the definition of area to replace (EG−F 2) ∝ ∆A2, as well as
absorbing constants of proportionality into α. These steps result in a final expression
for the normal component of the interface force component for surface area control:

F (a) = −αH (A− A0)An̂, (5.22)

where, parameter α clearly now only represents physical interface compressibility
very broadly. Here, A is the actual area of the vesicle and A0 is the reference area (or
desired cross-sectional area) of the vesicle. In simulation, the vesicle is initialised as
a sphere, with defined area, Asphere. The initial vesicle is then deflated by an amount
proportional to the area of the sphere as such: A0 = ΥAsphere, where Υ is a deflation
constant. The interface compressibility, α, can then be used to control the rate at
which the vesicle approaches its target area A0. Figure 5.4 displays the initialised
spherical vesicle (left), and the resultant bicuspid vesicle after deflation and immersed
boundary forces have been applied (right). The actual area of the vesicle in simulation,
A, is calculated through a weighted volume sum of the entire interfacial region, which
is then divided by interfacial width to get the cross-sectional area of the interface.
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Figure 5.4: Schematic showing (left) intialised spherical vesicle with area Asphere and
(right) steady state bicuspid vesicle, with cross-sectional surface area A0 = ΥAsphere.
Υ = 1.31 for this case [20].

5.2.1.2 Bending Energy

The cell membrane, and corresponding cell physics, controls how a suspended vesicle
responds under deformation within flows. The bending energy of the membrane,
dictated by the cell membrane structure and properties (phospholipid bi-layer and the
protein skeleton on the cytoplasm surface) has a large influence on vesicle behaviour,
i.e., the membrane’s bending elasticity, shear elasticity and hence surface shape. Thus,
the accurate representation of the bending energy of the membrane is crucial. At a
microscopic level, this may be achieved by describing the physical response in relation
to the position of lipid molecules. Whereas, at the continuum scale, the membrane
is treated as a continuous two-dimensional manifold, over which a shape energy can
be assigned. Similar descriptions of the bending energy of the associated membrane
have been proposed [178, 179, 180], a popular model (used in this work) being the
Helfrich bending energy (also known as the spontaneous curvature model [181]):

ϵB(r) = 2κB (H −H0)2 + κKK, (5.23)

where, κB, H, H0, κK and K are the bending modulus, mean curvatures, preffered
curvature, saddle spray modulus and Gaussian curvature, respectively

The bending force acting in the normal direction to the surface, related to
the bending energy of the membrane (Eq. (5.23)), is variously derivable —see
[179]. The resulting form of bending force implemented in this work is given
by the following [173]:

F (b) = κBC + ∇sκB · (∇s(H −H0)) , (5.24)

where:
C = H(H2 −H2

0 ) + 1
2∆sH − (H −H0)K. (5.25)
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Equations (5.24) and (5.25) can be found in Eq.(A17) and Eq.(A18) of reference
[173], and are representative of the modulus of the bending force, acting in the
normal direction. Here, κB, H, H0, K, ∇s and ∆s are the bending rigidity, mean
curvature, preferred mean curvature, Gaussian curvature, surface gradient operator
and the Laplace-Beltrami operator, respectively.

Proceeding, the bending rigidity is now set constant. There is still no general
concensus on a value of preffered curvature H0, for the simulation of human RBCs,
with some authors opting for H0 ≠ 0 and some setting H0 = 0. In this preliminary
work, H0 = 0, for simplicity whilst still retaining the ability to recover the desired
bicuspid vesicle.

The Laplace-Beltrami operator is defined as follows:

∆sH = ∇s · (∇sH) . (5.26)

Using the above definition of the Laplace Beltrami operator, as well as the pre-
ferred curvature and bending rigidity constraints, Eq. (5.24) can be simplified
to the following [20]:

F (b) = −κB
(3

2∆SH +H3 −KH
)
. (5.27)

In order to accurately impart membrane bending physics, Eq. (5.27) must be
implemented correctly and, of course, appropriately. This involves the computation
of the mean and Gaussian curvatures, as well as the Laplace-Beltrami operator.
A suitable and efficient method of computing these metrics will be investigated
in section 5.2.3.

5.2.1.3 Surface Tension

The final force contribution incorporated in the model’s immersed force distribution
encapsulates the physics of surface tension. This contribution is exactly the same as
that occurring in drops where the surfaces between fluids generate a tension; this
has been implemented and described previously, for the simulation of immiscible
liquid drops, in Chapter 3. Therefore, the reader is directed to section 2.3.3 for
further detail. The surface tension force is implemented in the following form, for
use with MCLBM introduced in [57] as follows:

F (l) = 2σH, (5.28)

where, σ is the surface tension parameter and H is the mean curvature. Note, the
importance of this force is elevated when reviewing extensions towards multiple RBC
simulations, in which the force helps control the immiscibility between the fluids
(vesicles). This was previously mentioned in Chapter 3, but will be further discussed
and re-contextualised for the simulation of vesicles shortly.
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5.2.1.4 Total Immersed Boundary Force

The individual force components that encapsulate key vesicle physics, which act
together to produce a correct vesicle profile and dynamics are the area conserving,
bending and surface tension forces, which have now been outlined. These forces must
be applied essentially in the interfacial region, identified from the cMCLBM (which
corresponds to the vesicle surface (de facto membrane)) to differentially modify the
fluid behaviour in that region. In order to do this, an appropriate weight function
is used and the independent forces are summed vectorially:

F (t) = 1
2∇Xρ

N
(
F (a) + F (b) + F (l)

)
, (5.29)

where the chosen weight function, 1
2∇Xρ

N [173], heavily biases the interface region,
allows the immersed forces to be applied specifically in the interface region and
screens the bulk fluids from its effects (thereby effecting a very useful reduction
in computational overhead). In addition, it may be computed with minimal
computational expense.

With the interfacial force density now defined, before continuing to simulation
results and model testing, the following practicalities will be considered: (i) charac-
terisation of the immersed boundary force through use of non-dimensional groups
and (ii) accurate computation of the immersed boundary force, specifically, how
conveniently to calculate membrane surface curvatures H and K for the immersed
boundary force computation.

5.2.2 Force Characterisation

The immersed boundary force is, for present purposes, synonymous with a force
density (or distribution) in the weakly compressible Navier-Stokes equations, at
the continuum scale as shown below:

D

Dt
ρvi = −c2

s

∂ρ

∂xi
+ 2ν(λ3)

∂

∂xj
(ρSij) + F

(t)
i , (5.30)

the force density is then incorporated into the cMCLBM scheme in the same way as
presented in Chapters 3 and 4, and analysed using the Chapman-Enskog procedure.
In simulation, the continuous force distribution is, of course, effectively discretised
and applied at discrete sites over the domain. The LBM scheme allows a force
to be included as discrete source term samples, at the kinetic level. As such, in
addition to the order of accuracy of the calculation, discretisation error associated
with the discrete force is influenced by the sampling, the accuracy of the numerical
gradients used in assigning its parameters, and the truncation of forcing outside the
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interfacial region. For practical purposes therefore, to guarantee linear and angular
momentum conservation, on a close object, there must be adequate resolution in the
interfacial region; given that, in the interfacial region, the discrete sampled force will
be computed and hence applied more accurately. This will be discussed further in
section 5.3.1.2.

In later work, the total immersed boundary force (Eq. (5.29)) will be characterised
using non-dimensional groups, as well as the key force parameters explained further.
The bending rigidity and surface tension forces have significant impact on the
equilibrium vesicle shape, whereas, in equilibrium, the area conserving force does not.
The area conserving force is in essence a constraint force, i.e., it aims to conserve
cross-sectional surface area and is only prevalent should the vesicle drift from its
target area. Once the vesicle has deflated from its original area to the target area,
the area conserving force has little impact on vesicle shape. In order for the area
conserving force to maintain surface area under flow stresses, it was found that
|F (a)| ∝ |F (b)|, |F (l)|. If this is true, |F (a)| has little effect on vesicle shape, it is
therefore disregarded for the next stage of this preliminary work, when seeking to
parameterise equilibrium vesicle shape. Thus the following approximation is made
when seeking an equilibrium vesicle characterisation:

F (t) ≈ 1
2
(
∇Xρ

N
) (
F (b) + F (l)

)
. (5.31)

Before seeking to characterise this approximation, responsible for equilibrium vesicle
shape, the Laplace-Beltrami operator, found in F (b) (Eq. (5.27)), should be expressed
in the simulation frame. The Laplace-Beltrami operator, expressed in terms of
surface gradients (∇s) is as follows:

∆sH = ∇s · (∇sH) .

Clearly, the above expression should be computed using the simulation co-ordinate
frame. The surface gradient operator can be redefined in the preferred computational
frame as follows. First, remove gradients in the normal direction, leaving gradients
tangent to the local surface normal:

∂

∂Xi s

f = ∂

∂Xi

f − N̂iN̂j
∂

∂Xj

f, i, j = 1, 2, 3 (5.32)

i.e., the orthographic projection of the gradient onto the surface. Accordingly, the
Laplace-Beltrami operator can now be defined co-ordinate free as:

∆sf =
(

∂

∂Xi s

)(
∂

∂Xi s

)
f. (5.33)
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Using Eqs. (5.32, 5.33), the Laplace-Beltrami of H can now be calculated by the
following simplification:

∆sH =
(

∂

∂Xi s

)(
∂

∂Xi s

)
H,

= ∂

∂Xi

[
∂

∂Xi

H − N̂iN̂j
∂

∂Xj

H

]
,

= ∂2

∂X2
i

H − ∂

∂Xi

N̂iN̂j
∂

∂Xj

H,

= ∂2

∂X2
i

H − (N̂ · ∇X)2H − (N̂ · ∇X)(∇X · N̂)H,

= ∂2

∂X2
i

H − (N̂ · ∇X)2H − 2H(N̂ · ∇X)H,

= ∆XH −
(
N̂ · ∇X

)2
H + N̂ · ∇XH

2,

(5.34)

where the substitution (∇X · N̂) = 2H has been used. Now, from Eqs. (5.27, 5.34):

F (b) = κBH(H2 −K) + 3
2κB

(
∆XH −

(
N̂ · ∇X

)2
H + N̂ · ∇XH

2
)
, (5.35)

and, as above, the surface tension force is:

F (l) = 2σH. (5.36)

Let us consider non-dimensionalising the approximate force characterising equilibrium
vesicle shape, in Eqs. (5.35, 5.36), using the undeformed initial vesicle radius, R0

(lattice units), as a length scale. As such: κBi = 1
R0
κ̄Bi (i = 1, 2), K = 1

R2
0
K̄,

H = 1
R0
H̄, ∂

∂X
= 1

R0
∂
∂X̄

etc. Moreover, the weight function in Eq. (5.31) may be
rewritten as 1

2∇ρN = 1
2β(1 − ρN

2)n̂, which, is of O(1) and hence such contributions
are ignored in the following. After straightforwardly transforming variables, the
following is obtained:

F (b) = κB
R3

0
F̄ (b), F (l) = σ

R0
F̄ (l), (5.37)

where the non-dimensional force contributions’ moduli are:

F̄ (b) = H̄(H̄2 − K̄) (5.38)

+3
2

(
∆̄XH̄ −

(
N̂ · ∇̄X

)2
H̄ + N̂ · ∇̄XH̄

2
)
,

F̄ (l) = 2H̄. (5.39)

Therefore, from Eq. (5.37), an equilibrium vesicle profile can be characterised by
these dimensionless groups:

κB
R3

0
,

σ

R0
. (5.40)
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Alongside the dimensionless groups in Eq. (5.40), the level of deflation needs to
be considered. Although it was chosen to neglect the area conserving force when
considering steady state shape on justification that it only acts to conserve area
but does not actually affect the shape once deflated. The deflation of the vesicle
is obviously going to impact vesicle shape, as it impacts the volume to surface
area ratio and hence the amount of excess surface area. The level of deflation, Υ,
controls this and is defined as the ratio of target surface area to the initial vesicle
area in simulation: Υ = A0

Asphere
, where Asphere is the area of the initialised vesicle

and A0 the target vesicle area. Thus, a final dimensionless group relating to this
vesicle deflation through choice of A0 is:

A0

R0
. (5.41)

Equations (5.40, 5.41) now represent a parameter space for the equilibrium vesicle
shape, which is clearly R3, with three tuneable parameters σ, κB, A0(or Υ). The
parameterisation (calibration) using these dimensionless groups will be discussed
further in section 5.3. However, it is worth, at this early stage, mentioning that to
facilitate the parameterisation of a bicuspid vesicle, constraining of the problem to
a R2 parameter space seems reasonable. As discussed below, the level of deflation
(or target area A0) may be fixed, with a value chosen based on prior literature
and practical understanding. The result of this dimensional reduction corresponds
to a two-dimensional slice of the three-dimensional phase-space, within which it
is still possible to recover a wide range of equilibrium vesicle shapes, including
the desired bicuspid vesicle.

5.2.3 Computation of Membrane Forces

The immersed boundary force contributions (Eqs. (5.22, 5.27, 5.28)) presented in the
previous sections need to be computed in a manner which is: (i) computationally
efficient, with (ii) the embedded surface metrics computed with sufficient accuracy.
All three immersed boundary forces were dependent upon either the mean curvature
(H), Gaussian curvature (K) or both. Hence, a method of computing the principle
curvatures of the surface, κ1 and κ2 is needed, in order calculate the surface curvatures:

H = 1
2 (κ1 + κ2) , K = κ1κ2. (5.42)

Outlined here is a method of computing these surface curvatures in a way that meets
both requirements (i) and (ii). In the laboratory frame, i.e, the frame corresponding
to the simulation co-ordinate reference frame, denoted R = (X, Y, Z), the normal to
the surface N̂(R) is conveniently computed from the (normalised) local gradient of
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the interface (ρN). Since the normal is also already required within the cMCLBM
algorithm, its computation represents no further overhead. Due to the ease of
computation of the normal by using optimum, compact stencils, we seek to compute
the requisite surface curvatures from the unit normal, within the laboratory frame.
For clarity, before starting the analysis, it makes sense to point out the notation
used in the analysis as well as the fundamental steps. The three co-ordinate frames
referenced and their notation can be found in Table 5.2 (note: in all frames, the
surface normal is aligned with with their related Z, z, z′ axis).

Co-ordinate Frame Notation Table
Frame Co-ordinate notation Normal notation

Laboratory (Simulation) ∑L R = (X, Y, Z) N̂ = (N̂X , N̂Y , N̂Z)
Surface (General) ∑ r = (x, y, z) n̂ = (n̂x, n̂y, n̂z)
Surface (Specific) ∑′ r′ = (x′, y′, z′) n̂′ = (n̂′

x, n̂
′
y, n̂

′
z)

Table 5.2: Table outlining the three co-ordinate frames, (
∑
L,
∑

,
∑′) and corresponding

notation. Where
∑
L is the simulation frame,

∑
is a local surface frame where the tangent

vector do not align with the principle curvatures of the surface,
∑′ is a local surface frame

where the tangent vector do align with the principle curvatures of the surface.

The methodology for finding the principle curvatures of the surface, from the
surface normal, can be summarised in the following steps: (i) Find a local surface
(membrane) tangent plane basis, in terms of globally measured N̂ (unit normal),
i.e., transform from laboratory frame ∑L to surface general frame ∑. (ii) Apply
an Euler rotation about the normal n̂ such that the tangent axes align with the
principal curvatures of the surface, i.e., transform from surface general frame ∑ to
surface specific frame ∑′. (iii) Identify the definitions for the principle curvatures,
κ1, κ2. (v) Calculate the terms needed for the computation of the subsequent
equations for the surface curvatures.

In the following, we start from step (ii) and return to step (i) at the end, in
order to connect the results to the laboratory frame. This choice was made to
increase transparency of the mathematical working, however, still following the
same essential steps outlined prior.

5.2.3.1 Finding the principle curvatures of the surface in non-simulation
frame

Choose a point P on the local surface S, where the normal to the surface n̂ (n̂′)
at this point is aligned with the z (z′) axis for the two local surface co-ordinate
frames ∑ (∑′). Thus, the x, y (x′, y′) axes are tangent to the surface at point P ,
where, for frame ∑′ the x′, y′ axes align with the principle curvatures of the surface.
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Figure 5.5: Schematic showing the two local co-ordinate frames from a view looking down
the normal to the surface (z,z′ axis); General frame

∑
(x, y, z) (left) and Specific frame∑′(x′, y′, z′) (right). Within the General frame, the orthogonal tangent plane (x, y) does

not align with the principal curvatures of the surface. Whereas in the Specific frame, the
orthogonal tangent plane (x′, y′) aligns with the principal curvatures of the surface (κ1,κ2).

This geometry is shown in Figure 5.5, registered to a line of sight down the surface
normal. Point P is taken to be located at x = y = z = 0 (x′ = y′ = z′ = 0),
and S is defined implicitly as F (x, y, z) = 0. z is an function, which is evaluated
from x, y and is effectively defined by:

z = f(x, y). (5.43)

The above effective manifold is a Monge surface —a surface, or patch, that is given
by its height over a plane which is usually a function of the orthogonal co-ordinates
of that plane —with x, y characterising the tangent plane of the surface, Eq. (5.43)
represents a local membrane patch on which ρN = constant. (Here, of course, the
constant changes as one moves through the interfacial region of the system in the
z direction.) Expressing f(x, y) as the 2nd degree Taylor expansion polynomial for
an expansion about point P = (0, 0, 0) gives:

f(x, y) = [f ]P +x[fx]P +y[fy]P + x2

2 [fxx]P +xy[fxy]P + y2

2 [fyy]P +O(x3, y3), (5.44)

where, index x, y on f , denotes differentiation of f with respect to x, y. The

first term can be evaluated as [f ]P = 0 by definition, as the origin of ∑ is taken
to be at P = (0, 0, 0). Further, the linear terms, x[fx]P = y[fy]P = 0, as the
co-ordinates x, y are supposed to lie in the tangent plane to the surface S at point
P . Accordingly, Eq. (5.44) becomes:

f(x, y) = Ax2 +By2 + Cxy +O(x3, y3), (5.45)
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in which the constant terms are defined:

A = 1
2[fxx]P , B = 1

2[fyy]P , C = fxy = [fyx]P , (5.46)

where all the derivatives in Eq. (5.46) are evaluated at the point P . f(x, y) may
now be written in the following matrix form:

f(x, y) = rM rT , M = 1
2

2A C 0
C 2B 0
0 0 0

 . (5.47)

The matrix, M encapsulates all second derivatives of f(x, y) evaluated at P (it
is the Hessian matrix of f at P [182]).

At this stage, f(x, y) is defined in co-ordinate frame ∑. In order to calculate
the principle curvatures of the surface, it is necessary to transform from frame ∑
to frame ∑′, where, recall, the tangent co-ordinate plane aligns with the principle
curvatures of the surface. Remember that in both frames, n̂ (n̂′) both align with
the z(z′) axis. Thus, in order to align the x, y axes with the principle curvatures
of the surface, frame ∑(x, y, z) must be rotated about êz, such that the resultant
frame is ∑′(x, y, z). This rotation by angle θ will subsequently mean that C = 0,
whereupon the frame has been successfully transformed to ∑′(x, y, z).

Using the orthogonal Euler rotation matrices (R
z
(θ)), it is possible to write

equations for the position vectors of the surface as:

r′T = R
z
(θ)rT , rT = R

z
(θ)T r′T , r = r′R

z
(θ). (5.48)

Now seeking the value of α using Eq. (5.48):

r = r′R
z
(θ),

r =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 r′

xy
z

 =

 cos(θ)x′ + sin(θ)y′

−sin(θ)x′ + cos(θ)y′

z′

 .
(5.49)

Substituting x, y, z from Eq. (5.49) into Eq. (5.45), after some simple algebra,
the above equation reduces to:

f(x, y) =[Acos2(θ) +Bsin2(θ) − Ccos(θ)sin(θ)]x′2+

[Asin2(θ) +Bcos2(θ) + Ccos(θ)sin(θ)]y′2+

[(A−B)sin(2θ) + Ccos(2θ)]x′y′.
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In order for the x, y axes to point in the direction of the principle curvatures of
the surface, the cross term (x′y′ term) must be zero. Hence, one can find the
corresponding value of θ for by requiring the cross x′y′ term to vanish:

(B − A)sin(2θ) =Ccos(2θ),

θ =1
2tan−1

(
C

B − A

)
.

(5.50)

Now that angle θ has been defined, using Eq. (5.48), the surface f(x, y) can be trans-
formed so as to be defined in terms of the variables of the frame ∑′(x, y, z), as follows:

f(x′, y′) = r′ M ′ r′T , M ′ = R
z
(θ)M R

z
(θ)T , (5.51)

where:
M ′ = diag(κ1, κ2, 0), (5.52)

and from prior analysis, curvatures κ1, κ2 are defined as

κ1 = fxxcos2(θ) + fyysin2(θ) + fxysin(2θ), (5.53)

κ2 = fxxsin2(θ) + fyycos2(θ) − fxysin(2θ).

Note, summing κ1 and κ2 results in κ1 +κ2 = fxx + fyy. The latter, will be discussed
further shortly, can be rewritten as 2H = −∇n̂ and, as such, the definition of mean
curvature is as expected, namely: H = 1

2 (κ1 + κ2).
We conclude this part of our analysis. By applying a rotation of θ (defined in

Eq. (5.50)) about the normal to the surface (êz), the axes that span the tangent
to the surface have been aligned with the principal curvatures of the surface (κ1,
κ2). The surface is thus defined as:

f(x′, y′) = 1
2κ1x

′2 + 1
2κ2y

′2, (5.54)

with κ1 and κ2, (see Eq. (5.53)), clearly the principal curvatures of S at P. Henceforth,
the mean (H) and Gaussian (K) curvature of the surface are defined via the principle
curvatures, as given in Eqs (5.42)

5.2.3.2 Relating Laboratory frame ∑
L to Surface frame ∑′

So far, an equation for the principle curvatures of a surface have been recovered from
an arbitrary frame, in which the x and y axes at point P span the tangent plane of
the surface and the z axis is normal to the surface, at that point. In this section,
this frame is related to the laboratory frame ∑L and in doing so, the curvatures of
the surface can then be calculated in the simulation frame using Eq. (5.53).
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The local co-ordinate frame ∑ may be constructed from the simulation frame∑
L, through the use of the easily computable normal N̂ . Since axis êz aligns with

the normal, it is defined as such in the laboratory frame:

êz =
(

[N̂X ]P , [N̂Y ]P , [N̂Z ]P
)
, (5.55)

where then the tangent plane axis can be constructed through appeal to the definitions
of the dot and cross products. A possible co-ordinate geometry can be defined as
follows, relating solely to the normal components in the lab frame:

êx = 1√
1 − [NZ ]2P

(
− [N̂Y ]P , [N̂X ]P , 0

)
, (5.56)

êz × êx = êy = 1√
1 − [NZ ]2P

(
− [N̂XN̂Z ]P ,−[N̂Y N̂Z ]P , [(1 − N̂2

Z)]P
)
.

For this particular choice, at locations where Nz → 1, the error in the calculation
will be amplified. See appendix B for alternative choices for the co-ordinate system,
which can be selected based upon relative error at a given region.

The normal in frame ∑ can be written from Eq. (5.43) as n = ∇r(z − f(x, y)) =
(−fx,−fy, 1), so that, normalising, we have within the environment of P:

n̂ = − 1√
1 + f 2

x + f 2
y

(fx, fy,−1). (5.57)

Note that at P itself:

[fx]P = [fy]P = 0, =⇒ [n̂]P = (0, 0, 1), (5.58)

as required. The normal can then be computed in simulation by projecting laboratory
normals onto the local axis defined in Eq. (5.56):

n̂x = N̂ · êx, n̂y = N̂ · êy, (5.59)

and similarly for the local operators:

∂

∂x
= êx · ∇X ,

∂

∂y
= êy · ∇Y . (5.60)

Now, to calculated κ1 and κ2, [fxx]P , [fxy]P and [fyy]P need to be evaluated in
simulation frame. From Eq. (5.57), the following definition of fx and fy are found:

fx = −n̂x(1 + f 2
x + f 2

y )1/2,

fy = −n̂y(1 + f 2
x + f 2

y )1/2.
(5.61)
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From this, calculating fxx using the definition in Eq. (5.61)

fxx = ∂

∂x

(
−n̂x(1 + f 2

x + f 2
y )1/2

)
= −n̂x

fxfxx + fyfyx

(1 + f 2
x + f 2

y ) 1
2

− (1 + f 2
x + f 2

y ) 1
2 (n̂x)x,

(5.62)

which when evaluated at point P , results in the following:

[fxx]P = − [(n̂x)x]P , (5.63)
[fyy]P = − [(n̂y)y]P ,
[fxy]P = − [(n̂y)x]P = − [(n̂x)y]P ,

where (n̂y)x = ∂n̂y

∂x
etc.

In conclusion, the laboratory frame ∑L is related to the surface frame ∑′ through
Eqs. (5.59,5.60,5.63), which can then be used to evaluate Eq. (5.53), to find the
principle curvatures of the surface in laboratory frame. The final step of this
workflow is presented within Appendix B.1, which documents the mathematical
steps for evaluating Eqs. (5.59,5.60,5.63). The outcome is that the above-outlined
methodology results in the principle curvature being calculated and defined solely
from the surface normal in the laboratory frame, with the motivation being the
computation of the immersed boundary forces, in a way that is as efficient, transparent,
and as practically executable as possible.

5.2.4 Multiple Vesicles

Within Chapters 3 and 4, the work was focused on the simulation of two-component
fluid flows; this would amount to the simulation of a single vesicle (RBC) within
a background fluid (plasma), for the current model. Later in this Chapter and
Chapter 6, the simulation of three or more components will be considered, for the case
of vesicles, i.e., two or more vesicles being simulated. Within Chapter 3, the method-
ological extension to the simulation of many liquid drops, using chromodynamic and
colour-gradient MCLBMs was discussed, with the innovations of Yuan et al. [92]
prominent. The colour-gradient or cMCLBM class of models have distinct advantages
when simulating ternary fluid systems, such as their strict mass conservation and
ability to tune surface tension values for each fluid easily and accurately. Yuan et al.
presented an enhanced segregation rule, which recovered convincing results of three-
phase simulations (tertiary immiscible fluid flows), using the following segregation
process. The segregation parameter (or interface width) between two fluids C and C ′

is controlled by βCC′ and is now made adjustable, in relation to the surface tension
values between the fluids. The value of βCC′ is calculated through first evaluating
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whether a Neumann’s triangle is present in Eq. (3.11a), then using this value to
determine how the interface width between fluids C and C ′ should be perturbed to
give correct wettability of the fluids —Eqs. (3.11b,3.11c).

For the simulation of vesicles or RBCs, the aim of this recent cMCLBE segregation
is to maintain complete immiscibility between the fluids, i.e., prevent the Neumann
triangle forming. From this and, also, making the assumption that the vesicles
are not initially overlapping each other in simulation, if the surface tension of the
vesicles (V ) relative to background fluid (B) is given by σV B = σ0, then on simple
arguments of mechanical stability, by ensuring that the surface tension between
vesicles is σV V ′ ≥ 2σ0, the fluids should remain completely immisicble. This then
means that the equations developed in [92] can be simplified, with the β values for a
given vesicle-background V B and vesicle-vesicle V V ′ pairing given as follows:

βV B = β0 − β0min
(

35ρV ρBρC
ρ3 , 1

)
(5.64a)

βV V ′ = β0 + β0min
(

35ρV ρV ′ρC
ρ3 , 1

)
(5.64b)

where subscripts B,V ,V ′,C correspond respectively to the background fluid, a given
vesicle, a different vesicle and the fluid component with the largest density at
that site, other than the other two previously mentioned fluids in the equation.
Equations (5.64a,5.64b) now represent the perturbations needed to the interface
width parameter (segregation parameter) between fluid pairs, which alongside setting
the surface tension value of a vesicle-vesicle interface twice to that of a vesicle-plasma
interface, allowing for the simulation of many completely immiscible vesicles.

As discussed, the downside of this and other multi-fluid cMCLBMs is that although
they allow high tune-ability and control of the surface tensions and fluid-fluid contacts,
it comes at an increase of computational cost. With the number of interfaces in
relation to the number of fluids n, being given by: No. of interfaces = n(n−1)

2 . The
reduction of the number of interfaces and, hence, the computational cost will be
discussed further later in this thesis.

5.3 Results

A novel method of simulating vesicles in three-dimensions, using an immersed
boundary force chromodynamic multi-component lattice Boltzmann variant has been
outlined. Additionally, this is a computationally efficient method of calculating the
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principle curvatures of the vesicle surface in simulation, through use of an easily
computable surface normal. As such, the emphasis is now on the validation of the
method, by examining its equilibrium steady state and dynamical data.

First, looking at steady state equilibrium data produced by the model. In the
case of zero-physical flow, only vesicle profile is at issue. The principal outcome of
assessing steady state equilibrium data is to validate vesicle shape, specifically for
current purposes, the ability of the method to recover a bicuspid profile representative
of that of a healthy, human RBC. As a starting point, a sampled, restricted phase-
space is examined to observe the range of vesicle profiles recovered by the model
when parameterising with surface tension and bending rigidity, where the impact of
the deflation parameter (or, equivalently, target area) is also briefly discussed. Once
qualitatively correct vesicle profiles are confirmed, sufficient simulation resolution
will be checked. Sufficient resolution is needed if the immersed boundary force is to
be applied correctly; both resolution and accuracy of the curvature calculations being
checked through a grid convergence test (GCT) and by appealing to Gauss-Bonnet
theory. Once adequate resolution is confirmed, the form of the vesicle shape (or
profile) is assessed for adherence to the desired bicuspid profile, through comparison
against theory [183] (other vesicle profiles being reviewed through the use of a shape
metric).

Subsequent to the initial validation of a steady state equilibrium conformation
in the method, dynamical tests and flow data will be presented. The aim of these
data is to demonstrate that the model can successfully reproduce RBC dynamics, far
from its mechanical equilibrium, whilst remaining stable in simulation and retaining
target physical properties (such as surface area conservation). First, the Wheeler
experiment is used to validate the method in a shear flow, but also to allow immersed
boundary force constants to be tuned, to replicate vesicle behaviour as accurately as
possible. The physical flow behaviour during the vesicle shear will also be analysed,
to highlight the ability of the method accurately to produce physically consistent flow
data, at a detailed level. The pseudo-elasticity, or reversibility of the method, i.e., the
ability for the vesicle to recover from shear, is presented to demonstrate stability and
robustness of the model. Finally, the initial extension of the methodology to more
than one vesicle is considered. Here, vesicle-vesicle interactions will be simulated,
to provide initial proof that the method can be extended to multiple vesicles, using
existing methodologies [184, 92]. However, many RBC deployments are clearly
beyond the scope of the developmental work reported here.
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5.3.1 Steady State Equilibrium Data

For current interests, the main demand of the model’s steady state equilibrium
data, is that it will, in some part of its input parameter space, recover the desired
bicuspid vesicle profile. Qualitatively, this is easy to judge by inspecting steady state
output vesicle profiles, and more critically, by measuring curvature values over the
surface. However, the following also seeks to provide further quantitative evidence
of correct bicuspid vesicle profile. Consequently, after examining the zoo of vesicle
shapes, produced by varying the force parameters discussed in section 5.2.2, methods
of assessing shape accuracy will be presented.

5.3.1.1 Phase-Space

In section 5.2.2, the immersed boundary force was characterised, as well as the key
parameters in the immersed boundary force discussed. Clearly, the model has a
complex three dimensional phase-space, defined by three parameters which determine
vesicle shape: Υ - level of deflation, σ - interfacial tension and κB - bending rigidity.
Here, the level of deflation could be replaced with target surface area A0, used within
the area conserving force. As discussed in section 5.2.2, although A0 does affect the
vesicle shape produced, the area conserving force has little dynamical impact once
the cross-sectional area approaches the desired area. For a correctly parameterised
simulation, cross-sectional area drifts very little from the desired area.

Restricted Phase-Space: Fixed Deflation
To ease the task of surveying the three-dimensional phase-space, the deflation value
is fixed for the initial tests reported here, resulting in a convenient, two-dimensional
phase-space. The choice of deflation value must presumably affect the zoo of shapes
produced, within a space spanned by surface tension and bending rigidity values.
For the following results, the deflation value was set to Υ = 1.31. This value was
chosen initially for deflation from prior literature, that surveyed a partial phase-space
using the spontaneous curvature model, in which the authors showed that for a
preffered curvature set equal to zero, oblate vesicles were recovered at a given volume
to surface area ratio close to that found in our model when using Υ = 1.31 [185,
186]. Hence, a value of Υ = 1.31 is deemed as appropriate initially, when seeking to
recover a bicuspid shaped vesicle. It is however worth noting that bicuspid vesicles
have been recovered for much lower and larger deflation values, using our method.
Anecdotally, by perturbing the σ and κB values used, it is possible to recover a
wide range of shape profiles for many deflation values. That is, there is considerable
variation of equilibrium shape with operating point location. In principle, then, this
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may facilitate the use of a smaller deflation value, to reduce computational expense
(by decreasing the size of the deflated vesicle).

The vesicle shape outcomes of a sampled phase-space, where Υ = 1.31 and σ

and κB values are varied, is shown in Table 5.3. This table now presents a small,
but appropriate representation of a slice of the phase space when targeting a RBC
profile. It is seen that by varying the surface tension and bending rigidity values, the
shape outcome changes, with the effects of both varying the surface tension (σ) and
bending rigidity (κB) being apparent. The simulation outputs of equilibrium vesicle
shape are shown in the cells of the table, given by semi-transparent images to help
highlight the vesicles’ shape profiles, where visualisations were obtained through use
of the ParaView software —with contours defined by the ρN = 0 field (mid-interface).
Firstly, it can be seen that the desired bicuspid has been recovered, for instance with
parameterisation (σ = 0.1, κB = 1.0). It can also be seen that for a further restricted
parameter space, i.e., when κB = 0.01, a range of shapes with a varying degree of
symmetry have been produced. This highlights the sensitivity of the model to its
parameterisation.

σ
κB 1 × 10−1 1 × 10−3 1 × 10−5

0.01

0.1

0.25

1.0

Table 5.3: A sampled, restricted phase diagram, where the deflation value is fixed
(Υ = 1.31) and the bending rigidity (κB) and surface tension (σ) values are perturbed to
give a range of vesicle profiles. To help highlight these profiles, semi-transparent surface
plots taken at contour ρN = 0 are shown in each grid cell [20].
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The vesicle shapes in Table 5.3 may be characterised as follows:
Oblate vesicles, occur where the shape profile is short about the axis of rotation

—such as the desired bicuspid vesicle (i.e., κB = 1.0, σ = 0.1) and the torus vesicle
(κB = 0.1, σ = 1 × 10−3). Note, shapes with singular and multiple holes have been
reported throughout literature [187, 188]. Prolate vesicles, which are long about the
axis of rotation (κB = 0.25, σ = 1 × 10−1). Non-axially symmetric vesicles, such as
the starfish vesicle [189, 190], (κB = 0.01, σ = 1 × 10−5) are, apparently, not new.

Between the shapes shown in Table 5.3, there are a continuum of shapes which
deform between identified selections. Although these results represent only a small
sample of a simplified phase-space, these data provide an qualitative conformation
of the methodology, through recovering a bicuspid vesicle. The result also provides
a range of parameterisation, which may later be tuned in order to recover correct
RBC dynamics —to which we will return shortly.

Variable Deflation
The sampled phase-diagram presented in Table 5.3 highlights how changing the
model’s bending rigidity and surface tension parameters can affect the vesicle steady
state shape outcome. However, in section 5.2.2, it was explained that the level of
deflation Υ, or target vesicle surface area A0, also had an effect on vesicle steady
state profile. As such, for present purposes, the bending rigidity and surface tension
values are fixed, with the deflation (hence target surface area) being varied. The
impact of changing the level of deflation is that it will affect how much excess surface
area the vesicle has, as well as changing the vesicle volume to surface area ratio.
Although only steady state (zero flow) data are being considered at this point, it is
intuitively apparent that the level of deflation must also affect the vesicle dynamics.

Υ = 1.1 Υ = 1.15 Υ = 1.2 Υ = 1.25 Υ = 1.3

Figure 5.6: Table showing the equilibrium steady state vesicle profiles, in zero physical
flow, for a range of deflation values (Υ, see table headings) and fixed κB = 1.25, σ = 0.001
values. The surface area of the displayed vesicles are given by A0 = ΥAsphere, where
Asphere ≈ 2827. Υ = 1.1, 1.15, 1.2 produce prolate vesicles, whereas larger deflation values:
Υ = 1.25, 1.3 are seen to produce oblate vesicles.

In Table 5.6, a range of different vesicle outcomes are found for a parameterisation
where κB = 1.25, σ = 0.001 and the deflation value varied over the range [1.1, 1.3].
The results in the table show that, for deflation values of Υ = 1.1, 1.15, 1.2, prolate
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vesicles are produced at steady state, whereas at deflation values of Υ = 1.25, 1.3,
oblate vesicles are seen. Although the phase-space has only been subjected to a
limited, coarse grained sampling thus far (due to the computational costs involved in
searching the entire phase-space in fine detail) the results in Table 5.6 are qualitatively
understandable. Here it should be noted that the parameterisation of complex,
computationally expensive models, the fine structure of their parameter space, its
global and local structure and the analysis of variation, are a subject in itself. Due
to the profile of a RBC (which when compared to a sphere, has a much smaller
volume to surface area ratio), one would expect that, to retrieve a bicuspid shape,
an appropriate amount of deflation (hence excess surface area) is needed, in order
for the vesicle to deform from the initialised spherical vesicle of area Asphere into the
bicuspid vesicle of area A0. However, for prolate vesicles, one may assume that a
smaller amount of excess surface area is needed for the initially spherical vesicle to
transform into a prolate vesicle. This observation clearly does not mean that prolate
vesicles can not be recovered for larger deflation values, but it may help provide
an initial estimate of the deflation value when aiming to recover a specific profile.
A similar idea was deployed when choosing a deflation value of Υ = 1.31 for the
phase-diagram shown in Table 5.3, in order to increase the chance of recovering the
desired bicuspid vesicle.
Seemingly, qualitatively correct bicuspid profiles are recovered in our model; neverthe-
less, it is important to now check that the resolution of these vesicles is appropriate.
Put another way, does the simulation have appropriate resolution such that the
interface is sufficiently resolved?

5.3.1.2 Method Accuracy

Adequate interfacial resolution
As stated previously, the outlined method benefits from an automatic adaptive mesh
in that in the interfacial region, in which the immersed boundary force is applied,
will deform with the vesicle and maintain the resolution (of the underlying lattice)
throughout the simulation, without active adaptation, i.e., re-meshing for different
flow-induced deformation. Hence, if one can guarantee that interfacial resolution is
adequate in steady state, it should remain adequate throughout simulation, implying
the immersed boundary force can be appropriately communicated locally, under flow
induced deformation. If there is inadequate resolution in the interfacial region, one
would expect some level of error in the communication of the immersed boundary
force, leading to some level of error in the emergent vesicle profile. To verify
appropriate resolution in the interfacial region, the Gaussian curvature over the
surface is evaluated, using Gauss-Bonnet theory. If the interface is not adequately
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resolved or the curvature calculations in section 5.2.3 are inaccurate, the result
will not, presumably, agree with Gauss-Bonnet theory. The Gauss-Bonnet theorem
relates the surface integral of the Gaussian curvature over a two-dimensional manifold
to the Euler characteristic of the manifold as follows [191]:

⟨K⟩S =
∫∫

M
KdA = 2πχ(M), (5.65)

where, the left hand side is the surface integral over the manifold (M), dA is the
area element and χ(M) is the Euler characteristic of the manifold.
In simulation, there is a quasi two-dimensional interface of a width controlled
by segregation parameter β. The surface integral of the Gaussian curvature over
the surface is computed by a weighted sum of the phase-field, divided by the
interface width, ω:

⟨K⟩S = 1
ω

∑
K(r∗)(1 − ρN(r∗)2) = 2πχ(M), (5.66)

in which the summation is taken over all discrete lattice positions r∗, where, due to the
weight of the interface, values close to mid-interface will have a larger contribution (i.e.,
when ρN = 0). By the Gauss-Bonnet Theorem in R3, from Eq. (5.65) we should have:

⟨K⟩S = 4π. (5.67)

Using the definition in Eq. (5.66), for the vesicles considered in the data of Table 5.3
(which have an un-deflated initial vesicle radius of R = 15), the following was observed:

⟨K⟩S
π

= 4.03. (5.68)

From the above result, it is possible to conclude that the method of computing the
surface curvatures outlined in section 5.2.3 is correct, and that interfacial resolution
is adequate for the simulations represented in Table 5.3 (see section 5.3.1.1 for
information on parameterisation). If this were otherwise, the result in Eq. (5.68)
would not agree with Gauss-Bonnet theory. Obviously, there is a slight numerical
error, with the result being within 1% of the target result. This is deemed to arise
from sampling the discrete interface and as it can be reduced by increasing system
resolution. In the context of work presented shortly, the accuracy, here, is deemed
to be sufficient and system resolution to be appropriate. As such, we tentatively
conclude that, throughout simulations, the vesicle interface resolution should remain
appropriately resolved, due to the presence of an automatic adaptive mesh and the
assurance of this verification.

Further to justify the choice of vesicle membrane resolution, a Grid Convergence Test
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(GCT) giving limited insight into the impact of resolution on vesicle shape is carried
out. Starting with an un-deflated initial vesicle radius of R = 15, parameterisations
and resolution were scaled respectively by factors of 1, 1.1666, 1.5 (coarse, medium,
fine resolution hereafter). Slices through the axially symmetric oblate vesicle for
coarse (red), medium (blue) and fine (black) resolutions are displayed in Figure 5.7,
where the results have been scaled to allow them to be layered on the same figure.
These data show minimal difference between vesicle shape due to the resolution. To
quantify this, the results of the GCT, following Roache [192] and Celik [193], are
given in Table. 5.4. Results show that, for the fine resolution —a Grid Convergence
Index (GCI) is 0.39%, and for the coarse resolution —a GCI is still less than 5%,
(relative to Celik’s equivalent, extrapolated (infinite resolution) maximum height
parameter value 8.37 [193]). This result justifies the choice of the coarser resolution,
which is an appropriate balance of computational efficiency and adequate resolution.

Resolution Scale Maximum Relative estimated
designation factor height % (GCI)

Coarse (R = 15) 1 8.744 −4.46
Medium (R = 17.5) 1.1666 8.511 −1.68

Fine (R = 22.5) 1.5 8.402 −0.39

Table 5.4: Results of a grid convergence test (GCT) examining the effects of resolution
on vesicle profile. Here, the maximum height of the dumbell ends of the vescile profiles
shown in Figure 5.7 were compared for three different resolutions; Coarse, Medium, Fine.
The resolutions are defined based on the initial undeflated vesicle radius (R), with the
coarse resolution having R = 15, and the Medium and Fine resolutions having relative
scale factors of 1.1666 and 1.5. The relative estimated grid convergence index (GCI) for
maximum height of the dumbell ends is 8.37 (lattice units), with the coarse resolution
result being within 5% of this [20].

We have, in this section, confirmed appropriate resolution through compliance
with (i) Gauss-Bonnet theory and (ii) results of a GCT (applied to the converged
bicuspid vesicle profile). We proceed to perform further verification now.

Quantifying Vesicle Shape
To provide quantitative conformation that the desired erythrocyte (human RBC)
shape is correctly recovered, the parameterisation κB = 0.25, σ = 1 × 10−5 seen in
Table 5.3 is compared against theory. In 1972, Evans and Fung [183] developed a
parametric expression, from experimental data, for erythrocyte geometry. Taking
the x-y co-ordinates to to span the plane perpendicular to the axis of rotational
symmetry (z), the z value (depth of the our RBC) is given by [183]:

z = R0

2

[
1 − r2

R2
0

] 1
2
[
C0 + C1

r2

R2
0

+ C2
r4

R4
0

]
, (5.69)
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Figure 5.7: Results of a grid independence test, where the effects of lattice resolution on
the equilibrium shape of a bicuspid vesicle is presented. Here, data are shown for slices
taken through the vesicles x-z plane for three different resolutions. These resolutions are

—coarse (Red), medium (Blue) and fine (Black) —with relative lattice scale factors 1,
1.166 and 1.5 (where coarse corresponds to an initial undeflated lattice radius of R = 15).
To allow for vesicle profile comparison, results were scaled and overlayed as shown here.
Note, when scaling lattice dimensions, one must also scale the surface tension and bending
rigidity values as shown in Eq. (5.40). Corresponding grid convergence test (GCT) data
are given in Table 5.4 [20].

where R0 = 3.91µm is a size parameter, C0 = 0.81, C1 = 7.83, C2 = −4.39 are shape
constants and r =

√
x2 + y2 [183]. Here, the values of the size and shape constants

are chosen to recover erythrocyte specific geometry.
To compare simulation results against this expression, the top right quadrant of a
slice taken through the centre of mass of the axially symmetric bicuspid vesicle shown
in Table 5.3, (parameterisation κB = 0.25, σ = 1 × 10−5) is reviewed. Figure 5.8
compares simulation data (orange circles) and Evans and Fung’s parametric expression
in Eq. (5.69) [183] (Black line), where size parameter R0 was used to fit the data.
These data show that the profile developed by the cMCLBM compares well with
the parametric expression for erythrocyte geometry developed from observation,
by Evans and Fung, providing still further, quantitative validation of our model’s
ability to recover the biologically significant RBC shape. However, this result clearly
only confirms steady state shape in zero-flow- the results of the model from RBC
dynamics in silico experiment is yet to be assessed.

Clearly in Table 5.3, a range of vesicle shapes were recovered, not just a bicuspid.
Before continuing to exclusively focus on the biologically significant bicuspid profile,
shape profiles of both the prolate and torus vesicles will be assessed, to provide
further conformation of methodology. To evaluate these vesicle profiles, a shape
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Figure 5.8: Here, shape validation of correct steady state RBC shape is conducted
through comparison of the simulation data against the result by Evans and Fung [183],
who give a parametric expression of RBC shape profile (Eq. (5.69)), fitted to experimental
measurement. To show this, the top right quadrant of a slice taken through the centre of
mass of a bicuspid vesicle profile produced by the cMCLBM (orange) is overlayed against
the expression of Evans and Fung [183] (black) [20].

metric is produced and used as a method of assessing accuracy. This metric is
developed from the symmetric, nine-component inertia tensor [194]:

I =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 ,
where the components are defined by the following equation, which is then adapted
for computation in simulation as such:

Iαβ =
∫
ρr(||r||2δαβ − xαxβ)d3r → Σr∗ρr(r∗)(||r∗||2δαβ − x∗

αx
∗
β), (5.70)

where, α, β corresponds to 1, 2, 3 (x, y, z), r = (x1, x2, x3) and the summation is
taken over all discrete node positions, r∗, within the simulation. The eigenvectors
of I correspond to the principal axes of the inertia tensor, which for the case of
symmetric vesicles can be easily pictured, with one axis aligning with the axis of
rotation. The eigenvalues of I, denoted by λ1, λ2, λ3, then correspond to the principal
moments of inertia about the principle axes of the vesicle (λ1 denotes the smallest
eigenvalue and λ3 the largest). These eigenvalues provide a quantitative metric for
assessing vesicle profiles of sufficient symmetry. To further explain this, consider
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a prolate vesicle (informally, pictured as a peanut shape for the case in question).
Imagining its principal axes, one aligns with the axis of rotation, the other two being
orthogonal to this axis. Here, it would be expected that the principal moments of
inertia would be small about the axis aligned with the axis of rotation and the other
two should be degenerate and larger (a consequence of the larger spread of mass
about these axes). This means that the two larger eigenvalues should be degenerate
for a correctly parameterised and simulated prolate vesicle, which would have a
large degree of symmetry in its profile. For a subset of vesicle shapes, which have
the requisite degree of exploitable symmetry (such as oblate vesicles (bicuspid and
torus)), it is possible to use expected degeneracies as a metric for vesicle profile. For
instance, taking a torus vesicle, the two smaller eigenvalues will be degenerate and
the eigenvalue corresponding with the axis of rotation will be larger. Hence, it could
be stated, for a torus (or oblate) symmetric vesicle, that: λ1

λ3
≈ λ2

λ3
. Therefore, it is

possible to validate equilibrium, steady state vesicle shapes, for sufficiently symmetric
vesicles, by determining the degeneracy of the relevant eigenvalues.

Figure 5.9 shows the time evolution of the eigenvalues of the inertia tensor for
a parameterisation that produces a prolate vesicle (top panel) and a torus vesicle
(bottom panel) —with the overlayed shape profiles displayed on the plots. Here, it
can be seen that the eigenvalues of the inertia tensor settle after the initial process
of deflation, showing that the vesicles have reached steady state. Furthermore, the
two larger (smaller) eigenvalues λ2 & λ3 (λ1 & λ2) become degenerate for the prolate
(torus) vesicle. This shows that the vesicle profiles are as expected, and that they
have the appropriate high degree of symmetry.

To provide quantitative analysis of this, Table 5.5 shows the eigenvalues of the
prolate and torus vesicles in equilibrium (corresponding to those in Figure 5.9):

Eigenvalues of the inertia tensor
for different vesicle shapes

Vesicle shape λ1 λ2 λ3

Prolate 0.55612 6.0105 6.0121
Torus 1.6898 1.7157 2.944

Table 5.5: The three eigenvalues of the Inertia Tensor (λ1,λ2,λ3) —where λ1 is the
smallest and λ3 the largest —for two equilibrium profiles: Prolate and Torus vesicles.
Corresponding time evolution of these eigenvalues are shown in Figure 5.9, where for
information on shape classification, see Table 5.3. All values ×106 [20].

The results show that the two largest eigenvalues for the prolate vesicle are
degenerate within 1% and for the torus vesicle the two smallest eigenvalues are
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Figure 5.9: Time evolution of the eigenvalues of the inertia tensor, for a Prolate vesicle
(top) and Torus vesicle (bottom), with semi-transparent vesicle profiles overlayed on the
plots for clarity of shape profile. We see divergence of the largest (smallest) eigenvalues
as expected for the Prolate (Torus) vesicles. The simulation parameters for the Prolate
vesicle are: σ = 0.1, κB = 0.25, area increase factor Υ = 1.31 (or system deflation) and the
Torus Vesicle: σ = 1 × 10−5, κB = 0.1, area increase factor Υ = 1.31. With simulation
parameters β = 0.6, drop radius= 15, lattice = 80 × 80 × 80.

degenerate within ≈ 3% (relative to the largest of the two degenerate eigenvalues).
This shows that for these vesicle parameterisations, the steady profile is accurate
(due to appropriate degeneracy of the relevant eigenvalues), meaning the desired
profile was underwritten by an appropriate level of symmetry.

Although accuracy of the bicuspid vesicle shape in static equilibrium (zero applied
flow) has been confirmed in several tests, the data so far provide no assurance that
its dynamics will replicate those of a RBC. Accordingly, the next section of work
seeks to confirm this through comparison against experimental data as well as
other computational models results.

5.3.2 Dynamics

Having now validated equilibrium, steady state vesicle shape and resolution, vesicle
dynamics will be examined, focusing on the induced deformation of a bicuspid vesicle
under flow shear stresses. The principal aim of the data here is too assess the ability
of the developed model accurately to replicate the dynamics of a healthy, human
RBC, and indirectly assess the model’s robustness and stability. First, our model is
validated and calibrated against experimental data by tuning immersed boundary
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force constants (see section 5.3.2.1). Once calibrated, further dynamical tests will
assess the stability of the method under large flow stresses and aim to provide further
proof of the applicability of the method to the simulation of multiple RBCs.

5.3.2.1 The Wheeler Test

In order for our model to be used for the simulation of RBCs, it needs to successfully
replicate RBC dynamics. Hence, the first dynamics test introduced below considers
calibrating and validating our model against experimental data. A recognised test
for benchmarking a single RBC model in dynamical flow is the Wheeler test, which
has been carried out by several previously mentioned methods [161, 160, 171] and,
indeed, in experiment. The Wheeler test compares in-silico data with that of the
Wheeler test experiment, conducted by Yao et al. [195] in which a single human RBC
is exposed to a fixed velocity shear flow (the shear planes of which lie perpendicular
to the axis of symmetry of the RBC). To quantify the vesicle’s deformation due to
the shear flow, a deformation index is calculated that uses the maximal diameter
of the vesicle pre and post-shear. The deformation index (DI) has been recorded
over a limited range of shear rates, with DI being defined as:

DI = (Dmax/D0)2 − 1
(Dmax/D0)2 + 1 (5.71)

where Dmax is the maximal diameter once the vesicle has deformed at a constant
shear rate value, and D0 is the initial diameter of the equilibrium bicuspid vesicle.

Figure 5.10 displays the response by the outlined MCLBM model when subject
to the Wheeler test (Red), which is compared against experimental data [195] for
benchmarking (Green error bars), as well as three other RBC models’ data (Black)
[161, 160, 171]. The data show that the developed method follows that of the
experimental data generally. Although, for the data presented by the red line, the
result moves further away from the experimental data at the lower shear rates. This
is due to a small shape error, there being a slight asymmetry in the equilibrium
bicuspid vesicle (similar to that found for the torus vesicle in Table 5.5), which
skews the results. Here, the red line shows the case where an average has been taken
of the semi-minor and semi-major diameter for the D0 value, resulting in a slight
overestimation of shear rates. This pathology of our data looks more prominent
at smaller shear rates. Clearly, how one interprets this error, when calculating the
deformation index will affect the results; were we to take the largest D0 value, then the
system would have a lower deformation index for all shear rates. Therefore, to show
this, a distributed region (grey shaded region) is inserted on the graph. This region
accounts for two things: (i) the variation in D0 and (ii) a small range of tested σ and
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Figure 5.10: Results from the Wheeler test; where a single RBC is exposed to a shear
perpendicular to the axis of rotation at varying shear rates. To quantify the shear induced
deformation, a deformation index (DI) is calculated (given in Eq. (5.71)). Data show
comparison of simulation results with experimental data, where a given parameterisation
for the cMCLBM is shown in red alongside three other models from literature (black)
[160, 171, 161] and experimental data of Yao et al. [195] (Green error bars). The grey
shaded region encapsulates a small shape error and also other parameterisations that fit
the experimental data using the cMCLBM [20].

κB values. The red line corresponds to bending rigidity, surface tension and deflation
values of κB = 0.25, σ = 1 × 10−6, Υ = 1.27. This parameterisation was found by
matching to experimental data, but it may not necessarily be an optimum solution,
due to the large number of possible parameterisations that can recover a bicuspid
vesicle. Hence, the grey shaded region also encapsulates a small range of tested
parameters that produced similar, but not identical results to that of the red line.

The intrinsic tuneability of the model, through its force magnitude constants,
makes it very versatile, with extreme control over both steady state outcome and
dynamical behaviour. Although this leverages the ability to replicate a range of
behaviours, it does introduce complexity when parameterising simulations, where
one may not know an appropriate initial base parameterisation. It was found that
the bending rigidity value had a large affect on the dynamics of the vesicle within
the Wheeler test, with reduced κB values resulting in a vesicle more susceptible to
shear —less stiff. This is highlighted within Table 5.6 which shows three equilibriated
sheared vesicle profiles and their corresponding deformation index. Here, bending
rigidity is varied and surface tension and deflation are fixed. The vesicles were exposed
to the same maximum shear as in the wheeler test, i.e., sheared perpendicular to
the axis of rotation, at a shear rate of 200s−1.
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Deformation Index and shape profile when exposed to a simple shear
at varying bending rigidity

Bending Rigidity κB = 0.25 κB = 0.40 κB = 0.60
Deformation Index 10.78 4.49 4.42

Table 5.6: Table showing the equilibrium vesicle profiles when exposed to a shear (inline
with the wheeler test) where the bending rigidity κB values were varied and surface tension
and deflation values were set constant σ = 1 × 10−5, Υ = 1.27. Vesicle surface plots are
taken over the ρN = 0 contour in equilibrium, with the view looking down the axis of
symmetry.

The results show that, unsurprisingly, the vesicle profile becomes less deformed
for larger bending rigidity values, meaning that larger bending rigidity values result
in a stiffer RBC. This tuneability could be very advantageous for workers interested
in simulating diseases such as malaria, which impact the dynamics of human RBCs.
Where a parameterisation for the RBCs altered, dynamical response could potentially
be found, from starting with the base parameterisation for a healthy RBC, then
calibrating the bending rigidity value.

So far, simulations have been calibrated against the experimental data of Yao
et al. [195], revealing favourable results corresponding to RBC dynamics. Due to
the limitation of experimental measurement, only a limited range of shear rates
were available to compare against. In line with the previous work in this thesis, the
stability and robustness of the model is assessed by evaluating the flow profile, when
the vesicle is exposed to much larger flow stresses, where the resultant deformation
index is DI = 29%. The vesicle is sheared perpendicular to its axis of rotation, and
run to equilibrium. To present visually interpretable data, a section is taken close to
the centre of mass of the sheared vesicle, in the y-z plane. Figure 5.11 shows the
streak-lines of the flow within this slice of the sheared bicuspid vesicle, highlighting
its flow profile through the centre of mass. The result provides conformation of a
correct flow profile, where circulation within the internal fluid of the bicuspid has
developed. Additionally, the velocity field can be seen to move around the vesicle
(depicted by the white wireframe) in a physically appropriate manner —complying
with the no-slip condition —as well as there being the appropriate gradient in velocity
throughout the plane (depicted by the colour map of velocity magnitude |u|).
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Figure 5.11: Result corresponding to a bicuspid vesicle, sheared perpendicular to the
axis of symmetry in opposing z directions, with a deformation index of DI = 29%. The
white wire frame corresponds to the cross section of the sheared bicuspid taken through
the centre of mass in the y-z plane. Streamlines show the flow path in the centre of the
sheared bicuspid and also the close exterior. The color map, |u|, relates to the magnitude
of the velocity within the plane shown [20].

We conclude from this dynamics test that, through tuning the immersed boundary
force constants, and by calibrating against experimental data of Yao et al., RBC
dynamical behaviour was verified. Around the parameterisations used, the robustness
and stability of the model was explored, by exposing the vesicle to much larger shear
rates than those in the Wheeler test —with the resultant deformation index of the
deformed vesicle exceeding twice the maximum deformation in the Wheeler test.
Our results showed that simulations remained stable, with data of the internal flow
field, providing appropriate circulation, and the external flow streamlines providing
evidence of compliance with fundamental kinematics and dynamics explored in
previous chapters. The next step of testing for this model is to assess its ability to
recover from such a deformation back to its initial shape.

5.3.2.2 Shear Recovery

The previous section performed calibration and validation of the model’s dynamics,
when simulating a human RBC, however, it did not provide any information about
the model’s ability to recover from flow induced deformation. A human RBC is
highly deformable, resulting in an ability to flow in capillaries with smaller diameters
than the RBC itself. However, post deformation, when flow stresses are released,
the vesicle should recover back to its bicuspid profile. To assess the ability of the
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model to simulate RBC reversible elasticity, a shear recovery test is conducted. In
simulation, the vesicle is equilibriated as a bicuspid. Once steady state has been
reached (verified by degeneracy of eigenvalues), it is exposed to a shear; once the
shear has reached steady state, the shear is removed and the vesicle left to recover.
Figure 5.12 shows the eigenvalues of the inertia tensor, where the dashed section
corresponds to the period where the shear is applied to the vesicle. It can be seen
that the eigenvalues return to prior values, verifying correct elasticity of the vesicle.
Complimentary Table 5.7 shows the surface plots of the bicuspid throughout the
test. There are extreme levels of deformation during the shear (far larger than that
in the wheeler test), still the vesicle profile is seen to return to the same profile prior
to the shear. Figures 5.12 and Table 5.7 demonstrate the reversibility of the vesicle,
to recover back to its steady state, equilibrium profile (elasticity), remaining stable
throughout simulation, even when exposed to larger flow stresses with resultant large
levels of shape deformation.

The stability and robustness of the model have now been further verified; our
last set of data relate to the extension of the model to complex, multi-component
flows. This investigation will focus on primarily the simulation of two vesicles,
demonstrating the first step towards scaling to many vesicles.

Figure 5.12: Time evolution of the eigenvalues of the inertia tensor for the bicuspid vesicle,
highlighting the change in vesicle shape during a shear recovery test —where the vesicle is
sheared perpendicular to its axis of rotation and then left to recover. The first 40,000 time
steps show the initialisation of vesicle, the dashed section shows the period where vesicle
is sheared (40,000 - 80,000 time steps), and the final section where the vesicle is left to
recover (time > 80,000). For these data, the simulation parameters were : σ = 0.00001,
κB = 1.0, area increase factor = 1.31 (or system deflation), β = 0.6, drop radius= 15,
lattice = 75 × 75 × 75 [20].

164



5. The Simulation of Fluid-Filled Vesicles using cMCLBM

Shear recovery test: time evolution of vesicle profile
4 4.5 6 8.2 11

Table 5.7: Time evolution surface plots of the bicuspid being exposed and then recovering
from the shear, relating to Figure 5.12. Here, the time step corresponding to the shape
is shown above the surface plots, all values ×104. Surface plots taken at contour ρN = 0,
mid interface, looking down the axis of symmetry [20].

5.3.3 Simulation of Multiple Vesicles

The work of this section extends the model from the simulation of a single vesicle in
a background fluid (two-component fluid flow), to the simulation of multiple vesicles
in a background fluid, using the assumptions and alterations to the segregation
rule discussed in section 5.2.4. However, to first confirm the updated segregation
rule and assumptions are valid, a spreading test is completed. After this step, a
vesicle-vesicle head-on interaction is simulated, as well as the sedimentation of a
vesicle column. The aim of this work is to provide initial evidence of the scalability of
the methodology, as well as recovery of correct qualitative behaviour between vesicles.

5.3.3.1 Check of Fluid Segregation using Drops

As a first test of the updated fluid segregation rule, seeking to simulate completely
immiscible fluids, a spreading test is used, inspired by the two-dimensional test
of Yuan et al. [92]. Here, a liquid drop (Red) initialised in the centre of the
domain between two stratified fluids (the bottom Green and the top Blue, in relation
to the origin in the z direction). The surface tension values for this simulation
were set as follows:

σBR = σBG = σ0 and σGR = 3σ0. (5.72)

It thus follows, as the simulation is evolved over time, with no external flow, the
red liquid drop should favour the blue (top) fluid, causing the green-red interface to
decrease and the red drop move into the the blue (top) fluid, away from the green
(bottom) fluid. If this is the case, it confirms that the segregation rule is working
(and able to simulate complete spreading). Or put another way, the ability to avoid
two fluids wanting to contact and mix (clearly desirable for the simulation of many
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Figure 5.13: Simulation data from the drop spreading test. Where a liquid drop
(Red) is placed in the centre of domain 80 × 80 × 120, with two stratified fluids Green
(bottom) and Blue (top). Where the Green (Blue) fluid initially occupies the half the
lattice 0 ≤ z ≤ 60 (60 ≤ z ≤ 120) before the Red fluid is overlayed. Simulation panels
show the time evolution of the simulation, with panels (A),...,(F) corresponding to t =
(0, 1500, 2500, 4500, 20000, 100000) lattice time steps. The Red drop is seen to move away
from the Green fluid and into the Blue. Surface tension values used for this test were:
σBR = σBG = σ0 and σGR = 3σ0, where σ0 = 0.005.

RBCs) is at issue. The simulation data from this test are shown in Figure 5.13.
These data show the time evolution of the fluids within the simulation, where there
is no external flow and the movement of the fluids is purely caused by surface tension
effects. It can be seen that the red liquid drop does move into the blue fluid, which
has a corresponding surface tension three times lower than that of the red fluid
with the Green fluid. The result of the red fluid disassociating itself with the green
fluid —complete fluid spreading —confirms the assumptions and reduced segregation
rule, developed from that of Yuan et al. [92]. Following this validation, the rule
is now implemented within our vesicle model.
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5.3.3.2 Vesicle-Vesicle Pseudo-Ballistic Impact

Although research presented here focuses on the development of new methodologies,
vesicle-vesicle interactions are considered from a long-standing perspective. Clearly,
the next logical step of this work would be the extension to multiple erythrocytes,
facilitating application to dense suspensions. Here, the aim is to demonstrate that our
method is capable of capturing the dynamics of vesicle-vesicle interactions correctly.
Accordingly, the case of two vesicle moving past each other is simulated. It is expected
that the vesicles will deform and move past each other, with minimal change in
volume and cross-sectional area, while maintaining stability and avoiding coalescence.

In simulation, two bicuspid vesicles are equilibriated, separated by an appropriate
distance, such that there is no vesicle-vesicle interface initially, and that their axis of
rotation are parallel. A buoyancy force is then applied to each vesicle in opposing
directions parallel to their axis of rotation. This accelerated the vesicles and created
a pseudo-ballistic impact, i.e., they move passed each other. The impact dynamics
(possibly one should say lubrication regime dynamics) of the vesicles is controlled
by two parameters: i) the contact angle of the vesicle (determined by the overlap of
the vesicles and the direction they are moving) and ii) the velocity of the vesicles
(controlled by the magnitude of the buoyancy force applied). Figure 5.14 shows six
increasing time frames (A)-(F), depicting the two vesicles as they interact, with
the left vesicle in frame (A) being pushed in the positive x-direction and the right
vesicle in frame (A) in the negative x-direction. Panel (A) shows the initialisation of
the simulation, where the vesicles start with an overlap approximately equal to the
length of the radius of the vesicle, in which both vesicles have a surface area taken at
the contour ρN = 0 of A = 3575. Once the vesicles start moving towards each other,
a vesicle-vesicle interface starts to form —panel (B). This then results in the vesicles
orbiting around each other, to avoid coalescence. Qualitatively, this data captures
the expected dynamics of the vesicle-vesicle interaction, whilst maintaining vesicle
immiscibility. Quantitatively, the vesicles area was found to have a maximal relative
fluctuation from the initial vesicle area in frame (A) of ≈ 0.2%, showing excellent
results for the effectiveness of the area conserving force.

In simulation, to avoid coalescence of vesicles, the following modifications to the
segregation are used: (i) A reduced interface width for vesicle-vesicle interface and (ii)
an increased surface tension for vesicle-vesicle interfaces. The reduction in interface
width for the vesicle-vesicle interface ensures no mixing of vesicle fluids, by eliminating
any possibility of unphysical triple contacts forming, and favouring the background
fluid-vesicles interfaces over vesicle-vesicle interfaces. To test this further, a more
stringent test of two vesicles sedimenting on top of each other will be examined.
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Figure 5.14: Data for a vesicle-vesicle pseudo-ballistic impact. Here, the left (right)
vesicle in frame (A) is pushed in the positive (negative) x-direction, causing the two vesicles
to interact. The frames show increasing time evolution of the simulation (A) - (F), from a
profile view looking down the y-axis (x − z plane —axis orientation shown in panel (D)).
The colour of the vesicles corresponds to the surface area calculated for the contour ρN = 0
[20].

5.3.3.3 Sedimenting Vesicles

To further assess our model’s ability to remain stable during vesicle-vesicle interac-
tions, a sedimentation of two vesicles on top of each other is performed. Two bicuspid
vesicles are initialised with their axis of rotation parallel to one another, but separated
by a distance such that there is no vesicle-vesicle interface initially. No-slip boundary
conditions are applied on all the walls of the lattice domain (of size (75 × 75 × 120)).
Once the bicuspid vesicles have reached steady state, a negative buoyancy force
is applied to both of the vesicles in the z direction (−U0êz). The vesicles then
sediment towards the bottom of the simulation box, where they are forced to interact
and finally settle on top of each other, i.e., to stack. The results of this test are
shown in Figure 5.15, which displays the time evolution of the bicuspid vesicles
(t=(0,20000,40000,60000)) in the flow (A)-(D), where the colour map corresponds to
the vesicles surface area and all simulation parameters are listed in the figure caption.

The results in Figure 5.15 show that the two bicuspid vesicles sediment vertically
downwards over time, with the vesicles settling on top of each other (shown in panel
(D)). The colour map corresponds to the calculated vesicle area post simulation, for
the contour ρN = 0, using visualisation software, Paraview [196]. It is clear that
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Figure 5.15: Simulation data of the time evolution of two bicuspid vesicles in a sedimenting
flow, confined within a domain, where the colour map corresponds to the calculated vesicle
surface area at the contour ρN = 0. The lattice domain used was 75 × 75 × 120, with
solid no-slip walls at all boundaries. The magnitude of the buoyancy force applied in the
negative z direction was U0 = 0.0001, and the initial vesicle area, given in frame (A), is
approximately A0 = 3631 (where the deflation value used is Υ = 1.31).

there is a small fluctuation in the surface area when the vesicles start to interact
with each other, but also when the vesicle interacts with the solid boundary at the
bottom of the lattice. The desired target area of the vesicle throughout simulation is
set as A0 ≈ 3631, with a maximal area in simulation recorded at Amax ≈ 3812. This
means that the area has a maximum fluctuation about target of around 5%. Due to
the bicuspid vesicles maintaining their shape profile to an appropriate degree, and
taking into account that this is an extreme test of stability, with the bottom vesicle
being trapped between a solid wall and a vesicle under significant compression due to
the buoyancy force pushing down on it, the results are encouraging. Obviously, the
area conserving force aims to maintain the cross-sectional area of the vesicle during
the continuous flow stresses and compressive deformations, for current purposes, the
fluctuations in area being deemed small enough not to undermine accuracy.

5.4 Concluding Remarks

Within this chapter, a novel methodology for simulating vesicle hydrodynamics using
a single framework approach, an adapted Chromodynamic Multi-Component Lattice
Boltzmann Method, has been outlined in detail, with the model tailored towards the
simulation of human RBCs. This work built upon that of the previous Chapters:
in Chapter 3, it was found that an advection error was present in the model’s
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kinematics for a flat advecting interface —which was not present for density ratios of
unity; in Chapter 4, the extent to the limitations of the large density contrast model
was explored, showing most appropriate results for liquid-liquid interfaces within
Stokes’ regime. This work confirmed the direction of exploiting model kinematics
and dynamics in the regime of unity density contrasts, and motivated the novel
application here, which further necessitated a multi-relaxation time scheme, and
led to the development of a chromodynamic model for simulating vesicles in 3D

—potentially its most suitable application. This model leverages all the key benefits
of chromodynamic schemes: strict mass conservation, simulation of immisicble fluids,
correct interface kinematics and dynamics, automatic adaptive meshing, and ease of
interface tracking and parallelisation. Single component lattice Boltzmann methods
are already utilised throughout literature in the simulation of RBCs [19, 164, 154, 171,
159, 160], however, these methodologies are modular and contain multiple modelling
techniques, e.g., treating the RBC body separate to the background fluid and then
coupling the two together. Our model provides a transparent approach, where only
one methodology (cMCLBM) is needed to resolve the deformable body and the fluid.
It is however clear that prior methodologies benefit from developmental maturity,
with methodologies such as those encapsulated in HemoCell [159, 160] capable of
simulating extremely dense suspensions of RBCs in their current form. Such at scale
deployments are clearly beyond the scope of the developmental work reported here.

Simulations started by assessing the steady state, zero flow properties of the model
with the intent of validating vesicle shape and appropriate simulation resolution.
Starting by qualitatively cataloguing the vesicles’ shapes produced by the model, a
sampled, restricted phase-space was examined with a range of vesicle shape outcomes
being observed —see Figure 5.3. From both intuition and prior literature [185, 186],
the deflation value was chosen with the intent of increasing the chance of recovering
a bicuspid vesicle representative of a human RBC. Following qualitative validation
of correct vesicle shape, checks of appropriate simulation resolution were performed.
By appealing to Gauss-Bonnet theory, we checked that the curvature calculations
were accurate, and that resolution was sufficient, the calculated result being within
1% of the predicted value (when using an initial un-deflated vesicle radius of R = 15).
To further support this, a grid convergence test (GCT) was performed for three
grid resolutions (coarse R = 15, medium R = 17.5 and fine R = 22.5), with the
coarse resolution having a grid convergence index of less than 5%, showing again,
appropriate resolution —see Table 5.4. From this, an initial un-deflated vesicle
radius of R = 15 was chosen for the remaining simulations (mainly on the basis of
computational cost). The next step was to provide quantitative evidence of correct
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vesicle shape. For the bicuspid vesicle, this was confirmed through comparison against
theory developed by Evans et al. [183], for predicted erythrocyte shape —showing
correct shape profile (Figure 5.8). To assess the accuracy of both the prolate and
torus vesicles, correct degeneracy of the eigenvalues of the inertia tensor showed
that the vesicles had the expected degree of symmetry, with data confirming this in
Figure 5.9 and Table 5.5. The outcome of this steady state, zero flow investigation
was that the model was shown to recover a vesicle representative of human RBC,
both qualitatively and quantitatively, as well as verification of appropriate resolution
within simulation —implying resolution will remain sufficient during flows due to
the automatic adaptive interface.

Although a vesicle shape representative of that of a human RBC was recovered in
steady state, this did not mean that it could appropriately represent the dynamics of
a RBC. To verify this aspect, a standard benchmarking test is the Wheeler test, which
is a comparison of simulation data against experimental data (Figure 5.10). Here, a
vesicle is sheared in the plane perpendicular to its axis of rotation at differing shear
rates, with the level of deformation recorded using a deformation index. By tuning
of the bending rigidity and surface tension values, the susceptibility of the vesicle to
shear can be altered, with the parameterisation used showing good agreement with
the experimental data [195] and other models data within literature [161, 160, 171].
A slight asymmetry of the vesicle means that the data are skewed at very low shear
rates, although it was concluded that this had minimal impact on simulation results
at the parameterisations considered. To test the model’s robustness and ability to
simulate vesicle elasticity —withstand large deformations and reverse back to initial
shape profile —a shear recovery test was perfomred (Figure 5.12). Here, the shear
rate was turned on until steady state was reached; when turned off, the vesicle was
seen to retract to its bicuspid profile. This verified correct membrane elasticity, as
well as platform robustness at large shear rates, i.e., stability far from mechanical
equilibrium. By examining flow profile within the vesicle during a shear, we verified
viable internal flow field, with the external fluid streamlines seen to be moving around
the perimeter of the vesicle, as expected. Such results can only arise in the presence
of appropriate kinematical and dynamical foundations as set out in previous chapters.

With the objective of assessing the model’s ability to meet both steady state and
dynamical data representative of a single, human RBC and demonstrating stability
far from mechanical equilibrium, work then considered the provision of initial evidence
of the extension to multiple RBCs. From the work of Yuan et al. [92], a minimal
but effective enhanced segregation rule, resulting in complete immiscibility of the
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vesicles, was used to extend the model. To verify multi-vesicle competence, a drop
spreading test inspired by [92], verified that complete immiscible (or full spreading
where a Neummans triangle cannot form) was recovered (Figure 5.13). This new
segregation rule was then implemented into the vesicle model, where to test the
robustness of the model, a head-on collision between two vesicles being pushed by a
buoyancy force was tested (Figure 5.14). This result demonstrated the stability of
the model; membrane area was conserved within 1% throughout simulation, with
the vesicles moving around each other and avoiding coalescence even with small
impact parameter. Following this, the simulation of two vesicles sedimenting on
top of each other within an enclosed box was performed (Figure 5.15). Results of
this compression test showed that the vesicles settled on top of each other, where
although area fluctuated by approximately 3% during simulation, vesicle shape profile
looked qualitatively as expected. This further demonstrated the robustness of our
model, with harsh head-on collision and large flow stresses failing to perturb stability.
Although there is no comparable experimental data or theory for these tests, they
serves as simple, intuitive examples of qualitatively correct vesicle-vesicle behaviour,
and the ability to simulate more than two fluids (three-component flows).

Overall, we concluded from the simulation data presented, that our cMCLBM
for vesicle hydrodynamics can be parameterised appropriately to simulate human
RBCs, through a check of both steady state and dynamical behaviour. The ability
to tune our model through assignment of the bending rigidity, surface tension and
deflation parameters confers benefits and disadvantages. By increasing tuneability, a
range of vesicle shapes can be simulated —not just the bicuspid vesicle —and we see
that vesicle behaviour can be tuned further by controlling the immersed boundary
force magnitude and the surface tension to bending rigidity ratio. This provides future
possibilities for the model, such as the simulation of unhealthy human RBCs, i.e., the
effects of malaria (discussed further in the next chapter), and also other soft particles.
The downside of this, is that the phase-space is quite complex and simulations can be
awkward to parameterise, certainly this is so without prior knowledge of the model.
This observation supports the decision to exclude a membrane shear modulus a priori,
which would presumably increase model complexity further. Parsimonious models are
easier to tune —some where mechanical properties are direct input parameters [154]

—and we evidence an ability to recover correct shear dynamics without inclusion of
such a immersed force. Entities should not be compounded beyond necessity. Clearly,
in its current form, the model has not been extended for the simulation of extremely
dense suspensions, such as can be addressed by HemoCell models [159, 160], however
it does furnish the requisite foundation ability to simulate vesicle-vesicle interactions.
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The computational expense surrounding the cMCLBM, when extending to many
component fluid-flows, needs to be addressed if one wishes to make the method
computationally amenable to the simulation of many RBCs, with this again being
discussed further in the final chapter. Future directions for this work can therefore
be split into three groups: (i) the extension of the methodology to many vesicles (ii)
the further validation of the methodology within multiple vesicle flows and (iii) the
application of the methodology to RBC flows —such as the impact of malaria on RBC
dynamics. These will be discussed further in the concluding Chapter: Chapter 6.
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6.1 Conclusions

This thesis focuses on extensions to a specific class of multi-component lattice Boltz-
mann method —chromodynamic MCLBM (or cMCLBM). Chapters 3-5 progressively
align with the principal aims of model development and evaluation, initially outlined
in Chapter 1 and summarised below:

• Assess the model’s kinematics and dynamics, as well as the coupling between
the two in order to provide an ab initio understanding of the cMCLBM
methodology.

• Investigate and bound the applicability of the cMCLBM to immiscible fluids
with a large density contrast.

• Based upon the developments itemised above, assess cMCLBM as a single-
framework platform for LBM models with extended physical content, here the
three dimensional simulation of vesicle membranes.
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Chapter 3 reviewed the chromodynamic methodology in detail, extending the base
model to the simulation of fluids with a density contrast. In so doing, our intention
was to increase the applicability of the model to flows which contained such density
contrasts, with obvious examples being water and oil (liquid-liquid) or water and air
(liquid-gas) flows. However, the stability of the colour-gradient and chromodynamic
models, when extending to large density contrasts remained at issue. One source of
these instabilities was our athermal equation of state (EoS) embedded in the models
(p = ρc2

s −→ csR
2ρR = csB

2ρB), where the need to maintain a low Mach number
to neglect compressibility effects results in stability issues [146]. Our data revealed
another error associated with the coupling of the model’s kinematics and dynamics,
in the presence of a density contrast, which resulted in an interface advection error

—impacting the model’s compliance with hydrodynamic boundary conditions at
the free surface. The influence of this error on the stability of the model, in flows
containing flat interfaces, was assessed. Our data exposed limitations of the model
when applied to rapid flows and flows with large density contrasts.

Pursuant upon the outcomes of Chapter 3, Chapter 4 focused on extensions as follows:
(i) Upgrading the collision operator to an MRT operator. (ii) Application of the model
in axially symmetric three-dimensional low Reynolds number flows. The inclusion of
an MRT collision operator is, in retrospect, a necessity in MCLBMs aiming to simulate
density contrasts, due to the stability gains in certain flows, which made the model
more parameterisable in general. Once implemented, further, more stringent testing
of the model’s compliance with interface kinematics and dynamics (for both flat and
curved interfaces) was conducted. The outcome of this investigation evidenced the
same essential trends as found in the data of Chapter 3, with decreased stability
at larger density contrasts, larger flow velocities, and, unfortunately, significantly
curved interfaces. Due to these limitations, the application of the model within
Stokes’s regime seemed the most suitable area of application- at least in its current
form. In the context of the current work, this decision is not limiting, for it is
within this regime of flow that one finds the analytical results which provide the
validation of the kinematics and dynamics which is at issue. Accordingly, the model
was extended to the simulation of axially symmetric flows, imparting the ability
to simulate three-dimensional drops in low Reynolds flow as a collateral benefit.
Through the use of phase-field freezing which successfully removed the dominant
microcurrent signal —a pathology of Stokes’s regime MCLBM —the model generated
data at lower density ratios. Our tentative conclusion following the work of Chapter 3
and Chapter 4 was that the model in its current form is, realistically, limited to
liquid-liquid flows, with the simulation of liquid-gas flows currently unattainable,
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due to the presence of the advection error we identified and also the athermal EoS
which, again in retrospect, we should not have accepted so unquestioningly. However,
the albeit negative observation that the equation of state cannot be side-stepped if
one aims to extend the stability of simulations is of value and, in respect of this last
matter there have been recent developments, we hope motivated by the work we
report, this significantly advance cMCLBM in this respect. Very recently, Lafarge
et al. [146] addressed these issues, by including an arbitrary EoS and an additional
forcing term leading to improved stability in their colour-gradient model, which
is, otherwise, that we develop and analyse here. Their work (published in August
2021) already encapsulates the next steps we might otherwise wish to recommend,
towards addressing gas-liquid simulations using the essential cMCLBM of this work.
The results in this thesis showed that such errors in the current density difference
cMCLBM disappeared at unit density contrasts, which regime, as a result, afforded
superior stability- while of course, retaining all the benefits of cMCLBM. This
observation motivated our final applications.

Following the enhanced understanding and methodological confirmations of the
foundation of the chromodynamic model studied in prior chapters, Chapter 5
considered the application of our essential model - in unit density contrast form-
to the simulation of fluid-filled vesicles (of course, tailored towards RBCs); this
application we postulate, presents itself as the most suitable area of application
for our chromodynamic model in its current form - notwithstanding its ability to
tolerate the requisite extensions to the model physics. Clearly, vesicles’ membranes
are more physically rich objects than liquid-liquid interfaces. Chapter 5, then,
encapsulated our primary methodological outcome- the development of a single-
framework technique capable of simulating the dynamics of fluid-filled vesicles in
three-dimensions. The fundamentals of the model, the membrane force density
derivations, their parameterisation and initial characterisation was presented in
detail, with simulation results being tailored towards RBC behaviour, through
our tuning of force constants and model input parameter space restrictions. In
contradistinction to the modular approaches present in the recent literature, which
utilise multiple modelling techniques, our approach provides a transparent, single
framework methodology, which benefits from all the undiluted advantages of the
cMCLBM —canonically, strict mass conservation, automatic adaptive interfacial
region meshing, parallelisation, ease of force coupling, direct parameterisation and
robustness. Simulation data considered three areas we suggest are crucial to the
applications of cMCLBM to the simulation of blood flow: (i) ensuring appropriate
resolution —Gauss-Bonnet Theory, GCT and (ii) correct steady state vesicle topology
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—assessed through the degeneracy of the eigenvalues of the inertia tensor, comparison
against Evans’ parametric expression [180] and, not least, (iii) correct dynamical
behaviour —Wheeler test, shear recovery test, dual vesicle interaction. Although
this work focused on the initial development of the model, its extension to many
component flows has been discussed; it is without doubt the key objective of any
future work which may or may not follow from the work reported here.

6.2 Future Work

Future work recommendations following the research presented in this thesis clearly
prioritises the chromodynamic model for vesicle hydrodynamics (as one might expect)
and can, we believe, be split into three categories: (i) the extension of the model to
many RBC (vesicle) simulations (ii) incorporation of a modular cMCLBM within
computational interfaces and softwares and (iii) the application of the model to
biological flows, i.e., malaria infected RBCs.

6.2.1 Extension to the Simulation of Many Immiscible Fluids

Within a drop of blood of the size of a pinhead, there are approximately 106 red blood
cells, which make up around 40% of blood content by volume [197]. The extension of
our chromodynamic model to the simulation of many RBCs would be the next step
to improving the applicability of the model to the simulation of blood flow, where
the average behaviour of large numbers of RBCs is of interest. The methodology
for this step already exists in primitive form [184] but the physical processes which
it facilitates are not required in the context of haemodynamics, where for example,
wetting and Laplace-Young behaviour do not manifest. Put another way, one need
only consider completely immiscible drops which the drops are erythrocytes. Current
work has shown the model is capable of extending to a 5 fluids (4 vesicle) simulation
using the existing approach. This work is summarised in Figure 6.1, which shows the
sedimentation of 4 RBCs over time within a bounded domain defined by a square
cross-section cylinder. Table 6.1 shows the relative error of the surface area of the
vesicles in relation to the desired target area.
Current hierarchy of obstacles which our model faces with respect of efficiently
extending to many RBC simulations are: (i) The need to define an interface and
bear a computational overhead for each fluid, i.e., n(n− 1)/2 interfaces per n fluids.
(ii) The need to segregate each fluid against, in principle, all other fluids in the
segregation stage means that there are n segregation terms per fluid, for an n

fluid simulation. (iii) The code requires parallellisation, so that it can run more
efficiently- even in development applications.

177



6. Conclusions and Future Work

Figure 6.1: Evolution of the four sedimenting vesicles over time, with colour corresponding
to the surface area of the vesicle taken at contour ρN = 0. Frames left to right show
increasing time steps.

Frame 1 Frame 2 Frame 3 Frame 4
Area Error % Area Error % Area Error % Area Error %

Top 3632 1.917 3633 1.890 3633 1.890 3679 0.648
Top Middle 3632 1.917 3633 1.890 3505 5.347 3579 3.35

Bottom Middle 3632 1.917 3685 0.486 3754 1.377 3841 3.727
Bottom 3632 1.917 3762 1.159 3853 4.051 3921 5.887

Max error % 1.917 1.890 5.347 5.887

Table 6.1: Table showing the four vesicles areas at each frame shown in Figure 6.1 —with
the surface taken at contour ρN = 0. Vesicles defined by their position during sedimentation
(Top, Top Middle, Bottom Middle, Bottom), with relative surface area error shown (error
in comparison to the target surface area: A0 ≈ 3703).

To address these problems, future work should set out to re-define the phase-field
between the fluids, aiming to reduce the number of interfaces needed to parity with
the number of individual fluids (individual erythrocytes), i.e., define an interface
between a given fluid with all the remaining fluids, viewed as a single effective
species. From this, one might reconstruct the segregation rule, using a revisited
phase-field, such that there is only a single segregation term per fluid. In doing so,
the mathematical and computational complexity would necessarily decrease with a
commensurate increase in computational efficiency, due to fewer frequently executed
nested loops. Such an advance will feed into the final step which is the paralisation
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of the code. Lattice Boltzmann has the facility, here, due to its intrinsic locality
and lattice symmetry. In doing so, it makes the code much more efficient, resulting
in the ability to address larger domains over longer times. Hence, this is crucial
when considering practical haemodynamics. The assumptions within these steps will
reflect complete immiscibility (wetting effects are integrated out) and the vesicles
are initialised in simulation such that they have no interface with each other, i.e.,
there is plasma (or background fluid) between the vesicles throughout simulation.

6.2.2 Modular cMCLBM

At the start of this thesis the following rhetorical question was set-out:
If both liquid drops and vesicles are to be retained within the same essential ap-

proach (i.e., considering vesicles as immiscible fluids, with a diffused interface within
the continuum approximation), then in what ways must the modelling approach differ?

We have found that our cMCLBM provided a very transparent and easily
adjustable framework. To address this question, the difference between the modelling
of drops and vesicles, when using the cMCLBM, were found to be based around
differing forms of the immersed forces, which aimed to capture the membrane physics
(expressed as domain boundary conditions), some slight modification of the LB
algorithm, i.e., inclusion of density contrast terms, such as the term ϕi in the
equilibrium distribution, and the segregation equations, and finally, the simulation
parameterisation.

Future work could consider utilising this, by incorporating the developments presented
in this thesis within computational interfaces and softwares which serve as repositories
for such methods (such as DL_MESO), allowing for increased dissemination of the
models, and the continuation of a modular cMCLBM framework. Here, the term
modular cMCLBM refers to the modularity of the applied immersed forces, which can,
in principle, be swapped in and out to change the physics of the object the simulation
is targeting, whilst still retaining the base, single framework, cMCLBM approach.
An example of such a platform would be the DL_MESO package [198], which already
incorporates certain, early MCLBM models. This step could potentially allow for
the model to be quickly and easily adapted for the parallel simulation of drops,
vesicles and other soft particles. For instance, a hypothetical modular cMCLBM
framework might function as follows. First, the user chooses the application fluid
solver; cMCLBM in this case. Next, the user chooses the object being simulated,
example choices being: liquid drops, vesicles, soft particles (i.e., capsules). Next, the
relevant forces, based on the chosen object, which aim to enforce known physical
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behaviour of that object, are selected. Following this, any additional methodology
modifications and extensions required for the simulation of that object are also
selected, i.e., inclusion of a density contrast between the fluids. Finally, the user
might set object specific simulation parameters, i.e., for vesicles, the surface tension,
bending rigidity and deflation parameters. An example structure, or flow, of such a
user interface can be seen in Figure 6.2. While the functional scope of DL_MESO is
broader, other simulations tools with much narrower scope, such as HemoCell [159,
160] might prove to be more efficient for very large scale haemodynamics studies,
targeting for example, the origin constitutive relations. However, where the subtle
features of the precise membrane deformation are at issue, for example when studying
the intimate interaction of a few erythrocytes, the DL_MESO encapsulation we
outline above might offer an attractive approach.

Figure 6.2: Schematic showing an example of how a modular cMCLBM approach may
be used for the simulation of Liquid Drops, Vesicles and other Soft Particles. Note, Soft
Particles are included to show another possible area of application for the cMCLBM, where
the selected relevant forces and modifications would differ depending upon the nature of
the soft particle being targeted.

Generally, by incorporating such methodological advancements as those docu-
mented in this thesis (which are, note, only possible following a validation of the
methodology -kinematics and dynamics- emphasised throughout), into a computa-
tional platform such as DL_MESO, the applicability of the cMCLBM would be
greatly increased. This observation applies to the the inclusion of soft particles in
Figure 6.2, which could be another fruitful area of application for the cMCLBM. Here,
by inclusion of additional forces (for instance, a shear modulus) the method could
potentially be applied to soft particle phenomena —such as that studied recently
by Owen and Krüger using the FEM-LBM approach [199].
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6.2.3 Applications

The current chromodynamic model for simulating vesicle hydrodynamic has shown
an ability to replicate a correct RBC profile in steady state, as well as recover known
RBC dynamics. The application of the current model to single or dual RBC flows is
an obvious next step for this work. Due to the tunability of the model, a relevant
first application could be the simulation of infected red blood cells (iRBCs). Diseases
such as malaria can cause changes in RBC shape, dynamical response (stiffness) and
also the ability to recover back to its initial profile [200]. The impact on the ability
of iRBCs to pass through stenosed passageways, their shape evolution throughout
this and also the impact on dual RBC flows in this passageway would be of interest
and within scope of even an unevolved, current model. Data from such a model
could help with the design of microfluidics devices which address the recognition
and removal of iRBCs, within the human body, and applications also allowing for
further testing of the stability, robustness and tunability of the parent model.
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A.1 Dynamics

A.1.1 Dynamics: 2D MRT cMCLBM for fluids with a large
density contrast

In section 3.3.1 an Chapman-Enskog analysis was presented which sought to recover
the weakly compressible Navier-Stokes equations from the kinetic scale evolution
equation for the BGK cMCLBM allowing for the simulation of fluids with a density
contrast. This analysis was presented in full detail. Here, a much briefer analysis
is presented for the MRT model outlined in section 4.2.2, which will only present
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key equations and relate them to the BGK model analysis from section 3.3.1. Again,
this analysis will follow that presented in [70], and by Spendlove et al. [134].

The MRT LBE with a force term can be expressed in the following form:

fi (r + ci∆t, t+ ∆t) = fi(r, t) +
∑
j

Aij
[
f

(0)
j (r, t) − fj(r, t)

]
+ ∆tFi, (A.1)

where all terms have the same definitions presented in section 4.2.2. The source term
and lattice weights have the same lattice properties as that defined in section 3.3.1.
Now however, the collision matrix is defined to have the following lattice properties:

∑
i

Aij(1, ciα, ciαciβ) = (0, 0, λ3cjαcjβ) (A.2)

After Taylor expanding and applying Chapman-Enskog procedure to Eq. (A.1) like
in Eq. (3.21), grouping together the most rapid behaviour of the model, O(ϵ) terms :

O(ϵ) : (ciα∂α + ∂t0)f (0)
i = − 1

∆t
∑
j

Aijf
(1)
j + Fi, (A.3)

as well as the O(ϵ2) terms:

O(ϵ2) : ∂t1f
(0)
i +(ciα∂α+∂t0)f (1)

i − 1
2 (ciα∂α + ∂t0)

∑
j

Aijf
(1)
j = −1

2(ciα∂α+∂t0)∆tFi.

(A.4)
Next, taking the moments of Eq. (A.3):

∑
i

O(ϵ) : ∂αρuα + ∂t0ρ = 0, (A.5)∑
i

O(ϵ)cix : ∂αΠ(0)
αx + ∂t0ρux = nFx, (A.6)

where unlike in the BGK variant analysis presented in section 3.3.1 and in Guo et
al., there is not a constraint coupling n, m and τ (the collision parameter). Here,
the constraint imposed on n is n = 1, with no constraint on m at O(ϵ).

Taking the moments of Eq. (A.4), resulting in:

∑
i

O(ϵ2) : ∂t1ρ =
(
m− n

2

)
∆t∂αFα, (A.7)

∑
i

O(ϵ2)cix : ∂t1(ρuy) = ∆t
(
m− n

2

)
∂t0Fy + ∂ασ

′
αy, (A.8)

where the viscous stress tensor σ′
αy is given by:

σ′
αy = −

(
1 − λ3

2

)
Π(1)
αy − ∆t

4 (Cαy + Cyα). (A.9)
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and where Π(1)
αβ represents the 1st order momentum flux. Due to the previous

constraint on n, m is defined as m = 1
2 , the first term in Eq. (A.8) on the right

hand side is eliminated.
At this point Guo et al., has the following constraints imposed on n and m:

m = 1
2 , n + m

τ
= 1. Note, the constraint on n differs from the constraint in this

analysis, which has consequences later.
Taking the second moment of equation (A.3) and summing on i, ∑i ciαciβ, then
rearranging for Π(1)

αβ gives:

Π(1)
αβ

δt
= − 2ρ

3λ3
Sαβ − uα

λ3
(Fβ − ∂βΦ′) − uβ

λ3
(Fα − ∂αΦ′) +

+ 1
λ3

[
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ+

+ 1
2λ3

(Cαβ + Cαβ) .

(A.10)

where Sαβ = 1
2 (∂αuβ + ∂βuα), and Φ′ = 3

5(1 − αR)(ρR + ΛρB) − 1
3ρ, as defined in

section 3.3.1.
Using the definition of the viscous stress tensor, Eq. (A.9), Eq. (A.10) and simplifying

σ′
αβ

∆t = − 1
2λ3

(Cαβ + Cβα) + 2
3

( 1
λ3

− 1
2

)
ρSαβ+

+
( 1
λ3

− 1
2

)
[uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)] +

−
( 1
λ3

− 1
2

) [
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ.

(A.11)

Thus, to remove the error, the following choice of correction tensor is made:

Cαβ =
(

1 − λ3

2

)
[uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)] +

−
(

1 − λ3

2

) [
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ.

(A.12)

The resultant source term Fi due to this correction, previously introduced in the
forced evolution equation, Eq. (A.1), has now been recovered and is given by:

Fi = ti

Fαciαc2
s

+

1
2c4
s

(
1 − λ3

2

)uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′) −
[
uγ∂γΦ′ − ρ

3∂γuγ
]
δαβ

×

(
ciαciβ − c2

sδαβ
),

(A.13)
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where, the source term Fi is split into a part that is responsible for correcting the
model dynamics in the presence of density gradients, F1i, and a term responsible
for applying the surface tension force F2i.

F1i = ti
2c4
s

(
1 − λ3

2

){1
3ρ∂γuγδαβ − (uα∂βΦ′ + uβ∂αΦ′ + uγ∂γΦ′δαβ)

}(
ciαciβ − c2

sδαβ
)
,

(A.14)
and

F2i = ti

{
Fαciα
c2
s

+ 1
2c4
s

(
1 − λ3

2

)
(uαFβ + uβFα)

(
ciαciβ − c2

sδαβ
)}

(A.15)

A.1.2 Dynamics: Pseudo 3D MRT cMCLBM for fluids with
a large density contrast

Here, a brief analysis is presented for the MRT model outlined in section 4.3.2, which
will only present key equations and relate them to the BGK model analysis from
section 3.3.1. Again, this analysis will follow that presented in [70], and by Spendlove
et al. [135]. The MRT LBE with a force term can be expressed in the following form:

fi (r + ci∆t, t+ ∆t) = fi(r, t) +
∑
j

Aij
[
f

(0)
j (r, t) − fj(r, t)

]
+ ∆tFi, (A.16)

where all terms have the same definitions presented in section 4.2.2. The source term
and lattice weights have the same lattice properties as that defined in section 3.3.1.
Now however, the collision matrix is defined to have the following lattice properties:

∑
i

Aij(1, ciα, ciαciβ) = (0, 0, λ3cjαcjβ) (A.17)

After Taylor expanding and applying Chapman-Enskog procedure to Eq. (A.16) like
in Eq. (3.21), grouping together the most rapid behaviour of the model, O(ϵ) terms :

O(ϵ) : (ciα∂α + ∂t0)f (0)
i = − 1

∆t
∑
j

Aijf
(1)
j + Fi, (A.18)

as well as the O(ϵ2) terms:

O(ϵ2) : ∂t1f
(0)
i +(ciα∂α+∂t0)f (1)

i − 1
2 (ciα∂α + ∂t0)

∑
j

Aijf
(1)
j = −1

2(ciα∂α+∂t0)∆tFi.

(A.19)
Next, taking the moments of Eq. (A.18):

∑
i

O(ϵ) : ∂αρuα + ∂t0ρ = A, (A.20)∑
i

O(ϵ)cix : ∂αΠ(0)
αx + ∂t0ρux = nFx, (A.21)
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where A is the continuity source/sink defined in Eq. (4.39), which was set equal
to 0 for the previous dynamics analysis.

Taking the moments of Eq. (A.19), resulting in:∑
i

O(ϵ2) : ∂t1ρ =
(
m− n

2

)
∆t∂αFα − 1

2∂t0A, (A.22)

∑
i

O(ϵ2)cix : ∂t1(ρuy) = ∆t
(
m− n

2

)
∂t0Fy + ∂ασ

′
αy, (A.23)

where the viscous stress tensor σ′
αy is given by

σ′
αy = −

(
1 − λ3

2

)
Π(1)
αy − ∆t

4 (Cαy + Cyα) − ∆t
6 Aδαy. (A.24)

and where Π(1)
αβ represents the 1st order momentum flux. Due to the previous

constraint on n, m is defined as m = 1
2 , the first term in Eq. (A.23) on the right

hand side is eliminated.
Taking the second moment of equation (A.3) and summing on i, ∑i ciαciβ, then
rearranging for Π(1)

αβ gives:

Π(1)
αβ

δt
= − 2ρ

3λ3
Sαβ − uα

λ3
(Fβ − ∂βΦ′) − uβ

λ3
(Fα − ∂αΦ′) +

+ 1
λ3

[
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ+

+ 1
2λ3

(Cαβ + Cαβ) + c2
s

λ3
Aδαβ + 1

2λ3
uαuβA.

(A.25)

where Sαβ = 1
2 (∂αuβ + ∂βuα), and Φ′ = 3

5(1 − αR)(ρR + ΛρB) − 1
3ρ, as defined in

section 3.3.1.
Using the definition of the viscous stress tensor, Eq. (A.24), Eq. (A.25) and simplify-
ing:

σ′
αβ

∆t = − 1
2λ3

(Cαβ + Cβα) + 2
3

( 1
λ3

− 1
2

)
ρSαβ+

+
( 1
λ3

− 1
2

)
[uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)] +

−
( 1
λ3

− 1
2

) [
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ

− 1
3λ3

Aδαβ −
( 1
λ3

− 1
2

)
uαuβA.

(A.26)

Thus, to remove the error, the following choice of correction tensor is made:

Cαβ =
(

1 − λ3

2

)
[uα (Fβ − ∂βΦ′) + uβ (Fα − ∂αΦ′)] +

−
(

1 − λ3

2

) [
uγ∂γΦ′ − 1

3ρ∂γuγ
]
δαβ

− 1
3Aδαβ −

(
1 − λ3

2

)
Auαuβ

(A.27)
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The resultant source term Fi due to this correction, previously introduced in the
forced evolution equation, Eq. (A.1), has now been recovered and is given by:

Fi = F1i + F2i + F3i, (A.28)

where, the source term Fi is split into: (1) a part that is responsible for correcting
the model dynamics in the presence of density gradients (F1i), (2) a term responsible
for applying the surface tension force (F2i) and (3) a term containing the continuity
source/ sink (F3i). These terms are defined as:

F1i = ti
2c4
s

(
1 − λ3

2

){1
3ρ∂γuγδαβ − (uα∂βΦ′ + uβ∂αΦ′ + uγ∂γΦ′δαβ)

}(
ciαciβ − c2

sδαβ
)
,

(A.29)
and

F2i = ti

{
Fαciα
c2
s

+ 1
2c4
s

(
1 − λ3

2

)
(uαFβ + uβFα)

(
ciαciβ − c2

sδαβ
)}

(A.30)

and
F3i = tiA−

(
1 − λ3

2

)
Auαuβ − 1

3Aδαβ. (A.31)

A.2 Analytical Solutions

A.2.1 Transient uni-directional multi-component flow with
transverse density stratification

Here, a semi-analytical solution is presented for the scenario of density stratified, uni-
directional flow u(x)êy, x transverse variation in density and translational invariance
in the y direction. No-slip boundaries are also presented at x = 0 and x = H. Noting
here, that it is necessary to assume that the shear viscosity will be constant across
the fluids, meaning that any variation in kinematic viscosity of the fluids stems from
the variation in density. A schematic representation of the described scenario is
depicted in Figure 4.5. The Navier-Stokes equation for weakly compressible fluids
that represent this system are as follows:

ρ(x)∂u
∂t

= ∂

∂x

(
η(x) ∂

∂x
u(x, t)

)
, (A.32)

where ρ, u, and η denote the density, velocity and shear viscosity of the fluid
respectively. With associated No-slip boundary conditions for the system are:

u(0) = u(H) = 0. (A.33)
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From here, the analysis follows the steps taken to find a solution for u(x, t), using
the eigenbasis of the Sturm-Liouville problem, which is presented as follows [201]:

d

dx

(
η
dϕn
dx

)
+ c2

nρϕn = 0, (A.34)

where ϕn represents the eigenfunction and cn denotes the eigenvalue. The fol-
lowing property: ∫

ρϕnϕmdx = kδnm, (A.35)

holds true for orthonormality if k = 1, where δnm is a Kronecker delta. The
Modal expansion is:

u(x, t) =
∞∑
n=1

Tn(t)ϕn(x), (A.36)

where Tn is the time-dependent modal co-efficient. Using PDE transformation (A.36)
on Eq. (A.32), the following can be obtained:

∑
n

(
ρ
∂Tn
∂t

ϕn − Tn
∂

∂x

(
η
∂ϕn
∂x

))
= 0. (A.37)

Multiplying Eq. (A.37) through by ϕm, and then integrating over lattice domain
(e.g.

∫H
0 dx) gives:

∑
n

∂Tn
∂t

∫ H

0
ρϕnϕmdx−

∑
n

Tn

∫ H

0
ϕm

∂

∂x

(
η
∂ϕn
∂x

)
dx = 0. (A.38)

Combining Eqs. (A.34) (A.35) with Eq. (A.38), obtaining:
∑
n

∂Tn
∂t

δnm +
∑
n

Tnc
2
nδnm = 0

dTm
dt

+ c2
nTm = 0

Tm = σme
−c2

nt, (A.39)

where σm is a constant still to be determined.
Similarly, by multiplying Eq. (A.34) through by ϕm and performing domain inte-
gration

∫H
0 dx, results in the following:∫ H

0
ϕm

d

dx

(
η
dϕn
dx

)
dx+ c2

n

∫ H

0
ρϕnϕmdx = 0. (A.40)

Performing integration by parts on the first term of Eq. (A.40) gives:

−
∫ H

0
η
dϕm
dx

dϕn
dx

dx+ η
dϕn
dx

ϕm

∣∣∣∣∣∣
H

0

+ c2
n

∫ H

0
ρϕnϕmdx = 0. (A.41)
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The term η dϕn

dx
ϕm

∣∣∣∣∣∣
H

0

from Eq. (A.41) equals to zero (see Eq. (A.46) later), meaning:

−
∫ H

0
η
dϕm
dx

dϕn
dx

dx+ c2
n

∫ H

0
ρϕnϕmdx = 0. (A.42)

Repeating the same process for ‘m’, and analysing the alternative S-L equation now
given by:

d

dx

(
η
dϕm
dx

)
+ c2

mρϕm = 0,

leads to:

−
∫ H

0
η
dϕn
dx

dϕm
dx

dx+ c2
m

∫ H

0
ρϕmϕndx = 0. (A.43)

Now, subtracting Eq. (A.43) from Eq. (A.42), giving:

(c2
n − c2

m)
∫ H

0
ρϕmϕndx = 0.

This result shows that when n ̸= m, it is possible to obtain the following equation:∫ H

0
ρϕmϕndx = 0,

which agrees with the orthonormality property stated in Eq. (A.35).

Next, utilising the boundary conditions to support the analysis and help find a
solution for the eigenfunction. First, investigating the conditions at the interface
boundary. Here, Eq. (A.44) imposes the continuous eigenfuctions at the interface
and Eq. (A.45) encapsulates the physics of the no traction condition:

ϕ(1)
n

(
H

2

)
= ϕ(2)

n

(
H

2

)
, (A.44)

η1ϕ
(1)′

n

(
H

2

)
= η2ϕ

(2)′

n

(
H

2

)
. (A.45)

Where the no-slip conditions in Eq. (A.33) give:[
ϕm

dϕn
dx

]H
0

= ϕm(H)dϕn
dx

∣∣∣∣∣∣
H

− ϕm(0)dϕn
dx

∣∣∣∣∣∣
0

= 0, (A.46)

Because ϕn is a piecewise function, the lattice can be split into 2 halves. When
x ∈

[
0, H2

]
, the following is obtained:

d

dx

(
η1
dϕ(1)

n

dx

)
+ c2

nρϕ
(1)
n = 0,

m2 + c2
n

ν1
= 0,

m = ± cn√
ν1
i, ∈ C
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which results in:

ϕ(1)
n = A(1)

n cos
(
cn√
ν1
x

)
+B(1)

n sin
(
cn√
ν1
x

)
. (A.47)

Similarly, when x ∈
[
H
2 , H

]
, the following is obtained:

d

dx

(
η2
dϕ(2)

n

dx

)
+ c2

nρϕ
(2)
n = 0,

m2 + c2
n

ν2
= 0,

m = ± cn√
ν2
i, ∈ C

which gives:

ϕ(2)
n = A(2)

n cos
(
cn√
ν2
x

)
+B(2)

n sin
(
cn√
ν2
x

)
. (A.48)

Now imposing the no-slip boundary conditions at x = 0, H, i.e. changing the
boundary conditions away from periodic. This reduces Eqs. (A.47) and (A.48)
to the following:

ϕ(1)
n = A(1)

n sin
(
cn√
ν1
x

)
, x ∈

[
0, H2

]
, (A.49)

ϕ(2)
n = A(2)

n sin
(
cn√
ν2

(x−H)
)
, x ∈

[
H

2 , H
]
. (A.50)

Now using Eqs. (A.49) and (A.50) with Eq. (A.44), it is possible to show

ϕ(1)
n

(
H

2

)
= ϕ(2)

n

(
H

2

)
,

A(1)
n sin

(
cn√
ν1

H

2

)
= A(2)

n sin
(
cn√
ν2
.
(

−H

2

))
,

A(1)
n sin

(
cn√
ν1

H

2

)
+ A(2)

n sin
(
cn√
ν2
.
H

2

)
= 0. (A.51)

Then using Eq. (A.49) and (A.50) with Eq. (A.45), gives:

η1ϕ
(1)′

n

(
H

2

)
= η2ϕ

(2)′

n

(
H

2

)
,

A(1)
n

cn√
ν1
η1 cos

(
cn√
ν1

H

2

)
= A(2)

n

cn√
ν2
η2×

cos
(
cn√
ν2
.
(

−H

2

))
,

A(1)
n

1
√
ν1
η1 cos

(
cn√
ν1

H

2

)
− A(2)

n

1
√
ν2
η2 cos

(
cn√
ν2
.
(

−H

2

))
= 0. (A.52)
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Eqs. (A.51) and (A.52) are a pair of simultaneous equations which only have non-
zero solutions for A(1)

n and A(2)
n , if the determinant of the matrix of coefficients

equals to 0, as shown below:

− sin
(
cn√
ν1
.
H

2

)
η2√
ν2

cos
(
cn√
ν2
.
(

−H

2

))
− sin

(
cn√
ν2
.
H

2

)
η1√
ν1

cos
(
cn√
ν1
.
H

2

)
= 0,

− η2√
ν2

sin
(
cn√
ν1
.
H

2

)
cos

(
cn√
ν2
.
H

2

)
− η1√

ν1
sin

(
cn√
ν2
.
H

2

)
cos

(
cn√
ν1
.
H

2

)
= 0,

η2√
ν2

sin
(
cn√
ν1
.
H

2

)
cos

(
cn√
ν2
.
H

2

)
+ η1√

ν1
sin

(
cn√
ν2
.
H

2

)
cos

(
cn√
ν1
.
H

2

)
= 0,

√
η2ρ2 sin

(
cn√
ν1
.
H

2

)
cos

(
cn√
ν2
.
H

2

)
+ √

η1ρ1 sin
(
cn√
ν2
.
H

2

)
cos

(
cn√
ν1
.
H

2

)
= 0.

(A.53)

Dividing Eq. (A.53) through by sin
(
cn√
ν1
H
2

)
cos

(
cn√
ν2
H
2

)√
η2ρ2, results in:

1 +
√
η1ρ1√
η2ρ2

tan
(
cn√
ν2
H
2

)
tan

(
cn√
ν1
H
2

) = 0. (A.54)

Eq. (A.54) is the secular equation to be solved for eigenvalues cn. Let X = cnH
2 ,

and Eq. (A.54) reduces to:

√
η2ρ2 tan

(
X

√
ν1

)
+ √

η1ρ1 tan
(
X

√
ν2

)
= 0. (A.55)

Now Eq. (A.55) can be solved numerically using Newton-Raphson method as shown
below. Where letting:

f(X) = √
η2ρ2 tan

(
X

√
ν1

)
+ √

η1ρ1 tan
(
X

√
ν2

)
,

and therefore:

df

dx
=
√
η2ρ2

ν1
sec2

(
X

√
ν1

)
+
√
η1ρ1

ν2
sec2

(
X

√
ν2

)
.

Newton-Raphson method states, for a function f(X) = 0, an approximated solution
is:

X1 = X0 − f(X0)
f ′(X0)

.

where X1 is the improved estimate from initial estimate X0. The initial estimate,
X0 was obtained by observing when the profile bisected the horizontal axis. This
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then provided a solution for the eigenvalues, ϕn.
Next impose orthonormality when n = m:∫ H

0
ρϕnϕndx = 1. (A.56)

Substitute Eqs. (A.49) and (A.50) into Eq. (A.56) over the two intervals, obtaining:

ρ1A
(1)2

n

∫ H
2

0
sin2

(
cn√
ν1
x

)
dx+ ρ2A

(2)2

n

∫ H

H
2

sin2
(
cn√
ν2

(x−H)
)
dx = 1

ρ1

2 A
(1)2

n

∫ H
2

0

(
1 − cos

(
2cn√
ν1
x

))
dx+ ρ2

2 A
(2)2

n

∫ H

H
2

(
1 − cos

(
2cn√
ν2

(x−H)
))

dx = 1

ρ1

2 A
(1)2

n

H
2 −

√
ν1

2cn

[
sin

(
2cn√
ν1
x

)]H
2

0

+

ρ2

2 A
(2)2

n

H
2 −

√
ν2

2cn

[
sin

(
2cn√
ν2

(x−H)
)]H

H
2

 = 1

ρ1

2 A
(1)2

n

(
H

2 −
√
ν1

2cn
sin

(
cn√
ν1
H

))
+ ρ2

2 A
(2)2

n

(
H

2 −
√
ν2

2cn
sin

(
cn√
ν2
H

))
= 1

(A.57)

Rearranging Eq. (A.51) gives the following solution for the integration constant:

A(2)
n = −

A(1)
n sin

(
cnH
2√

ν1

)
sin

(
cnH
2√

ν2

) (A.58)

Now, finally seeking a solution to the coefficients σn. Substitute Eq. (A.39) into
Eq. (A.36), obtaining

u(x, t) =
∑
n

σne
−c2

ntϕn(x),

which means

u(x, 0) =
∑
n

σnϕn(x). (A.59)

Multiplying Eq. (A.59) through by ϕm and ρ, and then integrating over the length
of the lattice (e.g.

∫H
0 dx) gives:∫ H

0
u(x, 0)ϕmρdx =

∫ H

0

∑
n

σnϕn(x)ϕmρ dx,∫ H

0
u(x, 0)ϕmρdx =

∑
n

∫ H

0
σnϕn(x)ϕmρ dx,∫ H

0
u(x, 0)ϕmρdx =

∑
n

σn

∫ H

0
ϕn(x)ϕmρ dx,∫ H

0
u(x, 0)ϕmρdx =

∑
n

σnδnm,∫ H

0
u(x, 0)ϕmρdx = σm. (A.60)
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Substituting Eqs. (A.47) and (A.48) into Eq. (A.60), using its piece-wise definition
gives:

ρ1u1A
(1)
m

∫ H
2

0
sin

(
cm√
ν1
x

)
dx+ ρ2u2A

(2)
m

∫ H

H
2

sin
(
cm√
ν2

(x−H)
)
dx = σm,

ρ1u1

√
ν1

cm
A(1)
m

[
− cos

(
cm√
ν1
x

)]( H
2 )

0
+ ρ2u2

√
ν2

cm
A(2)
m

[
− cos

(
cm√
ν2

(x−H)
)]H

H
2

= σm,

ρ1u1

√
ν1

cm
A(1)
m

[
− cos

(
cm√
ν1

)
H

2 − (−1)
]
+

+ρ2u2

√
ν2

cm
A(2)
m

[
− cos

(
cm√
ν2
.0
)

− − cos
(
cm√
ν2
.
(

−H

2

))]
= σm,

ρ1u1

√
ν1

cm
A(1)
m

(
1 − cos

(
cm√
ν1

H

2

))
− ρ2u2

√
ν2

cm
A(2)
m

(
1 − cos

(
cm√
ν2
.
H

2

))
= σm.

(A.61)

Substituting into Eq. (A.61) with Eq. (A.58):

ρ1u1

√
ν1

cm
A(1)
m

(
1 − cos

(
cm√
ν1

H

2

))
+ A(1)

m ρ2u2

√
ν2

cm

sin
(
cnH
2√

ν1

)
sin

(
cnH
2√

ν2

)
(1 − cos

(
cm√
ν2
.
H

2

))

= σm,

A(1)
m

ρ1u1

√
ν1

cm

(
1 − cos

(
cm√
ν1

H

2

))
+ ρ2u2

√
ν2

cm

sin
(
cnH
2√

ν1

)
sin

(
cnH
2√

ν2

)
(1 − cos

(
cm√
ν2
.
H

2

))
= σm. (A.62)

A.2.2 Numerical solution of steady, pressure-driven flow
with density stratification

Here, an analytical solution of steady, pressure-driven flow with transverse variational
density is presented. A schematic representation of the scenario being discussed
can be found in section 4.2.3.2 shown by Figure 4.3. A steady pressure gradient
is applied as −Gêy. The transverse, continuous variation of density, displayed in
Figure 4.3, can be expressed using the Heaviside function, Θ(x) as follows:

ρ(x) = 1
2 (ρ0R + ρ0B) + 1

2 (ρ0R − ρ0B) tanh
(
β
(
x− H

4

))
Θ
(
H

2 − x
)

+ 1
2 (ρ0R − ρ0B) tanh

(
β
(3H

4 − x
))

Θ
(
x− H

2

)
,

(A.63)

Now, writing the Navier-Stokes equation for a weakly compressible lattice fluid and
associated boundary and symmetry conditions that characterise this particular flow:

d

dx

(
η(x) d

dx
u(x)

)
= G, u(0) = u(H) = 0,

[
du

dx

]
H
2

= 0, (A.64)
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where, as used throughout, ρ, u and η denote density, velocity and shear viscosity
of the fluid. Noting that, using the definition of shear viscosity:

ν = η

ρ
, (A.65)

that is kinematic viscosity, ν, is set constant. Then due to the continuous variation
in density, the shear viscosity will also have continuous transverse variation.
Now, letting x ≤ H

2 and integrating Eq. (A.64) and applying the symmetry condition
to remove the integration constant results in:

du

dx
= G(2x−H)

2η(x) . (A.66)

Rearranging Eq. (A.65) and substituting for η, taking the constant kinematic viscosity
outside the integration. Now, integrating over the range [0, x < H

2 ], using appropriate
boundary condition and a dummy variable, it is possible to obtain the following:

u(x) = G

2ν(λ3)

∫ x

0

(2α−H)
ρ(α) dα. (A.67)

Now, the integral above can be evaluated using Simpson’s rule with the expression for
the density given by Eq. (A.63) to produce a semi-analytical solution for this flow.
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B.1 Computation of vesicle surface principal cur-
vatures

In order to calculate the Mean and Gaussian curvatures need to compute the mem-
brane forces, the derivatives within the principal curvature expressions, Eq. (5.53),
explored further as shown in Eq. (5.63), need to be transformed into derivatives
within the laboratory frame. This appendix looks at the projection of the the
derivatives from the simulation frame into the surface frame, again, using the unit
normal to the surface as a basis for this, where the associated error is also considered
by defining three different general surface co-ordinate frames. With choice of which
co-ordinate frame is most appropriate at a location being defined as when the
error is minimised. Recalling that:

êz =
(

[N̂X ]P , [N̂Y ]P , [N̂Z ]P
)
, (B.1)

Defining three different general surface local co-ordinate frames, Σ1(x1, y1, z1),..,
Σ3(x3, y3, z3). The related x axes are given as follows (found by when dotted
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on the z axes equal 0):

êx1 = 1√
1 − [NZ ]2P

(
− [N̂Y ]P , [N̂X ]P , 0

)
, (B.2)

êx2 = 1√
1 − [NX ]2P

(
0, [N̂Z ]P ,−[N̂Y ]P

)
,

êx3 = 1√
1 − [NY ]2P

(
[N̂Z ]P , 0,−[N̂X ]P

)
,

with the corresponding orthogonal (or bi-normal) y axes being given by the cross-
product of the x and z axes (êyi

= êz × êxi
):

êy1 = 1√
1 − [NZ ]2P

×
(

− [N̂XN̂Z ]P ,−[N̂Y N̂Z ]P , [(1 − N̂2
Z)]P

)
, (B.3)

êy2 = 1√
1 − [NX ]2P

×
(

[N̂2
X − 1]P , [N̂XN̂Y ]P , [N̂XN̂Z ]P

)
,

êy3 = 1√
1 − [NY ]2P

×
(

− [N̂XN̂Y ]P , [(1 − N̂2
Y )]P ,−[N̂Y N̂Z ]P

)
.

Now, projecting the simulation (or laboratory) frame normal N̂ into each of the
local surface co-ordinate frames results in:

n̂x1 = N̂ · êx1 = −[N̂Y ]P N̂X + [N̂X ]P N̂Y√
1 − [NZ ]2P

,

n̂x2 = [N̂Z ]P N̂Y − [N̂Y ]P N̂Z√
1 − [NX ]2P

,

n̂x3 = [N̂Z ]P N̂X − [N̂X ]P N̂Z√
1 − [NY ]2P

. (B.4)

n̂y1 = N̂ · êy1 = −[N̂XN̂Z ]P N̂X − [N̂Y N̂Z ]P N̂Y + [(1 − N̂2
Z)]P N̂Z√

1 − [NZ ]2P
, (B.5)

n̂y2 = [N̂2
X − 1]P N̂X + [N̂XN̂Y ]P N̂Y + [N̂XN̂Z ]P N̂Z√

1 − [NX ]2P
,

n̂y3 = −[N̂XN̂Y ]P N̂X + [(1 − N̂2
Y )]P N̂Y − [N̂Y N̂Z ]P N̂Z√

1 − [NY ]2P
,

similarly, the simulation frame derivatives are projected into the local co-ordinate
frame as such:

∂

∂x1
= êx1 · ∇X = 1√

1 − [NZ ]2P

(
−[N̂Y ]P

∂

∂X
+ [N̂X ]P

∂

∂Y

)
, (B.6)
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∂

∂x2
= 1√

1 − [NX ]2P

(
[N̂Z ]P

∂

∂Y
− [N̂Y ]P

∂

∂Z

)
,

∂

∂x3
= 1√

1 − [NY ]2P

(
[N̂Z ]P

∂

∂X
− [N̂X ]P

∂

∂Z

)
,

∂

∂y1
= êy1 · ∇X (B.7)

= 1√
1 − [NZ ]2P

(
−[N̂XN̂Z ]P

∂

∂X
− [N̂Y N̂Z ]P

∂

∂Y
+ [1 − N̂2

Z ]P
∂

∂Z

)
,

∂

∂y2
= 1√

1 − [NX ]2P

(
[N̂2

X − 1]P
∂

∂X
+ [N̂XN̂Y ]P

∂

∂Y
+ [N̂XN̂Z ]P

∂

∂Z

)
,

∂

∂y3
= 1√

1 − [NY ]2P

(
−[N̂XN̂Y ]P

∂

∂X
+ [1 − N̂2

Y ]P
∂

∂Y
− [N̂Y N̂Z ]P

∂

∂Z

)
.

From this, the first order derivatives of the normal can be computed locally on
the surface around point P using Eqs.(B.4, B.6). After some simplification, the
expressions for the derivatives

[
∂n̂x

∂x

]
P

in each frame are given as:

[
∂n̂x1

∂x1

]
P

= 1
1 − [N̂Z ]2P

[N̂Y ]2P (N̂X)X + [N̂X ]2P (N̂Y )Y − [N̂XN̂Y ]P
(

(N̂X)Y + (N̂Y )X
),

[
∂n̂x2

∂x2

]
P

= 1
1 − [N̂X ]2P

[N̂Z ]2P (N̂Y )Y + [N̂Y ]2P (N̂Z)Z − [N̂Y N̂Z ]P
(

(N̂Z)Y + (N̂Y )Z
),

[
∂n̂x3

∂x3

]
P

= 1
1 − [N̂Y ]2P

[N̂Z ]2P (N̂X)X + [N̂X ]2P (N̂Z)Z − [N̂XN̂Z ]P
(

(N̂Z)X + (N̂X)Z
),

and similarly, ∂n̂y

∂y
as:[

∂n̂y1

∂y1

]
P

= 1
1 − [N̂Z ]2P

× (B.8)[N̂2
XN̂

2
Z ]P (N̂X)X + N̂XN̂Y N̂

2
Z ]P

(
(N̂Y )X + (N̂X)Y

)
+

− [N̂XN̂Z ]P [1 − N̂2
Z ]P

(
(N̂Z)X + (N̂X)Z

)
+ [N̂2

Y N̂
2
Z ]P (N̂Y )Y +

+ [1 − N̂2
Z ]2P (N̂Z)Z − [N̂Y N̂Z ]P [1 − N̂2

Z ]P
(
(N̂Z)Y + (N̂Y )Z

),
[
∂n̂y2

∂y2

]
P

= 1
1 − [N̂X ]2P

×[N̂2
X − 1]2P (N̂X)X + [N̂XN̂Y ]P [N̂2

X − 1]P
(
(N̂Y )X + (N̂X)Y

)
+
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+ [N̂XN̂Z ]P [N̂2
X − 1]P

(
(N̂Z)X + (N̂X)Z

)
+ [N̂2

XN̂
2
Y ]P (N̂Y )Y +

+ [N̂2
XN̂

2
Z ]P (N̂Z)Z + [N̂2

XN̂Y N̂Z ]P
(
(N̂Z)Y + (N̂Y )Z

),
[
∂n̂y3

∂y3

]
P

= 1
1 − [N̂Y ]2P

×[N̂2
XN̂

2
Y ]P (N̂X)X − [N̂XN̂Y ]P [1 − N̂2

Y ]P
(
(N̂Y )X + (N̂X)Y

)
+

+ [N̂XN̂
2
Y N̂Z ]P

(
(N̂Z)X + (N̂X)Z

)
+ [1 − N̂2

Y ]2P (N̂Y )Y + [N̂2
Y N̂

2
Z ]P (N̂Z)Z +

− [N̂Y N̂Z ]P [1 − N̂2
Y ]P

(
(N̂Z)Y + (N̂Y )Z

),
the cross-derivatives ∂n̂y

∂x
area also calculated in local frame by the following:

[
∂n̂y1

∂x1

]
P

= 1
1 − [N̂Z ]2P

× (B.9)[N̂XN̂Y N̂Z ]P
(

(N̂X)X − (N̂Y )Y
)

+ [N̂2
Y N̂Z ]P (N̂Y )X +

− [N̂2
XN̂Z ]P (N̂X)Y + [N̂X(1 − N̂2

Z)]P (N̂Z)Y − [N̂Y (1 − N̂2
Z)]P (N̂Z)X

,
[
∂n̂y2

∂x2

]
P

= 1
1 − [N̂X ]2P

×[N̂XN̂Y N̂Z ]P
(

(N̂Y )Y − (N̂Z)Z
)

+ [N̂Z ]P [N̂2
X − 1]P (N̂X)Y +

+ [N̂XN̂
2
Z ]P (N̂Z)Y − [N̂Y (N̂2

X − 1)]P (N̂X)Z − [N̂XN̂
2
Y ]P (N̂Y )Z

,
[
∂n̂y3

∂x3

]
P

= 1
1 − [N̂Y ]2P

×[N̂XN̂Y N̂Z ]P
(

(N̂Z)Z − (N̂X)X
)

+ N̂Z [1 − N̂2
Y ]P (N̂Y )X +

− [N̂Y N̂
2
Z ]P (N̂Z)X + [N̂2

XN̂Y ]P (N̂X)Z − [N̂X(1 − N̂2
Y )]P (N̂Y )Z

.

The outcome of this work is that the expressions for the derivatives of the surface
given in Eq. (5.63) have now been evaluated within simulation frame through reference
to the unit normal N̂ . From this, the expressions for the principal curvatures given in
Eq. (5.53) can now be calculated, and as such the membrane forces computed. Here,
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three different general surface frames were defined to minimise numerical error, with
the choice of which local co-ordinate frame to use at a given location being determined
by the resultant error. This error depends upon which component of the unit normal
is largest at that point, with when components tend towards 1, a potential singularity
is avoided in the denominator by switching the choice of local co-ordinate frame.
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