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STREAM PROCESSING DATA DECISION MODEL FOR HIGHER 

ENVIRONMENTAL PERFORMANCE AND RESILIENCE IN SUSTAINABLE 

LOGISTICS INFRASTRUCTURE

Abstract

Purpose: As the global freight transport network has experienced high vulnerability and threats 

from both natural and man-made disasters. As a result, a huge amount of data is generated in 

freight transport system in form of continuous streams; it is becoming increasingly important 

to develop sustainable and resilient transport system to recover from any unforeseen 

circumstances quickly and efficiently. The aim of this paper is to develop a stream processing 

data driven decision-making model for higher environmental performance and resilience in 

sustainable logistics infrastructure by using fifteen dimensions with three interrelated domains. 

Design/methodology/approach: A causal and hierarchical stream processing data driven 

decision-making model to evaluate the impact of different attributes and their interrelationships 

and to measure the level of environmental performance and resilience capacity of sustainable 

logistics infrastructure is proposed. This work uses Fuzzy Cognitive Maps and Fuzzy Analytic 

Hierarchy Process techniques. A real-life case under a disruptive event scenario is further 

conducted.

Findings: The result shows that which attributes have a greater impact on the level of 

environmental performance and resilience capacity in sustainable logistics infrastructure.

Originality/value: In this paper, causal and hierarchical stream processing data decision 

and control system model was proposed by identified three domains and fifteen dimensions 

to assess the level of environmental performance and resilience in sustainable logistics 

infrastructure. The proposed model gives researchers and practitioners insights about 

sustainability trade-offs for a resilient and sustainable global transport supply chain system by 

enabling to model interdependencies among the decision attributes under a fuzzy environment 

and streaming data.

Keywords: Resilience, Streaming data, Logistics infrastructure, Environmental performance, 

Fuzzy cognitive maps, Fuzzy analytic hierarchy process, Sustainability
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1. Introduction

Logistics sector has gained a significant impact on the supply chains due to increasing trend in 

the transportation of freight goods worldwide. The freight logistics system implies a connected 

network, in which a number of transport links and nodes in supply chain are engaged for 

providing reliable and transparent end-to-end logistics services. Currently, it is a word of big 

data. In contrast to traditional data, big data gave its own characteristics such as with three basic 

Vs: volume, variety and velocity (Wang et al., 2018; Raut et al., 2019) and with four additional 

Vs: variability (Milne & Watling, 2019), value (Addo-Tenkorang & Helo, 2016), veracity (Raut 

et al., 2019) and visualisation (Milne & Watling, 2019). However, big data is not noticeable by 

reason of its size, but because of its relation to other data. This huge amount of data also offers 

several challenges for dynamic environmental management in logistics network design. In this 

system, the transport links usually consist of a set of transport modes such as road, rail, sea, air 

or inland waterways to connect the respective nodes in freight logistics corridors, whereas 

transport nodes mainly consist of numerous logistics infrastructures such as seaports, hinterland 

terminals, multimodal terminals, freight logistics hubs, logistics centers, logistics clusters, 

freight villages and logistics platforms. Logistics infrastructures have been designed to 

formalize the interaction and interconnection of different resources (Bychkov et al., 2016) and 

provide intermediate locations where logistics value is added to the movement of containers 

and trailers to and from port facilities and to and from rail multimodal yards. Efficient, 

sustainable and competitive processes in logistics infrastructures require close cooperation and 

data exchange between all parties in supply chain. This would generate huge amount of data 

from different sources. In line with current sustainability targets in freight transport, the need 

to strike a balance between achieving economic efficiency and viability, safe and secure 

logistics infrastructures and services as well as environmentally friendly systems aimed at 

minimizing energy resource depletion, environmental degradation etc. (UNCTAD, 2014). 

Transport planners need new knowledge about the impact of any future adverse events or 

disruptions on the environmental performance and resilience of critical logistics infrastructures 

(Fonseca et al., 2017). Since there is growing awareness of susceptibility in the international 

supply chains, the productivity of freight logistics communities increasingly relies on the 

undisturbed functioning of these logistics infrastructures. In this respect, building resilience in 

a higher environmental performance transport system entails ensuring system integrity, service 

reliability and functionality, as well as rapid recovery after disruption (UNCTAD, 2014). 

Hence, an environmentally friendly and resilient logistics infrastructure is a key component for 
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a resilient global supply chain and ensuring this infrastructure as resilient as practicable is an 

important environmental and economic priority for the stakeholders (O’Rourke, 2007; 

Ponomarov & Holcomb, 2009). 

One of the key challenges in developing a sustainable and resilient freight transport network is 

to decide the indicators to assess the resilience of logistics infrastructures under huge amount 

of stream data. There is a growing need to assess environmental performance and resilience and 

develop appropriate and diverse indicators to quantify the readiness of a sustainable logistics 

infrastructure to respond and recover from any encountered adverse event or disruption. Despite 

the critical potential effect, this topic appears to be relatively less covered in the literature. 

Resilience in the broader sense, is the ability of a system and its component parts to anticipate, 

absorb, accommodate, or recover from the effects of a hazardous event in a timely and efficient 

manner, including through ensuring the preservation, restoration, or improvement of its 

essential basic structures and functions (IPCC, 2012). 

Many everyday disruptions, which happened during the logistics operations, have less severe 

impacts: the freezing rain and sleet damaged ship dock, electric power outages caused delays 

in customs clearance, some goods trains had to stop, cargo-handling equipment is broken and 

so on. Such events will result in delay in delivery or cancelled shipments. In particular, 

increasing instances of environmental disruptions, partly caused by climate change such as 

massive snow, rainstorm or flood, has been upsetting freight logistics system and consequently 

international supply chains. Potential environmental interruptions to these logistics activities 

would therefore have explicit implications and incur significant losses and economic costs. In 

the context of logistics infrastructure, the concept of resilience comprises the capacity to 

withstand unanticipated disruption, to detect the occurrence of disruption, to absorb disturbance 

and to act effectively in a crisis in order to minimize the negative consequences of the disruption 

and to adapt changing conditions (Sheffi & Rice, 2005; Haimes, 2009; Hughes & Healy, 2014; 

Sheffi, 2015). Resilience includes the ability to withstand and recover from deliberate attacks, 

accidents, or naturally occurring threats or incidents (Alderson, et al. 2015). Since some of 

disruptive events cannot be prevented completely, logistics infrastructures should be prepared 

for the occurrence of them. In this sense, continuous monitoring using big data and predictive 

analytics with streaming data enables the study of new kinds of variation (time-of-day, day-to-

day, time-of-year, scenario-specific) to correlate with data on events/weather or incidents, data 

with system behavior, etc. to monitor unforeseen disruptions (Milne & Watling, 2019) and to 
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prepare/warn and even to change system conditions before event or disaster occurs. This would 

help in improving both the sustainability as well as competitiveness in logistics infrastructure 

using streaming data approach. Therefore, this study focuses on the below key question: How 

to develop a higher environmental performance and resilience focused logistics infrastructure 

under streaming data? Further, considering the characteristics of streaming data, it is different 

from traditional static data (Zhu et al., 2018; Song et al., 2017). Thus, it is important for decision 

makers to make use of stream data applications for better managing environment and resilience 

capacity in logistics infrastructure. 

In this research, a data stream based human decision and control system based on hybrid causal 

and hierarchical MADM method combining Fuzzy Cognitive Maps (FCM) and Fuzzy Analytic 

Hierarchy Process (FAHP) is proposed for modeling and solving environmental and resilience 

assessment problem of a selected logistics infrastructure under complex, poorly defined and 

uncertain environments. The paper is organized as follows: Section 2 discusses past literature 

to determine the environmental performance and resilience domains and dimensions in logistics 

infrastructure, Section 3 presents the proposed two-stage FCM and FAHP based causal and 

hierarchical stream processing data driven decision model and Section 4 discusses the empirical 

study. Last section provides the discussion and future research direction in this field. 

2. Literature review: Domains and dimensions of environmental performance and 

resilience in logistics infrastructure 

In the context of a logistics network and transport management, the concept of resilience is 

defined as follows; Rice & Caniato (2003) considered that resilience is the ability to react to an 

unexpected disruption and restore normal supply network operations. Christopher and Peck 

(2004) pointed out that resilience is the ability of a system to return to its original state or move 

to a new, more desirable state after being disturbed. Sheffi (2005) described resilience as 

containment of disruption and recovery from it. Fiksel (2006) defined that resilience is the 

capacity of an organization to survive, adapt and grow in the face of turbulent change. 

Hollnagel (2004) emphasized that resilience is an intrinsic ability of an organization (system) 

to maintain and regain stable state, which allows it to continue operations after a major mishap 

and/or in the presence of a continuous stress. Holling (2001) deemed that resilience is the 

capacity of a system to survive, adapt and grow in the face of unforeseen changes, even 

catastrophic incidents. Thus, it could be highlighted that resilience emphasizes the ability to 

quickly recover from a shock or disaster. This also includes the terms such as “elasticity” and 
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“flexibility” which mean adaptability and anti-disruption. Network’s topological and 

operational attributes are important in order to evaluate a network's potential performance in 

case of possible future disruptions (Miller-Hooks et al. 2012). The importance of a robust and 

reliable transport system has led to considerable research in order to understand the mechanisms 

and interrelationships, which create vulnerability, and further to find ways to mitigate the 

consequences of incidents (Mattsson & Jenelius, 2015). 

Several scholar have studied on characteristics of the development of successful infrastructures 

for multimodal terminals and logistics hubs. Sheffi (2012) made significant contributions in 

this field and argued that the most direct and effective way to improve resilience is to enhance 

the infrastructures. Their study suggested the following attributes of successful logistics 

facilities: (i) Favorable geography because of transport economics with origins and destinations 

that follow very specific geographical patterns. (ii) Supporting infrastructure because the cluster 

is as good as its transport network infrastructure. (iii) Supportive, efficient government because 

they are the main providers of public infrastructure such as roads, railways, ports and airports. 

(iv) Education, research and innovation because all economic clusters depend on qualified and 

competent people to do the work efficiently and effectively. (v) Collaboration and unity of 

purpose amongst all stakeholders, and (vi) Value-added services that extend beyond moving 

and storage functions to include transformation or modification of goods.

However, as the challenges to freight transport network constantly evolves, the dynamic 

understanding of the vulnerability and risk factors is crucial to develop an environmentally 

resilient system. The approaches to address and assess resilience of the network also need to be 

evolved according to the new emerging challenges. Due to this, vast degree of turbulence and 

complexity in the global logistics network, collaboration at the network level is desired to 

allocate the required resources and to respond to these unpredicted disturbances (Pettit et al. 

2010). Resilience is used in decision-making, where it is implemented as a response to 

interruption in many cases, although much of resilience remains rooted in preparedness 

(Marchese et al., 2018). Miller-Hooks et al. (2012) presented an exact methodology to address 

the problem of measuring maximum resilience level of an intermodal freight transport network 

and simultaneously deciding the optimal set of preparedness and recovery actions necessary to 

achieve it under certain constraints. Furthermore, freight transport network shares close 

relationships between the environmental performance and logistics infrastructure, as it trends 

to shape models of demand and resource availability. The role that freight transport network 
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holds on the environmental performance of critical logistics infrastructures has been highlighted 

in relation to the effect on the global greenhouse gas emissions due to energy consumption 

(Futcher et al., 2013; Ellram & Golicic, 2016; Rüdiger et al., 2016) and environmental, noise 

and congestion concerns resulting from various transportation modes in logistics infrastructures 

(Buldeo Rai et al., 2018; Salomons & Berghauser Pont, 2012). García-Onetti et al. (2018). 

Fonseca et al. (2017) deemed to establish bridges between the environmental performance and 

resilience for the logistics infrastructures. In addition, Cutter, et al. (2008) also suggested 

considering environmental performance as a component of resilience for the logistics 

infrastructures. As the review of literature on environmental performance and resilience as well 

as indicators has demonstrated that definitions and explanations are varying in the literature and 

the best way to assess this is to identify the challenges presented by the fuzziness of those many 

interpretations and the problems embedded in the assessment of qualitative information through 

indicators. 

Different trends towards the Internet of Things (IoT), Industry 4.0 and 5G networks can 

improve logistics efficiency. Especially, sensors and sensor networks are embedded in the 

physical logistics infrastructure (Psyllidis, 2016; Qin et al., 2019) and they generate streams of 

data through i.e. measurements and observations and deliver them directly to the system in a 

reliable, easy and quick manner. The data can report information in-real time about transport 

flows, trip generation, distribution and travel mode, environmental conditions, air quality, 

electricity usage, weather, temperature and humidity, sound levels etc. In the continuous 

processing of data streams across transport supply chain for transport planning purposes, 

processing situation may vary over the time (Anda et al., 2016; Qin et al., 2019): while, dynamic 

characteristics of data streams needs to be handled effectively. During processing, the volume 

or velocity of data streams can change significantly. For instance, transport flows and behaviors 

at a logistics port can differ depending on how many supply chains have used the port as a hub 

during the period of time, this could lead to changes of the stream characteristics. On the other 

hand, the data processing environment can also vary unexpectedly. For instance, massive flood 

and storm hit the main logistics hub and caused extensive damage or lead to a sudden reduction 

of available processing resources or network fluctuations. To cope with such varying processing 

situations, the need of adapting decision making on the behavior of environmental performance 

and resilience processing becomes critical. All those above-mentioned concerns can be 

considered as a research gap for this study to develop a stream processing data model for 

environmental performance and resilience.  
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After elucidating the importance of assessment of environmental performance and resilience, 

in this research, fifteen dimensions (sub-attributes, ) with three interrelated domains (main  𝐴𝑖

attributes, ) are identified to assess environmental performance and resilience in logistics 𝑀𝐴𝑖

infrastructure. Note that this classification of environmental performance and resilience may 

differ depending on researcher’s perspective (Tierney & Bruneau, 2007). A variety of 

definitions of environmental performance and resilience is provided according to the three 

aforementioned groups: (1) Technical domain refers to the ability of physical systems 

(including all interconnected components) to perform to acceptable/desired levels (e.g. added 

redundancy/ backups, geographical isolation, etc.) when subject to a hazard event (Bruneau et 

al., 2003). (2) Organizational domain represents the capacity of organizations to make decisions 

and take actions to plan, manage and respond to a hazard event in order to achieve the desired 

resilient outcome (Bruneau et al., 2003). (3) Operational domain includes development of well-

orchestrated and collaborative operations, with shared awareness, capable of reaching self-

synchronization, increasing the tempo of operations, flexible for inclusion of all organizations. 

These three domains depend on each other, as the communities invest in strengthening the 

infrastructure environmentally, technically and operationally, but this will not make the system 

any more resilient unless the organizations responding to an event are skilled, prepared and 

trained towards it. Various key domains and dimensions of environmental performance and 

resilience assessment in logistics infrastructure are given in Table 1.

Table 1 
Domains and dimensions of environmental performance and resilience assessment in logistics 
infrastructure.

3. Proposed Methodology

This work is based on stream data application-based decision support and control model for 

environmental performance and resilience of logistics infrastrucuture. Here, the decision 

making is done for process control and generally driven by stream processing data. Stream 

processing enables users to evaluate high volume of data in real time. However, human 

involvement is also desirable in such cases for improved results. Managers and practitioners 

may apply several techniques in regard to process control such as decision tree, quality control 

tools (statistical process), test equipment for failures, decision support models etc. These 

approaches allow process manager to optimize and decide for their processes for higher 

sustainability. In this research, logistics infrastructure involves real time data analysis of data 
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being generated from different nodes and points in logistics system. Further, some rules are 

needed to make decisions, and hence, an expert based data approach is used in this work.

The current literature recognized that fuzzy-based approaches are very effective to deal with 

imprecision and vagueness in multi-attribute decision-making (MADM) problems (Chan & 

Kumar 2007; Chan et al. 2008). A number of literatures such as Amindoust et al. (2012) and 

Govindan et al. (2013) highlighted the strategic importance of fuzzy models in different settings 

of MADM problems and applications, and explained the contribution of fuzzy sets in reaching 

at an effective solution. In the past, cognitive maps have been used for evaluating and assisting 

decision-making by examining the causal links among relevant domain concepts. A fuzzy 

cognitive map (FCM) is “an extension of a cognitive map with the additional capability of 

representing feedback through weighted causal links” (Khan & Quaddus 2004). Rodriguez-

Repiso et al. (2007) discussed that the past methodologies and approaches used for categorizing 

and assessing the evaluation criteria have several limitations, which could be addressed by the 

FCM based approaches. 

In addition, Ahmadi et al. (2015) presented an integrated approach based on FCM and FAHP 

to manage interrelated activities during the implementation of the new enterprise resource 

planning (ERP) system. Yang et al. (2011) proposed a hybrid approach combining fuzzy 

inference system (FIS) and FAHP to prioritize environmental issues in offshore oil and gas 

operations. A five-level hierarchy is developed. López & Ishizaka (2017) also proposed a 

hybrid method based on FCM and AHP to understand the impact of locations decisions in 

offshore outsourcing process on the supply chain resilience capabilities. The sensitivity analysis 

of the findings of this study also revealed that one location would improve supply chain 

resilience meanwhile the others would damage it. Irani et al. (2002) used an approach based on 

FCM to model the inter-relationships between key dimensions identified in a conceptual model 

for investment evaluation. They argued that FCM is an effective tool to model each evaluation 

factor and their interdependencies. Olazabal & Pascual (2016) used FCM for studying urban 

resilience ad transformation. Khan & Quaddus (2004) further argued that FCM could be an 

effective tool for both static and dynamic analysis of scenarios evolving with time. They 

discussed that an FCM provides relatively easy integration of an expert's domain knowledge 

into a collective knowledge base for a group involved in a decision process.

Moreover, Baykasoğlu & Gölcük (2015) developed a fuzzy MADM approach by integrating 

Fuzzy TOPSIS and FCMs to model complex decision-making problems. They argued that the 
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integrated approach had the ability to effectively model interdependencies among the attributes 

along with addressing the uncertainties. Hajek & Froelich (2019) developed a group decision 

making model by integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps 

(IVIFCM) for the supplier selection task. Biloslavo & Dolinsek (2010) also proposed a hybrid 

approach for scenario planning for climate strategies by integrating group Delphi method, AHP 

and dynamic FCM and found superior results. López & Ishizaka (2018) also presented an 

innovative hybrid technique based on FCM and AHP to assess the performance of enterprise 

content management in the IT infrastructure. The proposed approach helped managers to reduce 

the malfunctions and misuses of enterprise content management. Furthermore, Nachazel (2018) 

presented an approach to transform an FCM model into an FCM-AHP model to analyze the 

strengths and weaknesses of the approaches in the artificial life model. They found that FCM-

AHP provides a model with significantly lower computational time while keeping nearly the 

same level of proficiency as compared to the original FCM model. 

In this study, a two-stage FCM and FAHP based causal and hierarchical interrelationship stream 

processing data driven fuzzy decision framework is proposed to evaluate the impact of different 

attributes and their interrelationships in measuring the resilience of a logistics infrastructure. 

The reasons for the selection of this research methodology are explained as follows (Kayikci & 

Stix, 2014; Baykasoğlu & Gölcük, 2015; Ahmadi et al., 2015; López & Ishizaka, 2018):

 Clear and easy to understand for experts/evaluators 

 A high level of integration among attributes both causally and hierarchically

 It can be performed within relatively short time periods

 It gives a solid system description and

 Also useful for extension activities to train decision makers, if there are any 

misperceptions.

The methodology is well suited for causal and hierarchical structures. A hybrid approach 

combining FCM and FAHP incorporates fuzziness and criteria interactions into analysis in 

order to evaluate causally and hierarchically structured decision problem. The proposed causal 

and hierarchical interrelationship stream processing data driven decision approach comprises 

two parts as seen in Fig. 1. The first part consists of obtaining the overall attribute weights with 

understanding the causality among attributes by implementing FCM in the horizontal direction, 

whereas the second part is dedicated to implementing FAHP in order to rank the alternatives 

hierarchically in the vertical direction.
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Fig. 1 A causal and hierarchical interrelationship stream processing data driven decision 

model based on FCM and FAHP.

3.1 Part I - FCM calculation

The FCM, first introduced by Kosko (1986), are the combination of Neural Networks and Fuzzy 

Logic that allow predicting the change of the attributes (concepts) represented in Causal Maps. 

They are fuzzy directed graphs with feedback, consisting of various nodes (representing the 

change in attributes like robustness or restoring) and directed arcs that connect and represent 

the causal relation between those nodes. Each attribute has a fuzzy value ranging from [ ―1,1] 

and each arc is associated to a fuzzy weight with range . A positive weight represents a [ ―1,1]

causal increase whereas a negative weight represents a causal decrease (opposite effect) 

(Carvalho, 2013). In this research, no negative value is used, as all attributes have a positive 

impact to improve the resilience in a logistics infrastructure and the causal fuzzy attribute 

weight are ranging between . The weights of the attributes with respect to the 𝑤𝑖𝑗  𝑤𝑖𝑗 = 𝐸 ∈ [0,1]

goal are elicited from the decision makers of resilience assessment team by discussing questions 

with using if-then rules as follows (Kayikci & Stix, 2014):

– “Do you think that the attribute  (  affects any other attributes by any change or is 𝑖 𝐴𝑖)

affected by other attributes?” if yes, then

– “How do you assign the causal fuzzy weight between attribute  (  and attribute   𝑖 𝐴𝑖) 𝑗 (𝐴𝑗)

according to linguistic terms?”.
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The influence of attribute  on  can be one particular causal link associated with the 𝐴𝑖 𝐴𝑗

qualitative term set  for example: {“zero” , “weak” , “medium” , 𝜇𝑤(𝑥)  𝜇𝑧𝑒(𝑥)  𝜇𝑤𝑒(𝑥) 𝜇𝑚𝑒(𝑥)

“strong” , “very strong” } respectively;  represents the influence degree of a 𝜇𝑠𝑡(𝑥) 𝜇𝑣𝑠𝑡(𝑥) 𝑥

given linguistic term measured in the interval . Each element of the fuzzy set represents [0,1]

the specified Triangular Fuzzy Memberships (TFM) function  by a triplet  of 𝜇𝑤(𝑥) (𝑙𝑖𝑗, 𝑚𝑖𝑗,𝑢𝑖𝑗)

two attributes ( ), to integrate the multiple decision maker opinions. The triplet includes 𝐴𝑖,𝐴𝑗

three parameters,  and  and they respectively denote the smallest possible value, the most 𝑙, 𝑚 𝑢

promising value and the largest possible value that describes a fuzzy event. Fig. 2 denotes a 

five-TFM functions corresponding to each one of the five-linguistic terms and their 

explanations. Each th decision maker uses the aforementioned linguistic terms to infer the 𝑘

causal fuzzy weight  for every pair of dimensions. Each causal fuzzy weight is represented (𝑤𝑘
𝑖𝑗)

with associated TFM: . After having all decision makers’ 𝑤𝑘
𝑖𝑗 = 𝜇(x) = {𝑙𝑖𝑗, 𝑚𝑖𝑗,𝑢𝑖𝑗}, 𝑖,𝑗 = 1…𝑛

perception, the results are discussed in a round table. This process is continued until a consensus 

among decision makers is reached. FCM steps are as follows:

TFM 
Functions

Linguistic 
Terms Explanation

𝜇𝑧𝑒 = 0, 0,
1
4

zero
If  doesn’t affects  the fuzzy set for an influence close to 𝐴𝑖 𝐴𝑗→
0% with membership functions (  (neutral)𝜇𝑧𝑒), 𝑤𝑖𝑗 = 0

𝜇𝑤𝑒 = 0,
1
4,

1
2

weak
If  promotes  the fuzzy set for an influence close to 25% 𝐴𝑖 𝐴𝑗→
with membership functions (  (positive)𝜇𝑤𝑒), 𝑤𝑖𝑗 > 0

𝜇𝑚𝑒 =
1
4, 

1
2,

3
4

medium
If  promotes  the fuzzy set for an influence close to 50% 𝐴𝑖 𝐴𝑗→
with membership functions (  (positive)𝜇𝑚𝑒), 𝑤𝑖𝑗 > 0

𝜇𝑠𝑡 =
1
2, 

3
4,1 strong

If  promotes  the fuzzy set for an influence close to 75% 𝐴𝑖 𝐴𝑗→
with membership functions (  (positive)𝜇𝑠𝑡), 𝑤𝑖𝑗 > 0

𝜇𝑣𝑠𝑡 =
3
4, 1,1 very strong

If  promotes  the fuzzy set for an influence close to 100% 𝐴𝑖 𝐴𝑗→
with membership functions (  (positive)𝜇𝑣𝑠𝑡), 𝑤𝑖𝑗 > 0

𝜇𝑤�(𝑥)

0

0.5

1

0 1/4 1/2 3/4 1

𝜇𝑤𝑒𝜇𝑧𝑒 𝜇𝑚𝑒 𝜇𝑠𝑡 𝜇𝑣𝑠𝑡

𝑥

Fig. 2 The five-TFM functions with corresponding five-linguistic terms.

𝑤𝑖𝑗𝐴𝑖

𝐴𝑗
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(i) Set up the aggregated group decision opinion: For group decision making, an arithmetic 

mean method is used to aggregate the decision makers’ opinions (Ishikawa et al., 1993). The 

triplet of  for the group decision opinion are calculated according to Eq. (1).  𝑙𝑖𝑗, 𝑚𝑖𝑗,𝑢𝑖𝑗 𝐾

represents the number of decision maker. 

    (1)𝑙𝑖𝑗 =
1
𝑘 ∑𝑛

𝑖 = 1𝑙𝑘
𝑖𝑗; 𝑚𝑖𝑗 =

1
𝑘 ∑𝑛

𝑖 = 1𝑚𝑘
𝑖𝑗; 𝑢𝑖𝑗 =

1
𝑘 ∑𝑛

𝑖 = 1𝑢𝑘
𝑖𝑗 ∀𝑘 = 1,2,…,𝐾

(ii) Defuzzification: Center of Gravity (CoG) method is employed. It has been previously 

examined as an efficient approach to achieve the quantification of linguistic terms with high 

efficiency (Glykas, 2010; Runkler, 1996). This approach aims to defuzzify the fuzzy weight (𝑤𝑖𝑗

) of each interconnection to definite value (i.e., defuzzy value) representing the edge weight (𝑤𝑖𝑗

 of each interconnection for  and . This method determines the center of area of the ) 𝐴𝑖 𝐴𝑗

combined membership function. The Eq. (2) is used to calculate the geometric center of this 

area under the combined membership function  (Runkler, 1996) which gives the final edge 𝜇(𝑥)

weight of each tow attributes.

     (2)𝑤𝑖𝑗 = 𝐶𝑜𝐺 =  
∫𝑋𝑚𝑎𝑥

𝑋𝑚𝑖𝑛
𝜇(𝑥).𝑥𝑑𝑥

∫𝑋𝑚𝑎𝑥
𝑋𝑚𝑖𝑛

𝜇(𝑥)𝑑𝑥

(iii) Generate the edge matrix: The final weights for the causal interference are stored in an 

edge matrix ,  as seen in Eq. (3). It lists all one-edge paths on the 𝐸 = (𝑤𝑖𝑗) 𝑤𝑖𝑗 ∈ 𝐸, 𝑖,𝑗 = 1,2,…𝑛

cognitive maps. The edge matrix  is a square  fuzzy matrix and the diagonal entries are 𝐸 𝑛 𝑥 𝑛

.  is the total number of attributes,  is the edge weight from  to .𝑤𝑖𝑖 = 0 𝑛 𝑤𝑖𝑗 𝐴𝑖 𝐴𝑗

                          𝐴1 𝐴2 ⋯ 𝐴𝑛

                                              (3)𝐸 = [𝑤𝑖𝑗] =

𝐴1
𝐴2
⋮

𝐴𝑛
[ 0 𝑤12 ⋯ 𝑤1𝑛
𝑤21 0 … 𝑤2𝑛

⋮ ⋮ ⋱ ⋮
𝑤𝑛1 𝑤𝑛2 … 0 ]

𝑛𝑥𝑛

, ∀𝑤𝑖𝑗 ∈ [ ―1,1]

(iv) Calculate the causal inference: Attribute values are calculated according to Eq. (4). 

                                        (4)𝐴𝑡 + 1
𝑖 =  𝑓(𝐴𝑡

𝑖 +  ∑𝑛
𝑗 = 1
𝑗 ≠ 𝑖

𝐴𝑡
𝑗. 𝑤𝑗𝑖), ∀𝑖,𝑗 ∈ {1,…,𝑛};𝑡 = 0,1,2,…,𝑇

where , is the attribute value of the th attribute at iteration time , : threshold 𝐴𝑡 + 1
𝑖 𝑖 𝑡 +1 𝑓(𝑥)

function is calculated ), .𝑓(𝑥) = 1/(1 + 𝑒 ―𝜆𝑥 0 ≤ 𝜆 ≤ 1
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The attribute values are normalized as in Eq. (5); hence, final weights of the attributes are 

obtained: 

 /                 (5)𝑤𝑖 = 𝐴𝑖 ∑𝑛
𝑖 = 1𝐴𝑖

In Eq. (6), the final crisp weights are shown in matrix  by:𝐼

 , where                                                         (6)𝐼 =

𝐴1
𝐴2
⋮

𝐴𝑛
[𝑤1
𝑤2
⋮

𝑤𝑛
]

𝑛𝑥1

∑𝑛
𝑖 = 1𝑤𝑖 = 1

(v): Calculate the indices: Every attribute is defined by its out-degree ), in-degree  𝑜𝑑(𝐴𝑖 𝑖𝑛(𝐴𝑖)

and centrality . Out-degree (out-arrows) ) is the absolute row sum of edge weights 𝑐𝑒𝑛(𝐴𝑖) 𝑜𝑑(𝐴𝑖

 in the edge matrix and represents the number of attributes, attribute  causally interacts (𝑤𝑘𝑖) 𝐴𝑖

seen in Eq. (7). In-degree (in-arrows) ) is the absolute column sum of edge weights.  𝑖𝑑(𝐴𝑖 (𝑤𝑖𝑘)

in the edge matrix and represents the number of attributes causally interacting on attribute  𝐴𝑖

seen in Eq. (8). The immediate domain or total degree of an attribute is the sum of its in-degree 

and out-degree, called centrality ) seen in Eq. (9). The centrality represents the 𝑐𝑒𝑛(𝐴𝑖

dominance of attribute  to the causal flow on the cognitive map. The more central the attribute 𝐴𝑖

in the FCM, the more important the attribute is in the decision maker’s perception.

     (7)𝑜𝑑(𝐴𝑖) = ∑𝑛
𝑘 = 1|𝑤𝑘𝑖|

                            (8)𝑖𝑑(𝐴𝑖) = ∑𝑛
𝑘 = 1|𝑤𝑖𝑘|

    (9)𝑐𝑒𝑛(𝐴𝑖) = 𝑜𝑑(𝐴𝑖) +𝑖𝑑(𝐴𝑖)

The contribution of an attribute in an FCM can be interpreted by computation of its centrality; 

whether it is a transmitter, receiver or ordinary attribute. Transmitter (forcing functions, givens 

and tails) represents an attribute whose  is positive and  is zero. Receiver (utility 𝑜𝑑(𝐴𝑖) 𝑖𝑑(𝐴𝑖)

variables, ends and heads) represents an attribute whose  is zero and  is positive. 𝑜𝑑(𝐴𝑖) 𝑖𝑑(𝐴𝑖)

The total number of receivers in an FCM can be considered an index of its complexity 

(Vasantha & Smarandache, 2003). The rest of the attributes, both non-zero  and , 𝑜𝑑(𝐴𝑖) 𝑖𝑑(𝐴𝑖)

are ordinary attributes (means).
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3.2 Part II - FAHP calculation

When the attribute weights are determined, FAHP calculations are made to reach the final 

ranking of the alternatives. The AHP, first suggested by Saaty (1980), is one of the most widely 

used multi-attribute (criteria) decision-making methods. AHP can effectively handle both 

qualitative and quantitative data in order to decompose the problem hierarchically, such that, 

the problem is broken down thoroughly and its related sub criteria, with regards to hierarchical 

level, are listed in relation to the overall goal/objective to the sub-criteria  (Mangla et al., 2016; 

Gandhi et al., 2016). However, the conventional AHP method may not reflect the human 

judgment accurately. Hence, AHP with its fuzzy extension, namely FAHP approaches which 

use the concept of fuzzy set theory and hierarchical structure analysis are proposed in order to 

solve MADM problems (Mangla et al., 2015). In this phase, Chang’s (1996) extend analysis 

method was applied. FAHP steps are as follows:

(i) Calculate the total of all importance scores in the comparison matrix ( , as the final 𝑀)

attribute weights by using Eq. (6) was obtained, only a fuzzy decision matrix is constructed is 

this phase. A group of experts provides the fuzzy rating values of each alternative, seen in Eq. 

(10). 

               (10)∑𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑀𝐴𝑖𝐴𝑗 = (∑𝑛

𝑖 = 1
∑𝑛

𝑗 = 1𝑙𝐴𝑖𝐴𝑗, ∑
𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑚𝐴𝑖𝐴𝑗, ∑

𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑢𝐴𝑖𝐴𝑗)

where  is the importance score comparing the importance of activity  (row) against 𝑀𝐴𝑖𝐴𝑗 𝐴𝑖

activity  (column).𝐴𝑗

(ii) Calculate the fuzzy synthetic extent  for each row in the comparison matrix, seen in Eq. 𝑆𝐴𝑖

(11) and Eq. (12).

               (11)𝑆𝐴𝑖 = (∑𝑛
𝑗 = 1𝑀𝐴𝑖𝐴𝑗)x[∑𝑛

𝑖 = 1
∑𝑛

𝑗 = 1𝑀𝐴𝑖𝐴𝑗] ―1
𝑖,𝑗 =  1,2,…𝑛

Where,

               (12)[∑𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑀𝐴𝑖𝐴𝑗] ―1

= ( 1

∑𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑢𝐴𝑖𝐴𝑗

,
1

∑𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑚𝐴𝑖𝐴𝑗

,
1

∑𝑛
𝑖 = 1

∑𝑛
𝑗 = 1𝑙𝐴𝑖𝐴𝑗

)
(iii) Calculate the local contribution weight of activities: The fuzzy synthetic extent of each 
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activity (  is first compared with the fuzzy synthetic extents of all other activities. The 𝐴𝑖 𝑆𝐴𝑖)

degree of possibility for each triangular fuzzy synthetic extent   to be greater 𝑆𝐴𝑖, 𝑖 = 1,2,…,𝑛

than all other fuzzy synthetic extents   is the given by Eq. (13) and Eq. (14):𝑆𝐴𝑗, 𝑗 = 1,2,…,𝑛

                                       (13)  𝑉(𝑆𝐴𝑖 ≥ 𝑆𝐴1, 𝑆𝐴2,…,𝑆𝐴𝑛
) =  𝑚𝑖𝑛 𝑉(𝑆𝐴𝑖 ≥ 𝑆𝐴𝑗

) 𝑖,𝑗 = 1,2,….,𝑛;𝑖 ≠ 𝑗 

Assume that  and  then𝑆𝐴1 = (𝑙𝐴1, 𝑚𝐴1, 𝑢𝐴1) 𝑆𝐴2 = (𝑙𝐴2, 𝑚𝐴2, 𝑢𝐴2)

𝑉(𝑆𝐴2 ≥ 𝑆𝐴1
) =  𝑠𝑢𝑝

𝑦 ≥ 𝑥
[𝑚𝑖𝑛 (𝜇𝑆𝐴1

(𝑥),𝜇𝑆𝐴2
(𝑦))]

                          (14)𝑉(𝑆𝐴2 ≥ 𝑆𝐴1
) = {1, 𝑖𝑓 𝑚𝐴2 ≥ 𝑚𝐴1; 0, 𝑖𝑓 𝑙𝐴1 ≥ 𝑢𝐴2; 

  , otherwise 
𝑙𝐴1 ― 𝑢𝐴2

(𝑚𝐴2 ― 𝑢𝐴2) ― (𝑚𝐴1 ― 𝑙𝐴1) }

The non-fuzzy local contribution weight, defuzzified weights  of each activity  is then (𝑊𝐴𝑖) 𝐴1

obtained by using minimum of . Afterwards, the local contribution 𝑉(𝑆𝐴𝑖 ≥ 𝑆𝐴1
),…, 𝑉(𝑆𝐴𝑖 ≥ 𝑆𝐴𝑛

)
weights of all activities are normalized (the sum of the weights is ) and are then used in the 1.0

model.

(iv): Calculate the normalized contribution weight of activities in Eq. (15)

                                    (15)𝑁𝑊𝐴𝑖 =  𝑊𝐴𝑖/∑𝑛
𝑖 = 1𝑊𝐴𝑖

(v) Set up the aggregated group decision opinion: For group decision making, a geometric 

mean prioritization method is used (Davies, 1994; Dong et al., 2010) seen in Eq. (16). A group 

TFN,  can be display in a triplet . Assume that a decision group has  decision M (𝑙𝑖𝑗,𝑚𝑖𝑗,𝑢𝑖𝑗) 𝐾

makers.

; ;                          (16)𝑙𝑖𝑗 = (∏𝐾
𝑘 = 1𝑙𝑘

𝑖𝑗)
1/𝐾

𝑚𝑖𝑗 = (∏𝐾
𝑘 = 1𝑚𝑘

𝑖𝑗)
1/𝐾

𝑢𝑖𝑗 = (∏𝐾
𝑘 = 1𝑢𝑘

𝑖𝑗)
1/𝐾

In which  represents different judgments of (𝑙1
𝑖𝑗, 𝑚1

𝑖𝑗,𝑢1
𝑖𝑗),(𝑙2

𝑖𝑗, 𝑚2
𝑖𝑗,𝑢2

𝑖𝑗),..,(𝑙𝑘
𝑖𝑗, 𝑚𝑘

𝑖𝑗,𝑢𝑘
𝑖𝑗) 𝑘, 𝑘 = 1,2,…,

 decision makers of the group. This algorithm is then applied at every hierarchical level. The 𝐾

selection of a geometric mean could retain more consistency with the synergistic behavior of 

group judgment technique (Davies, 1994) instead of using an eigenvalue method (Saaty, 1980).
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4. Empirical Study: Assessment of Environmental Performance and Resilience in 

Sustainable Logistics Infrastructure

As a real-life logistics infrastructure, an integrated multimodal logistics hub (freight village) 

was chosen to assess environmental performance and resilience under a disruptive event 

scenario. A group decision-making setting involving three experts/evaluators (DM1, DM2 and 

DM3) was established for this purpose. Decision makers were selected according to their 

qualifications including professional experience, activities and in-depth knowledge related to 

logistics and sustainability and also their availability and locations. Experts participated in this 

study are working in Istanbul for big logistics companies and they are highly experienced 

logistics manager, logistics hub infrastructure manager and project manager with average 15 

years of work experience in logistics industry. One of them obtained master degree in logistics 

and two of them obtained bachelor degree in industrial engineering with the focus of logistics 

and supply chain management. This study was pursued between 01. January - 30. April 2019. 

The selected integrated multimodal logistics hub is located in Ambarli, Istanbul, Turkey and it 

provides road, rail and sea transport links. Table 2 demonstrates the proposed causal and 

hierarchical stream processing data driven decision model which consists of the following steps.

4.1 Step 1: Identify the resilience assessment attributes, alternatives and linguistic scales

As mentioned in Section 2, according to literature review, three main attributes: technical 

domain (MA1), organizational domain (MA2) and operational domain (MA3) and fifteen sub-

attributes: robustness (A1), redundancy (A2), resourcefulness (A3), maintenance (A4), safe-to-

fail (A5), preparedness (A6), collaboration (A7), leadership and culture (A8), skilled labor and 

management (A9), lessons learned (A10), repositioning (A11), mode flexibility (A12), rapidity 

(A13), restoring (A14) and resource allocation (A15) were selected for assessment of 

environmental performance and resilience in logistics infrastructure in this study. Additionally, 

four alternatives were identified according to expert opinions in order to demonstrate the level 

of environmental performance and resilience capacity of logistics infrastructure, namely: Low 

level (L): poor environmental performance and resilience improvements should be done. 

Moderate level (M): less than desirable environmental performance and specific resilience 

improvements should be prioritized. High level (H): optimal environmental performance in 

relation to measures, some resilience improvements could be made. Very high level (V): meets 

all requirements in terms of achieving higher environmental performance and resilience. 
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Table 2
The proposed causal and hierarchical stream processing data driven decision model.

The main attributes, sub-attributes and alternatives are shown in a causal and hierarchical 

evaluation framework in Fig. 3. First, the linguistic scales are determined by using expert 

opinions. As mentioned in previous section, no negative value is used in this research, as the 

parameters have a positive impact to improve the sustainability. A linguistic scale in Table 3, 

is constructed for the relative importance of the attribute weights by using TFM within the range 

. Another linguistic scale is formed, as shown in Table 4, is formed in order to assess the [0,1]

causal relationship among attributes by using TFM within the range . In Table 5, A [0,1]

linguistic scale is used to rate the alternatives with respect to attributes by using TFM within 

the range . All linguistics scales contain no negative value.[0,10]

Fig. 3 Causal and hierarchical stream processing data evaluation framework.
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Table 3 
Linguistic variables for relative importance weight of attributes.

4.2 Step 2: Formulate the relationships between attributes

After identifying linguistic scales, FCM methodology is applied in order to determine the 

overall attribute weights. First, the attribute weights  for main attributes (domains) are (𝑔𝑤𝑖𝑗)

calculated. The relative importance weight of each of MA1, MA2 and MA3 are obtained from 

three decision makers: DM1, DM2 and DM3 as shown in Table 6. Afterwards, the degrees of 

dependency among each of main attributes are acquired according to Eqs. (1-2). Aggregated 

fuzzy influence matrices are obtained. The resulting aggregated dependency degrees among 

main attributes are given in Table 7.

Table 4 
Linguistic variables for causal relationships among attributes.

Table 5 
Linguistic variables for rating of alternatives.

Table 6 
The relative importance weights of the main attributes.

Employing Eqs. (3-4), aggregated dependency degrees among main attributes are defuzzified 

to be used in the FCM model given in Eq. (17). The aggregated decision makers’ respond list 

of causal weights for domains is given in Appendix A. Final main attribute weights in 

accordance with Eq. (5-6) are depicted seen in Eq. (18) after obtaining 20 times iterations (

 to converge the results. The organizational domain  holds the highest weight, 𝑡 = 20) (𝑀𝐴2)

this means that organizational domain has highest impact on the assessment of resilience in 

integrated multimodal logistics hub than the operational and technical domains. 

                           (17)𝐸𝑀𝐴 =  [ 0 0.27 0.45
0.22 0 0

0 0.50 0 ]
                              (18)𝐼𝑀𝐴 =

𝑀𝐴1
𝑀𝐴2
𝑀𝐴3

[0.31
0.36
0.33]
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Table 7 
Aggregated dependency degrees among main attributes.

Table 8 
The relative importance weights of the attributes.

Similarly, sub-attribute weights  for each partition (dimensions) are calculated by using an (𝑤𝑖𝑗)

FCM simulation. Every decision maker gives its opinion for fifteen attributes seen in Table 8. 

All opinions are aggregated according to Eq. (1-2) is employed seen in Table 9 and the initial 

values for sub-attributes (  before simulation (  are derived. 𝐴0
𝑖 ) 𝑡 = 0)

Table 9 
Aggregated dependency degrees among attributes.

The aggregated decision makers’ respond list of causal weights for dimensions is given in 

Appendix B. Afterwards, using Eqs. (3-4), aggregated dependency degrees among sub-

attributes are defuzzified. Final weight values (  for resilience sub-attributes (  per Eqs. 𝑤𝑖) 𝐴20
𝑖 )

(5-6) are depicted after obtaining simulation with 20 iterations (  to merge the results. 𝑡 = 20)

Then the results are normalized, where the sum of sub-attributes values is . Table 10 depicts 1

the overall priorities of resilience attributes. Fig. 4 shows the dynamic behaviour of 

environmental performance and resilience dimensions according to 20 iterations, where the 

change in sub-attributes weights even after 5th iteration remains constant. The dimensions of 

Rapidity , Preparedness  and Maintenance ( ) obtained the highest weight values. (𝐴13) (𝐴6) 𝐴4

FCM indices for ,  and  are denoted in Appendix C. Causal flows among 𝑜𝑑(𝐴𝑖) 𝑖𝑑(𝐴𝑖) 𝑐𝑒𝑛(𝐴𝑖)

sub-attributes are demonstrated with three layers from the lower level to the upper level which 

consist of a number of transmitter, receiver or ordinary attributes.

The findings appear to show that two transmitters, dimensions for Safe-to-fail ( ) and Mode 𝐴5

Flexibility ( ) and one receiver, dimension for Collaboration ( ) are determined, whereas 𝐴12 𝐴7

twelve ordinaries are identified. Collaboration ( ) is the only receiver in the map which is the 𝐴7

most influenced sub-attribute in the map and its out-degree value is zero. The dimensions for 

Safe-to-fail ( ) and Mode Flexibility ( ) are the transmitters, which influence other 𝐴5 𝐴12

attributes, therefore their in-degree values are zero. According to results, especially three sub-

attribute weights obtain highest value respectively, Rapidity , Preparedness  and (𝐴13) (𝐴6)

Maintenance ( , this implies that these are the initiators and drivers of sustaining 𝐴4)

environmental performance and resilience in the selected integrated multimodal logistics hub.
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Table 10 
Overall priorities of environmental performance and resilience attributes.

Main 
attributes 
( )𝑀𝐴20

𝑖

Main 
attributes 

weights (𝑔𝑤𝑖)

Sub-
attributes 

( )𝐴20
𝑖

Sub-attributes 
weights

(final values, )𝑡 = 20

Overall sub-attributes 
normalized

weights (𝑤𝑖)
𝑀𝐴1 0.31 𝐴1 0.74 0.067

𝐴2 0.76 0.069
𝐴3 0.66 0.061
𝑨𝟒 0.82 0.075
𝐴5 0.78 0.071

𝑀𝐴2 0.36 𝑨𝟔 0.74 0.077
𝐴7 0.50 0.052
𝐴8 0.61 0.063
𝐴9 0.65 0.067
𝐴10 0.61 0.064

𝑀𝐴3 0.33 𝐴11 0.69 0.067
𝐴12 0.63 0.061
𝑨𝟏𝟑 0.81 0.078
𝐴14 0.71 0.069
𝐴15 0.60 0.058

0 5 10 15 20
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15

Dynamic behaviour of environmental performance and resilience dimensions

Fig. 4 Dynamic behaviour of environmental performance and resilience dimensions.

4.3 Step 3: Asses fuzzy rating values of alternatives

After calculating all attribute weights, the next step is to prioritize alternatives. Accordingly, 

the fuzzy rating values of alternatives are elicited from decision makers and fuzzy decision 

tables are constructed according to each attribute. Table 11 shows the fuzzy rating value of 

alternatives for sub-attribute , where three DMs used linguistic variables for rating of 𝐴1

Number of iterations (𝑡)

Su
b-

at
tri

bu
te

s v
al

ue
s
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alternatives in Table 4 and compared four alternatives pair-wise for each attribute. FAHP 

calculations are carried out by employing Eqs. (10-15). Afterwards, the consistency ratio  (CR)

is employed to examine the consistency of DMs’ judgements (Saaty, 1980). This ratio also 

enabled DMs to evaluate the reliability of questionnaire used. All  values should not be CR

greater than , otherwise, DM should reenter the judgments. First of all, the consistency 0.10

index  should be calculated with Eq. (19), where  is eigenvalue of comparison matrix, (CI) 𝑚𝑎𝑥

and  represents the level alternative number. Then, the same procedure is applied to calculate n

the fuzzy rating values for other attributes.

Table 11 
Fuzzy rating values of alternatives for .𝐴1

                                    (19) 𝐶𝐼 =
(𝜆𝑚𝑎𝑥 ― 𝑛)

(𝑛 ― 1)

 is calculated by using Eq. (20), where  presents the random consistency index acquired CR RI

from the list:  There 𝑛:𝑅𝐼 {1: 0, 2: 0, 3: 0.58, 4: 0.90, 5: 1.12, 6: 1.24, 7: 1.32, 8: 1.41, 9: 1.45}.

were four alternatives , therefore,  was chosen as  .(𝑛 = 4) RI RI = 0.90

                     (20)𝐶𝑅 = 𝐶𝐼/𝑅𝐼

In this study,  was ranked between . As a result, all findings were deemed CR 0.0029 ― 0.0949

to be consistent. After gathering evaluations from DMs, these are aggregated according to Eq. 

(16) and the list of aggregated normalized contribution weights (  for attributes according 𝑁𝑊𝑖𝑗)

to a disruptive event scenario are constituted seen in Table 12.

Table 12 
Aggregated normalized contribution weights of attributes.

Table 13
Final weights value of alternatives.

4.4 Step 4: Ranking of result

Subsequently, obtaining two matrices, sub attributes weights  for Table 10 and normalized (𝑤𝑖)

contribution weights  for Table 12, are multiplied and the final weights of alternatives, (𝑁𝑊𝑖𝑗)

the level of environmental performance and resilience capacity in the selected integrated 

multimodal logistics hub, are calculated. So that, the final results of FAHP analysis are 
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summarized in Table 13. Based on the normalized weights values, the ranking of alternatives 

from most to least according to level of environmental performance and resilience capacity is 

as follows: 

M = 0.2880 > H = 0.2487 > L = 0.2351 > V = 0.2282. 

In respect of ranking, the result can be concluded that M is assessed as current level of 

environmental performance and resilience capacity in the given logistics infrastructure 

according to highest normalized weight value among others. The obtained result according to 

given research question means that the selected logistics center in the context of a disruptive 

event scenario performs moderate level (M). It acquires less than desirable performance and 

specific improvements should be prioritized in order to improve the resilience performance.

4.5 Step 5: Measuring sensitivity

Sensitivity analysis is used to examine the impact of using different thresholds such as different 

decision makers and/or different sub-attributes on the result. This exploration is useful in 

conditions where uncertainties exist in the definition of the importance of different factors and 

situations (Govindan et al., 2013). In this study, nine different conditions are employed for the 

sensitivity analysis. Table 14 depicts the details of nine different conditions and a graphical 

illustration of the result is displayed in Fig. 5. For instance, condition #7 considers all 

environmental performance and resilience dimensions only with DM1, whereas condition #5 

considers only technical and operational domains with DM1, DM2, and DM3. The result of a 

sensitivity analysis is used to validate the proposed model. According to different conditions, 

the sequence of alternatives changes. However, the ranks of alternatives are altered respecting 

weights, M performs as the level of environmental performance and resilience in every 

condition. This result proves that the decision-making process is sensitive to the type of 

attributes and the number of decision makers involved and their expertise with the subject. Their 

perception to decide on the level of environmental performance and resilience capacity for the 

selected integrated multimodal logistics hub was precisely given.

Page 22 of 42Journal of Enterprise Information Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal of Enterprise Inform
ation M

anagem
ent23

Table 14
Result of sensitivity analysis of causal and hierarchical stream processing data driven decision 
model for level of environmental performance and resilience assessments.
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Fig. 5 The result of sensitivity analysis of causal and hierarchical stream processing data 
driven decision model.

5. Discussion

Since the emerging trends driven by Industry 4.0 and IoT are transforming logistics as well as 

logistics infrastructures, the massive data can be generated through sensors and sensor networks 

to analyze and compare event conditions per scenario. The real-time stream processing data 

needs to be processed to predict the future conditions of possible events and take actions against 

them before they can occur. Therefore, the development of the stream processing data decision 

model is necessary to assess the level of environmental performance and resilience in logistics 

infrastructure. The higher the level of environmental performance and resilience capacity in 

logistics infrastructure, the more sustainable is the transport supply chain system. In this study, 

key attributes responsible for affecting the environmental performance and resilience capacity 

of logistics infrastructures are identified and subsequently analyzed. Further, due to 

involvement of data streaming, there is a huge amount of data is generated in logistics network 

system. As these attributes are interrelated, experts’ knowledge is extracted and combined in 

the new stream data based proposed decision system.
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 Fig. 6 The causal relations and top-down hierarchical decomposition with stream processing 

data decision model.

Fig. 6 infers the causal relations and top-down hierarchical decomposition of the selected 

multimodal modal logistics terminal with employing causal and hierarchical interrelationship 

stream processing data driven decision method combining FCM and FAHP approaches. The 

first stage employs FCM in order to derive the causal relationships among attributes (resilience 

domains/dimensions), then second stage uses FAHP to determine the relative weights of 

alternatives and present the level of environmental performance and resilience capacity of the 

given logistics infrastructure. The causal relationships among attributes can directly affect the 

relative weights of alternatives. If one attribute deteriorates itself, this can affect the whole 

relations of other attributes and ultimately the resilience level of the logistics infrastructure. 

Furthermore, this model shows which attributes need to be improved to enhance a sustainable 
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and resilient freight transport network. According to findings, the domain for Organizational (

 has the greatest impact on the assessment of environmental performance and resilience, 𝑀𝐴2)

respectively followed by Operational  and Technical . This can be interpreted that (𝑀𝐴3) (𝑀𝐴1)

organizational preparedness has much more impact on environmental performance and 

resilience than other domains. Furthermore, the dimensions of Rapidity , Preparedness (𝐴13) (

 and Maintenance ( ) possess the highest weight values, whereas Collaboration ( ) and 𝐴6) 𝐴4 𝐴7

Resource Allocation ( ) have the lowest weight values to affect environmental performance 𝐴15

and resilience, as seen their values in Table 10. The highest contribution weights of attributes 

are respectively Preparedness ( ), Collaboration ( ) and Lessons Learned ( ) 𝑁𝑊62 𝑁𝑊72 𝑁𝑊102

and all contribute to Moderate Level of environmental performance and resilience, as seen their 

values in Table 12. At the end, the result of the study reveals that the level of environmental 

performance and resilience capacity of this selected integrated multimodal logistics hub 

performs at moderate level. Although, the logistics hub has been resilient against any disrupted 

event, some specific improvements need to be prioritized; such as the logistics hub needs to be 

further prepared against any unforeseen disruptions; connection and collaboration between 

logistics network partners need to intensify in the future and to ensure an effective and efficient 

logistics network process that reflects all members; the organization needs to learn from past 

experience, not to repeat the failures of the past, and to build on successes against the threat of 

any disruption. Beyond this, the result of sensitivity analysis shows also that the model is 

validated for all possible conditions and the data driven expert knowledge is accurate to assess 

the environmental performance and resilience.

The drawing the FCM maps and FAHP would be complicated, if more attributes are employed 

in the model. Hence, the aid of visualization software can simplify the illustration of causal 

relations and top-down hierarchical decomposition (De Nooy et al., 2018). In this study, all 

calculations were done by using MS Excel and R software (https://www.r-project.org/). In 

addition, Pajek software (http://mrvar.fdv.uni-lj.si/pajek/) was utilized to analyze and visualize 

the result of causal and hierarchical interrelationship stream processing data driven decision 

model.

6. Conclusion and future research

Proper planning for developing logistics infrastructures has become essential for ensuring 

coherent and integrated development that will support and enable efficient supply chains. 
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Logistics infrastructures and related transport elements (trains, ships, planes and trucks) 

comprise a crucial lifeline in whole supply chain, where any disruptions can cause unavoidable 

delays and economic losses. Therefore, ensuring these infrastructures as resilient as practicable 

is an important environmental and economic priority for the stakeholders. In addition, huge 

amount of data is also generated in freight transport system in form of continuous streams. 

In this research, a causal and hierarchical stream processing data driven fuzzy decision-making 

model combining with FCM and FAHP approaches is proposed. The model is used to 

understand the assessment of environmental performance and resilience in logistics 

infrastructure to sustain a resilient and sustainable global transport supply chain system by 

enabling to model interdependencies among the decision attributes under a fuzzy environment 

and streaming data. This proposed approach can help researchers and practitioners (managers, 

planners, designers) of logistics infrastructure to understand how the selected attributes affect 

each other and at the end, how all attributes affect the overall environmental performance and 

resilience of infrastructure. In addition, this study also helps practitioners in understanding 

under what conditions the environmental performance and resilience perform undesirable and 

what attributes should be improved immediately per disruptive event scenarios. This study has 

several limitations. First, the study considers only limited number of identified attributes. 

Furthermore, the study focuses only one scenario, which demonstrates a general disruptive 

event and does not specify a special disruptive event, also the study does not provide to examine 

the proposed framework under different disruptive event scenarios. Next, the proposed model 

uses experts' knowledge and perceptions to solve environmental and resilience assessment 

problem, the result of this study might differ what experts involved in the study, therefore the 

generalizability of the findings for the selected logistics infrastructure is low. In addition, the 

proposed model can be tested under different scenarios to determine which environmental and 

resilience attributes perform best against which disruptive events over a certain time frame. As 

a future research, the methodology could be extended and developed by employing 

intuitionistic fuzzy sets and other decision-making tools such as ANP, TOPSIS, DEMATEL 

etc. Finally, the proposed model can be potentially applied in the other research areas e.g. smart 

infrastructures (smart cities, digital economy), agriculture, environment protection, risk 

management and all. 
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Appendix A. Decision makers’ respond list for causal weights in domains
𝑔𝑤𝑖𝑗 𝐺𝑖 𝐺𝑗 Min

( )𝑙𝑖𝑗

Mean
(𝑚𝑖𝑗)

Max
(𝑢𝑖𝑗)

De-
fuzzy
(𝑔𝑤𝑖𝑗)

𝑔𝑤𝑖𝑗 𝐺𝑖 𝐺𝑗 Min
( )𝑙𝑖𝑗

Mean
(𝑚𝑖𝑗)

Max
(𝑢𝑖𝑗)

De-
fuzzy
(𝑔𝑤𝑖𝑗)

 𝑔𝑤12 𝐺1 𝐺2 0.15 0.27 0.40 0.27 𝑔𝑤21 𝐺2 𝐺1 0.10 0.22 0.35 0.22

 𝑔𝑤13 𝐺1 𝐺3 0.30 0.45 0.60 0.45 𝑔𝑤32 𝐺3 𝐺2 0.35 0.50 0.65 0.50

Appendix B. Decision makers’ respond list for causal weights in dimensions
𝑤𝑖𝑗 𝐴𝑖 𝐴𝑗 Min

( )𝑙𝑖𝑗

Mean
(𝑚𝑖𝑗)

Max
(𝑢𝑖𝑗)

De-
fuzzy
(𝑤𝑖𝑗)

𝑤𝑖𝑗 𝐴𝑖 𝐴𝑗 Min
( )𝑙𝑖𝑗

Mean
(𝑚𝑖𝑗)

Max
(𝑢𝑖𝑗)

De-
fuzzy
(𝑤𝑖𝑗)

𝑤12 𝐴1 𝐴2 0.38 0.50 0.62 0.50 𝑤714 𝐴7 𝐴14 0.45 0.60 0.73 0.59

𝑤13 𝐴1 𝐴3 0.37 0.48 0.62 0.49 𝑤86 𝐴8 𝐴6 0.35 0.50 0.65 0.50

𝑤15 𝐴1 𝐴5 0.50 0.65 0.78 0.64 𝑤94 𝐴9 𝐴4 0.55 0.70 0.83 0.69

𝑤16 𝐴1 𝐴6 0.17 0.30 0.45 0.31 𝑤913 𝐴9 𝐴13 0.45 0.60 0.75 0.60

𝑤24 𝐴2 𝐴4 0.50 0.65 0.77 0.64 𝑤914 𝐴9 𝐴14 0.45 0.60 0.73 0.59

𝑤35 𝐴3 𝐴5 0.65 0.77 0.88 0.77 𝑤105 𝐴10 𝐴5 0.30 0.45 0.60 0.45

𝑤39 𝐴3 𝐴9 0.40 0.55 0.68 0.54 𝑤111 𝐴11 𝐴1 0.30 0.45 0.60 0.45

𝑤313 𝐴3 𝐴13 0.60 0.75 0.87 0.74 𝑤1112 𝐴11 𝐴12 0.65 0.78 0.90 0.78

𝑤41 𝐴4 𝐴1 0.37 0.50 0.63 0.50 𝑤1115 𝐴11 𝐴15 0.45 0.60 0.75 0.60

𝑤61 𝐴6 𝐴1 0.27 0.40 0.55 0.41 𝑤134 𝐴13 𝐴4 0.55 0.70 0.83 0.69

𝑤68 𝐴6 𝐴8 0.45 0.58 0.72 0.58 𝑤139 𝐴13 𝐴9 0.17 0.30 0.45 0.31
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𝑤613 𝐴6 𝐴13 0.35 0.50 0.65 0.50 𝑤1314 𝐴13 𝐴14 0.18 0.28 0.38 0.28

𝑤72 𝐴7 𝐴2 0.40 0.55 0.70 0.55 𝑤142 𝐴14 𝐴2 0.55 0.70 0.83 0.69

𝑤73 𝐴7 𝐴3 0.50 0.65 0.78 0.64 𝑤146 𝐴14 𝐴6 0.17 0.30 0.45 0.31

𝑤76 𝐴7 𝐴6 0.50 0.65 0.78 0.64 𝑤1411 𝐴14 𝐴11 0.40 0.55 0.70 0.55

𝑤710 𝐴7 𝐴10 0.50 0.63 0.77 0.63 𝑤1510 𝐴15 𝐴10 0.10 0.22 0.35 0.22

𝑤713 𝐴7 𝐴13 0.30 0.45 0.60 0.45 𝑤1511 𝐴15 𝐴11 0.55 0.70 0.83 0.69

Appendix C. FCM Criteria and Indices
Domains Dimensions 𝐴𝑖 𝑜𝑑(𝐴𝑖) 𝑖𝑑(𝐴𝑖) 𝑐𝑒𝑛(𝐴𝑖) T R O 𝐴𝑇

𝑖
Technical Robustness 𝐴1 1.94 1.36 3.29 1 0.74
Technical Redundancy 𝐴2 0.64 1.74 2.38 1 0.76
Technical Resourcefulness 𝐴3 2.05 1.13 3.18 1 0.66
Technical Maintenance 𝐴4 0.50 2.03 2.53 1 0.82
Technical Safe-to-fail 𝐴5 0.00 1.86 1.86 1 0.78
Organizational Preparedness 𝐴6 1.49 1.76 3.24 1 0.74
Organizational Collaboration 𝐴7 3.52 0.00 3.52 1 0.50
Organizational Leadership and 

Culture
𝐴8 0.50 0.58 1.08 1 0.61

Organizational Skilled Labor and 
Management

𝐴9 1.89 0.85 2.74 1 0.65

Organizational Lessons Learned 𝐴10 0.45 0.86 1.31 1 0.61
Operational Repositioning 𝐴11 1.83 1.24 3.07 1 0.69
Operational Mode Flexibility 𝐴12 0.00 0.78 0.78 1 0.63
Operational Rapidity 𝐴13 1.28 2.29 3.57 1 0.81
Operational Restoring 𝐴14 1.55 1.47 3.02 1 0.71
Operational Resource 

Allocation
𝐴15 0.92 0.60 1.52 1 0.60

T: Transmitter, R: Receiver, O: Ordinary
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TABLES

Table 1 
Domains and dimensions of environmental performance and resilience assessment in logistics 
infrastructure.

Environmental 
Performance 
and Resilience 
Domains ( )𝑀𝐴𝑖

Environmental 
Performance and 
Resilience 
Dimensions (𝐴𝑖)

Definition and Main References

Robustness ( )𝐴1 The ability of elements, systems and other units of analysis to 
withstand a given level of stress or demand without suffering 
degradation or loss of function (Tierney & Bruneau, 2007; Haimes, 
2009). Having backup power generators or infrastructure protection 
(e.g., storm surge, fire and barge channel) can stimulate environment 
and resilience capacity to maintain continuity of logistics 
infrastructure operations (Nair et al., 2009).

Redundancy (𝐴2) The extent to which system elements or other infrastructure units of 
analysis exist that are substitutable, in the event of disruption, 
degradation, or loss of functionality (Godschalk, 2003; Tierney & 
Bruneau, 2007; Haimes, 2009). For example, having redundant cargo 
handling facilities including cranes and reach stackers can reduce the 
environmental impact of disruptions. A number of similar routes are 
available with spare capacity.

Resourcefulness 
(𝐴3)

The ability to diagnose and prioritize problems and to initiate 
solutions by identifying and mobilizing material, monetary, 
informational, technological, and human resources (Tierney & 
Bruneau, 2007).

Maintenance (𝐴4) Maintenance activities for logistics infrastructure, including on-time 
repair scheduling of cargo handling machines/equipment and 
availability of spare equipment, strengthen a logistics infrastructure 
ability to withstand disruptions (Hosseini, 2016). The reliability of a 
logistics infrastructure, defined as the probability that logistics 
infrastructure continues its normal operations for a given time 
interval under normal operating conditions, is a measure of the 
effectiveness of environmental performance and logistics 
infrastructure (Hosseini et al., 2016).

Technical 
Domain
( )𝑀𝐴1

Safe-to-fail (𝐴5) The extent to which innovative design approaches are developed, 
recognizing that the possibility of failure can never be eliminated 
(Hughes & Healy, 2014). Infrastructure does not harm its users or 
expose them, unduly to hazards (Murray-Tuite, 2006).

Preparedness ( )𝐴6 The ability to sense and anticipate hazards, identify problems and 
failures, and to develop a forewarning of disruption threats and their 
effects and environment (Hughes & Healy, 2014).

Collaboration (𝐴7
)

The ability to establish relationships, mutual aid arrangements and 
regulatory partnerships, understand interconnectedness and 
vulnerabilities across all aspects of supply chains and distribution 
networks (Godschalk 2003; Resilient Organisations 2012). For 
example, establishment a seamless flow of information and 
coordination among owners, operators, system users, and overseers 
(e.g., logistics infrastructure staff, multimodal transport operators, 
freight operators, utility operators, freight forwarders, shipping 
agents, regulatory agencies and emergency agencies) can reduce the 
operational as well as environmental impact of disruptions.

Organizational 
Domain
( )𝑀𝐴2

Leadership and 
Culture (𝐴8)

The ability to develop an organizational mind-set/culture of 
enthusiasm for challenges and opportunity (Resilient Organisations 
2012).
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Skilled Labor and 
Management ( )𝐴9

Training operators and managers is important action to react and 
control a disruption and to maintain environmental continuity. In 
addition, the use of skilled labor reduces the time of loading and 
unloading tasks by fully utilizing equipment such as container cranes, 
reach stackers and straddle carrier (Nair et al., 2009).

Lessons Learned 
( )𝐴10

Contingency plan be tested and revised after disruptive events to 
reflect lessons learned (Imran et al., 2014).

Repositioning 
(𝐴11)

Shipping containers are generally stacked at dry dock locations; 
however, repositioning transport units (e.g. containers, semi-trailers) 
and large items on the ground in the case of natural disasters can be 
useful (Madhusudan & Ganapathy, 2011)

Mode Flexibility 
(𝐴12)

In the case of a logistics infrastructure disruption, shipping at 
logistics centers (port, terminal) for a specific transport mode can be 
congested and delayed. Under this condition, mode flexibility enables 
cargo to be rerouted and transported through an alternative transport 
mode (e.g., road, rail, waterway) with charging extra shipping costs 
in order to avoid supply disruptions and favor environmental 
performance (Godschalk 2003; Morlok & Chang, 2004; MacKenzie 
et al., 2012).

Rapidity (𝐴13) The capacity to restore functionality in a timely way, containing 
losses and avoiding disruptions. (Tierney & Bruneau, 2007).

Restoring (𝐴14) Restorative capacity refers to the ability of a system to repair or 
restore damages and save resources from a disruption (Murray-Tuite, 
2006, Vugrin et al., 2011). It is considered to be a permanent feature 
of system resilience. In the context of logistics infrastructure 
recovery, the damaged equipment (e.g., crane, power generator) can 
be repaired or restored depending on the severity of disruption but 
also on budget availability and it also includes the availability of 
human-based resources (e.g., skilled labors, technical engineers), and 
non-human-based resources (e.g., repair equipment) (Haimes, 2009).

Operational 
Domain
( )𝑀𝐴3

Resource 
Allocation and 
Management (𝐴15

)

It refers to the manner in which resources are distributed in order to 
recover and conserve environment from disruptive events. Effective 
resource allocation requires the use of resources such as the physical 
capacity of the network, the equipment that facilitates the rerouting or 
redirection of the network flow and personnel in a timely manner. It 
also requires an accurate processing of the kind and quantity of 
resources needed so that the expected value delivery level of the 
infrastructure system is maintained (Mayada, 2013).

Table 2
The proposed causal and hierarchical stream processing data driven decision model.
# Input Step # Methodology Output
1 In section 2 

demonstrated 
environmental 
performance and 
resilience 
attributes 

Identify the resilience 
assessment attributes, 
alternatives and 
linguistic scales

Literature 
review and 
expert 
opinions 

Determined domains, 
dimensions, alternatives 
and their TFM functions

2 Environmental 
performance and 
resilience domains 

Formulate the 
relationships between 
attributes

FCM Causal relationships for 
domains as well as 
dimensions and their 
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and dimensions, 
TFM functions

analysis 

3 The causal weights 
of environmental 
performance and 
resilience 
domains, attributes 
and alternatives, 
TFM functions

Asses fuzzy rating 
values of alternatives

FAHP Assessment of the level 
of environmental 
performance and 
resilience capacity of 
logistics infrastructure

4 Final weights of 
alternatives

Ranking of result Ranking 
analysis

Ranking the final 
weights from the highest 
to the lowest ones

5 Setting different 
thresholds

Measuring sensitivity Sensitivity 
analysis

Proving the sensitiveness 
of decision-making 
process according to 
different conditions

Table 3 
Linguistic variables for relative importance weight of attributes.

Linguistic variables TFM functions
Very low (VL) (0, 0, 0.1)
Low (L) (0, 0.1, 0.3)
Medium low (ML) (0.1, 0.3, 0.5)
Medium (M) (0.3, 0.5, 0.7)
Medium high (MH) (0.5, 0.7, 0.9)
High (H) (0.7, 0.9, 1)
Very high (VH) (0.9, 1, 1)

Table 4 
Linguistic variables for causal relationships among attributes.

Linguistic variables TFM functions
Very weak (VW) (0, 0.1, 0.2)
Weak (W) (0.1, 0.2, 0.35)
Medium weak (MW) (0.2, 0.35, 0.5)
Fair (F) (0.35, 0.5, 0.65)
Medium strong (MS) (0.5, 0.65, 0.8)
Strong (S) (0.65, 0.8, 0.9)
Very strong (VS) (0.8, 0.9,1)

Table 5 
Linguistic variables for rating of alternatives.

Linguistic variables TFM 
functions
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Very poor (VP) (0, 0, 1)
Poor (P) (0, 1, 3)
Medium poor (MP) (1, 3, 5)
Fair (F) (3, 5, 7)
Medium good (MG) (5, 7, 9)
Good (G) (7, 9, 10)
Very good (VG) (9, 10, 10)

Table 6 
The relative importance weights of the main attributes.

DM1 DM2 DM3
𝑀𝐴1 H H H
𝑀𝐴2 ML L M
𝑀𝐴3 H VH MH

Table 7 
Aggregated dependency degrees among main attributes.

Aggregated weights Defuzzified weights Normalized weights
𝑀𝐴1 (0.70, 0.90, 1) 0.87 0.43
𝑀𝐴2 (0.13, 0.30, 0.50) 0.31 0.15
𝑀𝐴3 (0.70, 0.87, 0.97) 0.84 0.42

Table 8 
The relative importance weights of the attributes.

DM1 DM2 DM3
𝐴1 H VL H
𝐴2 ML L M
𝐴3 H VH MH
𝐴4 MH H L
𝐴5 M M L
𝐴6 MH L ML
𝐴7 ML VH H
𝐴8 L VL M
𝐴9 H L H
𝐴10 M H MH
𝐴11 L MH ML
𝐴12 VL VH M
𝐴13 ML H L
𝐴14 M VL MH
𝐴15 MH H VH

Table 9 
Aggregated dependency degrees among attributes.

(𝐴0
𝑖 ) Aggregated weights Defuzzified weights Normalized weights

(initial values, )𝑡 = 0
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𝐴1 (0.47, 0.60, 0,70) 0.59 0.07
𝐴2 (0.13, 0.30, 0.50) 0.31 0.04
𝐴3 (0.70, 0.87, 0.97) 0.84 0.11
𝐴4 (0.40, 0.57, 0.73) 0.57 0.07
𝐴5 (0.20, 0.37, 0.57) 0.38 0.05
𝐴6 (0.20, 0.37, 0.57) 0.38 0.05
𝐴7 (0.57, 0.73, 0.83) 0.71 0.09
𝐴8 (0.10, 0.20, 0.37) 0.22 0.03
𝐴9 (0.47, 0.63, 0.77) 0.62 0.08
𝐴10 (0.50, 0.70, 0.87) 0.69 0.09
𝐴11 (0.20, 0.37, 0.57) 0.38 0.05
𝐴12 (0.40, 0.50, 0.60) 0.50 0.06
𝐴13 (0.27, 0.43, 0.60) 0.43 0.06
𝐴14 (0.27, 0.40, 0.57) 0.41 0.05
𝐴15 (0.70, 0.87, 0.97) 0.84 0.11

Table 10 
Overall priorities of environmental performance and resilience attributes.

Main 
attributes 
( )𝑀𝐴20

𝑖

Main 
attributes 

weights (𝑔𝑤𝑖)

Sub-
attributes 

( )𝐴20
𝑖

Sub-attributes 
weights

(final values, )𝑡 = 20

Overall sub-attributes 
normalized

weights (𝑤𝑖)
𝑀𝐴1 0.31 𝐴1 0.74 0.067

𝐴2 0.76 0.069
𝐴3 0.66 0.061
𝑨𝟒 0.82 0.075
𝐴5 0.78 0.071

𝑀𝐴2 0.36 𝑨𝟔 0.74 0.077
𝐴7 0.50 0.052
𝐴8 0.61 0.063
𝐴9 0.65 0.067
𝐴10 0.61 0.064

𝑀𝐴3 0.33 𝐴11 0.69 0.067
𝐴12 0.63 0.061
𝑨𝟏𝟑 0.81 0.078
𝐴14 0.71 0.069
𝐴15 0.60 0.058

Table 11 
Fuzzy rating values of alternatives for .𝐴1

DM1 DM2 DM3
𝐴1 L M H V L M H V L M H V

L 1,1,1 1/F MP 1/MP 1,1,1 MP 1/VP 1/F 1,1,1 1/P MP 1/P
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M F 1,1,1 1/VP MG 1/MP 1,1,1 P 1/F P 1,1,1 1/P MG
H 1/MP VP 1,1,1 P VP 1/P 1,1,1 P 1/MP P 1,1,1 VP

V MP 1/MG 1/P 1,1,1 F F 1/P 1,1,1 P 1/MG 1/VP 1,1,1
𝑉(𝑆𝐿 ≥ 𝑆𝑀,𝑆𝐻,𝑆𝑉) = 0.283; 𝑉

(𝑆𝑀 ≥ 𝑆𝐿,𝑆𝐻,𝑆𝑉) = 1.00;𝑉
(𝑆𝐻 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝑉) = 0.131; 𝑉
(𝑆𝑉 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝐻) = 0.308;

𝐶𝐼
𝑅𝐼

  = 0.0687

𝑉(𝑆𝐿 ≥ 𝑆𝑀,𝑆𝐻,𝑆𝑉) = 0.491; 𝑉
(𝑆𝑀 ≥ 𝑆𝐿,𝑆𝐻,𝑆𝑉) = 0.223;𝑉
(𝑆𝐻 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝑉) = 0.329; 𝑉

 (𝑆𝑉 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝐻) = 1;
𝐶𝐼
𝑅𝐼 = 0.0454

𝑉(𝑆𝐿 ≥ 𝑆𝑀,𝑆𝐻,𝑆𝑉) = 0.670; 𝑉
(𝑆𝑀 ≥ 𝑆𝐿,𝑆𝐻,𝑆𝑉) = 1.00;𝑉
(𝑆𝐻 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝑉) = 0.416; 𝑉
(𝑆𝑉 ≥ 𝑆𝐿,𝑆𝑀,𝑆𝐻) = 0.402;

𝐶𝐼
𝑅𝐼

 = 0.0758

Table 12 
Aggregated normalized contribution weights of attributes.

𝐴𝑖 𝑁𝑊𝑖𝑗 L 𝑁𝑊𝑖𝑗 M 𝑁𝑊𝑖𝑗 H 𝑁𝑊𝑖𝑗 V
𝐴1 𝑁𝑊11 0.224 𝑁𝑊12 0.293 𝑁𝑊13 0.190 𝑁𝑊14 0.293
𝐴2 𝑁𝑊21 0.264 𝑁𝑊22 0.254 𝑁𝑊23 0.272 𝑁𝑊24 0.210
𝐴3 𝑁𝑊31 0.285 𝑁𝑊32 0.231 𝑁𝑊33 0.280 𝑁𝑊34 0.203
𝐴4 𝑁𝑊41 0.218 𝑁𝑊42 0.318 𝑁𝑊43 0.210 𝑁𝑊44 0.254
𝐴5 𝑁𝑊51 0.237 𝑁𝑊52 0.274 𝑁𝑊53 0.274 𝑁𝑊54 0.216
𝐴6 𝑁𝑊61 0.207 𝑁𝑊62 0.458 𝑁𝑊63 0.209 𝑁𝑊64 0.126
𝐴7 𝑁𝑊71 0.189 𝑁𝑊72 0.355 𝑁𝑊73 0.247 𝑁𝑊74 0.210
𝐴8 𝑁𝑊81 0.251 𝑁𝑊82 0.203 𝑁𝑊83 0.273 𝑁𝑊84 0.273
𝐴9 𝑁𝑊91 0.224 𝑁𝑊92 0.276 𝑁𝑊93 0.292 𝑁𝑊94 0.208
𝐴10 𝑁𝑊101 0.222 𝑁𝑊102 0.335 𝑁𝑊103 0.209 𝑁𝑊104 0.233
𝐴11 𝑁𝑊111 0.215 𝑁𝑊112 0.244 𝑁𝑊113 0.287 𝑁𝑊114 0.254
𝐴12 𝑁𝑊121 0.209 𝑁𝑊122 0.276 𝑁𝑊123 0.257 𝑁𝑊124 0.257
𝐴13 𝑁𝑊131 0.265 𝑁𝑊132 0.241 𝑁𝑊133 0.265 𝑁𝑊134 0.229
𝐴14 𝑁𝑊141 0.244 𝑁𝑊142 0.274 𝑁𝑊143 0.232 𝑁𝑊144 0.250
𝐴15 𝑁𝑊151 0.271 𝑁𝑊152 0.271 𝑁𝑊153 0.240 𝑁𝑊154 0.218

Table 13
Final weights value of alternatives.

Alternatives Normalized weights
L 0,2351
M 0.2880
H 0.2487
V 0.2282

Table 14
Result of sensitivity analysis of causal and hierarchical stream processing data driven decision 
model for level of environmental performance and resilience assessments.
# Main attribute/Sub-attribute Decision maker Result (ranking)
0 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10,

𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15

DM1, DM2, DM3 M>H>L>V
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1 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 DM1, DM2, DM3 M>H>L>V
2 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10 DM1, DM2, DM3 M>H>L>V
3 𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15 DM1, DM2, DM3 M>H>V>L
4 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10 DM1, DM2, DM3 M>H>L>V
5 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5,  𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15 DM1, DM2, DM3 M>H>L>V
6 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10, 𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15 DM1, DM2, DM3 M>H>V>L
7 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10,

𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15

DM1 M>H>L>V

8 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10,
𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15

DM2 M>H>V>L

9 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7, 𝐴8, 𝐴9, 𝐴10,
𝐴11, 𝐴12, 𝐴13, 𝐴14, 𝐴15

DM3 M>H>L>V
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