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Abstract 

 

For over a century fingerprints have been predominantly used as a means of biometric 

identification. Notwithstanding, the unique pattern of lines that can contribute to identify a 

suspect is made up of molecules originating from touch chemistry (contaminants) as well as 

from within the body. It is the latter class of molecules that could provide additional 

information about a suspect, such as lifestyle, as well as physiological, pharmacological and 

pathological states. An example of physiological state (and semi-biometric information) is the 

sex of an individual; recent investigations have demonstrated the opportunity to determine 

the sex of an individual with the 86% accuracy of prediction based on the peptidic/protein 

profile of their fingerprints. In the study presented here, the first of its kind, a range of 

supervised learning predictive methods have been evaluated to explore the depth of the 

issue connected to age determination in fingermarks exploiting again the differential 

presence of peptides and small proteins. A number of observations could be made providing 

(i) an understanding of the more appropriate study design for this kind of investigation, (ii) 

the most promising prediction model to test within future work and (iii) the deeper issues 

relating to this type of determination and concerning a mismatch between chronological and 

biological age. Particularly resolving point (iii) is crucial to the success in determining the age 

of an individual from the molecular composition of their fingermark.   
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1. Introduction 

 

The type of forensic information sought from fingermarks has remained operationally 

unchanged for over one hundred years and refers to the recovery of biometrics. As to date, 

no two fingermarks have been found identical, and, because of this, the ridge flow and 

minutiae are used for the biometric identification of perpetrators. However, since 2008, 

increasing attention has been paid to additional intelligence extractable from fingermarks 

and that can be derived from their molecular content1. Exogenous contaminants could 

provide some circumstantial evidence of “activity”, as well as lifestyle information2,3. 

However, endogenous molecules (normally produced in our body, excreted in sweat and 

transferred in a fingermark) should not be underestimated as they could contribute to 

significantly narrowing down the pool of suspects. Triacylglycerols have been recently 

tentatively proposed to have potential for providing information on diet and exercise as well 

as and health related information4.  

Peptides and proteins are also endogenous sweat/fingermark components and the sex of 

the offender is another type of desirable intelligence. To this end, following an initial proof of 

concept study5, Heaton et al., reported comprehensive statistical modelling to determine the 

sex of an individual exploiting the differential peptides and small proteins profiles detected by 

Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) from natural 

fingermarks6. The approach led to the best performing model/classification system yielding 

sex determination with the 86% of accuracy of prediction. Whilst this prediction power does 

not permit a suspect exclusion from the investigations, it does enable the adoption of this 

approach for triaging crime scene marks, prioritising those to investigate, as part of the 

forensic strategy. The lack of a higher prediction power has been partly ascribed to the 

additional presence of polymers, likely contaminants in fingermarks, due to their presence in 

toiletries and hygiene products. Whilst a more sensitive mass spectrometer would not avert 

polymer detection, it may be possible to increase both the relevant ion population and ion 

abundance and thus improving the discriminating power. 

Another very interesting piece of intelligence that would contribute to narrow down the pool 

of suspects is the age of an individual. Still today, age determination in living individuals is 

challenged by the mismatch between the chronological age (date since birth) and the 

biological age (related to the assessment of tissues and organs)7,8; human age 

determination in living individuals is an extremely complex endeavor involving an 

interdisciplinary approach encompassing the assessment of physicians with forensic 

experience and expertise in auxology, radiology, dentistry, and legal medicine9, as well as 

the use of mathematical and statistical modelling10, machine learning techniques11 and 

potentially modern analytical methods based on "multi-omics"12 or epigenetics13. Most 

importantly, these assessments are performed either on individuals with uncertified identity 

or identity loss or on individuals with certified identity, for medical reasons. In both cases, 

these assessments are not placed in a forensic criminal investigation context, where the 

perpetrator is unknown.  

The first study that could contribute to such forensic investigations, and the first of its kind, 

has built on the knowledge that 5-hydroxymethylcytosine (5-hmC) is significantly involved in 

cellular differentiation and epigenetic regulation14 as well as decreasing in aging mouse 

brains15. Xiong et al. applied LC-MS analysis to the blood of 238 patients aged 1-82 and 

demonstrated that DNA hydroxymethylation, and specifically 5-hydroxymethylcytosine 



(formed through conversion from 5-methylcytosine (5-mC)), was considerably decreased 

and negatively correlated with aging16. The authors therefore suggested that 5-hmC could 

potentially be an aging phenotype. Koop et al have recently reviewed a range of epigenetic 

based methods for the epigenetic age estimation13.  

However, to date, whilst the majority of the studies concentrate on determining the age of a 

fingermark left by an individual18 (time since deposition), only few focus on determining the 

age of an individual from their fingermark, and only very few investigate the determination of 

human age exploiting the molecular content of a fingermark rather than the physical 

characteristics. To the best of the authors' knowledge, with the exclusion of publications 

encompassing age-related chemical changes from specimens other than fingermarks such 

as the scalp19 and forehead20, one of the earliest papers on human age estimation was 

reported by Bohanan et al21 illustrating mainly qualitative observations on the differences in 

the speed of the ageing process between children and adolescents. Buchanan et al22 were 

the first to investigate human age from the lipid composition of a fingermark in 1996. These 

authors applied a destructive technique, namely GC-MS to investigate the fingermarks of 50 

donors and reported a clear difference between the chemical profile of children and adults. 

In more recent years, Antoine et al23 and Williams et al24 continued to investigate children's 

fingermarks23,24 and their differentiation from adults'23 using some form of FT-IR and, once 

again targeting lipids. In the former and more informative study, FT-IR microscopy was 

employed for 12 donors donating "artifact" fingermarks deposited following hand washing 

and fingertips sebum enrichment (groomed marks); here the authors made a qualitative 

assessment that lipids in children's fingermarks are not only less abundant than in adults' 

marks but also that they degrade faster and as such, this degradation speed could be used 

as metrics to distinguish between  children and adults, though no age pinpointing or more 

accurate age classification was attempted. Hemmila et al25 have investigated spectroscopic 

changes of lipids profiles in natural fingermarks and their correlation with the individual's age 

using a combination of FT-IR reflectance spectral analysis and Partial Least Square 

Regression modelling. The authors found that, within a cohort of 78 individuals,  it was 

possible to correlate the spectral profiles to the age of an individual within a 4 year window 

of error and that better models could be built if a classification "young" versus "old" was 

considered.  

Differently from previous work, and for the first time, in the present exploratory study, we 

have sought to make an initial  assessment of the potential to retrieve the age of an 

individual by a combined approach encompassing the (i) exploitation of the peptide/protein 

content of a (natural) fingermark, (ii) the application of a non hyphenated mass spectrometric 

technique instead, namely MALDI and (iii) the use of machine learning approaches. Proteins 

are one of the classes of biomolecules present in sweat/fingermarks and their expression 

and structure have been reported to change with age26,27. On these bases, for our 

preliminary investigation, we have employed the same dataset acquired by Heaton et al.,6 to 

determine the sex of an individual, to assess whether the expression profile of endogenous 

peptides and (small) proteins, detected by MALDI MS, may also serve as a biomarker 

pattern of age. As such studies are labour-, time- and resource-intensive, it was deemed 

sensible to capitalise on a dataset already available for this new, original and preliminary 

investigation.  

Using this repurposed dataset, a range of supervised machine learning have been evaluated 

for the task of chronological age prediction. The initial findings indicate that above-random 

donor age prediction is achievable through supervised learning methods.  

 



2. Methods 

 

2.1. Fingermark dataset 

The collection of natural fingermarks for age determination studies has been described by 

Heaton et al.,6 in accordance with approved Sheffield Hallam University ethics application 

ER17244422. The same set of data processed to determine the sex of an individual has 

been used here with no further experimental laboratory work aside reprocessing and 

repurposing the dataset, which was analysed with a number of statistical approaches to 

explore in depth the challenges and the potential of determining human age from the 

molecular composition of a fingermark. All the data processing has been conducted 

in compliance with relevant laws and following the institutional guidelines following ethical 

approval by Sheffield Hallam University. Informed consent had already been obtained by the 

participants for the study published by Heaton et al.,6 which also applies to the present study 

according to ethics application ER17244422. Given the purpose of the Heaton et al. study6, 

this dataset consisted of fingermarks from approximately 50/50 males/females deposited 

and kept under ambient environmental conditions until analysis which was completed within 

a month from deposition.  

 

2.2. Fingermark spectral processing for age determination modelling 

Three spectra per individual were processed according to the Heaton et al.,6 method. In 

short, three marks were obtained per donor, each consisting of the summed total of three 

individual mass spectra acquisitions from three distinct matrix spots per fingermark. The 

resulting three marks per donor were then kept separate throughout the following statistical 

analysis. 

For each fingermark, peak-picking was performed in R using the MALDIquant package, 

including TIC normalization and spectral smoothing. Consistent with Heaton et al.,6 a range 

of S/N parameters (between 2:1 and 20:1) was used and required peak occurrence rate 

across spectra (between 1% and 90%) to be trialed, with each parameter set yielding a 

different count of included m/z positions to be analysed across spectra (see Table 1 from 

Heaton et al.,6 for details on the number of remaining m/z positions per parameter set).  

 

2.3. Age prediction models 

Three distinct age prediction approaches have been considered (Fig. 1.). (i) Binary age 

classification: firstly, donor ages have been divided into two distinct groups   > 𝜇𝑎𝑔𝑒 +   𝜀 ∙

𝜎𝑎𝑔𝑒 (the ‘old’ class) and <  𝜇𝑎𝑔𝑒 −   𝜀 ∙ 𝜎𝑎𝑔𝑒 (the ‘young’ class), where 𝜇𝑎𝑔𝑒 and 𝜎𝑎𝑔𝑒 are the 

mean and standard deviation of ages across all donors in the sample set and 𝜀 ≥ 0 is a 

user-defined scaler, such that donors with intermediate ages in the range (𝜇𝑎𝑔𝑒 −   𝜀 ∙ 𝜎𝑎𝑔𝑒  ,

𝜇𝑎𝑔𝑒 +   𝜀 ∙ 𝜎𝑎𝑔𝑒) are excluded from model training/testing process. Classification models are 

then trained to predict whether each donor is ‘old’ or ‘young’; (ii) Categorical age 

classification: extending from (i), donors have been split into 𝑛𝑎𝑔𝑒 ≥ 2  disjoint age groups 

𝐺1, 𝐺2, … , 𝐺𝑛𝑎𝑔𝑒
 of equal age width. Classification models are now trained to predict which 

age group 𝐺𝑖, for 𝑖 ∈ {1, … , 𝑛𝑎𝑔𝑒}, each donor is most probable to be assigned to. In the case 

where 𝑛𝑎𝑔𝑒 = 2, (ii) reduces directly to the binary classification problem (i) with 𝜀 = 0; (iii) 

Age regression: models are instead trained to predict the integer age value for each donor.  

 



 
Fig. 1. Schematic illustrating (i) binary age classification, (ii) multi-age group categorical age 

classification and (iii) age regression. Age is expressed in years. 

 

In instances (i) and (ii), three classification model types have been trialed: a random forest 

classifier, an XGBOOST classifier, and also a dummy classifier provided by the sklearn 

python package, yielding a baseline for random model performance for comparison. In 

instance (iii), equivalent regressor models have been assessed for random forest, 

XGBOOST, in addition to a linear regression model (non-regularized, as well as including L1 

and L2 regularisation) and also a dummy baseline regressor provided by sklearn. In all 

cases, and identical to the training strategy presented in Heaton et al.6, k-fold cross 

validation (CV) was performed, in the present study with k=5. Since three separate 

fingerprint spectra were present per individual, and these could not be assumed to be 

independent, care was taken to ensure that all three spectra per individual remained within 

the same CV k fold throughout training, in order to preserve independence between all train 

and test sets. In contrast, only 1/3 randomly selected fingerprint spectra per individual was 

used from each test set fold to assess model performance, in order to best simulate the 

scenario when only one viable fingerprint sample has been extracted from a crime scene; a 

model which instead predicts an individual’s age based on aggregated information taken 

from the 3 available fingerprint samples is less likely to be usable in a practical setting. 

 

In instances (i) and (ii), the mean accuracy scored across the k=5 hold-out test folds has 

been computed to assess model performances. In instance (iii), the mean squared error 

(MSE) and Pearson’s R coefficient, again averaged over the k=5 test CV folds, have been 

computed to assess model performance. A modified accuracy score has also been trialed in 

the case of the categorical model predictions, which has been constructed to also consider 

age bins that neighbor the correct age bin to also be correct, and thus mitigate unwanted 

boundary effects due to the artificial specification of “age bins”.  

The effect of the inclusion of three distinct feature selection strategies on model 

performances was tested, with each strategy designed to identify the subset of m/z peaks 



that are most age-dependent: (a) the PLS-DA Variable Importance in Projection (VIP) score, 

(b) random forest feature importances derived from contributions of each feature to Gini 

impurity across trees, and (c) univariate feature selection via a chi-squared test. Care was 

taken to ensure that for k-fold CV split, and fingerprint samples assigned to training data 

subset were used for selection of features (m/z peaks), such that each test fold remained 

hidden during cross validation.  

Furthermore, due to the non-uniform spread of ages within the investigated fingerprint 

sample set (Fig. 2), the effect of data imbalance on model performance has also been 

investigated. In a modified CV training strategy, training data folds are randomly down-

sampled, such that the most represented age bins are identified and only a random subset 

of training instances from these age bins is used in model training, as illustrated in Fig. 2.  

Since the underlying distribution of ages were qualitatively different between the female and 

male sample groups, to mitigate the risk that any downstream conclusions have been 

indirectly influenced by sex, age prediction models have been trained in the following 

analysis and evaluated separately for each sex group, in addition to being evaluated on the 

full sample group. 

 

 
 

Fig. 2. Distribution of age data across fingerprint samples in the dataset, with age bin width 

fixed at 5-years. The red horizontal line indicates the median counts across all bins. For the 

modified sampling strategy to mitigate data imbalance, age bins for which random down 

sampling would be performed during CV model training (bins which exceed the median 

counts per bin) are indicated by the asterisks. Age is expressed in years. 

 

 

 

 

3.  Results and Discussion 

 

The determination of the age of an individual could be crucial intelligence to narrow down 

the pool of suspects and identifying a perpetrator. This is a poorly investigated topic and 

fingerprints have never been taken in consideration as an analytical specimen to gather this 

type of information. In this study, within a strategy consistent with the sex prediction models 

presented in Heaton et al.,6 a series of supervised learning models have been trained, but 



here for the task of predicting the age of the donor associated with each mark. The same 

dataset previously acquired6 was used here for the purpose of gaining an initial 

understanding of the feasibility of such an investigation, prior to embarking in a large and 

time-consuming study. However, in contrast to the study by Heaton et al.,6 in which sex 

prediction was treated as a binary classification problem, three prediction approaches have 

been considered, as described in Section 2.4., namely (i) Binary age Classification; (ii) 

Categorical age classification and (iii) Age regression. The results from the application of 

these approaches are discussed in sections 3.1 to 3.3 

 

3.1. Binary age predictions 

In the most simplified treatment of the age prediction problem, a series of binary 

classification models were trained to classify fingerprint samples as “young” or “old”; here 

sample ages are split into two disjoint groups, based on a specified interval around the mean 

age across all samples (calculated as 38.1 years across both male and female samples, and 

40.7/35.8 for models restricted to the male/female sample subsets only). Clearly such a 

predictive model will have limited usefulness in a real-life practical setting; however this 

strategy (a) provides a baseline against which further models predicting for more informative 

age splits can be compared, and (b) is directly analogous to the male/female sex 

classification models investigated previously in Heaton et al.,6.  

As illustrated in Fig. 3., 5-fold CV accuracy scores for both XGBOOST and random forest 

model schemes are consistently superior to random (the dummy classifier) for the task of 

binary age prediction. Predictive performance also appears to improve as the masked 

boundary region between the old and young groups, ((𝜇𝑎𝑔𝑒 −   𝜀 ∙ 𝜎𝑎𝑔𝑒  , 𝜇𝑎𝑔𝑒 +   𝜀 ∙ 𝜎𝑎𝑔𝑒)) 

increases above the lowest tested value of 𝜀 = 0.1, however, only for the female-sample 

model (Fig. 3i.) does the median model performance (relative to random) consistently 

increase with increasing 𝜀. This likely represents a tradeoff between the increasing width of 

the young/old boundary region and the significant reduction of available training data at high 

𝜀. As illustrated in Fig. S1., at 𝜀 = 1.0, a significant proportion of the fingerprint samples have 

been discounted during model building/evaluation (with respect to the overall male & female 

combined median age and standard deviation), with only individuals aged <26 and >50 

included.  

The performance statistics presented in Fig. 3 are comparable to the maximum/median 5-

fold CV accuracy score for sex classification over the same sample set (65.6%/61.1%, 

Heaton et al.,6), with the highest age-prediction performance over the full sample set 

(66.1%/57.9%, Fig. 3iii) being achieved by the XGBOOST model at 𝜀 = 0.5. However, in 

contrast to the aforementioned sex classification model, the practical usage of binary age 

classification is likely limited, particularly for models trained at high 𝜀 ≥ 0.5, whereby the 

model is trained to only distinguish between samples at the two extremities of the sample 

age distribution. 

 



 
 

Fig. 3. 5-fold cross validation performance results for binary classification models predicting 

binary old/young donor labels for XGBOOST, random forest and baseline dummy 

classification model types. Performance statistics are presented separately for models 

trained using (i) female-only, (ii) male-only data, in addition to (iii) the full sample set. Each x-

axis illustrates the effect of 𝜀, the parameter dictating the size of the masked sample region 

between the “young” and “old” age classes, (𝜇𝑎𝑔𝑒 −   𝜀 ∙ 𝜎𝑎𝑔𝑒  , 𝜇𝑎𝑔𝑒 +   𝜀 ∙ 𝜎𝑎𝑔𝑒). Each boxplot 

summarises the distribution in accuracy scores across all 4 feature selection strategies and 

peak picking strategies from Heaton et al.,6.  

 

 

 

3.2 Categorical age predictions 

In order to be applicable in a practical setting, the development of models capable of more 

specific age group predictions is highly desirable. Due to the underlying mismatch between 

chronological and biological age, anthropologists provide age information as an age range 

rather than a specific age28. Therefore on this basis, and in consideration of the data 

obtained from the binary age prediction, the exploration of a categorical classification using 

bin widths of sizes (a) 5 years and (b) 10 years was deemed to be a reasonable approach.  

In Fig. 4, accuracy performances for random forest models consistently exceed the random 

baseline, for models trained separately on the male, female, or full sample sets. 

Interestingly, XGBOOST, which yields the highest performance in the binary age 

classification scenario (Fig. 3), did not exhibit similar superior performance in the categorical 

age scenario. Intuitively, accuracy scores diminish as the overall number of age bins 

increases (10-year vs 5-year bins), such that the optimum age bin width becomes a tradeoff 

between practical value (higher number of bins) and model performance. 

 



 
Fig. 4. Distribution of categorical age prediction scores across XGBOOST, random forest 

and baseline dummy classification model types, for models trained on (i) female sample data 

only, (ii) male sample data only, (iii) the combined sample set of male and female data. Age 

is expressed in years. 

 

 

Figure 5 illustrates the effect of counting predictions made in neighboring bins to the true 

age bin as also correct (through the use of the modified accuracy score presented in Section 

1.2).  Although the modified accuracy score is more tolerant to model errors, it can capture 

the potential usefulness of each model in a practical, crime scene setting, where a near miss 

age prediction can still be valuable. As expected, modified accuracy score values (including 

those for the random baseline model) are consistently higher than standard accuracy 

scores. However, the relative extent by which the XGBOOST and random forest models 

exceed baseline performance does not appear to significantly increase as the age bin width 

size increases, nor when neighboring age bins to the true age bin are also treated as 

correct. Moreover, in the case of larger age bins (Fig. 5ii.), the modified accuracy score 

appears to be no better than random.  

To determine the influence of data imbalance on model performances in Fig. 4. and Fig. 5., 

the CV training/evaluation protocol was repeated, but with random under-sampling of highly 

represented age bins within each random k-fold data split. As illustrated by the data in Fig. 

S2i-ii, under-sampling resulted in a reduction in model performances compared to the 

random baseline, consistently for different age bin sizes (5 and 10 years tested). It is 

suggested that any potential benefit from reducing age class imbalance was outweighed 

here by the low quantity of training data that remained following under-sampling, and 

consequent inability of each model to generalise to unseen test data. 

 



 
Fig. 5. Distribution of categorical age prediction scores across XGBOOST, random forest 

and baseline dummy classification model types, for non-enhanced fingermark samples, and 

age bin widths (i) 5 and (ii) 10. For both bin widths, the effect of counting predictions made in 

neighboring bins that within a specified age-difference of the true age (x-axis) to the true age 

bin are included, corresponding to the modified accuracy scores discussed in Section 1.2. 

The equivalent figure for the enhanced fingermark sample set in Heaton et al.,6 is presented 

in Fig. S3. Age is expressed in years. 

 

 

 

3.2.3 Age regression analysis 

As a direct extension of the categorical age prediction methods discussed above, a series of 

age regression methods were trialed. Such regression models do not require any artificial 

binning of age data, which, as was illustrated in the previous section, were invariably 

susceptible to the presence of near miss prediction events where an age prediction is close 

to the true age, yet deemed incorrect due to the artificial construction of the age bins. 

The data reported in Fig. 6. indicate the abilities of four regression model architectures to 

correctly generalise to unseen test data (Fig. 6ii-iv), compared to a random baseline 

regression model that simply predicts the mean of the training dataset (Fig. 6i); additional 

information referring to the breakdown of samples per contamination state, referring to Fig. 

S2iii-iv, are illustrated in Table S1. The presence of positive correlations between predicted 

and true age values for training set data is not clearly extended to predictions made on 

hidden test data (reflected by low test set Pearson’s r2 values), indicating the inability of the 

trialed regression models to suitably generalize to unseen data. In the case of XGBOOST 

(Fig. 6v), significant overfitting to the training data is visible (train set Pearson’s r2: 0.96), 

which is not replicated in other model types; however despite less train set overfitting, other 

models do not exhibit improved test set performances. Comparable poor regression 

performances were observed for models trained separately on the male and female sample 

subsets (data not shown). Overall it is suggested that the poor regression performances are 

likely due to the limited availability of data from which to infer age-related trends. 

 



 

   

 

Fig. 6. Scatter plots (i-v) illustrate the relationship between true versus predicted ages 

across samples for a (i) baseline random regression model, (ii) L1-regularised linear 

regression model, (iii) L1- and L2-regularised linear model, (iv) random forest regression 

model, and (v) XGBOOST regression model. For each model, only the results for the peak-

picking strategy (i.e. across S/N ratios discussed in section 1.1.), which produced the 

highest Pearson’s r2 correlation coefficient over the test set are reported: (i) S/N: 2, min 

required peak fraction: 0.9, (ii), S/N: 5, min fraction: 0.1; (iii) S/N: 5, min fraction: 0.1; (iv) 

S/N: 10, min fraction 0.1; (v) S/N: 5, min fraction: 0.01. Each scatter point is the average 

prediction value over k=5 CV train/test separate prediction events. 

 

 

In conclusion this study has investigated the potential viability of a range of supervised 

machine learning-based predictive methods to explore the problem of determining an 

individual’s age based on MALDI MS spectra analysis of peptides and proteins in 

fingermarks. Whilst initial findings, using a binary (old/young) prediction model, yielded a 

predictive model that achieved competitive performance with previously reported sex-

prediction models (66.1% and 65.6% maximum 5-fold CV accuracy score for the age- and 

sex- classification models, respectively), this approach relied heavily on the artificial masking 

of a large intermediate age region of samples for such high performance (Fig. 3). In the 

practical crime scene setting, such a model is unlikely to be useful, since a significant 

number of real-life samples may fall into the masked intermediate region. 

Alternatively, categorical prediction can be envisaged to provide a more informative and 

discriminative age prediction strategy for real-life samples. In the current initial analysis, 

categorical predictions are reported to consistently exceed random performance; with a 10-

year age bin width, the maximum/median model performance is achieved by the random 



forest model type at 34.5%/32.4% (compared to 28.3%/26.3% for the random dummy 

classifier). Whilst the highest attained model performance is currently inadequate for 

practical usage, these initial findings do indicate the existence of an underlying relationship 

between donor age and collected peptide/protein ions.  

In this initial investigation, model performances are likely to be limited by (a) sample size, (b) 

the non-uniformity of the sex and age distributions across the sample set. Additionally, the 

exclusion of donors of age <18 year old is actually creating a more difficult task for the 

predictive model (since the age range observed by the model is shorter). It would be very 

interesting to include <18 year old donors too in a further age related study, since the 

minor/adult age boundary (albeit a societal construct) could be used in a binary age 

classification set up similar to the “young/old” age boundary used in the current study. 

It is also important to bear in mind for this kind of classification task, the likely impact of the 

unknown discrepancies between the true chronological age of each donor and the reported 

chronological ages. This circumstance would need to be addressed in future studies. 

Finally, it is also possible, that although an average 150 marks per week were analysed by 

MALDI MS, in the timeframe necessary to analyse the complete set of around 600 (1 

month), some protein degradation may have occurred. As also implied by Antonine et al, the 

age of a mark could be impacting the human age estimation models due to the degradation 

of the molecules targeted as age markers and this may be an issue for crime scenes that 

are not accessed promptly, in our case. Antoine et al23 have suggested that the preliminary 

determination of the age of the mark itself would be ideal to minimise this impact, though this 

intelligence remains too a significant challenge in forensic science. Oonk et al27 have 

pinpointed five proteins in fingermarks that undergo chemical modifications with time, to the 

extent of being suggested as markers of time since deposition. However, 4/5 proteins belong 

to the keratines family and are not detected in the mass range explored by MALDI MS in the 

Heaton et al study6 from which the data set was "borrowed" for the present study. 

Notwithstanding, the observations made in this initial study justifie the likely benefits of a 

larger-scale age determination targeted study that is designed to explicitly mitigate these 

aforementioned limiting factors. 

 

 

4. Conclusions 

 

Overall, this preliminary study indicates that, to appropriately address the attribution of age 

to an individual, a larger cohort of donors as well as of a much more balanced age group 

distribution are needed, in order to improve the performance of the modelling approaches, 

particularly of the categorical approach. However, it is also possible that, even with such a 

cohort of donors, peptides and proteins may still not be sufficiently performing biomarkers for 

human age determination as they could be affected too by the underlying mismatch between 

chronological age and biological age. Biological age can significantly differ from 

chronological age and, as such, the approximation to the chronological age can be 

particularly challenging and worrying when this intelligence is to be used narrow down the 

pool of suspects. In a future and more comprehensive study this issue could be mitigated by 

determining both biological and chronological age to develop a method allowing a 

relationship between chronological and biological age to be established, ultimately 

"adjusting" the output of the modelling strategy to aligning it to the true chronological age. 



Having access to the biological age data, would also permit the design of a model that 

predicts biological age from mass spectral data and reported chronological age; it would be 

of great interest to explore whether such a predictive method could be more/less accurate 

than other chronological->biological age conversion approaches. However, as already 

discussed, it is important to highlight that the assessment of the biological age is, in itself, 

complex and not an exact science; many approaches have been reported, some in 

combination, with some kits commercially available, mainly detecting epigenetic markers. 

The authors envisage a minimally invasive assessment in collaboration with a physician 

based on 1) conventional laboratory blood tests (cholesterol and Triglycerides levels, 

glycaemia etc), 2) quantification of 5-hydroxymethylcytosine using standards kits and/or 

using published HPLC based methods, involving collection of saliva and/or blood, 3) 

physiological assessments (heart rate, blood pressure, BMI, diet, lifestyle, exercise) 

including patient's anamnesis.  

The study illustrated here represents the first stepping stone in this specific "criminal 

chemical profiling" application of fingerprinting by MALDI MS and the results have informed 

the appropriate design of further experiments to assess its potential to deliver yet more 

personal information about an individual from their fingermarks. 
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