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Abstract

Multi-component fluid flows are frequently seen in both nature and industry, such
as gas-liquid flows (air-water) and liquid-liquid flows (oil-water). The accurate
simulation of such fluid flows requires models to: (i) solve the governing fluid
dynamics equations; (ii) reproduce known boundary behaviour at the free surface
between the fluids; (iii) embed known surface physics representative of that of the
target fluid object, i.e., surface tension when simulating drops. Here, meso-scale
modelling techniques offer attractive options for simulating such flows, where due
to working at a smaller scale than macro-scale approaches, one can investigate
more detailed interactions and phenomena, whilst also recovering the continuum
fluid dynamics equations.

The development of the lattice Boltzmann method (LBM), a bottom-up kinetic
scale Navier-Stokes solver, furnishes the ability to model such macro-scale properties
whilst allowing for the inclusion of meso-scale physics. The chromodynamic multi-
component extension of this (c(MCLBM) treats the fluids as separate species, with
a diffused interfacial region (de facto surface), where discrete immersed interface
forces can be applied to embed known physics of the fluid object. Theoretically, such
a modelling approach should be capable of simulating a range of fluid objects, for
example: liquid drops, vesicles (erythrocytes), and capsules, by manipulating the
treatment of the interface.

This work explores extensions to the cMCLBM, with a final objective of modelling
vesicles (tailored towards erythrocytes) using this essential approach. Before this,
however, it is sensible to confirm the fundamental foundations of the model, i.e., the
model’s kinematics and dynamics. As such, work first focuses on the simulation of
less complex fluid objects (drops), investigating the utility of the model when applied
to fluid flows with a density contrast, where stability is strained. Here, the kinematics
and dynamics of the model are assessed in detail through both mathematical
analysis and simulation data, to quantify its compliance with known continuum
hydrodynamic conditions such as: mutual impenetrability, the no-slip condition,
and stress balance across the interface. Following the enhanced understanding of
the cMCLBM gained from this work, the simulation of vesicles is targeted. The
primary outcome of this work is the development of a single framework approach to
modelling vesicle hydrodynamics, with promising possibilities for future applications
within haemorheology and microfluidics.
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Introduction

Contents
1.1  Background and Motivation| . . . . . ... ... ... ... 1
1.2 Aims and Contribution of this Workl . . . . . . ... ... 3
1.3 Thesis Outline ... ... ... ... ..., 4

1.1 Background and Motivation

The class of fluid mixtures described as immiscible fluids —fluids which are insoluble
in each other —can be found in a variety of physical fluid flows, the classic example
being that of oil and water. The understanding and modelling of such immiscible
fluid flows presents itself as an important objective in many fields, where such
flows are prominent, e.g., food rheology, geophysics, micro-fluidics, the study of fuel
cells, etc. Flow in all these systems are most often addressed in the continuum
limit of hydrodynamics. We ask in this thesis, can this same continuum limit,
albeit subject to interpretation, be used to encapsulate the dynamics, in computer
simulation, of more complex, hybrid objects? Specifically, by working in an adapted
continuum limit, a final objective is set for the modelling of flowing red blood cells
(RBCs, erythrocytes, or, more neutrally, vesicles), by treating them (erythrocytes)
as one immiscible fluid (cytoplasm) submerged in a background fluid (plasma), with
the membrane treated as an appropriate boundary between the two fluids (i.e., a
quasi-two-dimensional surface —the interfacial region between the fluids in diffused
interface models, although considered and treated as essentially two dimensional,

has a small and finite thickness). Such an enquiry is permitted as a consequence of
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the natural separation of length scales in the description, the physical erythrocyte
membrane having a thickness of order nm, the erythrocyte itself having a width of
order pm. This scale separation means mesoscale fluid dynamic simulation techniques
are attractive options for modelling. Of course, this approach to vesicle modelling
necessarily "integrates out" some microscopic detail (e.g., the biochemical properties of
the membrane) which is replaced in this work with a concept currently introduced as
a "shape energy description” of the local membrane. Once this concept is established,
we will ask if appropriate vesicle behaviour accrues from a computationally viable

model, conceived along the lines outlined above.

If one were to successfully establish this continuum view of vesicles, then the resulting,
enhanced ability to understand and model immiscible fluids acquires even greater
technological importance, as further applications, in fields such as bioengineering
and chemical engineering, will fall within range of simulation. A question then
arises as follows. If both liquid drops and vesicles are to be retained within the
same essential approach (i.e., considering vesicles as immiscible fluids with a diffused
interface within the continuum approximation) then in what ways must the modelling
approach differ? One would naturally assume that a vesicle model would have to
include more complex mesoscale physics to describe the more elaborate behaviour of
vesicles (which will, presumably, be derived from coarse-grained approximations of
more detailed microscopic physics) but the additional physics must also rely upon
an underlying stratum of ideas common to both vesicle and drop simulation. Put
another way, a single framework methodology’s vesicle limit and its drop limit (if
they exist) might well both rely on common physical and dynamical principles. To
address this issue, here, we are motivated to clarify the origins, within our essential
method (of lattice Boltzmann simulation- see below) of the kinematic and dynamical
boundary conditions (which relate the velocity and stress profiles across an interface).
Put another way, with a broad spectrum of applications in view, compliance with
a core set kinematic and dynamic conditions must be assured. Accordingly, the

behaviour at the liquid-liquid surface is a recurrent theme throughout this thesis.

For the discussed reasons, a model which allows the simulation of such immiscible
fluids, where meso-scopic physics may be incorporated, to develop an accurate
continuum scale description of the fluids, is very desirable. There is only a small
class of fluid solvers, appropriate for tackling the simulation of such flows. A
relatively new and attractive modelling technique is the lattice Boltzmann Method
(LBM), which uses a kinetic scale evolution equation to describe the hydrodynamics

of fluids, consistent with the weakly compressible Navier-Stokes equations. The
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multi-component extension of LBM (MCLBM), which allows for the simulation
of multiple immiscible fluids, presents itself as a natural candidate to tackle such
an investigation. The chromodynamic MCLBM (¢cMCLBM) variant is the one

implemented throughout all the work presented here.

1.2 Aims and Contribution of this Work

The broad aims of this work and the associated contribution to knowledge in the field
centre around the extension of a MCLBM variant, namely cMCLBM —the reasons for
using this variant are discussed in Chapter [2] This research focuses on the progressive
development and analysis of a suite of cMCLB models, to allow for the simulation
of more or less complex immiscible fluids (such as vesicles (complex —structured
membrane) and drops (less complex —no membrane)), whilst providing an enhanced
understanding of the simulation technique. The aims of this work, and the associated

contribution to knowledge, can be stated explicitly in three, progressive tiers:

(i) Assess the model’s kinematics and dynamics, as well as the coupling between

the two, to provide a better understanding of the methodology.

— An important component of simulating immiscible fluids at the mesoscale
is the accurate simulation of the boundary between the fluids (the interface
in cMCLBM). Hence, confirmation that the interface meets the kinematic
and dynamic hydrodynamic boundary conditions (introduced in Chapter [2)
and any subsequent understanding from this analysis, e.g., effects on
the stability of the method in certain flows, will provide an important
contribution to the field and enhanced methodological understanding.
To achieve this, both mathematical analysis of the methodology and
examination of simulation data on compliance with kinematical and

dynamical boundary conditions is presented.

(ii) Investigate the applicability of the method to immiscible fluids with a large

density contrast.

— Following (i), the applicability of the method to different flow scenar-
ios is tested, mainly as a proxy for stability, aiming to express the
model’s strengths and limitations. Again, with focus on compliance with
kinematical and dynamical boundary conditions, building on the work
in (i). Specifically, the aim here is to further investigate the model’s
suitability for simulating fluids with large density contrasts, curved

interfaces, small Reynolds numbers flows, density stratified flows and
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pseudo three-dimensional flows (i.e., axially symmetric two-dimensional
flow). In doing so, this will highlight current limitations and strengths
of the model, providing an enhanced understanding of the method and

reveal new directions for future work.

(iii) Development of a single-framework, three-dimensional cMCLBM for simulating

vesicle hydrodynamics.

— Following the enhanced understanding and conformation of our model’s
kinematics and dynamic from (i) and (ii) above, the cMCLBM method is
extended to the simulation of vesicle hydrodynamics in three-dimensions.
The utility of such a model is discussed further in Chapter |5, however,
this work presents itself as potentially the most appropriate and appealing
application of the cMCLBM in its current form. Developed here is a
novel, transparent, single-framework methodology for simulating vesicle
hydrodynamics, tailored towards human RBCs, which has the future
potential to be extended to many vesicle simulations through previously
developed methodologies. The understanding of the model’s kinematics
and dynamics stemming from aims (i) and (ii), helps develop the model,

as well as confirm its accuracy.

1.3 Thesis Outline

To start this thesis, Chapter [2| gives necessary background on both hydrodynamics
and lattice Boltzmann method, in order to to provide context, with further chapter-
specific literature found at the start of Chapters and [5] Chapter [3] presents
work to fulfil aim (i) and is the main methodology section of this thesis. From
this, Chapter 4| seeks to address aim (ii), as well as further the work in aim (i).
Finally, Chapter 5| distills preceding work around aim (iii), which utilises model
understanding from aims (i) and (ii). This work encapsulates the primary output
from this research, which is the development of the chromodynamic model for the
simulation of vesicles, tailored towards RBC dynamics. The significance of the
findings in these three Chapters is then discussed and evaluated in Chapter [6] where

future directions for the work are also given.
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2.1 Introduction

This chapter will provide much-needed background to support this thesis as follows.
In the present context, an exhaustive survey is inappropriate; what is called-for is a
contextualisation of the novel work presented. Accordingly, the content of this chapter
is sub-divided into two sections: first the broader topic of hydrodynamics and, then,
second, the more novel area of lattice Boltzmann equation simulation. The former
gives an overview of key hydrodynamics relevant to the work. Therefore, the governing

fluid dynamics equations, that describe the motion of the fluid at the relevant length
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scales will be introduced, followed by a consideration of important non-dimensional
quantities commonly used in fluid dynamics (which are reviewed throughout). To
conclude our hydrodynamics survey, kinematic and dynamic hydrodynamic boundary
conditions will be discussed, since a large proportion of the work herein alludes to
these boundary conditions. The second half of this background chapter will focus
on the topic of lattice Boltzmann equation simulation. Here we commence with
the relevant history, development and fundamentals of the method, introducing and
comparing salient collision operators and also multi-component lattice Boltzmann
method (MCLBM) variants commonly implemented. To close this section, simulation
boundary conditions are discussed, which will be referenced throughout the simulation

results presented in the remainder of this thesis.

In order for one to discuss the relevant hydrodynamics and simulation techniques
for their work, one must first be aware of the relevant length and time scales of
target phenomena. Fluid flows are described at varying length and time scales
and, depending upon the target scale at which one aspires to work, the governing
equations of the fluid and the modelling technique that may be implemented will vary.
Figure [2.1| presents the various length and time scales used within the mathematical
modelling of materials and fluid flows. As the work in this thesis focuses on the
investigation of immiscible drops, as well as erythrocytes (with a characteristic scale
of um), it is logical, from Figure , that the modelling technique should span the

mesoscale.

Researchers interested in representing the behaviour of atoms and molecules would,
perhaps, deploy molecular dynamics (MD) [1}, 2], which could be used to describe
the evolution of a system over time, where detailed forces and interactions between
molecules can be simulated. In order to produce significant results, the time scale of
the simulation must be adequately long enough to model the system and associated
phenomena. Due to this, and also the large number of degrees of freedom within
simulations, MD simulations have high comparative computational cost and are

therefore restricted in application to shorter time and length scales.

On the mesoscale, researchers interested in fluid flows that may contain some
physics characteristic of smaller length scales may still wish to address moderate time
and length scales. Such workers may opt for modelling techniques such as lattice
Boltzmann Method (LBM) [3], 4} 5, 6], Dissipative Particle Dynamics (DPD) |7, 8, 9]
and Smoothed Particle Hydrodynamics (SPH). In the case of LBM, a kinetic scale

evolution equation -effectively the equation of motion of a single particle probability
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Figure 2.1: Schematic outlining the hierarchy of length and time scales effective within the
modelling of materials and fluid flows, highlighting the scales where different descriptions
operate.

distribution function - is used to describe the time evolution of the latter, over an
Eulerian lattice. Importantly, the method has been shown to recover the continuum
Navier-Stokes equations (through a Chapman-Enskog procedure, soon to be discussed
—section [3.3.1)). Dissipative Particle Dynamics (DPD) is more akin to that of MD
(and hence, potentially, a more suitable approach for workers from this background)
where fluid particles are essentially treated as clusters, or groups of molecules —which
can be considered a coarse grained approach —where Newton laws are enforced and
particle-particle interactions are simulated |7, 8]. Another Lagrangian, mesh free,
fluid dynamics technique is Smoothed Particle Hydrodynamics (SPH) [10, |11], which
was originally developed for astrophysical problems (where a boundary often does
not exist) and later applied to fluid dynamics. Within SPH, the domain is populated
by a set of particles that have material properties (such as mass and velocity), with
these particles’” interactions within the domain being controlled by what is known as
a smoothing function. In SPH, the Navier-Stokes equations are discretised in relation
to these particles, allowing the governing fluid dynamics equations to be solved. One
potential advantage over DPD, is that SPH has specific physical parameters (such as
viscosity), due to its direct derivation from the Navier-Stokes equations [12]. Clearly,
both DPD and SPH are natural contenders for the hydrodynamic simulation of
Lagrangian objects such as the vesicles and drops we consider; accordingly, some
of the issues which determine our choice of LB simulation a vehicle (other that of

an existing expertise, of course) is appropriate.
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When considering the relative computational cost of mesoscale simulation tech-

niques, the coverage of published comparative studies has, until recently, been sparse.
There has been a good deal of formal work comparing DPD and molecular dynamics
(MD) and there is recent work comparing LBM with SPH. We return below to the
comparison of DPD and LBM.
A great majority of comparative studies involving DPD relate DPD to MD and aim
to show the benefits of scaling up to the meso-scale (canonically, the use in DPD
of a soft conservative potential greatly increases the length of the simulation time
step). Alternatively, comparing SPH and LBM, there is seemingly no great difference
in the computational expense of both approaches. Within the work by Kajzer et
al. |13], LBM was found to be the more efficient approach when applied to single
fluids (note) large-eddy simulation (LES) results of 3D Taylor-Green vortex flow;
meanwhile, in the work by Tafuni et al. [14], better performance was seen from SPH
for various flows when compared to an LB approach —with both methodologies
comparing well against more mature approaches (such as volume of fluid and higher
order difference schemes) [14]. Work such as that reported in [15] concluded that
the LBM offered a better order of convergence and higher accuracy than SPH when
examining multi-phase flows, although the authors stated that SPH has a larger
stability range (and in particular is more suitable to higher Mach number flows).
Note, both methodologies are suitable for parallel implementation due to their
locality and explicit nature. For the low Re, multi-component applications of this
thesis in view, there is therefore, no significant computational advantage to either
method. However, the simulation of immiscible fluid flows, supported by LBM has a
large community, with already-defined, developed and documented models (to be
discussed shortly), all encapsulated within amenable frameworks. This essentially
logistic argument -of convenience- means that LBM is a good choice for the target
application of the simulation of human RBCs, compared with SPH.

There remains the question of DPD versus LBM simulation. Certainly, DPD has
been used to simulate capsules much smaller than erythrocytes, with applications to
drug delivery vectors. Here, though, a quantitative comparison of the efficiency of
DPD and LBM for our target application is not straightforward, for the equivalence of
a DPD bead and an LB distribution function component (both, notionally mesoscale
objects, note) is an open question, the address of which should precede a comparative
efficiency study. Since such an investigation is an end in itself, we again fall-back
on pragmatism (experience and available tools) to justify our choice of LBM as a
tool. Working at this length scale allows complex boundary and interface physics
to be encapsulated within models in a natural and intuitive manner, whilst still

developing, on balance, a computationally efficient model (traditionally, with LBM,
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one cites the opportunity to avoid explicit tracking of immiscible fluid species and
ready parallelisability, but is beset by criticism of the method’s profligate use of

computer memory).

Where larger length and time scales need to be simulated, macro-scale modelling
techniques such as traditional computational fluid dynamics (CFD) (finite volume
method [16], finite element method [17], etc.) present a clear way forward. Unlike
LBM, which may be described as a bottom-up approach to fluid dynamics, traditional
CFD solves macroscopic equations of mass and motion, normally through discretisa-
tion of partial differential equations. Accordingly, these methods are often referred to
as top-down approaches. Such methods are computationally efficient, mature, widely
implemented, optimally efficient and very capable of simulating larger length and
time scales of particular problems, but can often lose the ability to include important

physics that originates at smaller length scales.

The differing scales and corresponding modelling techniques often interface with
each other through multi-scale modelling. Multi-scale models at different length
scales, help to build a more complete picture of the system being investigated.
Of course, this approach aligns with physical reality, where materials and living
organisms consist of a series of complex coupled systems at different length scales
[18], a salient example being the meso-scale dynamical flow properties of a RBC
and the micro-scale processes occurring within its membrane, that dictate properties
which, in turn, influence the dynamics 19, 20].

The primary interest of this work is modelling of immiscible drops and ery-
throcytes, where the complex relationship at the boundary, between the fluids, is
to be investigated. Hence, by using bottom-up, meso-scale modelling approaches,
the interface between the fluids may be encapsulated with much higher accuracy,
compared to at the macroscale, allowing detailed interface physics to be encapsulated,
assessed and optimised. A natural candidate, then, for such an investigation, is
the LBM. The benefits of using such a method for this work will, hopefully, be
readily apparent; at any rate, they will be made explicitly clear in the remainder

of this chapter.

2.2 Hydrodynamics

2.2.1 Governing Equations

Within the continuum description of fluid mechanics, governing fluid dynamics

equations describe the macroscopic conservation of mass and momentum in a system.
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Unlike at the molecular level, where the fluid is comprised of molecules undergoing
random Brownian motion, at the continuum scale, a single velocity value is assigned
at every point in the fluid. (As an aside remark, the continuum concept of a fluid
parcel contains many fluid molecules). Analytical solutions to these equations can
only be found for very simple cases (such as flow between two parallel plates) [21],
leading to the development of numerical methods to solve these equations for more
complex geometries, i.e., porous media. LBM is an indirect Navier-Stokes solver,
that uses a kinetic scale evolution equation to describe particle distributions, which
can be shown to recover the macroscopic fluid dynamics equations to be outlined. In
this section, the governing equations (Continuity, Cauchy Momentum and Navier-
Stokes equations) are identified in preparation for further discussion (on how these
equations link with LBM) in sections and [3.3.1] This section will not provide
detailed derivations, rather aim to present an overview —for further information
the reader is referred to references [21], [22] 23, 24].

2.2.1.1 Continuity Equation

A fundamental equation descriptive of a fluid system is the continuity equation.
Simply put, it is a continuum level description of the fact that, in a fluid system,
mass is conserved. The derivation of this equation follows by considering the change
of mass within a control volume, by appeal to the divergence theorem [25]. The
continuity equation is given in two separate forms in Eqgs. and , with
the time derivative in Eq. giving the change in mass in the system and the
divergence relating to the flow in and out of the control volume.

dp B

where p, u and V are the fluid density, fluid velocity vector and gradient operator.
An alternative form of Eq. (2.1) may be given as:

Dp

— V.-u=0 2.2

oy TPV u=0, (2.2)
above, the material derivative % denotes the rate of change in density of a fluid
element following the motion and is commonly used when describing fluid dynamics

systems. The mathematical definition of the material derivative (of function f) is:

Df _of
—_ == -V f.
D o eV
If the fluid is incompressible, i.e., p does not vary in time and space, then Eq. (2.1))

can be simplified to:

V-u=0. (2.3)
Hence, Eq.(2.3)) is the incompressible continuity equation. Note, that an incompress-
ible fluid flow is identified based of its Mach number (see section [2.2.3]).

10
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2.2.1.2 Incompressible Cauchy Momentum Equations

The general equations of motion describing the non-relativistic momentum con-
servation in the moving fluid can be derived from Newton’s second law, F' = ma.
One obtains the eponymous Cauchy momentum equations, by considering flow
and forces in an infinitesimal fluid element (a parcel). A full derivation can be
found in |24]. The resulting incompressible Cauchy momentum equations are

given in component form as:

Dua 8&a5
= F,, 2.4
"Dt~ awy TP (2.4)

where o, B = x,y, 2, F, is an external force, i.e., gravity and 6,4 is the nine-component
stress tensor. Stress is defined as a force per unit area acting on a surface element -
which contains a magnitude and a direction (there being both tangential and normal
stresses). Where, the eigenvalues of the stress tensor give the principle stresses which
relate to the principle stress directions (stress tensor eigenvectors). Note, all terms
in the above equation are on a per-unit volume basis. The first term in Eq.
represents the temporal and spatial change in momentum at a point, the second
term is the total stress and the third term any force density, i.e., gravity.

In order to close Eq. , one must know the form of stress tensor o,5. The
effective definition of the stress tensor varies with the material one is modelling.
For fluids, it will vary depending upon the fluid’s classification as Newtonian or
Non-Newtonian. This work deals entirely with the simulation of Newtonian fluids,
i.e., water, oil etc., where the viscous stresses are related to the local strain rate. As
such, the stress tensor, or constitutive equation for an incompressible Newtonian

fluid may be given as [26]:

_ o 8ua 8u5
Uaﬁ = —p(5a5 +v (8:{:5 + 8xa> y (25)

where p is hydrostatic pressure, d,s3 is the Kronecker delta function and v is the
dynamic viscosity of the fluid. Note that, viewed as a continuum, fluid mixtures
such as considered here, which contain deformable vesicles (e.g., blood, milk) are
famously styled non-Newtonian. Non-Newtonian behaviour is emergent; of course,

the components on which such mixtures are based are, intrinsically Newtonian.

2.2.1.3 Incompressible Navier-Stokes Equations

As stated, this work pertains to the simulation of incompressible, Newtonian fluids.
Therefore, the equation that describes the momentum for such fluids is given by

the incompressible form of the Navier-Stokes equations. These equations can be

11
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derived from the Cauchy Momentum equations, Eq. (2.4)), by substituting in the
constitutive equation for an incompressible Newtonian fluid, Eq. (2.5) into Eq. (2.4).

After simplifying, the resultant incompressible Navier-Stokes equations are:

Du

pﬁ:—ijLnAg%—E, V.u=0, (2.6)

where, v is the kinematic viscosity and the Laplacian operator is:

The significance of the incompressible Navier-Stokes equations, given by Eq. ([2.6]),
can not be overstated. They allow for the description of the motion of a fluid,
abstracted as infinitely divisible; therefore, these equations only remain valid while a
continuum description holds —while the concept of a fluid parcel as many individual
molecules (or atoms) is valid and the view of individual molecules’ motions as having
been in some sense averaged is not challenged.

With the equations that describe the fluid behaviour now outlined, the boundary

conditions at both liquid-solid and liquid-liquid interfaces need to be discussed.

2.2.2 Boundary Conditions

Alongside the governing partial differential equations that describe the fluid macro-
scopic properties over the domain, boundary conditions are needed to close fluid
dynamics problems —providing vital information about how the fluid behaves at
domain boundaries. As such, they need to be considered with the same attention.
When looking at immiscible multi-component fluid flows —fluid flows containing
multiple immiscible fluids —it is important to consider interfacial boundary condi-
tions, imposed at a fluid-fluid interface (free surface), which should be recovered
in simulation if one is to correctly capture physically consistent hydrodynamics.
This section introduces two principle boundary conditions for this case, namely,
the kinematic and dynamic boundary conditions. For clarity and future reference,
Figure shows two immisicble fluids, f; and fs; the interface between the two
fluids fi-fo is curved, with the unit normal to the interface, n, directed outwards,
towards fluid f>. Hypothetically, the diagram could depict an immiscible oil drop f;
submerged in water solution f5. It should be noted that boundary conditions in the
case of multi-phase flows, or where a phase transformation occurs, are not considered

in this work.

For the following section of work, consider a three-dimensional case of the two-

dimensional scenario depicted in Figure [2.2] such that a position on the interface

12
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Figure 2.2: Schematic showing an immiscible drop, fluid f;, submerged in a background
fluid, fo. Where, lighter orange rim shows the boundary of fluid f;, and the unit normal of
the interface, 7, is orientated pointing from f; towards f2 as shown (although this choice
is arbitrary)

between the two fluids f; and f5 over time can be given by some function F(z,y, z,t) =
0. Assume that an excerpt of the surface is represented by a local manifold, or
Monge patch and that the x,y axes are in the tangent plane of the surface excerpt.
Then, by implicit function theory, a point on the interface can be given by a height
function, h, meaning direction z is defined as z = h(z,y,t). Also note that for the

following work, subscript 1(2) denotes fluid 1(2), i.e., u; is the velocity of fluid 1.

2.2.2.1 Kinematic Boundary Condition

The kinematic boundary condition encapsulates principles of mass transfer, across
the interface. The two salient kinematic boundary conditions are: (i) the normal
component of velocity is continuous across the interface —meaning that no holes
develop in the interface, and (ii) the tangential component(s) of velocity across the
interface is continuous, i.e., tangential components of velocity balance, on either side
close to the interface, to avoid separation. The reader is directed to , , for

further information regarding these conditions.

Mutual Impenetrability
Starting with condition (i), a fluid parcel —a fictitious infinitesimal volume of fluid
matter, whose shape can be distorted over time but the mass of the parcel remains

constant (isochoric flow) —on the interface; such a parcel must remain in the interface,

13
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as the flow develops over time, for there is no relative motion perpendicular to the
interface to act to remove it. The total mass of that fluid parcel must not change,
as matter cannot be created or destroyed. This means that the interface surface

must be a material invariant and as such [23]:

DF OF
- = VF =0 2.7

Dot T4 ’ (2.7)
where, u is equal to the velocity either side of the interface, i.e., u; = u, close to
the interface. It is understood that for an implicitly defined surface, the normal to
the surface may be determined by taking the gradient of the surface, where, here, it
is assumed that the direction of the normal aligns with that in Figure (points

from fy into f3). The unit normal to the surface is therefore given by:

F

<

n =

(2.8)

<1

Rearranging Eq. (2.8) and substituting into Eq. (2.7), results in the following

general kinematic condition:

1 OF

~SF o (2.9)

Ql‘ﬁ:QQ"fL:

in which it follows that for the case where the interface has no time dependency,

the kinematic condition simplifies to the following:

>

=0. (2.10)

up - N =

=

9

Equations state the normal component of velocity must be equal either side
of the interface and are often referred to as the condition of mutual impenetrability.
Here, Eq. states that the normal component of velocity is zero either side of
the interface; this is the case for interfaces which are not time dependent and also
for boundaries between a solid, impermeable material and a fluid. Equation ([2.9))
represents the case where the normal component of velocity either side of the interface
at a point is equal, but not necessarily zero. This results in either of two outcomes:
(a) the whole interface is moving at the same velocity, thus maintaining shape and
translating with the local background fluid, or (b) the normal component of velocity
either side of the interface is balanced, but varies with position on the interface. This

means for case (b), there would be an expected deformation of interface shape [27].

No-Slip
Condition (ii) states that the tangential component of velocity at either side of the

interface must balance, and is hence continuous across the interface, this is to avoid

14
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an unphysical, infinite shear at the boundary. It should be noted that this condition
is often referred to as the no-slip condition and it only applies to viscous flows,
where continuum descriptions of the fluid are valid. The tangential component of a
vector can be defined as the original vector with its normal component projected
out: v, = v —n - (v-n), where v, is the tangent component of vector v. As such,

the no-slip boundary condition may be given as:
@1_ﬁ'<gl‘ﬁ):Q2_ﬁ‘(@2'ﬁ), (211)

where, Eq. (2.11)) is applied only in the interfacial region and u; (uy) denotes
the fluid velocity close the interface in fluids fi(f2). Equation (2.11)) simplifies
to the following when a fluid-solid boundary interaction is considered, where the

surface has zero velocity:
u—"n-(u-n)=0, (2.12)

which states that, at a solid boundary, with zero velocity, the fluid in contact with
that boundary must have no tangential component of velocity (and no normal
component of velocity if the solid surface is impermeable from Eq. (2.10])).

2.2.2.2 Dynamic Boundary Condition

The dynamic boundary condition for the case of a fluid-fluid interface states that
there is continuous stress across the interface between the fluids (free surface). Using
this statement one can formulate a stress balance between the fluids at the free
surface in the normal direction [23] 27]:

WG, =n-a, (2.13)

where, g is the stress tensor for fluids o = 1,2. Although Eq. (2.13) describes the
stress balance between two fluids at the free-surface, it only does so adequately for
flat interfaces. For curved interfaces, one must also consider the influence of surface

tension as described by the Young-Laplace equation [28, 29, 30]:

Ap =0oVn
< Lo ) (2.14)
= 0 _— _—
R, Rs

where, Ap is the pressure difference across the interface, o is the surface tension (note,
unrelated to the stress tensor with notation ) and R;, Ry are the principle radii of
curvature. This equation describes the pressure jump at the interface between two

fluids, influenced by the shape (curvature) of the interface. Surface tension o drives
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the surface area of the free surface to a minimum, creating an increased internal
pressure. For a spherical interface such as the one depicted in Figure the interior
fluid f; would have a higher pressure than the exterior fluid f, due to surface tension.
As such, the normal stress balance at the free surface between fluids needs to include

this description of the pressure difference and hence the effect of surface tension.
Therefore, the dynamic condition of Eq. (2.13)) may be adapted to the following:

1
ﬁ-&l—ﬁ-@——a(&nt&)ﬁ. (2.15)

This description is now termed a dynamic fluid-fluid boundary condition, since the
physics of surface tension is encapsulated.

There must also be tangential stress balance across the interface. This condition can
be given in the following form (where the simplification that the normal component
of velocity at the interface is zero has been used —Eq. (2.9)):

Ouy o Ouyo
77187 =12 on (2~16)

where, u;; corresponds to the tangential component of velocity for fluid fi, %
corresponds to the derivative in the normal direction to the interface and 7, the
dynamic viscosity of fluid f;.

Equations , , and correspond to the key kinematic and
dynamic boundary conditions discussed throughout this work. The following section

will examine relevant non-dimensional quantities, which are also utilised within work.

2.2.3 Non-Dimensional Quantities

Non-dimensional quantities and non-dimensional numbers are used to analyse and
classify flow behaviour in relation to the system being investigated within fluid
mechanics. They also are utilised within LB methodology itself, when setting
simulation parameters, analysing system stability and calibration of the system
(law of similarity). Identified here are four key non-dimensional quantities that
are discussed and used throughout different sections of this work, which are the:
Reynolds (Re), Mach (Ma), Weber (We) and Capillary (Ca) numbers.

The Reynolds number (Re) is a group which quantifies the ratio of inertial to
viscous forces (resistance forces between the fluid layers when subject to a shear).
Its value can indicate if the flow is laminar (lower Re) - where fluid particles flow
in parallel layers or turbulent (larger Re) - where the fluid suffers random changes

in velocity and pressure. The Reynolds number is defined as:

Re — uil B inertial forces (2.17)

v viscous forces’
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where u, | and v are the characteristic flow velocity, characteristic length scale
and kinematic viscosity of the fluid.
The Mach number (Ma) is another important group that describes the ratio of

flow velocity to the speed of sound in the medium being simulated. It is defined as:
Ma= —, (2.18)
CS

where u, ¢, is the local flow velocity and speed of sound. Generally, if the flow
is isothermal and Ma< 0.1, then the flow is considered to be incompressible, i.e.,
compressibility effects can be ignored. This bounds the regime of viscous flow
describable by the weakly compressible Navier-Stokes equations. The importance of
these two dimensionless numbers within lattice Boltzmann will be further discussed
shortly; these groups will also be used in subsequent work, within this thesis.
The Weber number (We) can be used to describe the ratio of inertial forces
to cohesion forces (e.g., surface tension), between liquid-liquid interfaces. It can
help determine if a drop will break up within a flow into small drops (i.e., larger
Weber number flows —where inertial forces dominate), or maintain its shape due to

dominant surface tension forces (i.e., smaller Weber number flows). It is defined as:

_ pu?l _ inertial forces (2.19)

o cohesion force’

We

where p, u, [, o are density, velocity, characteristic length scale and surface tension.
Finally, the Capillary number (Ca) quantifies the relationship between viscous drag

and surface tension forces; it is defined as:

Ca — pu - Viscous drag (2.20)

o surface tension’

where p, v and o are dynamic viscosity, characteristic velocity and surface tension.
Both the We and the Ca numbers can be used to quantify the deformation between
two immiscible liquids, where inertial and viscous forces act to deform the drop,
with surface tension forces working against these forces to maintain and preserve
drop shape. As such, these dimensionless quantities play an important role in
understanding drop behaviour in different flows and their importance will be discussed
further in Chapter [, when considering flow past a liquid drop, in which they are
used to help predict drop shape.
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2.3 Lattice Boltzmann Equation Simulation

2.3.1 Development and Fundamentals

The lattice Boltzmann method (LBM) was developed from the method of lattice gas
cellular automata (LGA), first introduced in 1973 by Hardy et al. [31]. The LGA HPP
model used Boolean algebra to represent a particle either being present or not present
at a given site on a square lattice where akin to the LBM, particles movement was
restricted to a finite number of directions—four in this case. In order to calculate the
macroscopic hydrodynamic quantities of mass and momentum, ensemble averaging
was required to reduce that statistical noise which led to increased computational
expense. Due to the method not recovering the Navier-Stokes equations of motion,
as well as a lack of Galilean invariance, intrinsic noise and unphysical velocity
dependent pressure [32], it serves only as a milestone. The idea was matured by
Frisch, Hasslacher & Pomeau (1986) [33], who developed the FHP LGA, based on a
hexagonal mesh that recovered the Navier-Stokes equations and allowed mass and
momentum conservation. This was done by ensuring a certain lattice symmetry,
affording the ability to model an isotropic fluid [34]. Following this, a further
advancement of the LGA towards the LBM was the removal of the statistical noise,
through the introduction of a pre-averaged distribution function as the primary
quantity, replacing the Boolean operation within LGA models [3]. This work was
then advanced by Higuera & Jiménez (1989) 4], who substituted the continuous,
non-linear collision operator for a discrete collision rule. Since then, various collision
operators have been developed, with the simplest and most popular the Bhatnagar-

Gross-Krook (BGK) variant [35], discussed in the following subsection.

The LBM is an unconventional bottom-up approach to modelling fluid dynamics
based on kinetic theory, whereas traditional top-down CFD starts with macroscopic
equations of motion which are then discretised. Although LBM is a Navier-Stokes
solver, it functions indirectly, with the lattice Boltzmann equation (LBE) regarded
as a discretised approximation for solving the Boltzmann equation —which describes
the dynamical behaviour of dilute gases in the thermodynamic limit. The LBM can
be shown to recover the Navier-Stokes equations by appealing to Chapman-Enskog
procedure, see section for a full explanation. The method uses a discrete,
Eulerian lattice —fixed reference grid —where particle distributions (or particle
populations), representative of groups of fictitious particles, are evolved and are
tracked over the lattice, as described by a time dependent distribution function
fi(r,t). This approach to modelling fluids is justified through the argument that

microscopic behaviour of individual particles does not impact the dynamics of the
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fluid, whereas the collective behaviour of many of these individual particles (particle
distributions) does describe the fluids dynamics appropriately. The fluid is assumed
to be close to equilibrium locally on the lattice, with the equilibrium distribution
of the fluid derived from a truncated, uniformly translating Maxwell-Boltzmann
distribution (for particle velocities in an ideal gas) [6]. The distribution function
fi(r,t), represents the probability of finding a fluid particle travelling in lattice
direction 4, at lattice site r at a particular time step ¢ (in lattice units). The number
of directions the fluid particle can move in, indexed by 7, depends upon the size and
dimensions of the lattice used. The common labelling convention for lattice models
within LBM is DaQb, where ‘a’ is the dimension of the lattice and ‘b’ is the number
of lattice links—formally the number of discrete lattice velocities. The two lattice
structures used within this work are the D2Q9 lattice and the D3Q19 lattice. These

lattice structures are shown in Figure [2.3]

Figure 2.3: Schematic showing the two lattice structures used within this work and link
labelling, with (left) being the D2Q9 lattice and (right) the D3Q19 lattice.

i |01 2 3 4 5 6 7 8
e [0 -1 0 1 1 1 0 -1 -1
01 1 1 0 -1 -1 -1 0

Table 2.1: D2Q9 lattice structure, showing lattlce hnk (1), lattice velocity vector (c;)

components and lattice weights (¢;). Here, tg = 3, t1 = 55, to = 3.

The lattice Boltzmann equation, or evolution equation, is given as:
file + ¢ At t+ At) = fi(r, ) + €, (2.21)

where r corresponds to lattice site position, ¢ is the time (in lattice units), ¢;

is the lattice velocities, At corresponds to the time interval/ step and 2 is the
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l ‘ o 1 2 3 4 5 6 v & 9 10 11 12 13 14 15 16 17 18
/0 1 1 0 -1 -1 -1 01 0 1 o0 -1 0 O 1 0 -1 0
¢y 00 -1 -1 -1 0 1 1 1 0 0 1 0 -1 0 0 1 0 -1
¢c. |0 0 0 0 0 O o o011 1 1 1 -1 -1 -1 -1 -1

ti to t1 to 1y tg t1 to t1 1o tl tg to to to tl to to to tg

Table 2.2: D3Q19 lattice structure, showing lattice link (7), lattice velocity vector (¢;)
components and lattice weights (¢;). Here, tg = %, t = = L

187 12 = 36-
collision operator. There are different forms the collision operator can take; these
are discussed further in section [2.3.2

Equation encapsulates two key stages within the LBM: (i) streaming; (ii)
collision. In streaming, particle populations move to neighbouring cells over a time
interval At and collision occurs when particles collide locally inside each grid cell and
then are redistributed. Pictorially, Figure |2.4] represents the streaming and collision
stages within an interior node, on the lattice, which shows the particle distribution

functions propagating, colliding and redistributing over a single time step.

streaming collision

_.
=1

e-streaming post-streami

=1

p g post-collision

Figure 2.4: Schematic showing the streaming and collision process for one node on the
domain over one time step on a D2Q9 lattice. (Left) pre-streaming stage. (Middle) post
streaming where particle distributions propagate into the interior node. (Right) post
collision, where particle distributions have collided and been redistributed.

During the collision process, particle distributions are relaxed towards a local

equilibrium, where the equilibrium distribution function, fl-(m) (p,w), is given as:
2
(eq) UaCia | UaUBCiaCip U
/ =tip |1 -, 2.22
fi(p,u) = tip ( e T 263) (2.22)

where p is the fluid density, u is the fluid velocity at position r, u, is the & component
of the fluid velocity, ¢;, is the a component of the lattice velocity in the ith direction,
¢, is the speed of sound of the model and ¢; is the lattice link weights. The lattice link
weights are specific to the lattice model (i.e., DaQb) and are such to meet isotropy
conditions, with these conditions being given later in section [3.3.1} For the lattice
link weights used in the D2Q9 and D3Q19 models, see Tables 2.1 and [2.2]
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To calculate local macroscopic quantities, i.e., density, momentum and momentum
flux, one takes the moments of the distribution function and sums them locally, at
lattice sites over the lattice links. Density is found from the zeroth moment of the
distribution function, momentum from the first moment and momentum flux from

the second moment. These equations are expressed here:

Z fz =p,
> fitia = pua,
Z fiCz‘aCi,@ = Ha,@;

where II,5 is the momentum flux tensor.

The above-outlined technique can be shown to have asymptotic behaviour as
follows: the weakly compressible Navier-Stokes equations as the equations of motion
of the macroscopic quantities p and u,, with an isothermal equation of state —under
the low Mach number limit assumption (see section. Consequently, this imposes

a restriction on the velocity magnitude, with |u| < cs.

2.3.2 Collision Operators

Collision within LBM describes the relaxation of the distribution function towards
an equilibrium distribution given by the uniformly translating Maxwell-Boltzmann
equilibrium distribution. Physically, this reflects the collision of particles which
pushes the system towards an equilibrium state. This collision process in the LBE
(Eq. (2:21))) can be characterised using different collision operators €, with three of
the most commonly implemented algorithms in literature being: Bhatnagar Gross
and Krook (BGK) [35], two-relaxation time (TRT) [36] 37] and multiple relaxation
time (MRT) [38] schemes. Each operator has unique advantages and drawbacks,
with differing levels of complexity (conceptually and computationally). This section
aims to briefly introduce these different approaches of characterising the collision

step, discussing which will be implemented in this work and why.

2.3.2.1 BGK

The first and simplest collision operator commonly implemented within LB schemes
is the Bhatnager-Gross-Krook (BGK) operator [35]. The use of the BGK collision
operator was extremely valuable in advancing the LBM as the approximation of
the collision process reduced the mathematical difficulty involved with working with
the method. The BGK approximation is still one of the most widely implemented

approximations, with its popularity stemming from the fact that it retains the

21



2. Background in Hydrodynamics and Simulation Techniques

non-linearity of Boltzmann’s equation whilst providing a vast simplification [6].
The BGK collision operator, aiming to represent the inter-particle collisions that
drive the system towards equilibrium, eliminates f; distributions and replaces them
with equilibrium fi(e(ﬂ distributions relative to a single relaxation rate for all scales.
The BGK operator is given as follows [35]:

Q= —w, (2.23)

T

where f{°Y is the local equilibrium distribution (approximately the uniformly translat-
ing Maxwell-Boltzmann distribution) [6] and 7 is a constant value for the relaxation
time —the characteristic time for the fluid to reach an equilibrium distribution locally
—which is much simpler than the complex relaxation time functional introduced
in the Boltzmann equation. Since the relaxation is only dependent upon 7, it is
sometimes referred to as the single-relaxation time (SRT) scheme. Through Chapman-
Enskog analysis, in section [3.3.1], the relaxation time can be seen to determine the
kinematic viscosity v (and vise-versa), with the relationship between the two imposing
a resultant constraint on 7 —in order to get a physical (non-negative) kinematic
viscosity—for a simple scheme being:

—1< 1) . (2.24)
V—3 T 9 s T 2 .

Following the constraint opposed on 7, the value of 7 will affect how the fluid
is relaxed towards equilibrium. Table characterises the relaxation based on

varying the 7 value [39]:

H 7 value \ relaxation classification H
0b<r<1 over-relaxed
T=1 fully-relaxed
1<r under-relaxed

Table 2.3: Table showing how the 7 value affects how the fluid is relaxed to equilibrium
within the BGK collision operator.

The main advantage of the BGK operator is its simplicity and hence transparency;,
which makes it easy to implement. However, due to the simplicity, relaxation
towards equilibrium takes place at a single rate for all hydrodynamic quantities,
the relaxation process is not tuneable and has issues with stability for certain flows
(large Reynolds number flows where one needs to avoid 7 — 0.5) and complex
geometries (e.g., porous media, where 7 affects wall location, when bounce-back

boundaries are implemented [39]).
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2.3.2.2 TRT

The two-relaxation time collision operator (TRT) was introduced by Ginzburg in
2005, here relaxation involves two parameters [36) 37]. The development of the TRT
collision scheme arose from the more complex MRT scheme, where the number of
relaxation parameters was reduced to one fixed and one tuneable (kinetic) relaxation
parameter. Collision is now performed on symmetric and anti-symmetric parts of

the distribution function. These distribution functions are defined as follows:

f(GQ) — f'(GOI) + fﬁe"l) f(QQ) — f(GQ) _ fﬁe"l)
fis = fi + f=is fia = fi — [,

where, subscript s and a correspond to symmetric and anti-symmetric, subscript ¢

(2.25)

and —i correspond to link direction ¢ and opposite link direction —i. By using two
relaxation parameters, it allows for a larger toleration of fluctuations from equilibrium
compared to that of the BGK collision operator.

The TRT collision operator, corresponding to the evolution equation in Eq. ,

is now defined as:

At

Ts

Q= (fis(ﬁ, t) — fz‘(fq) (pvﬂ))

- f (fiale,t) = fie?(pyw)) - (2.26)

The extra degree of freedom compared to the BGK scheme affords stability gains,
connected to a magic-parameter relating to the truncation error, that can be tuned
depending upon the flow being simulated [40]. Additionally, a reduction in the need
to tune individual relaxation relates to different modes within the MRT scheme
helped retain the simplicity of the BGK scheme. A disadvantage of the TRT collision
scheme is that the operator’s mathematical derivation and presentation can make
it hard to interpret and understand. Knowing this, recent efforts have been made
to articulate the method and its implementation in a more transparent way [41].
This barrier, as well as the fact that the method is: (i) neither the simplest collision
operator —due to needing to relax symmetric and anti-symmetric links as opposed
to the single relaxation rate in the BGK operator; and (ii) not sufficiently tuneable
—due to only having one free, tuneable parameter in comparison to the MRT model

which has multiple, can be seen as drawbacks.

2.3.2.3 MRT

The final collision scheme needed to be discussed is the multi-relaxation time (MRT)
scheme. Multiple-relaxation time schemes, as the name suggests, involve the use
of multiple relaxation parameters, allowing the individual tuning of the relaxation

of hydrodynamic quantities such as density, velocity and momentum fluxes, as well

23



2. Background in Hydrodynamics and Simulation Techniques

as some additional non-hydrodynamic “ghost” modes —modes which contain no
hydrodynamic (physical) information, that can be tuned for further stability [38, 42,
43| |44} 45, |46]. An ability to relax modes at differing rates is physically consistent
and thus may be seen as a more physically accurate treatment of the collision process
compared to that of the BGK operator [47].

The first MRT collision scheme was introduced by D’Humieres [38] as a way of
removing instabilities, stemming from the BGK collision operator. Since this time,
many researchers have contributed to MRT scheme literature: Lallemand et al., [42]
produced an analysis which explored the tuneability of the relaxation parameters to
enhance the stability of the scheme; Dellar [4§] continued work considering how the
non-hydrodynamic modes relate to method stability; Halliday et al. [49] developed
a D2Q9 MRT collision scheme based on this prior art, with the inclusion of a Guo
forcing, which was then extended to D3Q19 by Xu et al. [50].

Multi-relaxation time schemes differ from TRT and BGK schemes, where in-
stead of performing the relaxation of distribution functions towards equilibrium
in population space, relaxation occurs within moment space. First, to recover key
hydrodynamic properties such as density, momentum and stress, appropriate terms
are projected on the distribution function basis, creating a projection matrix of left
row eigenvectors. The size of the projection matrix, and thus the number of modes,
depends upon the chosen lattice structure, i.e., for the D2Q9 model there are nine
modes in which only 6 are hydrodynamic modes, (having physical significance), the
remaining 3 modes being the“ghost” modes [45] 46]. The collision operator for the
MRT scheme, corresponding to evolution equation is given as:

Q= Z Aij {fJ(O) (fa t) - fj(L t)} ) (2'27)

where A;; is the collision matrix ¢,j element. To highlight the transformation from
population space to moment space, as well as the collision process, it is convenient

to follow the analysis in [49] by defining the evolution equation for this MRT scheme

as such, combing Eq. (2.21)) and Eq. (2.27):
fr=r+A(Y - 1), (2.28)

where iw, fand f (©) are column vectors for the post collision distribution, distribution
and equilibrium distribution functions. A is the collision matrix, which is constructed
of left row eigenvectors effectively defining of hydrodynamic and non-hydrodynamic
moments and their corresponding eigenvalues. The following short analysis aligns
with that presented in reference [49]. A projection matrix M —containing left

row eigenvector modes which, when projected onto the distribution function set,
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recover the correct hydrodynamic properties —is projected onto Eq. (2.28)) and
simplified as follows [49]:

MfT=Mf+MA(fO-f),
Mfr=Mf+MAM™ (MO -Mf), (2.29)
Mfr=Mf+AMFO—Mf).

where, due to M containing left row eigenvectors of A, the eigenvalue definition that
A=MAM ~1 has been used. The outcome is a set of mode-specific lattice Boltzmann
Bhatnagar—Gross—Krook (LBGK) style evolution equations, where hydrodynamic
and non-hydrodynamic moments can be relaxed individually, in moment space.
Following the relaxation in Eq. , the modes are converted back to population
space, by inverting M. The MRT scheme is explained in more detail during its
implementation in Chapter

The benefits of using the MRT collision schemes is the enhanced stability one
can gain, due to the ability to tune the relaxation of modes individually. The
drawbacks of the method are its increased complexity and additional computational
cost compared to the simplistic BGK collision scheme. Although, it is possible to

only see a 15-20% computational overhead compared to the BGK scheme [43] 39].

2.3.2.4 Comparison of the Collision models

In conclusion, the collision operator one chooses to implement will highly depend
upon a few factors, such as, the computational performance one is willing to accept,
the complexity of the flow that is being simulated and the extent to which simulating
flow close to boundaries accurately is important.

The BGK collision operator is the most transparent and simplest to implement, with
just one relaxation parameter. However, it is the least stable scheme, with viscosity
limitations being imposed, due to its relationship with the relaxation parameter 7.
Furthermore, when using the BGK collision operator in LB schemes, errors when
simulating no-slip boundary conditions can become more severe, due to oscillations
in flow fields and inaccurate boundary location, caused by the choice of 7 [51]. The
TRT operator retains some of the BGK model’s simplicity in comparison to the
MRT scheme, as well as enhanced stability, due to an extra, tuneable, relaxation
parameter. There is, of course, a computational downside to using the TRT collision
operator over the BGK model, with reported CPU time being around 15 % quicker
in the LBGK schemes [51].

The MRT collision scheme provides the greatest stability out of the three collision
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operators, but is the most complex to implement, with more tuneable parameters.
Because this research investigates multi-component flows, the implementation of
an MRT operator would furnish welcomed, additional stability, in the face of more
complex flows, and as such, we chose to implement it in a majority of the simulations.
It will also produce a more physically accurate representation of flow close to no-slip
boundaries. That said, in certain cases, the BGK collision scheme is utilised, in
order to provide comparison across collision models, as well as transparency in
mathematical analysis’ —such as the Chapman-FEnskog procedure.

Now the LBM collision schemes chosen for this work have been considered,
we proceed to consider the other obvious degree of freedom available to us. The
three most popular lattice Boltzmann methods for the simulation of immiscible
multi-component fluid flows will be discussed, with emphasis placed on the selection

of the most suitable method.

2.3.3 Multi-Component Lattice Boltzmann

The work in this thesis focuses on the simulation of isothermal immiscible multi-
component fluid flows at the mesoscale, with attention to the simulation of two-
component (binary) fluid flows. The definition of a multi-component fluid flow is a
flow containing two or more different fluids (i.e., a two-component fluid flow could be a
mix of water and oil). A multi-phase fluid flow, in contradistinction contains multiple
phases (gas, liquid and solid). Some flows can be classified as multi-component and
multi-phase flows, but this work adheres strictly to the simulation of isothermal
immiscible multi-component fluid flows performed within the regime of arrested
coalescence. At the continuum scale, the interface between two immisicble fluids
is discontinuous. At the mesoscale, within LB models, the interface between two
immiscible fluids is diffused —sometimes LBM is classified as a diffused interface
model, there existing a quasi two-dimensional interfacial region between the fluids.
The accurate simulation of this interfacial region is extremely important, examined
through the lens of recovering correct interfacial kinematics and dynamics —see
section 2.2.2]

The dynamics of the fluids in a multi-component flow can be described by the
governing equations (Continuity and Navier-Stokes) and also the physics of surface
tension. Surface tension was briefly introduced, above, when discussing the dynamical
boundary condition between two fluids, in order to help describe the pressure jump
between fluids at a free surface. Surface tension, or interface tension between

two fluids reflects the forces between molecules of the same and opposing fluid
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species within the interfacial region, i.e., the surface formed by the fluids. Consider
an immersed air bubble in a water solution, the interfacial tension describes the
intermolecular forces between the molecules at the boundary between the air bubble
and the water. Here, the pressure on either side of the interface must balance, to
avoid holes forming, even though in equilibrium the pressure on the inside of the air
bubble will be larger than that of the external fluid. This difference in pressure is
described by the Young-Laplace equation, given in Eq. [28, [29].

One of LBM’s strengths is its ability to simulate multi-component and multi-phase
flows, with little extra computational difficulty and expense. Taking the original
Rothman and Keller immisicble lattice gas cellular automata model [52], Gunstensen
et al., developed the first multi-component lattice Boltzmann model [53| 54]. Their
model used the innate ability of LBM to simulate both fluids individually, by splitting
up the distribution function, into the different species and then segregating the fluids
afterwards, in a separate algorithmic step. This was the first colour-gradient model
developed. Since the development by Gunstensen et al., several distinct methods
of simulating multi-component flows using LBM have been outlined, which can be
conveniently classified based on their physical contents [55]. The first colour-gradient
or chromodynamic model [53| 54} 56, 57, 58, 59|, has been enhanced since it was
introduced by Gunstensen et al., and uses an immersed boundary force and an
segregation rule, to simulate multi-component flows. The second, the Shan-Chen
method |60}, 61}, 62}, 63|, incorporates intermolecular interactions between particle
distributions and, as such, is suited to workers from a molecular dynamics background.
The third, the Free-energy model [64] 65, 66], uses a thermodynamically consistent
free energy functional which encapsulates the thermodynamics of the system. These
are currently three of the most popular multi-component lattice Boltzmann methods
implemented and, as such, they will be briefly introduced in the following sections,
the choice of one of these methods for this work being justified, as well as their
strengths and limitations examined. For further detail of the methods, we refer
the reader to the original model papers already cited, as well as references such
as 6, 67, 47, 39] and review articles: |68, [69].

2.3.3.1 Shan-Chen Pseudopotential Model

The Shan-Chen pseudopotential model developed by Shan and Chen [60, |61] is
capable of simulating multi-phase and multi-component flows and does so through the

inclusion of intermolecular interactions between particle distributions encapsulated,
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in a forcing term. For transparency, continuing with the BGK collision operator, the

forced evolution equation for the Shan-Chen pseudopotential model is given by:

A
o (0 0) = 1290, 1)

At ()

FOUr + ALt + At) = FOr 1) —

3 K3

(2.30)

where, superscript ¢ denotes the fluid component, hence 7(7), Fl-(g) are the corre-
sponding relaxation time and forcing term for the fluid component o. It is important
to note that appropriate pairing of a force representative of the intermolecular
interactions between particle distributions is crucial to the model. Shan-Chen first
presented a forcing that resulted in an altered equilibrium velocity, that included
the interaction force |60} 62]. It has been shown that this approach of including the
forcing in the model is unphysical, due to a reliance of the surface tension on the
relaxation a parameter, 7, with some issues relating to stability and spurious currents’
magnitude for certain relaxation values [69]. The second approach is through the
use of Guo forcing [70] that removed the dependency on 7 for the surface tension,
where [71] adapted the approach for the Shan-Chen pseudopotential model. Outlined
here is the Guo forcing approach of [71].
The forcing term FZ-(U) is given by [71, [39]:

2
F — ¢, (C“ ;. (CiaCip = €:0ap) “”B> FSC@ (2.31)

' c? cd
where wuyg is the barycentric velocity of the fluid mixture [71]:

1 Y ESC(G’) At .
Ub:pZ<Zfi( e+ 5 )7 p=>p" (2.32)
The following Shan-Chen interaction force density allows for interactions between

different fluid components, i.e., ¢ # & [39):

F5r) = (1) 3 Goo 1) (1 + ¢, At) i A, (2.33)
G#c i

where, when simulating two immiscible fluids, the interaction force between compo-
nents ¢ and 6 must be negative, in order to repel the fluids and hence interactions’

strength G, must be positive.
As with other MCLBM variants, the original Shan-Chen model suffers with spu-
rious currents stemming from discretisation error in gradients causing an unphysical
flow to form around the phase change between fluids, with the magnitude of the

error increasing as the density difference between the fluids increases [69]. This
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method, in general, contains no thermodynamic consistency, with authors presenting
enhanced models with thermodynamic coupling [72], although some of the developed
thermodynamic models have issues with achieving larger density and viscosity ratios
[69]. Tt is also worth noting that in order to achieve the simulation of immiscible
fluids, the value of G, must be increased above a critical value to insight separation.
Increasing this value does increase the sharpness of the interface, however, there are
stability issues associated with this and therefore a limit on how large this value
can be. Thus, as with all diffused interface models, the simulations are not truly
immiscible, and the thickness of the interface may be larger in comparison to other

multi-component methods depending upon the situation being simulated.

2.3.3.2 Free Energy Model

A thermodynamically consistent multi-component and multi-phase lattice Boltzmann
variant was introduced by Swift et al., |64, 66] and is known as Free-Energy or
Oxford LBM. The following outlines the key points for a Free-Energy LB model,
simulating binary, immiscible fluids. Free-Energy models use a free energy functional,
which is thermodynamically consistent, that forces the system towards a free energy
minimised thermodynamic equilibrium. This free-energy functional is dependent
upon an order parameter, ¢, that describes the concentration of fluids over the
domain (see Eq. ) For a two-component system, Eq. represents the free
energy functional consisting of the: bulk free energy 1, interfacial region free energy
14 and fluid-solid interaction information ;. There are varying models for these

terms, presented in Eqs. (2.34b is a simple case corresponding to Landau

Free energy [73]. Note, for the following, fluid-solid interactions are excluded:

U= [ [+glav+ [ vaa, (2.34a)
4

Yo=plnp+ 2 ( - ¢2) , (2:34)
2\ 2

vy =5 (Vo) (2.34¢)

where, A controls fluid miscibility, A > 0(A < 0) fluid is immisicble (miscible) and

o is a surface tension parameter. The order parameter ¢ can be seen to heavily

influence Egs. (2.34b], [2.34c|) —as expected, ¢ relating to fluid concentration. The
order parameter is defined as such:

P1— P2
= 2.35
¢ p1+ p2 ( )

where p,, is the density of fluid component « € [1,2] and ¢ = 1(-1) corresponds to
the bulk fluid phases 1(2).
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When simulating multi-component flows, an additional distribution function g; is
introduced, which can be evolved over time, using the same processes of collision and
streaming, as within the standard LB evolution equation. This additional distribution

function relates to the fluid concentration, given by order parameter ¢ as such:

> gi=0. (2.36)

To couple the thermodynamics properties described in Eq. with the LBM,
the method uses a thermodynamically consistent pressure tensor which is recovered
through modification of the equilibrium distribution function, introduction of forcing
[70] or a mixture of both [39).

The free energy models suffer from the same microcurrent problem common amongst
multi-component lattice Boltzmann models, stemming from the use of numerical
stencils to calculated derivatives. Due to the need for a second distribution function,
there is some additionally computational cost as well as increased complexity
compared to other models. The method does however allow the interface width
to be parameterised, with restrictions being introduced on the magnitude of the
surface tension value. A clear advantage of this method is its built in thermodynamic
consistency, which is not present within the forms of the other models outlined

in this chapter.

2.3.3.3 Colour-Gradient /Chromodynamic Model

The colour-gradient or chromodynamic (chromo — colour) multi-component lattice
Boltzmann method (cMCLBM) for simulating multiple fluids was first introduced
by Gunstensen et al. [53] based of work in [52]. The method defines the fluids by
attaching a colour label to the species, for instance for two-component fluid flows,
one fluid would be defined Red R; and the other Blue B;, where C; denotes the
distribution function of species colour C' € [R, B]. The original method introduced
surface tension via a perturbation to the collision step, with a recolouring step being
used to prevent the mixing of the immiscible fluids, due to the notoriously highly
diffusive nature of the LBM itself —streaming of particle populations. Since the
original colour-gradient model introduced by [53], there have been several advances
to the method: Grunau et al., [56] presented a modified equilibrium distribution
function, allowing some variation in density across the fluids’ interface, Latva-Kokko
and Rothman [74] removed the artefact of lattice pinning, by using a deterministic
(formulaic) segregation step, Lishchuk et al., [57] replaced the perturbation step and

enforced surface tension by using a discretised body force distribution, applied in
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the interfacial region. These same authors [75] then implemented a post-collision
post-recolour segregation rule, based of that of Latva-Kokko and Rothman |74] and
D’Ortona et al. [76]. The extension of the methodology, to allow for the simulation
of fluids with density contrasts, is discussed further in Chapters [3 and [4]

Proceeding to outline, now, the cMCLBM presented by Lishchuk et al., and Burgin
et al., [75, [77], for the simulation of two immisicble fluids. The single distribution

function f; is now split up into Red and Blue species as follows:
fi(r,t) = Ri(r,t) + Bi(r, t), (2.37)
where the distribution functions are evolved using a forced evolution equation [70]:
filr + ¢ At t + At) = fi(r,t) + Q; + AtF;, (2.38)

where Fj is a forcing term written as a power series, see [70].
The macroscopic quantities are calculated as follows, with an altered velocity

calculation and inclusion of a body force density [70]:

pr(r,t) =3 Ri(r,t), > ps(r,t) = Bi(r,t), p=pr+ps, (2.39)

1 1
wu=> =fi(r,t)¢; + —FY, 2.40
;p (r,t) 2 (2.40)

where FO (for the case of drops) is the force that applies the physics of interfacial
tension, defined as follows [57],[78]:

FO@r) = ;O'HVpN. (2.41)

The above force term is applied locally, within the interfacial region, based on the
gradient of the phase-field, p" (will be discussed shortly). Variation in the phase-field
is only significant in the interfacial region, where a non-zero value is returned for the
gradient; there is little variation in colour in the bulk of the fluids. The parameter o
allows the surface tension between the fluids to be tuned, and H is the local mean

curvature of the interface, and can be formulated straightforwardly as follows:
H=V-n, (2.42)

in which, the interface unit normal 7, is found in terms of the gradient of the

phase-field, which will be perpendicular to the interface:

AV
VNI

(2.43)

L =
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The phase-field pV is an effective order parameter that identifies what phase one
is in, i.e., where within the interface between the fluids one lies. It is defined as

such for fluids without a density contrast:

N _ PR —PB
r)=————, 2.44
P =T (2.44)

where values of 1 (-1) are found in the Red (Blue) bulk sites, and any variation
between -1 and 1 is the interfacial region where there is a mix of Red and Blue
fluids at that lattice site. The profile of Eq. has been shown to resemble
that of a tanh(fr) profile, in which a segregation parameter § controls interfacial
width and is linked to stability (see Chapter [3)).

A crucial component of the chromodynamic scheme is the inclusion of a segregation
rule. The LBE is inherently dispersive, as such, poses a complication when simulating
immiscible fluids. To prevent the mixing of species, a post-collision, post-recolour
segregation rule is applied, that locally redistributes particle distributions normal
to the interface, and is an adaptation of the original method [52], [76] presented

by Halliday et al., in 2007 [58]:

CZW(I; t) = ppc(gnht?;) filr, )Y £ Bt PR(T’;Z,O?)(T, t fi - ¢; At (2.45)

Above C' € [R, B], superscript 1 (1) denotes a post-collision (post re-colour)

quantity, plus (minus) corresponds to the Red (Blue) species and f is a chosen
segregation parameter. A check that colour species and mass are conserved during

segregation can be performed by summing each side on both direction and colour.

For the cMCLBM outlined, a limitation is its lack of thermodynamic consistency,
which unlike the Free-Energy method, limits application to isothermal flows. Ad-
ditionally, like the previously mentioned MCLBMs, unphysical spurious currents
appear in the velocity fields, stemming from rounding and sampling errors [49]. It
is however possible, in certain cases, to remove the micro-current and this will be
discussed further in Chapter 4] The strengths of the method are its: transparency,
mass conservation, ease of implementation in code and ability to apply forces
encapsulating important physics without obstructive complication (will be discussed
more in Chapters [4] & , a directly paramterisable interfacial tension, low micro-

current and an amenability to analysis.
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2.3.3.4 Review of the models

Three of the most popular lattice Boltzmann methods variants for simulating multi-
component, immiscible, fluid flows have been considered. In review, they can
be briefly summarised based on how they approach the task of simulating multi-
component fluid flows: Shan-Chen —incorporating meso-scopic interactions between
the different fluid particles, Free-Energy —use a free energy functional to describe
the minimisation of the system’s free energy, where a thermodynamic pressure tensor
is built-in, Chromodynamic —using a kinetic scale segregation rule that segregates
the fluids post-collision, with surface tension affects applied through Guo forcing [70]
in the interfacial region. One could also differentiate the Shan-Chen and Free-Energy
models by considering where the phase interaction-inducing forces are introduced,
with the Shan-Chen method incorporating microscopic interactions through the
first moment of distribution function and the Free-Energy method incorporating
meso-scopic interactions through the second moment of the distribution function

—its pressure tensor [47].

For researchers with a background in molecular dynamics, the Shan-Chen pseudopo-
tential model may be preferable, due to its foundations in microscopic interactions,
which could be argued is the most physically representative of interactions between
fluid elements at the mesoscale. For those interested in the thermodynamics of
multi-component fluid flows, then the Free-Energy model is an obvious choice,
due to its built in thermodynamic consistency. If one is interested in interfacial
kinematics and dynamics, one may opt for the chromodynamic model, due to its
ease of parameterisation of the interfacial region and verifiable interface kinematics

and dynamics [77].

When considering which model to choose, one must consider the application of
the work and which models fit that best. The work in this research considers
the interfacial kinematic and dynamic boundary conditions between isothermal
immisicble fluids, with the interfacial region being of critical importance. This is
especially clear when aiming to simulate vesicles where the interfacial region needs
to incorporate the much more complex physics associated with vesicles. In knowing
this, the chromodynamic model presents itself as a clear option due to its transparent
approach, control of the interfacial region, strict mass and momentum conservation
and ability to include immersed forces through Guo forcing [70] with minimal
complexity. With the benefits of choosing this approach becoming increasingly

apparent when simulating vesicles in Chapter [5]
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2.3.4 Boundary Conditions

In order for computational fluid dynamics techniques to be capable of simulating
hydrodynamics accurately, they must contain appropriate simulation boundary
conditions that reflect the physics of how the fluid behaves at domain boundaries,
e.g., solid impermeable walls. Not only do the boundary conditions implemented affect
the flow dynamics close to the boundary wall, but they can also have a large impact
on the bulk fluid dynamics, even when simulating over larger domains. Additional
to adequate boundary representation, it is common practice to use chosen boundary
conditions as a way of reducing the computational run time of the simulation, e.g., by
implementing periodic boundary conditions. This section will highlight the simulation
boundary conditions applied within this thesis, but for further literature on different

boundary conditions used in LB simulation, see references [6}, 139} 79, 80].

2.3.4.1 Periodic Boundary Conditions

Periodic boundary conditions are one of the simplest boundary conditions to
implement and can be understood simply as follows: to achieve a description of a
bulk fluid, the fluid that leaves the computational domain at a given side, the fluid
will immediately re-enter the domain (as though originating in a spatially tessellating,
period replica of the explicitly simulated system) at the opposing side. This means
that periodic boundary conditions can be used when trying to simulate a system
where the flow solution is periodic within a specific direction, for example, the north
and south boundaries representing flow in a long tube, in two dimensions. The
physicality of periodic boundary conditions is questionable, however; its justification
is based on the examination of a finite section of a flow field where the flow solution

is periodic [39).

Consider a situation such as flow in a long channel, where the flow solution is
periodic through the pipe. The periodic boundary conditions for this problem may
be considered at the north and south boundaries of the domain, replicating a long

channel. Figure [2.5] shows a schematic of these periodic boundary conditions.

2.3.4.2 No-Slip: Bounce Back Boundary Conditions

A common boundary encountered in hydrodynamics is that of a solid impermeable
wall. Such boundaries have flow physics described by the no-slip condition (discussed
in section [2.2.2)), which states that the solid surface is impenetrable (i.e., the normal
component of velocity close to the wall (v -7 = 0)) and the tangential velocity of the

fluid in contact with wall must be the same as that of the wall itself. An example
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Figure 2.5: Schematic showing Periodic Boundary Conditions at the North and South
boundaries. Note, lattice size not to scale.

where such a boundary may have relevance in this work is when simulating a channel
with solid walls, i.e., a drop or vesicle in a confined passage.

One of the strengths of LBM is that the implementation of no-slip solid wall
boundaries can be quite simplistic, meaning geometries such as porous media, can be
simulated without the difficulty seen in other CFD techniques. The most commonly
implemented boundary in LB to mimic that of a solid wall are bounce-back boundary
conditions (BBBCs). Within BBBC variants, particle distributions that stream
toward the solid impenetrable wall, bounce back in the direction at which they

approached the wall.

The first bounce-back boundary condition is shown within Figure 2.6 and is often
referred to as either On-Grid or Full-Way bounce back (OGBB) [81} 82, 67]. The
boundary is placed on lattice nodes where streaming distributions are reflected back
in the direction which they approach the wall. Through Chapman-Enskog procedure,
it can be shown that the accuracy of this BC is 1°* order [34}, 39]. The error stems
from the influence of the relaxation parameter 7 in LBGK schemes on the boundary
position, (which is not the case for TRT and MRT schemes), where Inamuro et al.

2nd

[83] found that the error is close to order for appropriate 7 and lattice resolution.

A more accurate bounce back variant was proposed by Ziegler [82] called Mid-Grid or
Half Way bounce back (MGBB), which can be shown to be 2°¢ order accurate. Like
the OGBB BC, particle distributions are reflected back in the direction they stream
towards the boundary wall, however now the boundary wall is located between two
lattice sites (note: accuracy of the wall is still not guaranteed for LBGK schemes).
This process is highlighted in Figure [2.7]
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Figure 2.7: Schematic displaying the process of Mid-Link bounce back boundary
conditions.

2.3.4.3 Slip Boundary Conditions

The final boundary condition introduced in this section is the Slip Boundary condition.
Slip boundary conditions are often used to reflect the inclusion of a symmetry
condition (axis) such as may be implemented by mid-link specular reflection. This
concept is similar to that of the previously discussed mid-link bounce back boundary
condition, except now distribution functions are reflected back off the boundary in
a direction related to the collision angle with the wall. In this application it can
be considered as a ‘perfect’ slip, where the angle in which the distribution function
collides at the wall is the same as the reflection angle, such that the distribution

function exerts no shear on the wall and conserves tangential momentum [84].

The implementation of this boundary condition can be used to introduce a symmetry
plane and leads to the reduction of computational cost, essentially by halving the
extent of the domain. This condition is applied in Chapter [} as a means of using a

two-dimensional system to capture the hydrodynamics of a three-dimensional system.
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Figure 2.8: Schematic displaying the process of of Mid-Link specular reflection boundary
conditions (perfect slip).

2.4 Simulation of fluids using LBM

Throughout this work, focus is on the methodological developments of the class
of chromodynamic multi-component lattice Boltzmann models, as such, this thesis
leans towards the mathematical and developmental aspect of LB. However, the
computational encapsulation of our methodologies is clearly important, not least
because it facilitates validation of the models. Accordingly, this short section gives
an overview of the code structure, flow simulation protocols and data post-processing

used.

Code Structure

The models developed within this thesis were encapsulated within C programming
language and were written ab initio, with emphasis on the clarity of algorithmic
encapsulation and the ease with which it (the underlying algorithm) can be ma-
nipulated. Accordingly, transparency of the sequential (non-parallel) codes was
prioritised over optimisation and execution efficiency. All codes follow the same
essential structure, treated as compartmentalised (modular) sections (see Figure
which shows the base structure of all codes used within this work). To start with,
the lattice and fluids (represented by the primary object, the distribution function
component set) are initialised for the domain. For example, in the microcurrent tests
in section [4.2.3.1], a spherical drop is initialised surrounded by a background fluid in a
square domain, or in section [5.3.3.3] two vesicles are initialised in line with each other
within a three dimensional domain. Following this, within module ‘Calc_ Fields 1’
the fluid’s scalar hydrodynamic observables (densities) are calculated, by summing
the distribution functions on lattice links (Eq. ); first dependencies like the
phase fields (p fields) and interface curvatures are then calculated, using previously-
derived macroscopic densities (Eq. ) Next, the forcing that is to be applied is
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Figure 2.9: Flow chart showing the base structure of the C codes used throughout this
work, which allow the encapsulation of the developed models.

calculated, for instance, surface tension when simulating drops (Chapters [3[ and
and surface tension, bending rigidity and area conservation forces when simulating
vesicles (Chapter . Once these forces are assigned, the hydrodynamic velocity can
be calculated, module ‘Calc_Fields 2. Now, after the macroscopic density and
velocity have been calculated, the equilibrium distribution function can be calculated
(see Eq. (2.22)), and the distribution functions then collided (either through use of a
BGK or MRT collision scheme). Following collision, the post-collision distribution
functions are segregated using Eq. . These two steps are conducted within the
module ‘Collide and Segregate’. Finally, the distribution functions are propagated (see
Figure , the time step increased, and the process iterated back to ‘Calc_ Fields 1
This process corresponds to a single time-step (evolution) of the system. It is then
repeated until the time step count has advanced until the set final time step. Note,
all simulations reported are formally unsteady.
For all data reported, the SHU Beowulf cluster was used. Although codes are serial,
the cluster allowed for a processor farm approach, in this multiple independent object
codes generate data concurrently —for example, when conducting an assessment of
the phase space; the search for a bicuspid parameterisation within the vesicle model
(Chapter [5) may be efficiently performed within this approach.

Code run time was very variable, with some two-dimensional codes executing
in minutes and with some three-dimensional multiple vesicle codes which required
minimum levels of spatial resolution for computational stability taking days (e.g. the

four vesicle sedimentation test shown in Chapter @ Execution time was not deemed
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to be an impediment as a vast majority of applications reduce to parameterisation and
calibration exercises which were readily amenable to a processor farm methodology.
The use of serial codes means discussions surrounding computational expense and
optimisation of simulations are deemed of secondary importance and are generally

omitted in the following work.

Flow Setup

Data is structured such that simulation lattice populations are base type global
variables being defined at the start of the code, to allow for easy manipulation of the
flow geometry being simulated. A general overview of the setting up of an arbitrary
flow are as follows: (i) set the domain geometry (lattice size); (ii) set suitable initial
fluid positions (i.e., where on the lattice does each fluid start, and then initialise); (iii)
set the time duration of the simulation; (iv) set fluid properties (i.e., fluid densities,
viscosities, surface tensions etc.); (v) set any fluid forcing (i.e., a buoyancy force);
(vi) set data output files (decide what information of the flow needs outputting, i.e.,

velocity fields).

Data Processing

In order to process the data, the required fields are exported to csv files and
viewed with commercial software (ParaView, MATLAB, Excel). For example, when
examining the steady microcurrent (see Chapter [3)), the velocity field over the domain
is outputted to a csv file; when examining time modalities of e.g. vesicle shape
evolution, the pV field was sampled at chosen times and exported to a sequence
of appropriately-named csv files. The general structure of these files are given by
columns of position (x,y,z columns) and then lattice properties (i.e., p" (phase field
value) or u,,u,,u, (lattice velocity components)). These files are then used to examine
flow data by either performing post-processing in software such as MATLAB, or
visualisation of the outputted data in either Excel, MATLAB or ParaView — where

the use of ParaView becomes prominent when extending to three-dimensional flows.

2.5 Concluding Remarks

This chapter has outlined the fundamental hydrodynamics and lattice Boltzmann
theory and reviewed leading work in these fields, such that the work reported in the
remainder of this thesis will have context. The focus of this work is the simulation
of drops and vesicles at the mesoscale, where the interface between the fluids is of
interest. The hydrodynamics of the flow in such simulations at this scale —where one

is considering the interior of the drop/ vesicle as one fluid and the exterior as another

39



2. Background in Hydrodynamics and Simulation Techniques

—can be described by the incompressible Navier-Stokes and Continuity equations,
outlined in section 2.2l The fundamental boundary conditions at the free-surface
between the fluids —kinematical and dynamical —have been discussed, explained
and referenced with their importance seen throughout this thesis. Finally, non-
dimensional quantities which allow specific flows to be categorised were introduced

and will be used without further discussion in the following chapters.

The lattice Boltzmann method presented itself as an obvious choice for this work due
to: appropriate length and time scale, computational efficiency, Galilean invariance
(the laws of motion are the same in all inertial frames), ability to simulate multi-
component flows, recovery of the weakly compressible Navier-Stokes equations and
diffused interface (discussed further throughout, primarily in Chapter [5)). The
background theory relating to LBM: history and development, the evolution equation,
collision operators and simulation boundary conditions, were all reviewed. The
choice of a multi-component lattice Boltzmann variant for this research being the
c¢cMCLBM has been justified and explained, with the main reasons being: control of
the interfacial region, transparency, ability easily to encapsulate mesoscale physics
through Guo forcing [70] and that thermodynamics are not being investigated in this
work. Additionally, the collision models chosen to be implemented (BGK and MRT)
within the cMCLBM model have been discussed and justified (section with

transparency and stability in mind.

From this chapter, it should be clear to the reader what the relevant hydrodynamics
for this work are, as well as the simulation technique being implemented and its
applicability to the simulation of drops/vesicles at the mesoscale. The remainder
of this thesis now focuses on novel advancements to the cMCLBM methodology,
keeping in focus the fundamental hydrodynamics outlined here. Note, Chapter
specific literature is presented at the start of each chapter, where it is relevant to
provide background regrading that specific area, i.e., Chapter |5| contains literature

regarding the simulation of RBCs.
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3.1 Introduction

Immiscible fluid flows can be found in both nature and industry, often with a density
contrasts between the fluids —such as oil and water, where oil is less dense than water.
Flows with such moderate density contrasts are often found when studying micro-

fluidics, which considers the behaviour of fluids at the microscale, where, unlike
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at the macroscale, physical forces such as surface tension have a large impact on,
e.g., the microscale fluid behaviour [85]. Understanding this behaviour and using
this understanding to control the fluids has many applications in biotechnology
and biomedicine. For example, droplet-based micro-fuidics can involve the study of
how immiscible drops behave during collisions, whilst suspended in different fluids
(which have differing densities), facilitating an increased understanding, resulting
in the improved design of bioanalytical devices [86]. We note that some biomedical
applications study micro-fluidic flows involving density contrasts, examples being
drug delivery and cell encapsulation [87].

Industrial fluid flows like those occurring in fuel cells and batteries, which involve
the conversion of chemical energy to electricity, contain multi-scale flow transport
phenomena [88]. Proton exchange membrane fuel cells (PEMFCs) are regarded
as a viable option for power sources in vehicles. Droplet coalesce within PEMFC
flow channels is also an area of interest in understanding the channel blockages in
PEMFCs [89]. Hence, using MCLBMs to simulate how droplets deform and coalesce
in these channels is extremely useful. Again, such droplets often have a large density
contrast, compared to the fluid they are suspended in, so the inclusion of this density
ratio in simulation needs to be considered, for accurate representation of the physical

processes.

The previously stated flows all have an interface between the different fluids. This
interfacial region is often scaled in units of nanometres; at this scale top-down
macroscale computational techniques would treat this interface as discontinuous.
However, so-called mesoscale diffused interface approaches, such as MCLBM (all
variants), treat this interfacial region as continuous —a diffused interface where the
fluid blends from one fluid, to the other. In doing so, one avoids potential singularities,
and the study of such immiscible flows becomes more appropriate and attainable by
bottom-up approaches, MCLBM presenting itself as an attractive option, because:

(i) it can be easily adapted to span the appropriate length scales;

(ii) it has capacity to incorporate integrated micro-scale physics;

(iii) it has the ability for code parallelisation;

(iv) it recovers the fluid macroscopic governing equations.
An example of where this approach has great traction is when studying triple contacts,
between three mutually immiscible fluids. Here, an accurate relationship between
the surface tensions of the fluids, their resultant affinity towards each other and
hence their segregation, can be imposed with reasonable accuracy —with correct
treatment of the triple contact according with Young-Laplace Law physics [90, 91,

92, 93]. Clearly then, given the method’s existing functionality, its extension to the
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simulation of immiscible fluids with larger density contrasts would extend its utility,
allowing for the simulation of a larger variety of the fluid flows seen in nature and

industry.

The development of MCLBMSs for the simulation of immiscible fluids with density
contrasts has been studied using the previously discussed variants in section
—(i) Shan-Chen pseudopotential (SC), (ii) Free Energy (FE), (iii) Phase-field and
(iv) Colour-Gradient or Chromodynamic.

The multi-component multi-phase SC model was first introduce by Shan et
al. 60} [62]; it had several limitations identified in section [2.3.3.1] The original
SC model was improved by Yuan and Schaefer [94] who addressed the task of
connecting the pressure in the fluids’ equations of state (EOSs) with the pressure in
the SC model. The outcome of this work was that both the Peng-Robinson [95] and
Carnahan-Starling [96] EOSs were found to be effective in modelling large density
ratios, with minimised (but still significant) spurious velocities. Zhang and Tian [97]
contested that Yuan and Schaefer’s approach lacked physical foundation, however,
Zhang and Tian’s approach is accepted to have underperformed compared to that
of Yuan and Schaefer’s approach, which had smaller spurious velocities and could
simulate larger density contrasts. Yet even with these improvements, the spurious
velocity level still limits the application of the model, to cases where these velocities
do not overpower flow behaviour. For instance, the various SC models were found
to be unsuitable for the simulation of Marangoni convection, for this reason [9§].
Furthermore, the interface width has been reported to be larger than that in other
MCLBM variants (a significant issue, for continuum scale applications, of course) and
the method has stability issues [68]. Lycett-Brown and Luo |99, [100] developed a SC
model with a new forcing scheme, allowing the simulation of large density contrasts
0O(1000), with increased stability, implementing a cascaded-MRT collision operator.
Note, their model also afforded the ability to tune surface tension, independent of
density contrast —a previous problem in SC models, which was first addressed in [101].

The free energy model developed by [64, 66] has also been enhanced and extended
for the simulation of immiscible flow with density ratios. Inamuro et al. [102] outlined
a two-phase immiscible free-energy model, capable of simulating fluids with a large
density contrast. In 2006, Zheng et al. [103] advanced a free-energy model that
recovers the Cahn-Hilliard equation, side stepping an algorithmic pressure correction,
by using a particle distribution for the mean density and momentum [104]. The
so called ‘phase-field’ models, which are not dissimilar to the free-energy models,
have also been used to simulate immiscible fluids with large density ratios (above,

they are discussed with free-energy models, due to the similarity of the two). In
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2013, Zu et el. [105] presented a phase-field based lattice Boltzmann method for
the simulation of binary fluid systems with density contrasts. This method was
then enhanced by Fakhari et al. [106], improving upon numerical stability and
model efficiency and then, further again by Mitchell et al. [107], who extended
the methodology to three dimensions.

Colour-Gradient (CG) and Chromodynamic models also present themselves as an
attractive option for simulating immiscible fluids with a density contrast. Following
several advancements to the initial CG model, in 2007, Reis et al. [108] introduced
a two-dimensional CG model for simulating immiscible binary fluids with density
and viscosity contrasts. In 2013, Liu et al. [109] extended this by presenting a CG
model for the simulation of binary fluids with density and viscosity contrasts in
three-dimensions. At a similar time, Leclaire et al. [110] introduced a CG model with
an enhanced equilibrium distribution function, capable of simulating density ratios
up to O(1000). Ba et al. [111] provided a benchmark for CG models, by outlining a
model capable of simulating two-phase flows at high density and Reynolds numbers.
Recently, Wen et al. [112] presented an improved CG model for the simulation of
fluids with density contrasts, eliminating error terms that appear in the macroscopic

equation by modifying the equilibrium distribution function.

All of the MCLBM variants extended to the simulation of immiscible fluids with
a density contrast should meet the kinematical conditions at the free surface (or
interface) between the fluids —outlined in section [2.2.2.1] If this condition is not
met, numerical instability may ensue, and worse, the physics of the flow will not
be accurately represented. To enforce the kinematic condition, colour-gradient and
chromodynamic models [109, 111} (112} [77] use a kinetic scale segregation rule to
prevent fluid mixing and to maintain the integrity of the interfacial region between
the immiscible fluids. To understand the impact of extending the cMCLBM to large
density contrasts on the method’s ability to comply with the kinematical condition
required at the interface, mathematical analysis of the segregation rule (model
kinematics) and verifiable recovery of the macro-scale continuum fluid dynamics
equations (dynamics) is clearly needed. Therefore, this chapter tackles the analysis
of both the kinematics and dynamics of the cMCLBM methodology, revealing the
coupling between the two and enhancing the understanding of the methodology. This
is achieved by assessing the kinetic scale segregation rule. It should be noted that the
segregation is controlled at the kinetic scale, but the kinematic condition refers to
the continuum scale behaviour of the interface, and as such, an analysis must seek to

relate the kinetic scale and the continuum scale observables in an appropriate manner.
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The structure of this chapter is as follows. First, the cMCLBM will be outlined,
explaining in detail the extension of the methodology for the simulation of fluids
with a density contrast |[77]. From this, the extension of the methodology from
binary fluid flows to many fluids will also be discussed and reviewed. Having
postulated a methodology, a mathematical analysis consisting of two interlinking
sections (Dynamics and Kinematics) will be presented, to address the impact of the
extension to large density ratios on the method’s ability to correctly recover the
governing fluid dynamics equations and principal interfacial kinematic condition, as
well as model stability. To support the findings, simulation data will be presented,
further to highlight the utility of the model. Finally, concluding remarks will be
made, bridging into the work presented in Chapter [4]

3.2 Methodology

This methodology section will outline the c MCLBM used for the simulation of
immisicble, isothermal, binary fluid flows with a large density contrast, focusing
on the methodological extensions to incorporate the density difference. Aiming
to provide as transparent an account as possible, of this extension and its impact
on the model, the collision operator implemented here is the BGK operator [35]
—which simplifies the analysis that will be presented in section [3.3.1} Additionally,
although only two-component flows are examined in this chapter, the extension to
the simulation of many fluids will be briefly presented, in order to provide further
understanding of the methodology, as well as providing a point of reference for

the upcoming work in Chapter 5
3.2.1 Isothermal cMCLBM for Binary Fluid Flows with a
Density Contrast

For a binary fluid flow, the distribution function in LB can now be expressed
as a summation of the two distribution functions for the species designated red

and blue as follows:
filr,t) = Ri(r,t) + By(r, t). (3.1)

The evolution equation, incorporating forcing after Guo et al. [70] and the BGK

collision operator can be expressed for the model as follows:

fi(f-}_ Atint + At) = fi<f’ t) - A,]_t(fZ(T’ t) - fz‘(O)(pvﬂ)) + AtFi? (32)

where the source term (F; = Fy; + F;) can be split up into two separate contributions:

Fi1; —a correction needed due to the introduction of a density contrast between the
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fluids and Fy; —an immersed boundary force containing surface tension physics (see
section . The equilibrium distribution function has to be adapted to aid the
simulation of density contrasts by the introduction of a parameter ¢;, developed
over time in |108 113} [111], to be discussed shortly. The equilibrium distribution
function now has the following form:

2
(0) UaCin UQU5CZ'OCCZ‘5 u
Ji (o w) = po P ( c2 2ct 20§>

s

(3.3)

Identical to the unit density ratio model, the macroscopic properties are calculated

using a force adjustment, outlined by Guo et al. [70]:

pR(£7 t) = Ri(£7 t)7 PB(B t) = Bi(£> t)a P = PR+ PB, (34)
f : O
wozhilvtle B (3.5)
p p

here, F is the surface tension inducing Lishchuk force [57], and m is a constant to
be determined. Throughout this work the following notations are used; p, pg, ps, 1,
At, ¢iq, t;, u and ¢, denote the overall nodal density, red fluid nodal density, blue
fluid nodal density, link-index, time step, the o component of the i lattice basis
vector, the weight for link ¢, fluid velocity and the colour-blind speed of sound.

The inclusion of ¢; within Eq. affects mass activation. It does this by
redistributing the mass on each of the nine links and has a relationship linked

with the two ideal gas components’ speed of sound [108, 113, 111, |77]:

arp app .
b={ o T =0 (3.6)
(1—&3)%—{—(1—&3)%, 17&0

where s; = kt; is a weight factor, determined by the lattice link weights, ¢;, and a
constant k, determined by the lattice dimensionality (k = % for the D2@Q9 lattice
structure). The colour-blind parameters ag and ap can be tuned to give the desired
density ratio between the two species, as well as having a linking to algorithmic

stability [77]. The following equation states the relationship to density ratio, A [56]:

2

1 —

AE&R:C;B:l as (3.7)
PoB Csr — QR

where, the density contrast A is expressed as the density of the two species deep
within their respective phases, i.e., poc where C' € R, B].

The isothermal equation of state for a BGK model is given by p = pc?. As such,
using Eq and the interfacial condition that pressures must be balanced at the

interface, an equation of this pressure balance can be expressed as:

por(1l — ar) = pop(1 — ap). (3.8)
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The interface between the two fluids is now adapted for the inclusion of a density
contrast between the fluids, through normalisation of the fluid densities, resulting in
the following equation for the phase field —which as discussed below —resembles
a tanh(fr) profile:

pN = w. (3.9)
(s + 25)

Finally, the kinetic scale segregation rule, that aims to maintain interface integrity
and prevent mixing of the fluid species has also been adapted for the inclusion of
a density contrast. Below, ¢; is included in the segregation term, to bias mass
distribution on the lattice links, with the segregation rule applied here an adaptation
of the original method [76] presented by Halliday et al. [5§]:

G (r,t) = p[f(gr,tg) O [ G (LIPS (3.10)

p(r,1t) @

where, again C' € [R, B], superscript ¢ (1)) denotes a post-collision (post re-colour)
quantity and [ is a chosen segregation parameter. It is essential that mass and
colour is conserved during this stage, which can be checked by summing each side

on both direction (index ¢) and colour.

3.2.2 Extension to Many-Component Fluid Flows

The methodology outlined previously is for the simulation of binary immisicble fluids
with a density contrast, i.e., two-component fluid flows. However, the method is
extendable to the simulation of many-components and many drops. This subsection
will discuss the considerations one must make when extending to many fluids, with

this issue and other considerations being further addressed in Chapter [5

The extension to three-components or higher has been carried out using all the
MCLBM variants discussed within this thesis [114} 115} 116, (117,90} 91} {118, 92]. The
colour-gradient or chromodynamic MCLBM class of models have distinct advantages
when simulating ternary fluid systems, such as their strict mass conservation and
ability to tune surface tension values for each fluid easily and accurately. This control
over a range of surface tension values is extremely important when modelling the
physics of three-phase contacts. The static mechanics of a three phase contact is
given by Neumann’s triangle, which describes the force at this contact, based on
the surface tensions of the fluids [119, |120]. In simple terms, the triangle relates
to the surface tension forces of the fluid pairs (lengths of the triangle) at a point

in space where a triple contact forms (three fluid meeting) where the angles in the
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triangle correspond to the contact angles of the fluids. Again, meaning for such
a triple contact, the ability to apply a variable surface tension in the cMCLBM
—individual surface tension values for each fluid interface —allows control over

Neumann’s triangle, as shown in Figure [3.1]

ORG

Figure 3.1: Neumann’s triangle for a triple contact between three fluids, denoted: Red
(R), Blue (B) and Green (G). The surface tensions between the fluids are given by ¢
and contact angles by 6c¢r, where C € [R, B,G] and C' € [R, B,G], with C # C".

The importance of compliance with Laplace-Law triple contact physics and the
Neumann'’s triangle is clear when simulating fluids which have different wettability
and, further, fluids which are completely immisicble. In cMCLBM however, applying
only the variable surface tension values will not guarantee correct behaviour due
to the inherent dispersion of the lattice Boltzmann algorithm. The segregation
rule outlined previously is also needed to minimise fluid mixing in the interfacial
region. The segregation rule has been adjusted and enhanced over time, to treat this
triple contact |90} 91, 92]. Yuan et al. [92] outlined an enhanced segregation rule,
which recovered convincing results of three-phase simulations, the following is an
overview of this segregation process. The segregation parameter (or interface width)
between two fluids C' and C” is given by o and is now variable in relation to the
surface tension values between the fluids. The value of Sc¢r is calculated through
first evaluating whether a Neumann’s triangle is present in Eq. , then using
this value to determine how the interface width between fluids C' and C” should be

perturbed to give correct wettability of the fluids —Eqs. (3.11bi3.11¢)). The steps
for this, then, were given by Yuan et al., in 2019 [92]:

X U%’”C + O-%WC/ - O-%C/ (3 11&)
ccr — .
20’0//00’0110/ ’
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35 ’ 1"
Beer = % + °min (,%*p;:pc’ 1) 9(Xcor), (3.11b)
1, Xoor < —1.
o(Xee) = 1 sin(arccos(Xocer)), < Xeceo (3.110)
sin(arccos(Xeer)) — 1, 0< Xeer <1
-1, Xoor < 1.

where, C # C" # C" are three separate fluids.

The downside of the current multi-phase and multi-fluid methodologies is that,
although the cMCLBM allows high tune-ability and control of the surface tensions
and fluid-fluid contacts, with only small increase in methodological complexity, it
comes at an increase of computational cost. Currently, interfaces between each
pair of fluids are defined, and as such the number of interfaces needed dramatically
increases with the number of fluids, where the number of interfaces in relation to
the number of fluids n, can be given by:

n(n —1)
—g
From this result, it follows that the amount of storage needed increases quickly

No. of interfaces = (3.12)

as the number of fluids increases, as well as computational run time due to the
need to loop over more interface pairs when calculating the phase-fields, unit
normals, segregation etc.

Clearly then, addressing this problem would increase the scalability and reduce
computational expense of the cMCLBM models. Through making well-justified
assumptions and neglecting redundant contact physics, it is possible to reduce
computational expense and the number of interface pairs. This observation will be
discussed further in Chapters [5] and [6] when simulating multiple red blood cells.

3.3 Analysis

This section investigates performing two interlinked sets of analyses —dynamics and
kinematics. These analyses provide an enhanced understanding of cMCLBMs, which
are applied to the simulation of binary fluids with a density contrast. As will be
shown below, the kinematics and the dynamics of the model are coupled, and as
such, one could pose an argument for showing the kinematics analysis before the
dynamics analysis or vice versa. Here, the latter approach is taken in the light of
recovering an expression for the force contribution needed for the density difference
correction Fy; introduced in Eq. .

Pursuant to a consideration of the dynamics and kinematics of the model, our
aim is to quantify the utility of this class of cMCLBM models when simulating
large density contrasts, with strengths and limitations of the model exposed from

this analyses being discussed.
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3.3.1 Dynamics

Presented here is the means of recovering the weakly compressible Navier-Stokes
equations from the lattice Boltzmann equation given in Eq. , using the Chapman-
Enskog procedure for the two component cMCLBM with density contrasts between
the fluids outlined previously. Note, the reasons for recovering the weakly compressible
Navier-Stokes equations over the incompressible Navier-Stokes equations are discussed
within this analysis; they essentially relate to a sonic velocity which is only of
order unity; with careful parameterisation, however, the advent of the associated
compressibility error may be satisfactorily controlled in the low Mach number limit.
In essence, Chapman-Enskog procedure is a perturbation expansion of the distribution
function about its equilibrium. This work will outline a process which will be referred
to when modifying the methodology through inclusion of an MRT collision operator
and also a pseudo three-dimensional system in Chapter [ Due to this, a BGK
collision scheme is implemented here, in order to increase transparency, with extra
detail also being provided. From this analysis, correct dynamics will be verified and
an important correction term will be recovered, which has implications on the system

kinematics (discussed further in the proceeding section).

The methodology chosen for present purposes, is one which follows the overall
structure of the analyses outlined by Guo et al. [70]. This methodology is chosen as
it is clear and concise and it facilitates comparison between other collision models
and schemes, which will be discussed later. Again, the presented analysis uses the

D2Q9 model and labelling convention showed in Figure [2.3

Starting by defining the form of the source term given in Eq. (3.2]) after that
of Guo et al. [70]:

2
Be,, CiaCig — C50a8
2 4 ’
cs 2ct

where the source term F; must meet the following properties (solvability conditions):

Z FZ = A, Z CmFi =B = nFa, Z CmCmFi = Acﬁéaﬁ + ; (Caﬁ + Cﬁa) s

(3.14)
in which A, B, the correction tensor C and constant m in Eq. (3.5) are to be deter-
mined.

The key lattice properties (isotropies) used throughout are given as:

ZQ’(L (Cia)2p+1 y CiaCiB, Ciaciﬂciycié) = (17 0, C§5aﬁ, CﬁAaw),
i
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where p > 0. The defined equilibrium distribution function fi(o) in Eq. 1) may
hence be shown to have the following properties, which again, are necessary if one
is to recover correct hydrodynamics:

S FO (L, Cias iatin) = (P, ptia, (261 + 462) pOas + patis). (3.15)

7

Functions ¢; and ¢, depend upon the chromodynamic field (see Eq. (3.6])) and
hence the spatial-temporal variation of the isotropic term of the second moment

can be modified to:

Zfi(o)ciacig = [? (1 —ar)pr+ (1 —ap)pp) dup + puauB] . (3.16)

2

Now, we introduce the Chapman-Enskog expansion that will be used for the kinetic
equation and distribution function. The expansion splits the distribution function

and time derivative into perturbed contributions, at different orders:

fi= 1O +effV v (3.17)
o 9 9

— =+ €—

ot oty ot

The expansion parameter, €, is proportional to the ratio of the lattice spacing to the

characteristic flow length. It should be noted that terms of order €2 or greater, in
Eq. , are ignored in the proceeding analysis, due to only the two lowest orders
being needed to recover the Navier-Stokes equations [39]. The approach taken when
expanding the time derivative in Eq. differs between authors, where, e.g., Guo
and Mohammed [70, 121] treat the expansion as a linear composition of fast ¢, and
slow ¢; time and Kruger and Succi [39, [122] rather as an infinite expansion of the
time derivative [123].

Here, the same assumptions as Guo et al. [70] are applied:
(») _ (p+1) . _
LT =0, e =0, p>1, (3.19)
and it now follows that:

pu=3"fic,+ mEAt < 3 fPe = —mFAL (3.20)

The first step towards recovering the hydrodynamic behaviour of the model is to

Taylor expand and apply Chapman-Enskog expansion (Egs. (3.17)13.18)) to Eq. (3.2)):
At
(€0yy + €204, + c1.€05) (f2 4+ ef}) + 7(5&0 + 20y, + ¢.€0.)*(f2 + ef})
(3.21)
1 0 1 2 r2 (eq)
= _—_—— (¥ : 2 _ I
g (el + 82— 1) +eF,
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First, evaluating the most rapid behaviour in the model, with equivalent equation

in Guo et al’s analysis [70] being Equation (9b), giving:

1
O(e) : (CiaOa + ato)fi(()) = _Efz‘(l) + F;. (3.22)

Now, proceeding to Equation (9¢) of [70] (which is the expansion to O(€?)), it is

possible to obtain straightforwardly the following equation:

L 2
At Fo+=

At

9 ( zaaa"i‘ato) (3 23)

1
0(62) . 0t1fl(0) (1 - 2> (Czaa +8t0)f(1)

Starting with the O(€) equation, the zeroth and first moments are taken. The

zeroth moment is:

1
> (ilo+ 0) i = 3~ fiV 4 SALE,
atop + aapua = AtA,
Oty + Ouptig =0, (3.24)

where in order to retrieve the continuity equation, let A = 0, similar to the analysis
in [70].
The first moment of Eq. (3.22) is evaluated as follows:

Z(Cma + 8150 Czﬁ == Z —E ng + Z AtF iCiB,

i

8011_[&%) + &sopuﬁ = (7‘ -+ n) Fﬁ. (325)

where, assuming that Bg = nFj, n is a constant to be determined and H&Og) =
(201 + 4¢2) pdap + puaug is the zeroth-order momentum flux tensor. To recover the

Euler equations, the following constraints must be met:
A=0, n+ =1, (3.26)
T

We proceed to evaluate the zeroth and first moments of the O(e?) equation. The
zeroth moment of Eq. (3.23) is:

3751 Z fz(O) + <1 - 217_> Z(cma + 8150) = Z f(2 Z(Cw(a + 8t0)

% %

Dp + (1 - 217) (On (—mF,AL)) = —A; (02 B.)
yup + (1 - 217> (0 (—mF,AL) = _A; <aa (1 - T) Fa>
up = — Al < - m> O F. (3.27)
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Next, the first moment of the O(€*) equation:

1
oty Ei:fim)m + (1 — 27> }Z:(cma + 0,) [P = TAt Zf Cip (3.28)
At
+ 7 Z(cm@a + atO)FiCig
1 &) At
By, (pus) + (1 _ 27) (At (—mFy) +0.10) = -5 (atOB 1 s ( (Cup + Cga)»

0 (pus) = Bt (m = 5) s + 0
(3.29)

where 0[,5 = (1 - —) HS/B) 2L (Cop + Cga). After Guo et al. [70], the following
constraint on m has to be imposed, in order eventually to obtain physically correct

target dynamics for the system:

1
= —. 3.30
m= (330

Subsequently, there result the two following equations for the zeroth moment and

first moment of the O(e?) equation and also an updated constraint on n:
8t1p = 0, (331)
and the updated first moment equation is:

atl (puﬁ) =0 - OaB; (332)

where it is now possible to express n as follows:

1
n=1-—— (3.33)
or

To evaluate Eq. (3.32), an expression for the first order momentum flux tensor HS/;,

is needed. Rearranging Eq. 1} for fi(l) and then taking the second moment by
multiplying through by c¢;4c;s and summing on both sides ;.

HSB) = Z f(l)Cma
= Z TAt ( ato + cw(? ) fl(o) + E) CiaCiB

)
AL

1
— 01 [(261 + 462) pOas] — Ouy (puiais) = €0, (usp) Aagrs + 5 (Cas + Cpa) -
(3.34)

For transparency, each term on the right hand side of Eq. (3.34]) will be evaluated

individually. The time derivative in the first term on the right hand side can be
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removed using the kinematical condition that color is a material invariant on the

shortest time scales (Eq. (3.58)) as follows:

=04, [(201 +1462) poos] = ~Ouy [(1— ) pre + (1= ) s s

3
= —= (L= ar) 9y [or + App] dag (3.35)

3
= - (1 = ar) uy0y [pr + Aps] dap.

ot

Simplifying the second term on the right hand side now. Here, the product rule
and then substitution from Eqgs. (3.24), (3.25) and (3.16)) will be used to remove

time derivatives from the equation:

—0Or (puaus) = —ualy(pus) — (pus)dyta
= uaawngg) —uo g+ uﬁ(%l—[g + ugFy, — uqugOyu,p
= —(ugFa + uakp) + (Uadp + usda) [(201 + 402) pdas] +
+ ualy (puguy) + updy (puaty) — uausgdy(puy),
 (upFy + uaFy) + (e + 1302) 2 (1—ar)d, [or + Apg], (3.36)

where, u0, (pugty) + ugdy (Puatiy) — uausly(pu,) = O0y(puqupu,). This term is
approximated to zero under the assumption of the low Mach number limit —the
assumption that fluid velocity is much smaller than the speed of sound, meaning
that this term is negligible (see Eq. (2.18))).

Next, evaluating the third term on the right hand side, using the tensor properties

defined at the start of this analysis and, by utilising the product rule:

—30y (usp) Dapns = — 50y (usp) (asdas + dardp5 + 0asdsy)
= Cia’y (uvp) (5ozﬂ - Cipaa (uﬁ) - Ciuﬂaa (IO) +
— ;a3 (p) — ¢;p0s (ua) - (3.37)

Substituting the simplified expressions, given by Egs. (3.35} [3.36} [3.37)) back into
the expression for the first-order momentum flux tensor, Eq. (3.34):

nl) 3 1
;= 5 (1= ar) w0y [pr + Aps]0as + 5 (Cap + Caa) — (upFa + uaFp)+
3
+ (uq0p + w0y ) 5 (1 —ar) 0y [pr + Aps] — C?ufya,y (p) Sap+

— 2p0y (uy) bap — 204 (ug) — Gugda (p) — Guads (p) — ¢2pds (ua) -
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Simplifying the above, by collecting terms together:

HS) p 1
mﬁt = =3 (Oaup + Jsua) + 5 (Cap + Cpa) = (uals +usFa)+

+ uoﬁﬁ@/ + u53a(13/ + uwawcb’éaﬁ
_ ga"/uv‘;aﬁ (3.38)
a _g (Oaup + Optia) — ta (Fp — 95P") — ug (Fo — 0a9") +

1
+ u7(97<1>/ - §87u7 dap + 3 (Cop + Csa) ,

where, for simplicity, the following definition is used: ® = 2 (1 — ag) (pr + App)—3p.

Now, using the definition of the viscous stress tensor o5, and substituting the

expression from Eq. (3.38) for H&lﬁ), results in:

1 At
_ (1)

1
= (T — 2) (I?O) (aauﬁ + 0,8Ua) + Uq (Fﬁ - aﬁq)/) +ug (Fa - 8aCI)/) ) + (3'39)

1 , P T
- <T - 2) [u,y&yq) - 387%} bap = = (Cag + Ca).

Only the first term on the right hand side is consistent with the Navier-Stokes

equations. It is therefore possible to infer an error as follows:

1 / /
Ea,B = <T — 2) (ua (Fg — 85(I> ) —+ ’LL5 (Fa — 8a(1> ))+ (340)

1 p T
- (T - 2) [uﬁ@’ - Sawuw} ba5 = = (Cap + Ca)

Therefore, in order to eliminate the error, the following choice of correction tensor

Cop is made (eliminates the error):

Clop = (1 - 217> (ua (Fs — 059') + ug (Fa — 0a8) — [uﬂ,(%@’ - gavu,y} 5a5) .
(3.41)
Note that by setting agr = ag, A — 1, 059’ — 0, Eq. will reduce to Equation
(16) of [70].
Finally, consider Equations (6) and (20) of Guo et al., for the evolution equation source

term. It has been found that, in the additional presence of large density gradients
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(which now characterise the inter-facial region), the BGK source term becomes:

1\ Fac

Fi=td (1——) =52
{( 27') c? *
+oo(1-5)

2cd 27

(cmcw — c§5a5) }

Ugq (Fg — 85q)/) + ug (Fa — (9a<1>/) — uv(‘?ﬂ)’ — gaf),ufy:| 5a,8] X

(3.42)

Separating the source term into two components Fy; and F5;, where F}; contains
the density-difference corrections and Fy; contains the immersed boundary force

(drop dynamics —surface tension), we have:

1 1
F,=— (1 — ) t; [—uaaﬁ(b/—Uﬁaa®/— U, 0, D" — g@vuv} 5ag] (Ciaczﬂ — C?(Sag) )

~ 2t 27
(3.43)
1\ [Fac; F Fs) (CiaCig — €26
Fy = t; (1—) aCia | (UpFa F taF}) (Gatip — G0ap) | (3.44)
27 2 ct

Finally, the macroscopic equations of motion can now be recovered. For the continuity
equation, combining Eqs. (3.24), (3.26)), (3.27)) and (3.30)), we have:

Oip + Opptia =0, (3.45)

and by combining Eqgs. (3.25} [3.26] |3.28] [3.30}, [3.39} |3.41)), the weakly compressible

Navier-Stokes equations are recovered:

Orpu + 0g(pugug) = —0ap + 01 (Opta + Oqug) + Fy, (3.46)

where pressure is defined as: p = pc? and for the BGK collision scheme used in
this LBE variant, the viscosity is defined as:

n= g (T — A;) . (3.47)

In conclusion, the weakly compressible Navier-Stokes equations have been recovered
as desired. However, the extension to the simulation of binary fluids with a density
contrast led to more error terms in relation to the unity density contrast model [70].
The fallout from this is that alongside the source term that applies the immersed
boundary force (Eq. (3.44))) found in the analysis in [70], there is now another source
term that contains the corrections needed due to the extension of the model for the
simulation of fluids with a density contrast (Eq. (3.43))). As such, it is important
now to assess to what extent this new correction source term impacts the model,

and importantly, its compliance with the continuum kinematical interface condition.
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3.3.2 Kinematics

Multi-Component lattice Boltzmann method variants all contain a diffused interfacial
region between the fluids when aiming to simulate immiscible fluid flows; this,
of course, introduces an unphysical length scale into continuum simulations. In
c¢cMCLBM models, this interface scale is relatively easily tuneable; it is defined by a
phase-field that catalogues the phase one is in over the lattice. This interfacial region
has large importance, with immersed forces being applied in this region, aiming to
enforce or, rather, manufacture, flow physics characteristic of the situation under
consideration, i.e., surface tension at the interface between fluids, when modelling
drops. This interface should be subject to a continuum kinematic condition, which
we choose to state as follows: the interface should advect with the fluids locally
(physically, if fluid; recedes from fluidy quicker than fluid, catches fluidy, a cavity
will form). To check the interfaces’ compliance with the kinematic condition, one
must transform -pass- from the kinetic description of the fluid segregation to a
continuum description. Here, an analysis is presented that provides a framework
for investigating the model’s compliance with this continuum kinematic condition,
by assessing the segregation rule that helps maintain the interface —potentially the
most crucial methodological step in color-gradient and chromodynamic models.
The following analysis provides a framework which is referenced in both Chapters[4]
and [ as well as having relevance to the whole class of chromodynamic models.
The analysis considers a uniformly translating flat interface between two effectively
immisicble fluids. Specifically, the interfaces mean curvature is given by H = 0.
Through setting H = 0, this removes the dynamics from the model (soon to be
discussed), therefore testing the pure kinematics of the model. Note, letting H # 0 in
the proceeding analysis would take away from the transparent outcome of this work,
resulting in an over-elaborate perturbation of the solution soon to be given. Figure
shows a schematic of the interfacial region and the postulated flow in question:
Starting with the red fluid (say), colour conservation is applied to the node lying
at position r, time t + At, to post collision, post re-colour red link populations

on adjacent nodes at the previous time step t:

pr(r,t+ At) =>" RY(r — ¢;AL,1). (3.48)

Substitute the post collision (post re-colour) rule for the red fluid, R;W, into Eq. 1}

Pr(r — Ate;) 1 0 .
> i) (£(p.w) + F))

¢i(r — Atc;)pr(r — Ate;)pp(r — Atc)n - Alg;
+2.0 o — Atc,) |

pr(r,t + At)
(3.49)
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Figure 3.2: Schematic of a uniformly translating, flat interface in the direction shown
by the white arrows. Black arrows show the interface unit normal 7, where the mean
curvature of the interface is set to zero (H = 0) [77].

Note, because we are concerned with a uniformly translating fluid in the interfacial
region, where H = 0, the surface tension immersed boundary force equals zero,
F, = —%UH Oap™ = 0. As such, from the source terms defined from the dynamics
analysis (section in Egs. , , it follows that f¥ = fi(o) (p,u) + Fy; (for
steady flow), where Fy; = 0 due to presence of zero interfacial curvature. The result
is that the source term is given by F; = F};; this therefore removes the surface tension
from the analysis (dynamics), resulting in a pure kinematics test, as desired. For

transparency, Eq. (3.43)) is given in compressed form, for purposes of this analysis:
Fi = Fup (PR, pB, P, A,u) ti (Ciaciﬂ - Cgfim) ' (3.50)

Substituting the expression for the equilibrium distribution function, fi(o) (p,u), into
Eq. (3.49) and also F; = F};, we obtain the following:

At
pr(r,t+At) = Z pRT — Atcc)) (P(E — AL )G + tip(r — AL, ) X

(uacia | UallgCiaCip _ u? ) N Fu)

c? 28 222
i(r — Atg; r — Alc; r — Atg;)n - Atg;
N Zﬁcb (r — Ate;)pr( i)ps( i) ’
p(r — Atg;)
pR(Z7 t+ At) = Z lpR¢z + Flz]
Vi P r—Ate;
UaC; UaUBCiaCi U2
+ Z ltsz< azwz + allg Za 8 -
Vi Cs 205 2C$ r—Atc,

+ szl (pRpB)nﬁcw] . (3.51)
r—Ate;
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Taylor expanding about ¢ and r up to second order, there results the following expres-

sion:

0 0? 1
PR+ AtQ 2PR = [ (PR — AtcigOspr + 2At2cwcmaﬁ(%ﬂ}z> 050]

+ At—
PR ot 2

1
+ Z [ (pR - Atcw@BpR + 2At26150i76587p3> (Zﬁl]
Vi#0
1
+ Z (pR - AtCiBang + 2At20156178587p3> FM‘
Vi

I 1 UoCia
+ 3 ti< — Atendypr+ AR50, ang)
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In order to simplify the above expression, one must appeal to lattice isotropy and lat-

tice weight ¢; properties. Accordingly, the following lattice tensor conditions are used:

Zt |: Cza Ciaciﬁ7 Cz'aczﬂcz"yci@} = (07 Cg(;al% ciAaﬁwﬁ)y (352)
Z S {(Cia)2p+17 CiaCip, CmaCinie} = (0, k0§5a57 k?Cianﬂw% (3-53)
Vi0

where, again, k = £ for the D2Q9 lattice structure. Using Eqgs. (3.52] , the
compressed form of Fy; in Eq. (3.50) and the definition of ¢; in Eq. (3.6 to simplify
Eq. (3.52), and removing terms that will sum to zero, we have:

0] 0? a agp
pr + At—pr + At “5PR = PR( RPR i B B>
ot ot p p
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Now, expanding the summation over lattice links ¢, there results the following:
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2
— AtB(1 - ap) [At&a (ng3> 1%1@@55&7. (3.55)

Expanding brackets and canceling terms in the above gives a final result as:

opr 1, ,0%pR At? P
Atﬁ + §At2 12 + AtU’ya’pr :7<1 - aR>kC§ v2 ?
At? [ pRPB) 1
(1 —ap)kc|V? (
y (1~ an) p
U U
+?6At2 [8a8gp3]
2
~AtB(1 — ag)kc? [ax <pR§B> ]na
p
2
~AtB(1 — ap)kc? [@a (p];53> ]na
F
+2cEA120,04 (p Rpa5> , (3.56)

in which the last term on the right hand side (in Eq. (3.56])) originates in the
density difference correction term, Fy;. Neglecting this term, i.e., considering the

case of unit density ratio, results in:

dpr | 1 QaQPR
AtPE L LAy

o 27 op
3

2
_ Moo 292 [ PR ﬁ 201 _ 2w2 [ PRPB
= 208(1 OZR)At \Y ( P ) + 205(1 OéB)At \Y% (p )

+ Atu,0,pr

1
+§At2uauﬁ8aagp3

2
—AB(1 — ag)kcin, 0, (pIZSB>

2
—ALB(1 — ap)kcn, 0, <”’;§B> . (3.57)

A similar equation to Eq. can be produced for the blue fluid, which just
exchanges R <> B and § <» (—f) in the preceding analysis.

If the most rapid colour dynamics is evaluated by considering very small At (which
corresponds to spatial and temporal resolution), the resulting equations show that
pr and pp are material invariants on the shortest time scales, satisfying the first

order wave equation (advection equation), as:

%’ZC tu-Vpo=0, C€l[R B (3.58)
0

This result is, subsequently, quoted as an assumption, in the dynamics analysis, as

such, it has a direct impact on the derivation of the model dynamics. Equation (3.58)
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is the first order wave equation in which p¢ satisfies with solution po(r,t) = f(r —ut).
This result shows that colour is a material invariant on the shortest time scales, in
which the normal to the interface has no impact on the kinematics at this time scale.
Again note, this result is derived by neglecting the inclusion of a density contrast
in the model, as a consequence of assigning Fj; = 0.

Proceeding now, we seek steady and unsteady solutions to Eq. .

3.3.2.1 Steady Solution

First, seek a steady solution to Eq. (3.56). Here it will be possible to recover
an exact solution. Due to considering the system at steady state, the following

simplification can be made:

Opr _ Ppr

ot ot?
therefore, Fj; = 0 (see Eq. (3.43) for further understanding). Applying these
simplifications to Eq. (3.56) and rearranging, results in the following:

1 oy 1(1—ap) PRPB
~v? R) + - v?
2 < p) 2(1—oag) p

2 1 — 2
~ Bn,0, (’?) _ 5E1 - zign,},&y (P%)E;) ] —o.

u=0, and =0,

kc?

S

(3.59)

Now, search for a solution for pr and pg, such that the above equation is satisfied.
Using the trial solution shown below, and by substituting it into Eq. (3.59)), it is

possible to show the solution to this equation is given by [77]:

pr(r) = P53 (1+ tanh (87 1),

o ) (3.60)
pp(r) ==~ (1 —tanh(5n - r)).

This, therefore, provides an exact solution for any density ratio between the two

steady, immiscible fluids, with any orientation of their flat interface.

3.3.2.2 Unsteady solution

Seeking a solution to Eq. for the case where the fluids are uniformly translating,
now. Due to the final term on the right hand side of Eq. —which encapsulates
the density difference correction —an exact solution cannot be found. Hence, the
approximation of small density contrast is taken. This approximation means that the
second derivative of the density correction term Fl 3 is small and can be neglected

—this assumption is further considered shortly.
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Straightforwardly, the solution to the approximate unsteady, problem of Eq. (3.57)
is found by modifying the steady solutions given by Egs. (3.60) as follows [77]:

pr =L 4 tanh [ - (r — ut)] },

2
__ PoB A
o = 7{1 — tanh [5n - (r — ut)] }7
D= ont pp (3.61)

where, similarly to the steady solutions, the solutions can be checked via substitution

into Eq. (3.57)).
Accordingly, a phase field defined following equation (21) of Ba et al. |111], will now

furnish physically correct behaviour under the approximation of small density ratios.

N (pi_ﬁi)

— \POR __ poB A

P = (@ pi) — tanh [ - (r — ut)] (3.62)
por | poB

3.3.2.3 Density difference error

The result given by Eq. (3.62) corresponds to the assumption that only a small
density contrast is present between the fluids. Evidently, this will introduce an
error into the system when trying to simulate larger density ratios. Therefore, it is

now appropriate to analyse this error, by investigating it in more detail. Isolating
the neglected term in Eq. (3.57)):

Fy
E =26 A120,05 <p Rp 5) . (3.63)

Through substitution of the definition of Fi,s from Eq. (3.43) in section and
using the solutions for the density profiles given in Eq. (3.61)), after lengthy algebra,

it is possible to arrive at the following expression for the error term [77]:

E = —2Af (1 - 217> [aaaﬁp:‘ (uaaﬁpmﬁaapm”,avpaaﬁ)] (3.64)
1 1 1 . R PhPB
= 4 At2<1—><—>x V) (- V) + - uV? [R]
0 27/ \po  Por ((n ) V) + - ) P

Evidently, when 7 - u = 0 the advection error term will vanish. This means, that
in cases where flow is tangent to the interface, there is no advection error, and the
approximate solution is actually exact in this geometry. We are compelled to assume,
at this point, that this method will be more stable for flows parallel to the interface.
This hypothesis will later be examined further through simulation.

We investigate when the error is largest, by using the first equation in Eq. ; it
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may be postulated that derivatives in p will take their largest value mid interface,

which can be expressed as follows:

Apnn —
8BP“M:5(A_1)POB-

B

Following algebraic simplification, and taking the maximum value of %R , which is 1, it

is possible to find an upper, maximum value for the advection error quantified as such:

E < (1 - 217_) pu(A —1)pop. (3.65)

This term will be discussed in more detail within the results section.

3.3.3 Dynamics and Kinematics Coupling

Summarising now, the findings from the previous analysis of the developed cMCLBM.
From the dynamics analysis shown in section [3.3.1} it was found that in order to
retrieve correct hydrodynamic behaviour (the weakly compressible Navier-Stokes
equations), a new source term denoted Fj; had to be included. This source term
contains the corrections needed to eliminate the propagated consequences of an error
originating from the density contrast between the fluids. By including this new

source term, the correct macroscopic governing equations were recovered.

Following the updated source term, the interface’s compliance with the continuum
kinematical condition —that the interface should be embedded within the local fluid
and advect at the same speed locally —was analysed. This involved analysis of
the post-collision kinetic segregation rule which is in common amongst the class
of chromodynamic models and is designed to maintain interface integrity through
reducing fluid dispersion. The segregation rule was analysed by applying colour
conservation at a node lying at position r, time t + At, to post collision, post re-
colour red link populations on adjacent nodes at the previous time step ¢, seeking
expressions for the fluid densities pr, pp and fluid phase-field pV for a uniformly
advecting flat interface. The resulting analysis showed that an error term was present,
that propagated from the new source term Fj; needed to recover correct dynamics.
The inclusion of this error did not impact the steady solution (where this error went
to zero and an exact solution for the densities was recovered). However, the unsteady
solution was found by approximating the fluid density contrast as small —resulting
in the source term Fi; =~ 0. However, this source term will produce an error when
considering larger density contrasts, when it can not be approximated to zero. This
error was then bounded and approximated, with the result shown in Eq. . The
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error can be seen to increase with sharpness of the interface 3, velocity u and density

contrast between the fluids A.

In summary, the correction needed to recover correct hydrodynamic behaviour
(i.e., retrieve the weakly compressible Navier-Stokes equations) is affecting the
ability for the interface to meet the kinematical condition, due to an error term
introduced from the source term correction. Thus, there is a circular relationship
between the models kinematics and dynamics. With this relationship understood
and its error approximated, simulation results will now proceed to consider the
impact of this finding on the model’s stability and applicability in flows containing

large density contrasts.

3.4 Results

3.4.1 Spurious Current

All MCLBM variants are known to suffer from a spurious, unphysical velocity signal
—a micro-current —which is most prominent close to the interfacial region between the
fluids, where physically, in zero applied flow, the velocity field should be zero. This
unphysical velocity can be troublesome if the magnitude of the micro-current is close
to that of the characteristic velocity of the flow being investigated (such as in low Re
number investigations), where in such a case it can be hard to distinguish the physical
flow. The introduction of micro-current in the system stems from discretisation
errors as well as the effect of discrete application, node by node, of the continuous
immersed force [49] around which the algorithm is developed. The phenomenology
of the effect is as expected, given its origins; the magnitude of the effect can be seen
to increase with immersed force magnitude (i.e., for drops, the increase in surface
tension) and also with any increase in density contrasts between the fluids [124].
Attempts have been made during the development of MCLBM models to reduce
the micro-current level, through modification of equilibrium distribution function
and gradient calculations [125], particularly the use of increased isotropy in the
gradient operator [126]. Halliday et al. [49] investigated the micro-current within the
chromodynamic class of MCLBM models. They showed that the two causes of the
micro-current: (i) anisotropic gradient stencil contributions (investigated previous for
the SC model in [126]) and (ii) sampling error in the continuous immersed boundary
force; the outcome of the work being that the most appropriate way to reduce
micro-current activity in a way which is not algorithmically and computationally

restrictive is simply to use higher order isotropic stencils [49].
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It is therefore important to examine the micro-current level within the outlined
cMCLBM for the simulation of binary fluids with a density contrast, though
protracted and elaborate attempts to reduce the micro-current are beyond the
scope of this work. The following content considers the micro-current level, with
results showing the impact of density contrasts on its magnitude and also the effect
of calculating the curvature —mneeded for the computation of the immersed boundary
force. A single two-dimensional drop (radius R = 20) is placed in the centre of a
domain (lattice size: 80 x 80) and left to evolve for a million time steps. Density
contrasts over the range A = [0.001, 1000] were simulated, as well as two different
methods of defining the mean curvature of the surface: (i) a fixed surface curvature
value shown in Eq. and (ii) a numerically calculated surface curvature
following that of Lishchuk et al. [57] in Eq. (3.66b).

H= . (3.66a)

H = nyny, (0yny + Oyny) — ni@xnx —n2d,n,. (3.66b)

Here, Eq. expresses the fact that a perfect circle (such as the drops simulated
in this test, shortly) has a curvature defined by its reciprocal radius. Equation. (3.66b))
corresponds to a curvature calculation that can be used for non-circular drop
geometries as well, where the mean curvature is defined by taking gradients of the
interface normal, then projecting-out surface normal contributions of the gradient. To
numerically calculate the gradients in Eq. , a compact 4*(0) accurate stencil
was implemented as a good compromise between accuracy and implementability/
computational cost [49]:

0uf = 5 S 1S (0 4 c)eia + O(c)) (3.67)

The results of this test can be seen in Table [3.1] which shows the density contrast

used in the simulation A, the micro-current maximum velocity value, when using

Eq. (3.66a) |u|tt and the maximum velocity value when using Eq. (3.66b)) |ute

max*
The table shows that maximum micro-current value increases with density contrast,

with the maximum value across all density contrasts being of the order 1 x 10~*
lattice units. Taking A = 0.1, it can be seen that the maximum micro-current value
is an order lower when the curvature is defined from initial drop radius, compared to
when it is defined by the surface gradient of the normal in Eq. , whereas at
larger density ratios, the order of the micro-current amplitude becomes comparable
between the two definitions of curvature. This suggests that, as the density difference

increases, the numerical error involved in simulating a large density contrast is having
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a dominant effect on the micro-current level. It should be noted, that although micro-
current levels were recorded for density difference in the range A = [0.001, 1000], for
o =1 x 107°, the integrity of the interfacial region started to break down at density

ratios > 100, which can be stopped through the use of a larger surface tension value.

BGK collision operator:
Static drop maximum microcurrent values
o mx |

max max

0.001 0.9995 0.5 1.04x10™* 2.54 x 10"
0.0 0995 05 6.93x1077 592x107°
0.1 09 05 260x1077 2.68x10°°
10 0.5 095 6.02x107% 8.21x10°®
100 05 0995 348 x10°% 4.51x107°
1000 0.5 0.9995 9.61 x 107° 9.61 x 107°

H A ap QR |Q| |g

Table 3.1: Maximum microcurrent velocity (in lattice units) for a static drop of initial
radius R = 20 in a domain of 80 x 80, for A € [1073,10%], B = 0.67 with surface tension,

o =1x107°. Two different maximum microcurrent values are shown: (i) |u/lf  and (ii)

lu|lle | where Hf corresponds to mean curvature given by Eq. (3.66a) and H, corresponds

max?

to mean curvature given by Eq. (3.66b]).

Consider now the micro-current field in more detail; Figures [3.3] and [3.4] show
the micro-current plots over the lattice for a density contrast of A = 0.1, i.e., blue
fluid has density 10 times that of the red fluid, in which Fig [3.3] corresponds to the
simulation, where curvature is defined by Eq. and Fig corresponds to the
simulation where curvature is defined by Eq. . These figures were obtained
by plotting the velocity field over the domain for the test explained prior, where
the drop surface was defined by using a contour taken at contour p = 0. Note,
visualisation software ParaView was used to produce these plots. Considering the
left images of both figures, which show the micro-current magnitude over the lattice
|u|, we see that the micro-current is an order of magnitude larger when calculating
the curvature (essentially from surface gradients of the normal) and also there is a
larger diffusion of the micro-current effects across the domain, unlike when using a
fixed curvature value, based of the initialised drop radius —this is likely due to the
numerical errors introduced by using the stencil given by Eq. . This tentative
conclusion is also confirmed by the data presented in the right panels of both figures,
that displays the top right quadrant of the lattice and the unscaled velocity vectors
that highlight the micro-current flow. Here, Fig highlights a larger diffusion of
the micro-current field, compared to that in Fig[3.3

As presented by Halliday et al. [49], the micro-current level also relates to a sampling
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lul
6.8e-13 7.0e-8 1.3e-7 20e-7 26e-07 6.8e-13 7.0e-8 1.3e-7 2.0e-7 2.6e-07

— | —
Figure 3.3: Microcurrent profiles over the lattice for a density contrast A = 0.1 and when
the mean curvature is given by Eq. (3.66a)). (left) shows surface plot of the microcurrent
where white circular contour corresponds to p" = 0 plot. (right) shows the top right

quadrant of the lattice, showing microcurrent surface plot, superimposed vector field of u
(not scaled) and white contour corresponding to p’¥ = 0 plot.

lul
3.1e-12 6567 13e-6 20e6 27e06 3.1e-12 6.5e-7 1.3e-6 20e-6 2.7e-06

—— | | —— | |

Figure 3.4: Microcurrent profiles over the lattice for a density contrast A = 0.1 and
when the mean curvature is calculated by Eq. (3.66b). (left) shows surface plot of the
microcurrent where white circular contour corresponds to p”¥ = 0 plot. (right) shows the
top right quadrant of the lattice, showing microcurrent surface plot, superimposed vector
field of u (not scaled) and white contour corresponding to p™ = 0 plot.

error of the continuous immersed boundary force. Clearly then, the magnitude of the
immersed boundary force will affect the magnitude of the micro-current. To evidence
this, Table[3.2] shows the maximum micro-current magnitude at a density difference of
A =100 for o € [5x 107°,1 x 1072], using Eq. for the curvature. The results

in Table [3.2] show increasing maximum micro-current level with increasing surface

68



3. Kinematics and Dynamics of Chromodynamic Multi-Component Lattice
Boltzmann Equation Simulation

BGK collision operator:
Static drop maximum microcurrent values
for a range of surface tension values
| o A [l |
5x 107° 100 9.05 x 107°
1x10™* 100 1.45 x 1075
5x107* 100 421 x 1075
1x1073 100 5.81 x 107°
5x 1072 100 8.37 x 107°
1x1072 100 9.74 x 107°

Table 3.2: Maximum microcurrent velocity |u/fe  (in lattice units) for a static drop of

initial radius R = 20 in a domain of 80 x 80, for A € [1073,10%], B = 0.67 with surface
tension in the range o € [5 x 107°,1 x 1072,

tension. This is as expected, with a contributing factor to the micro-current being an
error associated with the sampling of the immersed boundary force [49]. The integrity
of the interface and ability to maintain the circular shape of the drop increases with
surface tension value, although does cause increased micro-current level. However,

He — 974 x 107°, which

max

even at o = 0.01, the maximum micro-current level is |u

is comparable to the results presented by Ba et al. [111].

3.4.2 Kinematical Condition

Within the analyses of section work focused on the assessment of the compliance
of the model with the continuum kinematical condition (that the interface must
advect at the same speed as the locally advecting fluids, recall). From this, an error
term was also highlighted, which could potentially impact the ability of the model
to meet this condition and hence affect model stability. This section considers the
testing of the utility of the model in dynamic flows, focusing on the maintenance
of correct interface profile —defined in Eq. (3.62).

3.4.2.1 Flat interface pushed perpendicular to the interface

To test our model’s stability at increasing density ratios in non-static situation,
the following test was used. The two fluids were separated by a flat interface and
pushed perpendicular to that interface at a velocity uy. Stability of the model
might then be argued, based on the quality of the maintained interface (smoothness,
adherence to the expected tanh profile, etc.). To assess whether the interface had a
correct profile, the kinematic condition discussed in section is considered. The
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principle kinematic condition, that the interface should advect with the fluids, with no

cavitation, leads to the following equations for the profiles of the red and blue fluids:

pr(z) = 1 1+ tanh(x — ug
A2 (1 tanhlir = o) (3.68)
pp(x) = 3 (1 — tanh(z — ugt)),

where, in this test, the red fluid has a larger density than the blue fluid, which has a
deep phase density set to pop = 1. The red density profile was normalised, to allow
for easier visual comparison with the blue density profile, with the first quantitiy

being divided by the density ratio, A.

Simulations were run to equilibrium, before moving the fluid, to damp transients
within the system. The then equilibriated, flat interface was centred on =z ~ 20
and a uniform flow applied, with velocity ug, and the interface allowed to advect
20 lattice sites. The predicted interfaces, shown by Egs. , were then fitted to
the simulated interfaces by using least squares regression, with the quantification
of the error between the actual and the predicted interface shape of the red fluid

being calculated in the following way:

At)? = Z <pR($i, t) — pOTR (1 + tanh(z; — uot)))2 : (3.69)

7

where, the summation occurs over a range larger than the interfacial region, 40
locations, to ensure any deviation from the predicted profiles was captured. To fit
the predicted profile against the analytical solution for the profile, t was allowed
to vary to provide the best fit, minimising the error value. From this, any result
that had A(t)? < 1.36 x 1072 was deemed stable and any above this value deemed
unstable. It is also worth noting that throughout this test, it was found that the
denser profile —Red —departed from that of the predicted profile before the lighter
fluid —Blue. Therefore, it is assumed that the error in the denser profile will be

larger at a given time compared to that of the lighter fluid.

Figure [3.5 shows the data from this test, which has all been normalised as discussed
above. It can be seen that the data provide very good agreement with the profiles,
for the interface given by Egs. , and for the density ratios and flow velocities
tested. Quantitative data for this test are given in Table showing the full range
of density ratios and flow velocities tested and the stability of the parameterisations
based on the criteria: A(#)?* < 1.36 x 1072. From this, it is seen that the system

is stable over a wide range of density ratios and flow velocities, with large density
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