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Abstract: Mask usage is one of the most important precautions to limit the spread of COVID-19.
Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classi-
fication might be used to improve compliance monitoring. This study deals with the problem of
inappropriate mask use. To address that problem, 2075 face mask usage images were collected.
The individual images were labeled as either mask, no masked, or improper mask. Based on these
labels, the following three cases were created: Case 1: mask versus no mask versus improper mask,
Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was
used to train and test a hybrid deep feature-based masked face classification model. The presented
method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used
as feature generators; each of these generators extracted 1000 features from an image; (ii) the most
discriminative features were selected using an improved RelieF selector; and (iii) the chosen features
were used to train and test a support vector machine classifier. That resulting model attained 95.95%,
97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having
achieved these high accuracy values indicates that the proposed model is fit for a practical trial to
detect appropriate face mask use in real time.

Keywords: face mask detection; ResNet101; DenseNet201; transfer learning; hybrid feature selector;
support vector machine
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1. Introduction

Pandemics have occurred throughout human history. The deadliest pandemic was an
outbreak of bubonic plague between 1347 and 1352. It caused approximately 30 million
deaths, which corresponds to about 40 percent of the population in medieval Europe at that
time [1,2]. The first known flu pandemic occurred in the 18th century. During this pandemic,
approximately 70% of the world population were infected, but the death rate remained low.
Spanish flu was the first pandemic of the 20th century. An outbreak in 1918 caused between
50 to 100 million fatalities. Later, in 1957, Asian flu caused approximately 1 to 3 million
fatalities. The first known pandemic of the 21st century was caused by the H1N1 virus. It
occurred in 2009 and caused 125,000 to 400,000 deaths [3,4]. On 11 March 2020, an outbreak
of COVID-19 was officially classified as pandemic by the World Health Organization
(WHO) [5]. The COVID-19 virus was first reported in Wuhan, China, in December 2019 [6].
Since then, the disease has spread rapidly to all communities worldwide because the virus
is easily transmitted from person to person by air [7,8]. Crowded environments and a lack
of face coverings increases the risk of spreading the virus [9]. The virus has affected 71
million people and caused 1.5 million deaths worldwide as of December 2020 [10].

Face masks are an essential tool to prevent COVID-19 contaminated aerosols and,
thereby, slow the virus spread [11]. Hence, wearing face masks in public places has been
encouraged by the WHO to control the COVID-19 outbreak [12,13]. Some governments
passed laws and regulatory frameworks which introduce the mandatory use of face masks
in public places. Even if it is mandatory to wear a mask, some people do not obey this
rule for non-permissible reasons [14–16]. These people pose a major threat because of their
unrestrained ability to spread COVID-19. Therefore, enforcing face covering laws and
social standards becomes a priority for governments and local authorities. Prerequisites for
law enforcement are adequate detection methods of people who fail to wear face masks.
However, face mask detection in public spaces is a hard problem [17]. As such, face masks
consist of protective material which is used to cover mouth and nose. This definition allows
a wide range of face masks with different visual features. Furthermore, head shape, hair,
and the face itself are quite different from person to person. This makes appropriate face
mask use detection a hard computer vision problem.

In this study, we propose a machine classification model to automate the detection
of appropriate face mask use. We have created a novel Threshold RelieF Iterative RelieF
(TRFIRF) algorithm to select features that were extracted with DenseNet201 and ResNet101
from still images. The model was trained and tested with a hand-curated dataset. Each
image in the dataset belongs to one of the following three classes: mask (Class 1), no mask
(Class 2), and improper mask (Class 3). The model was structured into three main parts:
deep feature generation, feature selection using TRFIRF, and classification using support
vector machine (SVM). The key contributions of the presented deep hybrid feature- and
TRFIRF-based model are given below:

1 We have curated a new dataset and made it publicly available under: (accessed 20
December 2021) https://websiteyonetimi.ahievran.edu.tr/_Download/MaskDataset.rar.

2 We have improved the RelieF feature selector by creating an iterative version of that
algorithm. Subsequently, we addressed the high time complexity of the iterative
RelieF (IRF). The result of these efforts was the TRFIRF algorithm.

3 A novel transfer learning method for feature generation was created by combining
DenseNet201 and ResNet101 with TRFIRF. The extracted features were used to train
and test an SVM classifier. The test results indicate that a high-performance face mask
detection model was obtained.

The remainder of this paper is organized as follows. The next section provides some
background on medical decision support through artificial intelligence. Section 3 details the
methods used to design the hybrid deep feature generator for appropriate face mask use
detection. After that, Section 4 details the performance results. These results do not stand
in isolation. Therefore, in the discussion section, we relate them to findings from other

https://websiteyonetimi.ahievran.edu.tr/_Download/MaskDataset.rar
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researchers. Furthermore, we introduce limitations and future work before we conclude
the paper.

2. Background

Machine learning is a powerful technique used for automatic feature extraction [18–21].
Many machine learning techniques have been presented in the literature for the detection
of different diseases [22–26]. Machine learning techniques, developed especially for the
early diagnosis of COVID-19, have achieved successful results [27,28]. Moreover, deep
learning models are the most widely used techniques to detect COVID-19, since they
are better solutions for COVID-19 classification than feature engineering models [29,30].
Deep learning methods achieved high accuracy when sufficient labeled data was available.
Thus, deep learning-based automatic diagnosis systems are of great interest in cases when
human expertise is not accessible [31]. Such systems can also serve as adjunct tools to
be used by clinicians to confirm their findings. Machine learning methods have been
used to detect face masks automatically [32,33]. A wide range of deep learning models,
especially convolutional neural networks (CNNs) [34,35], were used to solve computer
vision problems. As such, deep learning models are state-of-the-art networks in artificial
intelligence, and they are likely to yield high classification performance, even with large
datasets. Table 1 presents a selection of recent studies conducted to address the face mask
detection problem.

Table 1. Summary of current studies conducted on face mask detection.

Study Method Dataset Accuracy (%)

Nieto-Rodríguez
et al. [36] 2015 Mixture of Gaussians LFW [37],

CMU [38], BAO [39] 95.00

Ejaz et al. [40]
2019 Principal Component Analysis ORL [41] 72.00

Qin and Li [42]
2020

Super-resolution with
classification network MMD [43] 98.70

Li et al. [44] 2020 You Only Look Once (YOLOv3) CelebA [45], WIDER
FACE [46] 93.90

Hussain et al. [47]
2020 Convolution Neural Networks KDEF [48] 88.00

Loey et al. [17]
2020

Convolution Neural Networks,
Support Vector Machine

RMFD [49], SMFD
[50], LFW [37] 100.00

Loey et al. [51]
2020

Convolution Neural Networks,
You Only Look Once (YOLOv2)

MMD [43],
FMD [52] 81.00

Chowdary et al.
[32] 2020 Convolution Neural Networks SMFD [50] 100

Roy et al. [53]
2020 You Only Look Once (YOLOv3) Moxa3K [53,54] 63.00

Mohan et al. [55]
2020 Convolution Neural Networks, FMD [52],

FM12kID [56] 99.83

Bhadani and
Sinha [57] 2020

Deep Neural Networks,
Principal Component Analysis Collected Data 95.67

It can be noted, from Table 1, that many databases have been used, and various models
were proposed. Most of the developed models delivered high classification performances.
To improve and, indeed, to generalize these results, we have incorporated two widely used
pre-trained deep learning models, DenseNet201 [58] and ResNet101, [59] to our model as
feature generators. A novel TRFIRF algorithm was used as feature selector. These features
were fed to an SVM [60,61] classifier.
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3. Methods

As part of this study, we have designed and implemented a deep feature engineering
model to detect facemask-wearing. The main objective of this model was to achieve
high classification performance with low time complexity. Therefore, transfer learning
has been incorporated as an integral part of the proposed model. Figure 1 provides a
schematic illustration of the proposed hybrid deep features and TRFIRF-based face mask
detection model. The remainder of this section introduces the individual processing steps
in more detail.
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Figure 1. Illustration of the proposed hybrid deep features and TRFIRF-based face mask detec-
tion model.

In this study, photographs of individuals mask (Case 1), no mask (Case 2), and
improper mask (Case 3) were collected by researchers via internet search. The discovered
photos were combined with 4072 photos that were uploaded to the Kaggle website by
Larxel [62]. A face detection application was created to obtain face images from all the
photos in the database. There may be more than one photo of the same individual in the
database. This program, coded in C# language, detected automatically faces from photos.
Through visual inspection, we eliminated a few low-quality face-mask images. Finally, we
collected 529 improper mask, 992 mask, and 554 no mask face images. To explain the used
classes, Figure 2 shows example images for each of the three classes.
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(c) improper mask images.

The attributes of the collected face mask dataset are listed in Table 2.

Table 2. Amount of class specific data within the dataset.

Classes Number of Face Images

Mask 992

No masked 554

Improper masked 529

Total 2075

The collected dataset can be downloaded from (accessed 20 December 2021) https:
//websiteyonetimi.ahievran.edu.tr/_Download/MaskDataset.rar URL.

As can be seen in Table 2, the used dataset contains 2075 facial images taken from
different profiles. By using this dataset, a model for face mask-wearing sensitive doors
has been proposed. Moreover, this dataset is a hybrid dataset. We created this facial
image dataset using open-source face mask datasets. The most important attribute that
distinguishes this dataset from other datasets is the creation of the improper mask class.

Feature concentration was accomplished with two pre-trained deep learning models.
ResNet101 [59] and DenseNet201 [58], with 101 and 201 layers, respectively, were used
for feature generation [58,59]. Initially, these models were trained using the ImageNet
dataset [34], and, by now, these models have been used extensively for transfer learning
applications [63,64]. As such, transfer learning models can be used for both feature genera-
tion and classification. For our study, we have used this technique for feature generation.
To be specific, the fully connected layers of the two pre-trained models were used for this
task. Figure 3 shows a block diagram of ResNet101 and DenseNet201. Within that diagram,
we have highlighted the layers used for deep feature generation. The following sections
provide more details on ResNet101 and DenseNet201.

Numerous studies have shown that CNNs provide good solutions for computer
vision problems [65,66]. The CNN network structure is inspired by pyramid cells from
the cerebral cortex [67,68]. A drawback of that approach is that CNNs tend to suffer from
exploding/vanishing gradient problems; hence, they are difficult to optimize [69]. To
solve these problems, various models have been proposed, and one of these models is
ResNet. This model architecture uses residual connections which allow some information
to bypass specific network layers [59]. The most widely used ResNet implementations
are: ResNet18, ResNet31, ResNet50, ResNet101, and ResNet172. These different versions
are named after the number of layers. For example, ResNet18 and ResNet31 have 18 and
31 layers, respectively. As such, they are categorized as small networks. In this work,
we have used ResNet101, which has 101 layers, for feature generation through transfer
learning [59].

Huang et al. [58] presented a densely connected CNN, widely known as DenseNet.
It uses hierarchical connections and contains shorter connections. DenseNet uses ResNet,
dense connectivity layers, composite function (batch normalization and ReLu), pooling,
setting growth rate, bottleneck layers, and compression layers. DenseNet201 can be used
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for both classification and feature generation. In this work, it was used as a feature
generator [58].
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In this section, we present our transfer learning approach to feature extraction and
selection. Both ResNet101 and DenseNet201 algorithms were used for automated hybrid
deep feature extraction. Feature selection was established through the novel TRFIRF
algorithm. Finally, SVM was used as classification algorithm. The steps of the proposed
model are given below.

Step 0: Load face images.
Step 1: Generate 1000 features by deploying the pre-trained ResNet101.
Step 2: Generate 1000 features by deploying the pre-trained DenseNet201.
Step 3: Merge features and assemble a 2000-dimensional feature vector for each face

image.
Step 4: Use the TRFIRF algorithm on the feature vector.
Step 4a: Apply RelieF to the feature vector and obtain weights.
Step 4b: Select features with weights greater than a threshold.
Step 4c: Deploy an iterative RelieF (IRF) to the selected features.
Step 5: Feed the chosen features to the SVM classifier.
In this section, we describe how the deep features were generated from the face images.

DenseNet201 and ResNet101 were used in transfer learning mode. The face images were fed
to these networks, and 1000 features were obtained from each network. To be specific, these
features were obtained from the last fully connected layer (FC1000) of the networks. The
primary objective of this phase is to combine the classification abilities of both DenseNet201
and ResNet201, such that this combination outperforms each of the individual classifiers.
To conduct this objective, a deep feature engineering model has been introduced, and the
processing steps of the deep feature generation algorithm are given below:

Step 0: Load the collected face images.
Step 1: Generate features using pre-trained ResNet101.

f eatResNet101 = ResNet101(Im), (1)

f eatDenseNet201 = DenseNet201(Im), (2)

where ResNet101(.) and DenseNet201(.) are defined as deep feature generation functions,
Im is the image, and f eatResNet101 and f eatDenseNet201 are 1000 dimensional feature vectors.
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Step 2: Merge the generated deep features.

f eat(i) = f eatResNet101(i), i ∈ {1, 2, . . . , 1000}, (3)

f eat(i + 1000) = f eatDenseNet201(i), (4)

where f eat defines the concatenated features with a length of 2000.
One of the most important steps during machine learning algorithm design is feature

selection. As such, feature selection must establish the feature significance and rank the
features accordingly. In this work, we use the novel TRFIRF method, which is a variation
of the RelieF [70]. The algorithm creates a feature weighting matrix based on Manhattan
distance calculations. The individual weights can be negative and positive. Negative
weights represent redundant features. Figure 4 provides a graphical representation of
TRFIRF.
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Figure 4. Snapshot of the presented TRFIRF model. In this model, ReliefF is applied two times.

The TRFIRF algorithm is composed from two layers. In the first layer, the algorithm
calculates the feature weights for threshold-based features selection. In the second layer,
the indices of the most relevant features are generated for iterative selection. The steps
below indicate how the algorithm functionality unfolds:

Step 0: Apply RelieF to generate 2000 features.

w = Relie f F( f eat, actout). (5)

The Relie f F(., .) function helps us to explain RelieF algorithm. w defines weights with
a length of 2000, and actout represents actual outputs.

Step 1: Select features using the calculated weights (w) and threshold value (trs). In
this work, trs was selected as 10−2.

f eatT(i) = f eat(count), i f w(i) > trs, count = count + 1, (6)

where f eatT represents the selected features using threshold value.
Step 2: Calculate weights of the f eatT by using Equation (5).
Step 3: Determine initial and end values. They were selected in between 100 and 500.
Step 4: Select a loss generator. In this work, SVM classifier was used as loss value

generator with 10-fold cross-validation.
Step 5: Choose features iteratively.

wT = Relie f F
(

f eatT , actout

)
, (7)
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where wT defines weights of the f eatT .

idx = sort
(

wT
)

. (8)

In Equation (8), the indices (idx) of the most relevant features are calculated by em-
ploying sorting.

f vk(j) = f eatT(idx(j)), j ∈ {1, 2 . . . , 100 + k}, k ∈ {1, 2, . . . , 400}, (9)

where f vk the selected kth feature vector.
Step 6: Calculate loss values.

loss(k) = SVM
(

f vk, actout

)
. (10)

Step 7: Calculate the index of minimum loss value.

ind = min(loss). (11)

Step 8: Select the optimal/final features.

f inal = f eatT(idx(j)), j ∈ {1, 2 . . . , 100 + idd}. (12)

The nine steps, outlined above, define the TRFIRF feature selector.
The final step of the presented face mask detection model is classification. The selected

features are fed to the SVM classifier [60,61]. The classifier was trained and tested using
10-fold cross-validation. The features/attributes of the developed SVM classifier are given
in the list below:

1. Kernel function: 3rd degree polynomial kernel, also known as Cubic SVM.
2. Kernel scale: Automatic.
3. Box constraint level: One.
4. Coding: One-vs-One.

4. Results

The presented model was trained using the dataset described in Section 3. MATLAB
(2020a) was used as the programming environment. The model was evaluated based on
three test cases. These cases are defined in the text below. In addition, a descriptive view of
these cases is presented in Figure 5.
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Figure 5. Test cases used in the study.

1. Case 1: Creates a three-class classification problem by using the categories mask, no
mask, and improper mask as individual classes. This case contains 2075 images.

2. Case 2: Creates a two-class classification problem by combining wrong mask and no
mask to form a ‘non-compliance’ set. Two thousand and seventy-five images were
used in this case.

3. Case 3: Creates a two-class classification problem by excluding the improper mask
set. This allowed us to compare our results with outcomes from other studies. There
are 1546 images in this case.
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We have evaluated the classification performance of the SVM model with 10-fold
cross-validation. The individual performance parameters were accuracy (ACC), average
precision (AP), unweighted average recall (UAR), Mathew correlation coefficient (MCC),
F1-score, Cohen’s kappa (CK), and geometric mean (GM) [71,72]. The results obtained for
the defined cases are presented in Table 3.

Table 3. Summary of overall performance (%) obtained for the three cases.

Performance Measures Case 1 Case 2 Case 3

Accuracy (%) 95.95 97.49 100.0

AP (%) 95.56 97.47 100.0

UAR (%) 95.36 97.51 100.0

MCC (%) 93.42 94.98 100.0

F1-score (%) 95.45 97.49 100.0

CK (%) 93.62 94.98 100.0

GM (%) 95.31 97.51 100.0

Figure 6 communicates the classification results in the form of a confusion matrix for
each of the three cases.
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Figure 6. Confusion matrices resulting from training and testing the model with the three different
cases: (a) Case 1, (b) Case 2, and (c) Case 3.

Table 3 shows that the presented model has obtained 100.0% classification accuracy
for Case 3, which resulted from 100% accuracy in each of the ten folds. Figure 7 shows the
graph of accuracy (%) versus each fold of ten-fold cross-validation for Case 1 and Case 2.
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Figure 7. Accuracy (%) versus each fold of ten-fold cross-validation for the Cases 1 and 2.

In Figure 7, fold-wise classification accuracies of Case 3 were not depicted since our
model has attained 100% classification accuracy on that case. Thus, fold-wise accuracies of
Case 3 are equal, and they are 100%.

5. Discussion

Compulsory face covering, introduced to slow the spread of COVID-19, significantly
impacted on the life of ordinary people worldwide. To reduce the transmission rate, it has
become mandatory to wear face masks in some public spaces. However, enforcing that
demand is difficult. Systems that can detect people without or with incorrectly worn face
masks might help to enforce regulations and, thereby, control the spread of COVID-19.
In this work, we propose a tool to address that problem. We use a transfer learning-
based feature generation technique to detect face covering violations. To be specific, our
method takes still images from faces as input and determines if the person, shown in that
image, wears a mask correctly. That functionality was achieved with transfer learning. As
part of this study, we developed a feed-forward feature generation model which has a
low computational complexity. We have generated the features with two transfer learning
algorithms (ResNet101 and DenseNet201). In other words, we have fused two deep learning
models. Hence, the resulting feature extractor captured subtle variations in the data which
led to a good classification performance. In this paper, various deep networks were tested
before ResNet and DenseNet were selected. Pre-trained fully connected network layers
were used to obtain features to speed up the model generation. The accuracy (%) obtained
using various transfer learning models with our hand-curated face mask image dataset is
shown in Table 4.

Table 4 indicates that the best performing transfer learning methods were ResNet101
and DenseNet201. Therefore, we have selected these two CNNs as feature generators.
The TRFIRF algorithm was created to facilitate feature selection. Three cases were used to
obtain the results. The TRFIRF selected 406, 478, and 345 features for Case 1, Case 2, and
Case 3, respectively. Figure 8 shows a graph of loss value versus number of features using
the TRFIRF algorithm for Case 1, Case 2, and Case 3.

Figure 8 denotes the iterative feature selection process by stating loss values over the
number of features for the three cases. TRFIRF is a parametric feature selection function,
and the number of features ranges from 100 to 500. Figure 8 shows that the minimum loss
values (close to 0) are obtained for Case 3. Hence, the proposed model yielded the highest
classification accuracy of 100.0% (Accuracy = 1-loss value) for Case 3. We take this high
classification accuracy value as a strong indication that Case 3 poses the easiest problem.
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Clearly, mask and no mask image discrimination is easier when compared to the other
two problems posed by Cases 1 and 2. In this research, the biggest problem was to detect
face images that show people that apply their mask improperly. Therefore, we added the
improper mask class to the dataset.

In order to establish that our model has working face mask detection knowledge,
we have validated it with the MaskedFace-Net dataset [8]. As such, the MaskedFace-
Net is a widely used open access dataset, and it is one of the largest datasets containing
correctly/incorrectly mask face images. It contains a combination of actual photographic
images and artificial mask images. Table 5 lists the properties of this dataset.

Table 4. Accuracy results obtained using various transfer learning models with our face mask image
dataset. These results were obtained for Case 1.

Number CNN Accuracy (%)

1 ResNet101 [59] 93.83

2 DenseNet201 [58] 93.54

3 InceptionResNetv2 [73] 92.72

4 Inceptionv3 [73] 92.43

5 ResNet50 [59] 92.34

6 SqueezeNet [74] 91.90

7 MobileNetv2 [34] 91.04

8 GoogLeNet [75] 90.89

9 ResNet18 [59] 90.70

10 VGG19 [76] 90.51

11 AlexNet [34] 89.93

12 VGG16 [76] 89.88
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Table 5. The properties of MaskedFace-Net dataset.

Classes Number of Face Images

Correctly Masked Face Dataset (CMFD) 67,049

Incorrectly Masked Face Dataset (IMFD) 66,734

Total 133,783

The proposed method achieved 99.75% accuracy when asked to classify the images
from the MaskedFace-Net dataset. The high accuracy that was achieved on this large
dataset confirms both the performance and the practical applicability of the proposed
model. The practical applicability arises from the fact that none of the MaskedFace-Net
images was used for training the model.

Unlike the MaskedFace-Net dataset, the dataset we curated contains only completely
real images. In other words, our dataset contains real masked and unmasked images. This
property distinguishes our dataset from the MaskedFace-Net dataset.

The advantages of this work are given below:

1. A new face mask dataset consisting of real face mask images was developed.
2. A new problem has been defined in this work, and it is named improper mask. Im-

proper wearing of a face mask has been defined as the wrong masked class. Especially
in Turkey, improper wearing of a face mask has widely been seen as a common vi-
olation of face covering rules. Hence, this unruly behavior is believed to be a major
contributor to the spread of COVID-19. To detect this this rule violation, we have
defined ‘wrong masked’ as a category in this work. The classification capability of the
proposed hybrid deep feature extractor-based model has been demonstrated by using
this signal class.

3. Our literature review indicates that most of the face mask-wearing detection methods
have been tested on the categories mask and no mask. Our proposal attained 100%
classification (magnificent classification capability) accuracy for this case (Case 3). We
solved this problem by deploying a hybrid deep feature engineering model. Moreover,
we have used transfer learning. Therefore, our model has also low time complexity.

4. A highly accurate deep feature-based model is presented.
5. The presented model used two pre-trained transfer learning networks for feature

generation. Therefore, it extracted more salient features with low execution time.
6. A new version of RelieF selector, named TRFIRF, was developed. It selects an optimal

number of features automatically.
7. This model can also be used for the automated classification of abnormal classes from

normal classes.
8. The disadvantages of this work can be summarized as follows (9 and 10 below).
9. ResNet101 and DenseNert201 networks are not cognitive and lightweight methods.

New generation lightweight and cognitive models could be used.
10. Bigger face mask datasets are required to test the model further.

In the future, real time automated face mask detection can be developed with the
following steps: (i) public images, collected with wearable and fixed position cameras, (ii)
face recognition, (iii) face region segmentation, (iv) face mask detection with the proposed
model, and (v) no mask people are reported.

The presented deep feature engineering-based face mask wearing detection application
can be used in medical centers and other locations to detect violations of face covering
rules. A camera can be placed on the door, and this camera can take a picture of a person’s
face that depicts the front profile. That picture can be processed with the presented hybrid
deep model. The processing results will indicate possible violations of face covering rules.
Deploying such a system will automate and objectify the detection aspect of face covering
rule enforcement. A schematic demonstration of our project is shown in Figure 9.



Int. J. Environ. Res. Public Health 2022, 19, 1939 13 of 16

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 13 of 16 
 

 

8. The disadvantages of this work can be summarized as follows (9 and 10 below). 
9. ResNet101 and DenseNert201 networks are not cognitive and lightweight methods. 

New generation lightweight and cognitive models could be used. 
10. Bigger face mask datasets are required to test the model further. 

In the future, real time automated face mask detection can be developed with the 
following steps: (i) public images, collected with wearable and fixed position cameras, (ii) 
face recognition, (iii) face region segmentation, (iv) face mask detection with the proposed 
model, and (v) no mask people are reported. 

The presented deep feature engineering-based face mask wearing detection applica-
tion can be used in medical centers and other locations to detect violations of face covering 
rules. A camera can be placed on the door, and this camera can take a picture of a person’s 
face that depicts the front profile. That picture can be processed with the presented hybrid 
deep model. The processing results will indicate possible violations of face covering rules. 
Deploying such a system will automate and objectify the detection aspect of face covering 
rule enforcement. A schematic demonstration of our project is shown in Figure 9. 

 
Figure 9. Mask sensitive automatic door. 

6. Conclusions 

Automated detection of appropriate mask use based on face images is a challenging 
and popular problem in machine learning. In this work, an accurate model was developed 
using deep feature generation, TRFIRF,—based feature selection and classification tech-
niques. We assembled a face mask image dataset which consists of masked, no masked, 
and improper mask categories. From this dataset, three cases were created. Our proposed 
model attained 95.95%, 97.49%, and 100.0% accuracies for Case 1, Case 2, and Case 3, re-
spectively. In the future, we aim to extend this work to create a real time face mask detec-
tion system. Such a system might reduce the risk of spreading the viruses by monitoring 
and subsequently enforcing face covering rules. 

Author Contributions: Conceptualization, E.A., M.A.Y., P.D.B., M.B., O.F., S.D., S.C., T.T., U.R.A.; 
formal analysis, E.A., M.A.Y., P.D.B., M.B., O.F., S.D., S.C., T.T., U.R.A.; investigation, E.A., M.A.Y., 
P.D.B.; software, T.T.; methodology, E.A., M.A.Y., P.D.B.; project administration, U.R.A.; resources, 
E.A., M.A.Y., P.D.B., M.B., O.F., S.D., S.C., T.T., U.R.A.; supervision, U.R.A.; validation, E.A., M.A.Y., 
P.D.B., M.B.; visualization, E.A., M.A.Y., P.D.B., M.B.; writing—original draft, E.A., M.A.Y., P.D.B., 
M.B., O.F., S.D., S.C., T.T., U.R.A.; writing—review and editing, E.A., M.A.Y., P.D.B., M.B., O.F., 
S.D., S.C., T.T., U.R.A. All authors have read and agreed to the published version of the manuscript. 

Figure 9. Mask sensitive automatic door.

6. Conclusions

Automated detection of appropriate mask use based on face images is a challenging
and popular problem in machine learning. In this work, an accurate model was developed
using deep feature generation, TRFIRF,—based feature selection and classification tech-
niques. We assembled a face mask image dataset which consists of masked, no masked,
and improper mask categories. From this dataset, three cases were created. Our proposed
model attained 95.95%, 97.49%, and 100.0% accuracies for Case 1, Case 2, and Case 3, respec-
tively. In the future, we aim to extend this work to create a real time face mask detection
system. Such a system might reduce the risk of spreading the viruses by monitoring and
subsequently enforcing face covering rules.
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