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Abstract: Approximately forty per cent of fresh products are wasted in low and middle-income
countries before reaching consumers. Perishable foods have only a certain shelf-life
and they need to be sold for consumption before a specific date. When a product is
priced incorrectly, it is often disposed of directly or redistributed. Redistribution of
surplus food also has an economic impact on food prices. Therefore, setting an optimal
pricing strategy is crucial to reduce inventory and surplus food in an environment with
volatile demands. In this context, big data analytics can help managers forecast
customer behaviour and determine pricing strategies throughout the retail industry.
This study focuses on food waste at the retailer stage of food supply chain (FSC). We
present a dynamic pricing model that uses real-time Internet of Things (IoT) sensor
data as a novel contribution to decide pricing at different stages of a sales season for
retailers. The food waste problem at the retail stage of a FSC is investigated in a pilot
project for bulk apple sales to address the research question. This study proposes a
four-stage data-driven optimal dynamic pricing strategy for bulk produce to reduce food
waste for retailers in low and middle-income countries. A multi-stage dynamic
programming method is used to decide on a pricing strategy for bulk produce, with
real-time IoT sensor data being retrieved to analyse and determine the length of
freshness scores. The effect of the sale price, replenishment amount, discount rate,
and freshness score on profit and food waste are evaluated. All these analyses assist
managers in taking the best possible actions and remedies. Appropriate interventions
boost sales, increase profits by reducing waste and determining competitive sales
price, while improving customer loyalty and satisfaction by striking the right balance
between food quality and price. Our results show the huge potential of using
hyperspectral imaging sensors in the FSC of a retailer. The model is demonstrated
empirically to test its practicability.
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Data-Driven Optimal Dynamic Pricing Strategy for Reducing Perishable 1 

Food Waste at Retailers 2 

Abstract 3 

Approximately forty per cent of fresh products are wasted in low and middle-income countries 4 

before reaching consumers. Perishable foods have only a certain shelf-life and they need to be 5 

sold for consumption before a specific date. When a product is priced incorrectly, it is often 6 

disposed of directly or redistributed. Redistribution of surplus food also has an economic impact 7 

on food prices. Therefore, setting an optimal pricing strategy is crucial to reduce inventory and 8 

surplus food in an environment with volatile demands. In this context, big data analytics can 9 

help managers forecast customer behaviour and determine pricing strategies throughout the 10 

retail industry. This study focuses on food waste at the retailer stage of food supply chain (FSC). 11 

We present a dynamic pricing model that uses real-time Internet of Things (IoT) sensor data as 12 

a novel contribution to decide pricing at different stages of a sales season for retailers. The food 13 

waste problem at the retail stage of a FSC is investigated in a pilot project for bulk apple sales 14 

to address the research question. This study proposes a four-stage data-driven optimal dynamic 15 

pricing strategy for bulk produce to reduce food waste for retailers in low and middle-income 16 

countries. A multi-stage dynamic programming method is used to decide on a pricing strategy 17 

for bulk produce, with real-time IoT sensor data being retrieved to analyse and determine the 18 

length of freshness scores. The effect of the sale price, replenishment amount, discount rate, 19 

and freshness score on profit and food waste are evaluated. All these analyses assist managers 20 

in taking the best possible actions and remedies. Appropriate interventions boost sales, increase 21 

profits by reducing waste and determining competitive sales price, while improving customer 22 

loyalty and satisfaction by striking the right balance between food quality and price. Our results 23 

show the huge potential of using hyperspectral imaging sensors in the FSC of a retailer. The 24 

model is demonstrated empirically to test its practicability.  25 

Keywords: Dynamic pricing; Data analytics; Food supply chain; Waste management; 26 

Perishable products; IoT sensor 27 
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1. Introduction 30 

Food Supply Chains (FSCs) are subjected to challenges such as climate change, natural resource 31 

scarcity, food insecurity, governance and organisation of the food system (FAO, 2019), 32 

population growth (Salehi-Amiri et al., 2022), food loss and food waste as well as food surplus 33 

(Papargyropoulou et al., 2014). The term “food loss and waste” (FLW) is commonly used to 34 

describe total losses and waste, which can occur from farm to fork within the different stages 35 

of the FSC; these include production, post-harvesting, processing, transportation and 36 

distribution, storage, retailer and consumption at household, hotel or restaurant (Parfitt et al., 37 

2010; Vilarino et al., 2017). According to the Food and Agriculture Organization (FAO), FLW 38 

is defined as (FAO, 2011): 39 

“Food loss is a decrease in mass (dry matter) or nutritional value (quality) of food that 40 

was originally intended for human consumption, whereas food waste refers to food 41 

appropriate for human consumption being discarded, whether or not after it is kept 42 

beyond its expiry date or left to spoil. Food wastage refers to any food lost by 43 

deterioration or waste. Thus, the term wastage encompasses both food loss and food 44 

waste.” 45 

FAO estimates that nearly one-third of all food produced for human consumption worldwide is 46 

lost or wasted. In addition, fruits and vegetables have the highest wastage rates of any food 47 

products with nearly half of all fruit and vegetable production being wasted (Kayikci et al., 48 

2019). Based on producer prices, the direct economic cost of food wastage of agricultural 49 

products (excluding fish and seafood) is roughly USD 750 billion, equivalent to Switzerland's 50 

GDP (FAO, 2013). Food loss significantly occurs in the early and middle stages of the FSC 51 

(close to the farm), whereas later stages of FSC mostly witness food waste at the retail and post-52 

consumer stages (close to the fork) (Kayikci et al., 2019). This wastage mainly occurs due to 53 

lack of awareness and education among stakeholders across enterprises especially small-scale 54 

firms (Kayikci et al., 2019, Kayikci et al., 2021a). In this context, the circular economy has 55 

been suggested as an important pathway to reduce and manage food wastage among actors such 56 

as farmers, distributors and retailers in the food chain (Kusumowardani et al., 2022). Food waste 57 

is a global problem and causes difficulties in feeding the growing world population allied with 58 

inefficient use of scarce resources such as land, water, and energy. Food waste can be seen in 59 

almost all stages of a FSC, but the value-added loss is highest when consumers waste food i.e., 60 
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household waste (Aktas et al., 2018). Food waste refers to unsaleable products that need to be 61 

disposed of or recycled in the retail sector (i.e., markets, groceries, bakeries, supermarkets) 62 

(Kayikci et al., 2021a). The retail stage may involve various sub-stages, including primary 63 

processing (cleaning, classification, pounding, grinding, packaging, soaking), secondary 64 

processing (mixing, cooking, frying, cutting), product evaluation (quality control), packaging 65 

(weighing, labelling, sealing), and marketing (publicity, selling, distribution). Perishable food 66 

waste at the retail stage occurs due to different reasons (Parfitt et al., 2010; Buisman et al., 67 

2019) such as process losses, contamination in the process causing quality loss, inappropriate 68 

quality control, overstocking, inaccurate forecasting, product discarded/out-grades, improper 69 

packaging damage, grain spillage from sacks, rodent attack, damage during transport, poor 70 

infrastructure or consumer behaviour. 71 

Some researchers (Li et al., 2021; Gustavo et al., 2021) propose several models for the FSC’s 72 

retailer-level food waste problem based on data collection and digital solutions to reduce this 73 

waste. These studies present a great potential to provide food waste information and help 74 

companies to deal with surplus food (Martin-Rios et al., 2021). Knowledge hiding and lack of 75 

information-sharing among stakeholders (distributors, producers, consumers, 76 

retailers, suppliers and farmers) has also been highlighted as a significant area in reducing food 77 

wastage and improving overall performance within the perishable food (Kayikci et al., 2020). 78 

Meeting customer expectations on the demand side of the FSC through the delivery of good 79 

quality products in the right quantities with an optimal cost is the primary objective for FSCs 80 

(Validi et al., 2014). Other groups of researchers focus on the theoretical framework to build 81 

sustainable FSCs. Martin-Rios et al. (2018) published a recent paper that addresses food waste 82 

from the innovation management perspective. The authors employ innovation management and 83 

social constructionism approaches to evaluate food waste solutions and innovations that merge 84 

strategic dimensions of waste management, such as incremental and radical innovations.  85 

Hennchen (2019) applies practice theory to build a theoretical framework that helps address 86 

food waste in professional kitchen work. Messner et al. (2020) coined the term “Prevention 87 

Paradox”, proposing a holistic framework to analyse food waste prevention. The authors 88 

investigated unsustainability issues in the food industry by focusing on food waste prevention 89 

and overproduction. As the volume of product flow grows and supply chain processes become 90 

more complex, the need for tracking and sensory technologies increases in FSCs. A huge 91 
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amount of generated data related to distribution centres, transportation modes, retail stores, and 92 

storage conditions (e.g., temperatures) must be collected. Food companies use this data to make 93 

optimal decisions for performance improvement. (Li and Wang, 2017). Management of 94 

perishable food has a significant impact on supermarket revenues in today’s competitive 95 

markets. While many retailers apply a price-cutting strategy as the products approach their 96 

expiration dates, some employ a single price strategy on fresh produce. In addition, dynamic 97 

pricing also has an impact on food waste. Notably, food waste at the retail stage of an FSC 98 

imposes a high cost on retail stores since the operating cost is usually high while the overall 99 

margins on food products are lower (Teller et al., 2018). 100 

Retailers’ pricing strategies manage food waste generation upstream of the FSC (Chen et al., 101 

2019). Therefore, there is also a need to apply an optimal dynamic pricing strategy with real-102 

time data monitoring at retailers. Data-driven innovation (DDI) technologies such as Internet 103 

of Things (IoT) make it easy for retailers and consumers to generate big data to monitor the 104 

precise freshness level of bulk produce (Kayikci et al., 2021a). Data-driven decision-making 105 

and big data techniques present a huge performance improvement for many businesses (Provost 106 

and Fawcett, 2013; Sorescu, 2017), including food producers. In addition, an IoT-driven pricing 107 

model realises a level of service (e.g., price level according to freshness) that aggregates data 108 

from several sources, including sensors, and mobile apps (Al-Turjman, 2017). Thus, retailers 109 

with IoT sensor data-driven pricing strategies can better monitor and manage the merchandising 110 

of perishable produce on the shelves and its remaining saleable life while reducing food waste 111 

(Kayikci et al., 2021a). In addition, an IoT sensor data-driven optimal dynamic pricing strategy 112 

can enable edge computing analytics, where data is generated in real-time and facilitate issuing 113 

work orders automatically to advanced ERP systems (Kayikci et al., 2021a; Kayikci et al., 114 

2021b). Thus, regardless of central decision-making, stores can independently decide on the 115 

pricing of any product in terms of the freshness score. Therefore, this research aims to answer 116 

the following research question:  117 

 RQ: What is the role of the data-driven optimal dynamic pricing strategy in reducing food 118 

waste at the retailer’s end?  119 

This study focuses on food waste at the retailer stage of FSCs. We present a dynamic pricing 120 

model that uses real-time IoT sensor data as a novel contribution to decide pricing at different 121 

stages of a sales season for retailers. The food waste problem at the retail stage of an FSC is 122 
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investigated in a pilot project for bulk apple sales to address the research question. This research 123 

proposes a four-stage data-driven optimal dynamic pricing strategy using real-time IoT sensor 124 

data to reduce food waste in Turkey; this gives a perspective from a middle-income country. 125 

The novelty of this paper is to present a real-time IoT sensor data-driven optimal dynamic 126 

pricing strategy to decide pricing at different stages of a sales season at retailers in the perishable 127 

food supply chain. Both large and small companies have recognised the value associated with 128 

effectively utilising big data. Data-driven businesses have delivered 5-6% higher performance 129 

than similar organisations that do not utilise data-driven processes (Brownlow et al., 2015). 130 

Additionally, the practical applicability of the model is tested using a case study. The results 131 

are discussed with the company to check the rigour of the model.  132 

The remainder of this paper is structured as follows. Section 2 provides a brief overview of the 133 

food waste challenge and the effect of data-driven dynamic pricing with the usage of IoT sensor 134 

devices on food waste. Section 3 presents the proposed methodology. Section 4 performs a 135 

numerical analysis to obtain quantitative results. Finally, the conclusions of this study are 136 

presented in Section 5, along with implications and future research opportunities. 137 

2. Research background 138 

2.1. Reduction of food waste at the retail stage 139 

The reduction of food waste at the retail stage of the FSC has gained enormous attention from 140 

practitioners and academicians globally in the past decades. In a recent study conducted by 141 

Dora et al. (2021a), the root causes of food waste in low, middle and high-income economies 142 

are identified. In addition, their study has also proposed a conceptual framework along with 143 

strategies to contribute to sustainable food eco-systems. Some researchers have further focused 144 

on food waste at the retail stage. For instance, Aktas et al. (2018) study consumer-generated 145 

food waste and consumer food waste behaviour by using the theory of planned behaviour to 146 

incorporate contextual factors such as motives, financial attitudes, planning routines, food 147 

surplus, social relationships, and Ramadan. Eriksson et al. (2012) analyse the flow of fruit and 148 

vegetables at six Swedish retail stores using recorded data by taking, physical measurements 149 

then evaluating waste patterns to reduce retail food waste.  150 

Wang and Li (2012) present a model to reduce food waste and maximise retail profit. Their 151 

model introduces a pricing strategy based on dynamically identified food shelf-life via tracking 152 

and tracing technologies such as a radio frequency identification device (RFID) and time-153 
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temperature indicators. La Scalia et al. (2016) study a predictive shelf-life model based on RFID 154 

technology that leads to better management of FSC. The food industry is becoming more 155 

customer-focused and now provides faster customer response time in today’s competitive 156 

markets. Food traceability systems minimise the possibility of poor-quality food production and 157 

distribution, helping FSCs to improve customer service levels (Aung and Chang, 2014). As 158 

technological solutions carry FSCs to a new level, public awareness of food waste increases. 159 

According to Kumar et al. (2020), perishable food supply chains are characterised by rising 160 

food quality and safety concerns, alarming food wastages and losses plus poor economic 161 

sustainability. Information sharing and traceability technologies improve the efficiency of 162 

perishable food supply chain efficiency, leading to effective demand management and 163 

eliminating supply uncertainty. Kaur and Singh (2018) introduce a joint procurement and 164 

logistics model that simultaneously minimises procurement and carbon emission costs in a 165 

sustainable supply chain. Li and Wang (2017) investigate the potential benefits of sensor data-166 

driven pricing decisions on chilled food chain management and quantitatively analyse the 167 

effects of dynamic pricing strategy to reduce food waste.  168 

Eriksson et al. (2016) investigate the net effect of food waste reduction in Swedish supermarkets 169 

by reducing the storage temperature. Their findings suggest that a significant reduction of food 170 

waste can be achieved by decreasing storage temperature in many supermarket departments 171 

such as cheese, dairy, deli, and meat. Eriksson et al. (2017) examine the impact of food rejection 172 

practices such as take-back agreements (TBAs) on FSCs by focusing on different types of food 173 

chains such as bread, fresh fruit, vegetables, and milk. Their study aims to understand the 174 

impact of TBAs on FSCs and investigates whether these agreements contribute to food wastage 175 

by leading to a sub-optimal solution in FSCs. Buisman et al. (2019) investigate the effect of 176 

discounting and dynamic shelf life (DSL) on the replenishment policy of a retailer by 177 

developing a simulation-based model. The researchers conclude that applying DSL and 178 

discounting strategies reduces food waste in FSCs. Combining the two strategies is proved to 179 

be more effective than separate applications. Cuellar and Webber (2010) estimate the energy 180 

embedded in wasted food annually in the United States and conclude that wasted food 181 

represents nearly two percent of annual energy consumption. Huang et al. (2021) reported that 182 

retailers have an important role in a five-tier food waste framework. In retail food waste 183 

problems, retailers mainly focus on reducing food waste and avoiding food surplus at the 184 

customer end. Some of the important measures in retail food waste management that could be 185 

taken are repositioning, reallocating, reacting, re-engineering and relating.  186 
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Paam et al. (2016) present a comprehensive literature review on research papers aiming to 187 

minimise food loss (fruits and vegetables) in the agri-fresh food supply chain. The authors assert 188 

that food loss should be considered a priority dimension and that a profit increase will arise in 189 

developing an agri-fresh food supply chain. This must address many factors including 190 

population growth, climate change, and food safety. Annosi et al. (2021) conducted qualitative 191 

research to investigate the role of digitalization in a food supply chain context. Their findings 192 

highlighted the importance of collaboration in overcoming challenges associated with adoption 193 

of digitalization in the food value chain. Hermsdorf et al. (2017) investigate German food 194 

retailers’ food waste reduction strategies by taking two practices into account - redistribution 195 

of non-marketable food items and lowering quality standards for fresh produce. Otrodi et al. 196 

(2019) study a joint pricing and lot-sizing problem for a perishable item to determine the lot-197 

size quantity and selling prices in multiple demands. Li et al. (2021) investigated a single-cycle 198 

food chain with one supplier and one retailer to evaluate the festival food waste problem. They 199 

proposed an optimal production and pricing strategy; as a result, forward contracts were 200 

suggested for centralized and decentralized supply chains. Some of the parameters evaluated in 201 

their study are optimal strike price, wholesale price, retail price, food deterioration rate, demand 202 

risk, and relevant cost. Huge amounts of data are generated from the myriad of daily 203 

transactions. These large data streams are generated through information and communication 204 

technologies, including the internet, sensors, cameras, and healthcare devices. DDI refers to big 205 

data and analytics implemented to improve or introduce new products, services, processes and 206 

organisational methods. DDI is considered a new source of growth, offering the potential to 207 

increase productivity, resource efficiency, and economic competitiveness. The utilisation of 208 

DDI in business processes has already created value-added benefits as more firms adapt their 209 

processes to this way of working (OECD, 2015). 210 

Businesses tend to invest in new models that create additional value by extracting, refining, and 211 

effectively utilising data (Brownlow et al., 2015). Since companies incur a cost to generate, 212 

compile, collect, secure and utilise data, these organisations make huge investments in data 213 

management. As these investments increase, many enterprises in various industries understand 214 

the importance of data-driven decisions and adjust their processes to use data to drive 215 

innovation (Hemerly, 2013). 216 

Chien et al. (2016) propose a data-driven product design framework that integrates the decision 217 

elements of product forms and features to identify useful design concepts based on customer 218 
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expectation. Jetzek et al. (2013) develop a conceptual model that explains how open 219 

government data can generate data-driven innovative solutions and how an enterprise creates 220 

economic and social value by adopting this mechanism. Kusiak (2009) proposes a data-driven 221 

approach that evaluates innovative products and services, selecting the most promising ventures 222 

for future markets.  223 

In developing digital applications, it is also important to list food waste reduction approaches 224 

throughout the value chain. Some of them are specified as forecasting, waste analysis, 225 

redistribution, and measure catalogues (Strotmann et al., 2021). These approaches also help 226 

food service firms to manage food waste during crisis events. Big data analytics is used to 227 

forecast customer behaviour and determine pricing strategies in the retail industry. Big data can 228 

be characterised by three features; volume, velocity, and variety (Belarbi et al., 2016). The FSC 229 

is one of the first industries to embrace IoT and use this technology to track shipments in the 230 

distribution network. Monitoring and evaluating food quality and ensuring authenticity by 231 

integrating spectral cameras into the process have gained increasing attention in recent years. 232 

Blockchain is another emerging technology in FSCs to ensure food safety (Kayikci et al., 233 

2021b; Kayikci et al., 2020). Furthermore, a great volume of social media data becomes a new 234 

source for consumer behaviour analysis and decision-making (Misra et al., 2020). With 235 

business intelligence tools, big data helps an organisation to make optimised decisions. 236 

Enterprises have to capture, filter, store, and analyse a huge volume of data to gain meaningful 237 

information. Filtering and analysing data is a complicated task; hence, business intelligence 238 

tools are necessary. Santoro et al. (2018) investigate the role of big data in transforming 239 

business practices and gaining a competitive edge for retail companies. Carolan (2018) 240 

investigates how food retailers benefit from big data and use data analytics techniques such as 241 

predictive analytics and artificial intelligence. 242 

Verma et al. (2020) propose an intelligent retail mining tool that helps retailers to discover the 243 

buying pattern-based purchase history of customers and provide managerial implications 244 

leading to increased sales performance (Verma et al., 2020). Big data analytics and data-driven 245 

decision-making techniques impact an organisation’s performance, such as increased sales 246 

volume, reduced costs, and higher customer service levels (Ying et al., 2020). The next section 247 

discusses the use of DDI technologies on the pricing strategy of retailers within the context of 248 

food waste. 249 
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2.2. Effect of data-driven dynamic pricing strategy on food waste 250 

Technology can enable greater transparency and traceability from farm to fork in FSCs. 251 

However, the adoption of technology especially artificial intelligence in food chain 252 

management, is not well established. Dora et al. (2021b) explored the key success factors to AI 253 

adoption in Indian food chains. They suggested a TOEH (Technology–Organisation–254 

Environment–Human) framework. The use of food traceability systems can significantly 255 

improve supply chain visibility and accuracy of product shelf-life information of fresh foods. 256 

Real-time product quality and shelf-life information affect consumers’ buying decisions. This 257 

information helps retailers update product pricing dynamically based on identified quality 258 

features; this helps to minimise food waste due to spoilage (Wang and Li, 2012).  259 

Kappelman and Sinha (2021) studied a dynamic food chain problem. They formulated an 260 

integrated approach using big data mining methods to evaluate the quality level of the product.  261 

In their study, stochastic optimization techniques are employed to derive an optimal policy for 262 

the process for different actors, including retailers.  263 

Food chains can be severely affected by disasters such as an earthquake, COVID-19 etc. 264 

(Kayikci et al., 2021b). In this context, it becomes more important to address the issues of food 265 

waste and design an optimal inventory policy. Ekren et al. (2021) proposed a lateral inventory 266 

share-based business concept to reduce food waste for online grocery stores, where e-grocery 267 

stores were connected through IoT in an Industry 4.0 context.  268 

Data-driven tracking systems provide helpful information for stakeholders in the up-and 269 

downstream supply chain to make better decisions and create more revenue benefits. Therefore, 270 

many companies use IoT. These IoT devices are connected digitally via sensors, actuators or 271 

network communication technologies to interconnect supply chain parties (Sangeetha et al., 272 

2020). Connecting physical objects helps streamline operations and information flow while 273 

enabling real-time monitoring. Most importantly, IoT devices collect and analyse data that gives 274 

users an insight into the processes employed and business operations. Several technologies can 275 

be operated with IoT sensors (e.g., light, humidity, temperature, and image). They can be used 276 

in the retail industry to monitor and predict the shelf-life of produce and reduce food waste. 277 

Table 1 lists the sensor types most used in the retail stage of an FSC. These sensors can differ 278 

in terms of capabilities and architecture. They can be utilised during retail phases to prevent 279 

food spoilage (i.e., biological and chemical contamination) and dumping. 280 
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Table 1 - Sensor types and technologies in the retail stage of FSC.  

Sensor type Determination Source 

Light sensors/colour 

sensors: RGB camera 

Colour sensing or machine vision 

inspections; recording produce images 

Holm (2005); 

Sangeetha et al. 

(2020) 

Temperature sensors: 

near-infrared (NIR) 

spectrometry 

quality inspection and temperature 

measurement, ripeness 

Holm (2005); 

Sangeetha et al. 

(2020) 

Electromagnetic sensors: 

X-Ray, microwave 

imaging 

Foreign body detection on produce, 

measurement of an entire component of 

produce (i.e., measurement of water 

content) 

Holm (2005); 

Sangeetha et al. 

(2020) 

Biosensor: 

Electrochemical Ion 

sensitive field-effect 

transistor (ISFET) 

Portable for ethylene detection Sangeetha et al. 

(2020) 

Ultrasonic sensors: 

ultrasonic cavity ring-

down spectroscopy, 

Photoacoustic imaging: 

Photoacoustic 

spectroscopy  

Ultrasonic sensing, quality inspection, 

freshness spotting 

Sangeetha et al. 

(2020) 

Optical sensor: 

biospeckle laser, 

hyperspectral imaging, 

terahertz imaging, 

chlorophyll fluorescence 

Biological sensing detects the edible 

nature of fruits and vegetables to provide 

a better shelf-life. 

Freshness, continuous monitoring 

Holm (2005); 

Sangeetha et al. 

(2020); Pieczywek 

et al. (2018) 

Gas sensor: micro-gas 

chromatography, 

electronic nose (E-Nose) 

Crop health and diseases, electronic 

sensing, freshness, ripeness, decaying 

Sangeetha et al. 

(2020) 

A freshness sensor senses and informs users regarding the status of a food item in terms of its 281 

quality (e.g., its freshness score) and safety standards. Increasing demand for fresh, high-282 
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quality, safe foods with longer shelf-life encouraged retailers to use freshness sensors in their 283 

grocery sections. Consumer interest in the ingredients and components of products, packing 284 

information and storage conditions increases the need for freshness sensors during food packing 285 

operations (Kuswandi, 2007). Both retailers and customers can monitor the quality of a fresh 286 

product through food sensors used in smart packaging. A time-temperature indicator is a smart 287 

label that shows the accumulated time-temperature history of a product, and is the simplest 288 

form of smart packaging. Food quality can be analysed using more sophisticated indicator 289 

sensors by monitoring diff erent organic compounds such as ethanol, glucose, or gas molecules, 290 

and by measuring bacterial content, contamination, texture or colour degradation, and bruising 291 

(Pal and Kant, 2018). The sensors form different case technologies for detection of edible 292 

produce where a better shelf-life can be produced (Holm, 2005; Sangeetha et al., 2020). 293 

Monitoring the level of freshness can increase the availability of fresh, high quality and safe 294 

foods with a longer shelf-life. For instance, one of the optical sensors, hyperspectral imaging, 295 

has a better capability to access more information about freshness and demands higher storage 296 

requirements to monitor produce frequently (Sangeetha et al., 2020). Hyperspectral imaging is 297 

an emerging technology that can obtain optimal filters for a multispectral imaging system. 298 

These systems can analyse spectral data of various food products and the possible presence of 299 

contaminations (Mehl et al., 2004). Hyperspectral imaging technology can flawlessly identify 300 

early bruises and determine the degree of bruising of apples; this provides a new method for 301 

online, non-destructive detection and grading of early bruises in apples (Tan et al., 2018). 302 

This study considers hyperspectral imaging, an emerging technology that integrates image 303 

information and spectral information to visualise and analyse the internal and external 304 

characteristics of objects. Hyperspectral imaging technology is widely used in the quality 305 

inspection of agricultural products, such as identifying hidden bruises on kiwi fruit, internal 306 

injury in almond nuts, common defects in jujube, and black spots in potatoes (Tan et al., 2018). 307 

Hyperspectral imaging has special cameras that see wavelengths (400-1000 nm) not visible to 308 

the human eye; it can detect molecular changes in produce, indicating its freshness score 309 

(freshness level) or whether it was previously frozen (Hagen, 2018). It can help determine how 310 

soon it takes to reach a store shelf-life before spoiling. Figure 1 illustrates the hyperspectral 311 

imaging for fresh food. 312 

 313 
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 314 

 315 

 316 

 317 

 318 

Figure 1 - Hyperspectral imaging for fresh food (Source: Gruber et al., 2018 and Tan et al., 

2018) 

After reviewing existing literature on FSCs and food waste, no research has been conducted to 319 

propose a pricing model that uses real-time IoT sensor data to apply dynamic pricing strategy 320 

and reduce food waste by retailers. In addition, there is a dearth of studies that employ real-time 321 

IoT data concerned with the shelf-life of fresh products in terms of outside factors such as 322 

temperature, humidity, contamination, bacterial content, etc. Furthermore, no papers analyse 323 

the shelf-life by considering the freshness score of produce under a multi-stage setting. This 324 

paper introduces a multi-stage dynamic programming method to decide on a dynamic pricing 325 

strategy for bulk production by integrating real-time sensor data to analyse and determine the 326 

length of the freshness stages in the model. 327 

3. A Four-Stage Data-Driven Optimal Dynamic Pricing Strategy Model at the Retailer 328 

In this study, a four-stage data-driven optimal dynamic pricing strategy model using 329 

hyperspectral imaging sensor data for freshness score is proposed to solve the food waste 330 

problem at retailers in Turkey. Because of the habitual consumption in Turkey, consumers 331 

mainly prefer to buy quantities of fresh foods in bulk. Therefore, packaged fresh foods are not 332 

routinely sold to consumers.  333 
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Figure 2 - Timeline and Freshness Scores of the Pricing Model at the Retailer 

Stage 1 – Freshness Stage: We assume that the demand (D) for the product is based on the 334 

freshness score of the produce. In the multi-stage dynamic pricing model under study, the 335 

selling season starts with the replenishment of the produce (Stage 1). At this stage, the grocery 336 

receives a demand signal (𝐷) based on the freshness score of produce and sets the initial selling 337 

price, 𝑝1, under the unit purchase price 𝑐0. During this and subsequent stages, which are not 338 

necessarily equal in length, the store can update the unit price of the product as it becomes 339 

necessary. We assume the length of each period depends on the rate of decay of the produce, 340 

with the grocery updating the unit price dynamically based on the freshness of the produce.  341 

Stage 2 – Less Fresh/Cheaper Stage: As the product becomes less fresh, the grocery reduces 342 

the unit price to make it more appealing. At the beginning of Stage 2, the store updates the unit 343 

price based on the on-hand inventory since this is the last chance to sell the remaining produce 344 

in the store before the redistribution stage. During this stage, the produce is less fresh but still 345 

edible. Since only 𝑡2 periods are left to the redistribution stage, the grocery is expected to set a 346 

unit selling price, 𝑝2(𝑝2 < 𝑝1) to deplete stocks. Since produce quality will be lower, and the 347 

grocery will incur an additional distribution cost in the next stage, the profit margin will 348 

diminish significantly. Hence, this stage is the last opportunity for the store to sell the remaining 349 
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inventories with a relatively high margin.  350 

Stage 3 – Redistribution Stage: Stage 3 marks the end of the sales of produce in the grocery due 351 

to the lack of required standards. From this point, the leftover produce needs to be redistributed 352 

by incurring an additional cost, namely redistribution cost, 𝑐𝑅. We assume the unit price at this 353 

stage, 𝑝3, is relatively lower than previous stages, 𝑐0 ≤  𝑝3 <  𝑝2 <  𝑝1, since 𝑝3 =  𝑝2 − 𝑐𝑅.  354 

Stage 4 – Disposal Stage: Finally, the remaining inventory is disposed of at Stage 4. The store 355 

incurs a unit disposal cost, 𝑐𝐷(𝑐0 < 𝑐𝐷) if disposal is necessary. Thus, any leftover produce at 356 

the disposal stage (Stage 4) will be sold with a negative profit; the grocery will generate a net 357 

loss from this produce. Figure 2 summarises the timeline and stages of the model. The freshness 358 

score is considered in each stage, with the hyperspectral imaging sensors measuring this rate. 359 

3.1. Problem Formulation 360 

The multi-stage inventory model in this study is based on the model proposed by Demir (2017), 361 

where the author investigates a finite horizon multi-period inventory control problem of a cruise 362 

liner. A stochastic dynamic programming method is used to analyse a cruise liner’s pricing 363 

strategy to maximise profit while eliminating food waste on the ship. The system updates the 364 

product’s unit price at the beginning of every stage based on the remaining inventory throughout 365 

the selling period. This study has extended the model by adding the freshness score of a 366 

perishable product and dynamic pricing strategy and then analysed the model with simulation 367 

tests. We will use the following notations for the four-stage dynamic pricing problem: 368 

Parameters 369 

𝐷: market (demand) signal 370 

𝜉𝑛: random variable representing the total demand for period 𝑛 (𝑛 > 0) 371 

𝑡𝑛: total time for the nth period of the selling season (𝑛 > 0) 372 

𝜑𝑡𝑛(𝜉𝑛|𝐷): probabilistic density function of demand over 𝑡𝑛 given 𝐷 (𝑛 > 0) 373 

𝛷𝑡𝑛(𝜉𝑛|𝐷): cumulative probability function for demand over 𝑡𝑛 given D (𝑛 > 0) 374 

𝑥𝑛: inventory level at the end of stage 𝑛 (𝑛 > 0) 375 
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𝑥0: Inventory level at the beginning of the selling season (The initial purchased inventory level; 376 

all bulk items are at the freshness stage) 377 

𝑥1: Inventory leftover at the end of stage 1 (The level of unsold inventory at the beginning of 378 

Stage 2; all remaining items are at the less fresh stage – discounted products) 379 

𝑥2: Inventory leftover at the end of stage 2 (The level of inventory items to be sent to 380 

redistribution due to the lack of quality standards – need to be consumed within hours) 381 

𝑥3: Inventory leftover at the end of stage 3 (The level of remaining inventory that will be 382 

disposed of - spoiled, do not consume) 383 

𝜇(𝐷): expected demand rate per unit time in any period of given 𝐷 384 

𝑝i : the price of the product at ith stage 385 

𝑐0: unit purchase price at stage 1 386 

𝑐𝐷: disposal cost 387 

𝑓𝑁−𝑛(𝑥𝑛|𝐷): expected cost over the remaining 𝑁 − 𝑛 stages, starting with an initial inventory 388 

of 𝑥𝑛 given 𝐷 389 

𝑁: total stage number of the selling period (𝑁 > 0) 390 

𝑛: current selling period (0 ≤ 𝑛 ≤ 𝑁) 391 

𝑍𝑁−𝑛 (𝑝𝑛; 𝑥𝑛−1|𝐷): profit of the grocery at stage 𝑛, given the market signal and inventory 392 

leftovers at stage 𝑛 − 1 393 

Assumptions 394 

The following assumptions hold for the proposed model: 395 

 No replenishment is possible during the selling season  396 

 Shortage penalty in case of stock-outs is neglected 397 

 The strategy under consideration is bulk purchasing 398 
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 Holding cost during/between stages is neglected 399 

 Disposal cost, 𝑐𝐷, is assumed to be exogenous  400 

 Redistribution cost is neglected  401 

We write the recursive function starting from the last stage (Stage 4) and continue until Stage 402 

1. In the end, starting from the last stage, the optimal policy for each stage can be determined 403 

one by one by using the backward induction method. 404 

3.1.1. Stage 4 Problem (Disposal Stage) 405 

This stage finalises the selling season; the remaining inventory at this period will be disposed 406 

of with a unit disposal penalty fee, 𝑐𝐷. Since, 𝑐𝐷 <  𝑐0, this stage generates a net loss of 𝑐0 −407 

 𝑐𝐷 for each unit of produce. The grocery intends to minimise the net loss in this period, which 408 

equals zero. No leftovers at this stage indicate that the food waste is zero. The optimal expected 409 

profit for the disposal stage can be written as: 410 

𝑓0(𝑥3|𝐷) = max 𝑍0(𝑐𝐷; 𝑥3|𝐷)                              (1) 411 

where 412 

𝑍0(𝑐𝐷; 𝑥3|𝐷) =  −𝑐𝐷 𝑥3                         (2) 413 

This function is the total profit function for the last stage. Any unsold inventory during the 414 

redistribution stage is disposed of with an additional penalty cost. Hence any positive value of 415 

𝑥3 (e.g., 𝑥3 > 0 ) generates a loss for the grocery. To exclude the unrelated cases, we make the 416 

following assumption in our model, 𝑐𝐷 >  𝑐0. The retailer keeps the inventory at the lowest 417 

level due to the zero-waste goal. The rest of the inventory can be sold to food waste producers 418 

with negative profit to turn food into a nutrient-rich animal feed and organic fertiliser, instead 419 

of disposing of waste via landfill or incineration. The disposal stage indicates that the product 420 

is unsuitable for human consumption and should be disposed of due to the low level of 421 

freshness. Typically, the freshness score is lower than 20% in this stage. 422 

3.1.2. Stage 3 Problem (Redistribution Stage) 423 

At this stage, there are only 𝑡3 periods left to the disposal stage and given the inventory 424 
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remaining at the end of the second stage and the market signal, optimal expected profit for the 425 

remaining period of time can be written as: 426 

𝑓1(𝑥2|𝐷) = max
𝑝3≥𝑐𝐷

𝑍1(𝑝3; 𝑥2|𝐷)                           (3) 427 

where 428 

𝑍1(𝑝3; 𝑥2|𝐷) = 𝑝3 ∫ 𝜉3𝜑𝑡3(𝜉3|𝐷)𝑑𝜉3
𝑥2−𝑥3

0
 + (−𝑐𝐷 𝑥3)                         (4) 429 

This function is the total profit function for any continuous demand distribution at the third 430 

stage. The first integral in (4) represents the portion of the profit function where the market 431 

signal (D) falls between 0 to (𝑥2 − 𝑥3) and the grocery charges a unit price of 𝑝3. The second 432 

part of the function in (4) represents the expected profit (loss) function of Stage 4. If the total 433 

demand during 𝑡3 is less than 𝑥2, the grocery redistributes the leftovers with a relatively low 434 

unit price (𝑝3) compared to previous stages; the remaining inventory will be sent to the disposal 435 

stage. If the total demand during 𝑡3 is greater than 𝑥2, then the grocery experiences a shortage 436 

with no additional cost. We assume that the selling season is reached at the redistribution stage 437 

when the freshness score is less than 60%. At this stage, unsold produce will be distributed to 438 

discount markets within the retailing operation, and the monitoring process continues there. The 439 

sensors monitor the product freshness score to trace compliance with all determined standards 440 

at this stage. 441 

3.1.3. Stage 2 Problem (Less Fresh / Cheaper Stage) 442 

This stage marks the beginning of the first discounted stage (Stage 2) of the selling season. At 443 

this stage, the grocery breaks down the unit price to deplete stocks. The objective of this stage 444 

is to determine a selling price to maximise profit while selling as much as possible before the 445 

redistribution stage. The grocery needs to determine a unit price, 𝑝2, to maximise the expected 446 

total profit through the end of Stage 3. The expected cost for the remaining period can be written 447 

as: 448 

𝑓2(𝑥1|𝐷) = max
𝑝2≥𝑝3

𝑍2(𝑝2; 𝑥1|𝐷)                           (5) 449 

where 450 

𝑍2(𝑝2; 𝑥1|𝐷) = 𝑝2 ∫ 𝜉2𝜑𝑡2(𝜉2|𝐷)𝑑𝜉2
𝑥1− 𝑥2

0
+ ∫  𝑓1(𝑥1 −  𝑥2 −  𝜉2|𝐷) 𝜑𝑡2(𝜉2|𝐷)𝑑𝜉2

𝑥1− 𝑥2

0
  (6) 451 
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This function is the total profit function for any continuous demand distribution at the second 452 

stage. It is clear to see that in addition to the profit from sales, Stage 3’s and Stage 4’s expected 453 

profit functions are also included in the expected profit function of Stage 2. The first integral in 454 

(6) represents the portion of the profit function where the market signal (D) falls between 0 to 455 

(𝑥1 − 𝑥2) and the grocery charges a unit price of 𝑝2. The second integral in (6) represents the 456 

expected cost function of the last two stages (Stage 3 and Stage 4) after expected customer 457 

demand is deducted from the on-hand inventory at the beginning of Stage 2. We assume that 458 

Stage 2 is characterised by a 60-80% freshness score for produce, meaning 60-80% of the 459 

produce is still fresh and edible. 460 

3.1.4. Stage 1 Problem (Freshness Stage) 461 

Since demand signal (D) is revealed at the beginning of this stage, we assume that the store 462 

orders an initial inventory level, (𝑥0), equal to cover the random demand throughout the selling 463 

period. The unit cost, 𝑝1, at this stage is higher than all other stages since the shelf-life of the 464 

produce is still long enough to sell it. Hence, an optimal pricing strategy is to maximise the 465 

overall profit in this stage. Expected profit starting from Stage 1 through to the end of the time 466 

frame can be stated as: 467 

𝑓3(𝑥0|𝐷) = max
𝑝1≥𝑝2

𝑍3(𝑝1; 𝑥0|𝐷)                           (7) 468 

where 469 

𝑍3(𝑝1; 𝑥0|𝐷) = 𝑝1 ∫ 𝜉1𝜑𝑡1|𝑑𝜉1
𝑥0−𝑥1

0
+ ∫ 𝑓2 (𝑥0 −  𝑥1 −  𝜉1|𝐷)𝜑𝑡1(𝜉1|𝐷)𝑑𝜉1

𝑥0−𝑥1

0
                 (8) 470 

This function is the total profit function for any continuous demand distribution at the first 471 

stage. In addition to the profit from sales, the profits from the next three stages are included in 472 

the function. The first integral in (8) represents the portion of the profit function where the 473 

market signal (D) falls between 0 to (𝑥0 − 𝑥1) and the grocery charges the highest unit price of 474 

the selling season, 𝑝1. The second integral in (8) represents the expected cost function of the 475 

last three stages (Stage 2, Stage 3, and Stage 4) after the expected customer demand is deducted 476 

from the initial inventory at the beginning of Stage 1. We assume that Stage 1 is characterised 477 

by an 80-100% freshness score of the product which means the price will not be updated; and 478 

the product will be categorised in the freshness stage unless its freshness score is less than 80%.  479 
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3.2. Evaluation of streamlined data by using hyperspectral imaging sensors 481 

 Instant real-time data analytics with edge control at stores to analyse the product and to 482 

determine the length of freshness scores 483 

 Instant decisions, sensors collect data, instant data analytics performed by edge 484 

computing 485 

 Hyperspectral imaging sensors are used to scan the bulks at stores to detect the real-time 486 

freshness of produce 487 

 Rule setting according to freshness score of the produce (food freshness level): 100-80% 488 

represents freshness stage, 80-60% represents the less fresh but still saleable stage, 60-489 

20% represents redistribution stage, < 20% is disposal stage. 490 

 491 

3.3. Solution Approach 492 

Figure 3 presents a flowchart illustrating the proposed four-stage optimal dynamic pricing 493 

strategy model with steps.  494 

The first stage is the replenishment of the product conducted only once at the beginning of the 495 

sales period; no replenishment is allowed during this period. Demand is realised at Stage 1, and 496 

the grocery sets the selling price of the freshness stage. As soon as the selling season starts, 497 

hyperspectral imaging sensors continuously monitor the freshness of the products and reveal 498 

the freshness scores. Based on the defined freshness scores (100-80% freshness stage, 80-60% 499 

less fresh, 60-20% redistribution stage, <20% disposal stage), the system decides the length of 500 

each stage by updating the selling price. The selling process continues under different pricing 501 

strategies until the freshness score of the produce goes below 20%. The selling season ends 502 

after leftovers are disposed of with penalty cost.  503 

The pseudo-code of our model is given in Appendix 1 based on optimal pricing strategy, in 504 

Appendix 2 based on the optimal initial replenishment amount and in Appendix 3 based on the 505 

optimal discount rates between stages. 506 

 507 
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 526 

Figure 3 - Flowchart of the solution approach 

4. Numerical Analysis 527 

This study examines a grocery store that carries perishable produce whose shelf quality is 528 

continuously measured using hyperspectral imaging sensors. We simulate the sales process of 529 

this perishable produce where the price is being dynamically updated based on the quality 530 

condition of the product. Our goal in this simulation study is to meet customer quality and price 531 

requirements while minimising food waste (disposal of produce) and increasing the retailer's 532 

profit. The quality loss of a perishable item occurs naturally, and eventually becomes 533 

unacceptable to customers as it stays on the shelves. Computational logistics applications such 534 

as hyperspectral imaging sensors can help grocery stores to reduce food waste and increase 535 
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profit by continuously inspecting food quality and sending signals to a computer that updates 536 

the unit price based on the freshness score and the remaining quantity of the product. To 537 

simulate the operations of a grocery chain, we generate real-time IoT sensor data and use this 538 

data in our simulation. We use the random function of Python with Gaussian distribution to 539 

simulate the real-life application (Pseudo-random numbers, 2021). The number of daily 540 

customers is regenerated based on the parameters given in Table 2. For each customer, 541 

individual demand, preference priority (price vs quality), perception of the product value, and 542 

quality preference are generated. The simulation covers 30-days of a sales period. The 543 

algorithm dynamically adjusts the selling price based on the product quality and on-hand 544 

inventory with the objective of minimising food waste while maximising profit. 545 

Table 2 – Used Simulation Event Parameters 

Simulation Event Distribution Parameters 

Customer Arrivals (person) N ~ (30,4)  

Each Individual’s Demand (kg) N ~ (5,2) 

Customer Price Expectation N ~ (120,5)  

Quality Decay Rate (%) Real-time hyperspectral imaging sensors data 

4.1 Scenario-based and Parameter Effect Analysis 546 

This section provides numerical examples for a grocery store's real-time IoT sensor data-driven 547 

four-stage optimal dynamic pricing strategy to solve the inventory control problem. Simulation 548 

experiments are performed to analyse the effect of the sales price (𝑝i), initial replenishment 549 

amount (𝑥0) and discount rate (𝑑i) on profit and food waste. Our goal is to find the optimal 550 

sales price, initial amount to purchase and discount rate that maximise profit while minimising 551 

food waste under the different scenarios with the parameters given in Table 3. Simulation runs 552 

imitate the 30-day operation of a grocery store where customer arrivals, each customer’s 553 

demand and price expectations are distributed with a normal distribution whose parameters are 554 

given in Table 2. In the early sales period, it is challenging to identify any damage with the 555 

naked eye; however, hyperspectral imaging sensors can detect the decay rate. 556 

 557 
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Table 3 – Analysed and Target Simulation Parameters 

Analysed Parameter Target Parameters Estimated 

Sales prices (𝑝i)  

Profit (𝑍) 

Food waste (𝑥3) 

Initial amount (𝑥0) 

Discount rate (𝑑i) 

4.1.1. Effect of Sale Price on Profit and Food Waste 558 

In this subsection, we conduct experiments to identify the effects of the sales price on profit 559 

and food waste while keeping other parameters constant. Our purpose is to analyse the effect 560 

of the initial sales price (𝑝i) on the grocery’s profit and the amount of wasted food at the end of 561 

the selling season under different scenarios. The graphics in Figure 4 are obtained from the 562 

simulation. Figure 4a depicts the effect of the sales price on food waste, while Figure 4b 563 

illustrates the effect of the sales price on profit. The sales price is determined at the beginning 564 

of the first sales stage. We assume that the initial price is 120 of the unit cost and it is updated 565 

based on the freshness score of the produce given in the ruleset. We obtained an optimal initial 566 

price point based on our simulation results that maximise profit while minimising food waste. 567 

The dashed lines in Figures 4a and Figure 4b show the retailer's minimum waste and maximum 568 

profit, respectively. The point (𝑝i = 130) shows the first stage selling price of the produce 569 

decreased by the discount rate at the beginning of each stage. This discount rate is applied when 570 

the freshness score of the produce goes below-assumed limits defined in the ruleset. The dashed 571 

lines in both figures overlap at the point at which profit is maximised and waste is minimised. 572 

The grocery manager should set the initial selling price to meet both objectives.  573 

4.1.2. Effect of Replenishment Amount on Profit and Food Waste 574 

Replenishment is one of the most important operational parts of FSCs due to its ability to 575 

balance availability and food waste. In our model, replenishment is allowed only at the 576 

beginning of the sales season; the grocery is not able to replenish produce during the sales 577 

period. If the initial replenishment quantity is not high enough, the risk of stock-out may occur, 578 

resulting in customer dissatisfaction. On the other side, an excessive order quantity may result 579 

in the disposal of produce at the end of the sales period due to the loss in quality. 580 

Here, we analyse the effect of the initial replenishment amount on profit and food waste. We 581 

conduct experiments to test profit and food waste based on the on-hand inventory under 582 
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different customer arrivals, demands and purchasing habits. Figures 5a and Figure 5b illustrate 583 

the simulation results based on a grocery's selling season scenarios during a 30-day period. We 584 

prove that there is an optimal replenishment quantity that maximises profit. The grocery 585 

achieves maximum profit with zero food waste in this run, when 345 kg of apples are purchased 586 

at the beginning of the selling season. After this point, for each additional purchase, the grocery 587 

lowers its profit due to the unsold products that are disposed of at the end of the selling season.  588 

 589 

 590 

 591 

 592 

 593 

 594 

 595 

 596 

 597 

(a)                                                                           (b) 598 

Figure 4 - The effect of the sale price on food waste profit 
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 607 

(a)                                                                          (b) 608 

Figure 5 - The effect of initial replenishment on food waste and profit 
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4.1.3. Effect of Discount Rate on Profit and Food Waste 611 
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The retailer can balance the inventory on-hand and the turnover rate by applying variable 612 

discount rates during the selling season. Product price is one of the most prominent factors 613 

together with quality, for customers. During the selling season, retailers might need to update 614 

product pricing in the right manner to fulfil customer needs, recover investment for the next 615 

sales season, and generate revenue. A prudent discount price is an important factor for the 616 

retailer to fight possible food waste. An effective pricing strategy leads to depleting on-hand 617 

inventory before perishable products reach their best-before date. As the selling season 618 

continues, retailers might need to lower product prices based on their on-hand quantity and 619 

freshness score. Selling produce with a quality loss at a discounted price can help to reduce 620 

food waste. Any price reduction must be aligned with the product and its defects. 621 

Here, the effects of the discount rate on the retailer’s profit and food waste are investigated 622 

through the 30-days of the selling period. Figures 6a and Figure 6b show the effects of different 623 

discount rates on profit and food waste, respectively. As seen in Figure 6a, the discount rate 624 

increases the retailer's profit due to its direct effect on sales. When the retailer sells the product 625 

at a discounted price, revenue increases because the price becomes lower than the customers’ 626 

expectation and encourages them to purchase in large quantities. At the same time, food waste 627 

diminishes, as shown in Figure 6b. In our example, a 7% discount rate maximises the retailer's 628 

profit and reduces food waste to zero. After this point, the retailer’s profit margin declines, and 629 

food waste remains at zero. Hence, there is no advantage for the retailer to provide more than 630 

7% discount in this example because any bigger discount reduces profit. 631 

4.1.4. Effect of Freshness Score on Profit and Inventory Level 632 

In this subsection, we examine the whole selling period to see the effect of the freshness score 633 

of produce on the retailer’s profit and inventory level. Our purpose in this analysis is to 634 

understand how freshness score affects profit and inventory level. As expected, the inventory 635 

level decreases while the profit accumulates as product sales continue throughout the selling 636 

season.  637 

Figure 7 shows four freshness scores of the selling season, each characterised by different 638 

freshness scores measured and reported by hyperspectral imaging sensors. At each transition 639 

between stages, the grocery updates the produce's unit price, aiming to achieve maximum profit 640 

and no food waste at the end of the selling season. Each price update changes the profit and 641 

food waste amount since price affects customer buying decisions. Sales depend on the price 642 
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and quality expectations of the customer in our simulation. The results show that price breaks 643 

accelerate sales while product deterioration does the opposite. The retailer aims to reach zero 644 

inventory before the sales period ends (redistribution stage) while keeping food waste low at a 645 

marginal cost. 646 

 647 

 648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

(a)                                                                          (b) 656 

Figure 6 - The effect of discount rate on food waste and profit 

 657 

 658 

Figure 7 – Profit and amount distribution according to freshness scores 

5. Conclusions 659 

High market prices may result in food surplus that needs to be redistributed or disposed of, 660 

while low market prices mean a lower profit margin. Hence optimal pricing strategy will help 661 

retailers maximise profit while avoiding food waste. The novelty of this paper is to present a 662 

real-time IoT sensor data-driven optimal dynamic pricing strategy to decide pricing at different 663 
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stages of a sales season at the retail stage in the perishable food supply chain. Dynamic pricing 664 

strategy in which the unit price of produce is continuously updated in response to the real-time 665 

data of the produce shelf-life (i.e., state of freshness or decay), is an effective way for retailers 666 

to make quick decisions regarding the inventory on-hand. Machine vision sensor systems such 667 

as hyperspectral imaging devices can perform quality inspection of perishable produce and 668 

transmit real-time information via sensor systems.  669 

Sensors generate large amounts of data to be used for decision-making. This information can 670 

instantly update product pricing based on the remaining quantity and shelf-life of produce. Our 671 

model is built on a four-stage selling period where the length of each stage is determined based 672 

on real-time information about the freshness score of bulk produce. The hyperspectral imaging 673 

sensors determine the freshness state of the produce on the shelves. A numeric example given 674 

in this paper shows the practicability of the proposed pricing strategy.  675 

5.1 Theoretical implications of the research 676 

This research has the following theoretical research implications 677 

1. Food waste can occur in different stages of an FSC, such as production, processing, 678 

transportation, distribution, marketing, and consumption; its economic consequences 679 

affect both retailers and consumers. This research draws up an agenda to address the 680 

issue of food waste at the retailer end in the value chain context. 681 

2. Considering the economic impacts of food waste, setting an optimal pricing strategy is 682 

important. An appropriate pricing strategy would also contribute to reduced inventory 683 

and surplus food in a dynamic world. This research contributes to the literature of food 684 

waste by discussing a dynamic pricing model from a retailer’s perspective.  685 

3. This research uses real-time IoT sensor data to decide pricing at different stages of a sales 686 

season of a retailer. Real-time IoT sensor data is retrieved to analyse and determine the 687 

length of freshness scores of the product. The effect of the sale price, replenishment 688 

amount, discount rate, and freshness score on profit and food waste are studied as a 689 

contribution to the literature. Finally, considering the use of the data-driven concept in 690 

this domain, the research also contributes to the literature of digitalized food supply 691 

chain initiatives.  692 

5.2 Managerial implications of the research 693 
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The managerial implications of this study lie in explaining those situations where scenario-694 

based and parameter effects analysing the proposed model can make maximum profits and the 695 

minimum waste. Our proposed model can be used for data-driven decision-making in the retail 696 

stage of FSCs. The effect of the sale price, replenishment amount, discount rate, and freshness 697 

score on profit and food waste can be evaluated. All these analyses assist managers in taking 698 

the important actions and remedies that boost sales, increase profits by reducing waste and 699 

determine the most effective sales prices; customer loyalty and satisfaction can be enhanced by 700 

striking the right balance between food quality and price. IoT and hyperspectral imaging 701 

technology to monitor food safety and quality is a relatively new trend in FSCs. Our results 702 

show the great potential of using hyperspectral imaging sensors in the retailer end of an FSC. 703 

Climate change, pandemics and regional conflicts have caused global food crises in recent 704 

years. Therefore, food waste prevention becomes an important issue for all FSCs. Integrating 705 

new generation technologies into the FSC plays a prominent role in preventing future food 706 

crises. 707 

5.3 Limitations and future works 708 

This study can be further extended by including lot-sizing constraints into the model. Moving 709 

from bulk purchasing to a small lot will reduce food waste by urging consumers to buy only 710 

what and how much they need. In addition, packaging fresh foods can prevent customers from 711 

touching the products directly. In this sense, the real-time IoT sensor data might be integrated 712 

into the inventory system to forecast consumer demand and buying behaviour. Various sensor 713 

technologies (e.g., temperature, sensors, and ultrasonic sensors) can be added to a future model 714 

to monitor food freshness. These sensor technologies can monitor the use of chemicals and CO2 715 

emissions on food packaging to meet the demand for safe and high-quality food. Besides, “no-716 

touch” fresh food packaging might be necessary for human health and safety hazards to prevent 717 

recent pandemics such as COVID-19 by reducing the infection risk. Lastly, we could also 718 

investigate food waste issues at the retailer end from the perspective of a circular economy.  719 
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Appendix 1 – The pseudo-code of the proposed model based on the optimal pricing strategy 

1. Procedure OptimalSalesPrice (Δp, 𝑝0, 𝑥0, 𝑑i) 939 

2. for  𝑝i ∈ {1, … , Δp} do 940 

3.     for  𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 ∈ {1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠} do 941 

4.         Set CustomersList for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 942 

5.         Set 𝑞i for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 943 

6.         Set 𝑝i for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 using 𝑞i and 𝑑i 944 
7.         if  r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0  then 945 

8.             for  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∈ {1, …, CustomersList} do 946 

9.                 if  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑝𝑟𝑖𝑐𝑒 ≤  𝑝i and 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ≥  𝑞i then 947 
10.                    r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ←  𝑥0 − 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑥 948 

11.                    𝑝𝑟𝑜𝑓𝑖𝑡 ⟵  𝑝i −  𝑝0  949 

12.                 end if 950 

13.             end for 951 

14.         end if 952 

15.     end for 953 
16.     if  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0 then 954 

17.           𝑙𝑜𝑠𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 × disposal cost 𝑐𝐷 955 

18.     end if 956 

19.     𝑝𝑟𝑜𝑓𝑖𝑡i  ← 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑙𝑜𝑠𝑠 957 

20. end for                 958 

21. 𝑝optimal ← max(𝑝𝑟𝑜𝑓𝑖𝑡1, 𝑝𝑟𝑜𝑓𝑖𝑡2, … , 𝑝𝑟𝑜𝑓𝑖𝑡i )  959 

22. return 𝑝optimal 960 

 

Appendix 2 – The pseudo-code of the proposed model based on initial replenishment amount 

1. Procedure OptimalInitialProductAmount (Δx, 𝑝, 𝑝0, 𝑑i) 961 

2. for  𝑥i ∈ {1, … , Δx} do 962 

3.     for  𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 ∈ {1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠} do 963 

4.         Set CustomersList for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 964 

5.         Set 𝑞i for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 965 

6.         Set p for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 using 𝑞i and 𝑑i 966 

7.         if  r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0  then 967 

8.             for  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∈ {1, …, CustomersList} do 968 

9.                 if  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑝𝑟𝑖𝑐𝑒 ≤ p  and 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ≥  𝑞i then 969 

10.                    r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ←  𝑥0 − 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑥 970 

11.                    𝑝𝑟𝑜𝑓𝑖𝑡 ⟵  p −  𝑝0  971 

12.                 end if 972 

13.             end for 973 

14.         end if 974 

15.     end for 975 

16.     if  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0 then 976 

17.           𝑙𝑜𝑠𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 × disposal cost 𝑐𝐷 977 

18.     end if 978 

19.     𝑝𝑟𝑜𝑓𝑖𝑡i  ← 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑙𝑜𝑠𝑠 979 
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20. end for                 980 

21. 𝑥optimal ← max(𝑝𝑟𝑜𝑓𝑖𝑡1, 𝑝𝑟𝑜𝑓𝑖𝑡2, … , 𝑝𝑟𝑜𝑓𝑖𝑡i )  981 

22. return 𝑥optimal 982 

 

Appendix 3 – The pseudo code of proposed model based on optimal discount strategy 

1. Procedure OptimalDiscountRate (Δd, 𝑥0, 𝑝, 𝑝0) 983 

2. for  𝑑i ∈ {1, … , Δd} do 984 

3.     for  𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 ∈ {1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠} do 985 

4.         Set CustomersList for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 986 

5.         Set 𝑞i for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 987 

6.         Set p for 𝑖𝑛𝑑𝑒𝑥𝐷𝑎𝑦 using 𝑞i and 𝑑i 988 
7.         if  r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0  then 989 

8.             for  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟 ∈ {1, …, CustomersList} do 990 

9.                 if  𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑝𝑟𝑖𝑐𝑒 ≤ p  and 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ≥  𝑞i then 991 
10.                    r𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ←  𝑥0 − 𝑖𝑛𝑑𝑒𝑥𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟. 𝑥 992 

11.                    𝑝𝑟𝑜𝑓𝑖𝑡 ⟵  p −  𝑝0  993 

12.                 end if 994 
13.             end for 995 

14.         end if 996 

15.     end for 997 
16.     if  𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 ≥ 0 then 998 

17.           𝑙𝑜𝑠𝑠 ← 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑚𝑜𝑢𝑛𝑡 × disposal cost 𝑐𝐷 999 

18.     end if 1000 
19.     𝑝𝑟𝑜𝑓𝑖𝑡i  ← 𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑙𝑜𝑠𝑠 1001 

20. end for                 1002 

21. 𝑑optimal ← max(𝑝𝑟𝑜𝑓𝑖𝑡1, 𝑝𝑟𝑜𝑓𝑖𝑡2, … , 𝑝𝑟𝑜𝑓𝑖𝑡i )  1003 

22. return 𝑑optimal 1004 

 1005 

 1006 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Respond Sheet 

Dear Editor, 

 

Thank you for giving us an opportunity to revise our manuscript. We are grateful to the 

reviewers, both for their positive comments to improve the quality of our manuscript. We have 
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