

Elucidating the Mechanistic Origin of a Spin-State Dependent FeNx-C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation

ZHANG, Bofan, LI, Xianquang, AKIYAMA, Kazuhiko, BINGHAM, Paul http://orcid.org/0000-0001-6017-0798 and KUBUKI, Shiro

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/29459/

This document is the Accepted Version [AM]

Citation:

ZHANG, Bofan, LI, Xianquang, AKIYAMA, Kazuhiko, BINGHAM, Paul and KUBUKI, Shiro (2021). Elucidating the Mechanistic Origin of a Spin-State Dependent FeNx-C Catalyst toward Organic Contaminant Oxidation via Peroxymonosulfate Activation. Environmental Science and Technology. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

1	Elucidating Mechanistic Origin of Spin-Sate Dependent FeN _x -C
2	Catalyst towards Organic Contaminants Oxidation via
3	Peroxymonosulfate Activation
4	
5	Bofan Zhang ^{1, †, *} , Xianquan Li ^{2, †} , Kazuhiko Akiyama ¹ , Paul A. Bingham ³ , Shiro
6	Kubuki ¹
7	¹ Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
8	² Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
9	China
10	³ College of Business, Technology and Engineering, Sheffield Hallam University,
11	Howard Street, Sheffield S1 1WB, UK
12	
13	
14	
15	
16	
17	
18	
19	*Corresponding author: Bofan Zhang
20	E-mail: <u>15054218031@163.com</u> (B.F. Zhang)
21	[†] These authors contributed equally

22 Abstract

Atomically dispersed metal on nitrogen-doped carbon matrices have delivered 23 24 extensive interest in the removal of refractory organic pollutants. However, thorough exploration of the particular structure for each active site and specific effects of these 25 sites still remains elusive. Herein, a Fe-pyridinic N₄ structure in a single-atom catalyst 26 27 (FeN_x-C) was constructed using a facile pyrolysis strategy and exhibited superior 28 catalytic activity in peroxymonosulfate (PMS) activation towards organic contaminants 29 oxidation. The various Fe-species and relative amounts of each Fe site in the FeN_x-C catalyst were validated using X-ray absorption spectroscopy and ⁵⁷Fe Mössbauer 30 31 spectroscopy, which show critical dependencies on the precursor ratio and calcination 32 temperature. The positive correlations between relative content of high-spin state species (Fe^{II} and Fe^{III}) and catalytic performance were found to determine the reactive 33 34 species generation and electron-transfer pathway in the FeN_x-C/PMS system. Moreover, catalytic performance and theoretical calculation results revealed that the Fe^{II}-N₄ in 35 36 high spin state (S=2) tends to activate PMS to form sulfate and hydroxyl radicals via a one-electron transfer process, while the $Fe^{III}-N_4$ moiety (S=5/2) is prone to high-valent 37 38 iron species generation with lower free energy. Benefiting from finely-tuned active sites, 39 a single-atom FeN_x-C catalyst achieved favorable applicability in actual wastewater 40 treatment with efficient resistance of common water matrix. The present work advances 41 the mechanistic understanding of spin-state-dependent persulfate activation in single-42 atom catalysts and provides guidance to design superior catalyst based on spin-state 43 descriptions.

- 44 Keywords: refractory organic pollutant, PMS activation, single iron atom, spin state,
- 45 wastewater
- 46 Synopsis: A novel and precise spin-state dependent mechanism for wastewater
- 47 treatment via peroxymonosulfate activation using single-atom Fe-N moieties was first
- 48 proposed.

49 Introduction

50 The extensive use of antibiotics, pharmaceuticals, organic dyes and industrial 51 chemicals has released increasing amounts of organic contaminants in the environment, 52 posing a great threat to the ecological environment and human beings¹. Reactive oxygen species-based advanced oxidation processes (AOPs) have exhibited significant 53 54 potential in the broadband abatement of refractory pollutants in aqueous systems^{2, 3}. 55 Among these, persulfate-mediated Fenton-like processes including peroxymonosulfate (PMS) and peroxydisulfate (PDS) are attracting enormous interest owing to the 56 57 generated highly oxidative oxygen species such as sulfate radicals, hydroxyl radicals and superoxide radicals⁴. By cleaving O-O bonds in PMS molecules via electron and 58 energy transfer processes, the most commonly reactive species of sulfate radicals (E^0 59 $(SO_4 \bullet -/SO_4^{2-})) = 2.60 \sim 3.10 V_{NHE})$ and hydroxyl radicals $(E^0 (\bullet OH/OH^-)) = 1.90 \sim 2.70$ 60 V_{NHE}) can be formed and further attack organic compounds⁵. Different from hydrogen 61 62 peroxide (H_2O_2), PMS can also directly oxidize pollutants without radical participation⁶. However, the relatively low steady-state concentration of these species and rapid 63 64 consumption by impurity substances in water and wastewater still limit PMS activation 65 and decontamination efficiency.

Among various transition metals (Co, Fe, Cu and Mn), Fe-based Fenton-like catalysts have developed extensive and persistent interest owing to their low toxicity and cost, efficient ability and environmental sustainability⁷. Recently, the atomically dispersed single-atom catalysts (SACs) have exhibited promising potential in advanced 70 oxidation processes by virtue of the high degree of dispersion of metal sites, singleatom utilization, distinct electronic structure and excellent catalytic capacity⁸⁻¹⁰. For 71 instance, Gao and co-workers¹¹ prepared single iron atoms via a cascade anchoring 72 73 method as a superior catalyst to activate PMS toward bisphenol A degradation. Guan et 74 al.¹² also demonstrated that single Fe atoms dispersed on carbon nanotubes showed 75 excellent and selective reactivity for organic contaminants over a wide pH range for which FeN₄=O intermediate was the predominant oxidant over Fe-N_x sites. Despite the 76 77 process of iron single atom in Fenton-like reaction, the catalytic mechanism behind 78 reactive species generation and active sites is still under clarified.

79 It is well known that catalytic ability of SACs is strongly correlated with transition metal species, especially Fe-N_x moieties, which is at the heart of most Fenton-like 80 81 reactive sites. Very recently, the transition metal sites with different spin states were considered as important aspects for explaining the excellent catalytic performance¹³. 82 For instance, Long et al¹⁴. reported that Co-N-CNTs catalyst with a high spin state 83 84 favored the PMS adsorption and promoted oxidation ability towards pollutant degradation. Jiang et al¹⁵. demonstrated that electronic spin moment is nearly linear 85 related to the catalytic capacity of Fe-SACs during ORR reaction. Although recent 86 processes have proposed that spin states played essential roles in catalysis process, the 87 88 exact identity of the structure for each iron-based species with different spin states, their specific effect in Fenton-like reactions and in-depth mechanisms behind Fe^{IV/V}=O and 89 radical species generation are still urgently in need of exploration and clarification. 90

91	Herein, a single-iron atom catalyst with Fe-N _x configuration was fabricated using
92	a one-step pyrolysis process. The single-atomically dispersed iron species on nitrogen-
93	doped carbon and Fe-pyridinic N4 moiety were verified as the main active structure by
94	a series of analytical techniques and density functional theory (DFT) calculations. In
95	contrast to previous research, five specific iron-based species with different spin states
96	in FeN _x -C catalysts were finely tuned and clearly observed by XAS and 57 Fe Mössbauer
97	spectroscopy. During PMS activation and bisphenol A oxidation, only two of these
98	species (high-spin Fe ^{II} S=2 and Fe ^{III} S=5/2) significantly contributed to the efficient
99	Fenton-like catalytic performance. The exact process for free radicals and high valent
100	species generation by reactive high-spin Fe ^{II} /Fe ^{III} was systematically explored and
101	proposed. This work provides a novel and deeper understanding of the particular role
102	for each iron site toward PMS activation and inspires oriented regulation and design of
103	superior catalysts for future environmental remediation.

104 Experimental Section

105 Details of all chemicals, materials and preparation methods are listed in the106 Supporting Information.

107 **Results and discussion**

108 Structural analysis of catalysts

109 The synthesis procedure of FeN_x -C catalysts was demonstrated in Figure 1a via a 110 one-step pyrolysis strategy. The optimal precursor ratio was fixed at 1:5 based on the 111 catalytic capacity (vide infra). Three different temperatures (500, 600, 700°C) were

112	selected to prepare FeN _x -C materials and the chemical structures of this series of
113	catalysts were systematically explored. As shown in Figure S1, the X-ray diffraction
114	pattern (XRD) of the FeN _x -C-600 sample exhibited only two representative diffraction
115	peaks located at 27.5 and 44.5°, which were assigned to the graphitic carbon (JCPDS
116	No. 46-0945). It is worth noting that no additional peaks corresponding to metallic iron
117	or iron oxides were detected, excluding the existence of large crystalline iron-based
118	nanoparticles. Distinctly different from sample FeNx-C-600, sample FeNx-C-700
119	showed obvious diffraction peaks from Fe ₃ C phase. TEM and HRTEM images clearly
120	show the presence of plenty of small nanoparticles ($3\sim 5$ nm) in FeN _x -C-700 catalysts
121	(Figure S5), while no visible particles or clusters can be observed in FeN_x -C-600
122	samples (Figure 1b). Numerous bright spots with high density dispersed over the N-C
123	matrix were clearly observed in high-angle annular dark-field scanning transmission
124	electron microscopy (HAADF-STEM) images, validating the formation of atomic iron
125	atom in FeN _x -C-600 sample. Energy dispersive X-ray spectrometry (EDX) elemental
126	mapping reveals the highly homogenous distribution of Fe and N elements supported
127	by the C-N substrate layer. Moreover, the Raman spectra show only two characteristic
128	bands at 1348 and 1580 cm^{-1} corresponding to the defects and planar motion of sp^2 -
129	hybridized carbon ¹⁶ (Figure S6). The relatively high I_D/I_G ratios demonstrate the defect-
130	rich structures in all as-synthesized catalysts ¹⁷ . The type-IV N ₂ adsorption-desorption
131	isotherm curves and correlative pore distributions (Figure S7) corroborated the
132	presence of micro- and mesopores in the catalysts and the specific surface areas (Table

133 S2) gradually increase with increasing the pyrolysis temperature.

Figure 1. (a) Synthesis process of FeN_x-C catalysts; (b) TEM images; (c) HAADF-STEM image
and (d) energy-dispersive X-ray mapping of FeN_x-C-600 catalyst

138 Chemical state and coordination environment of FeN_x-C catalyst

139 The chemical state and local coordination environment are essential to the exploration of catalytic reaction. The Fe 2p XPS spectra of FeN_x-C catalysts (Figure 140 141 S8) revealed two characteristic peaks at \sim 710 and 724 eV, assigning to Fe 2p_{3/2} and Fe $2p_{1/2}^{18}$. As depicted in Figure 2a and Figure S10, the Fe K-edge X-ray absorption near 142 143 edge structure (XANES) spectrum of sample FeN_x-C-600 indicated the energy 144 absorption threshold (edge) energy is located between those of Fe foil and Fe₂O₃ 145 references, indicating that the Fe atoms in the FeN_x-C-600 sample possess a positive charge between Fe⁰ and Fe³⁺. It can be found that XANES spectrum of sample FeN_x-146 C-600 was very similar to the FePc reference, which might be derived from the 147

148	predominance of Fe-N ₄ coordination sites in the FeN _x -C-600 sample. The Fourier
149	transform (FT)- extended X-ray absorption fine structure (EXAFS) curve of sample
150	FeN _x -C-600 exhibited only a strong peak at \sim 1.5 Å (Figure 2b), corresponding with the
151	Fe-N configuration ¹⁹ . The fitting parameters of the first coordination shell illustrated an
152	average Fe-N coordination number of 4.1 and an average Fe-N bond length of 2.06 Å.
153	To further confirm the combination environment, possible Fe-N _x coordination models
154	including pyridinic N, pyrrolic N and graphitic N were explored using DFT calculations
155	As shown in Figure S11, the lowest formation energy was found in the structure of Fe-
156	pyridinic N ₄ , signifying that pyridinic N is more conducive to occupying the isolated
157	Fe atoms with a four-coordinated site. Based on the DFT calculations and EXAFS
158	results, Fe single atoms coordinated with an average of four pyridinic N atoms is the
159	main configuration in FeN _x -C catalysts.

⁵⁷Fe Mössbauer spectroscopy is an excellent technique for identifying different 160 iron-based materials via recoil free absorption of γ -rays using ⁵⁷Fe nuclei. Our previous 161 study showed that the ⁵⁷Fe Mössbauer spectrum for pristine MOF precursor was 162 composed of one doublet consistent with 100% Fe^{III} species in an octahedral geometry²⁰. 163 After calcination at different temperatures, the ⁵⁷Fe Mössbauer spectra for FeN_x-C 164 catalysts indicated the presence of different Fe species and coordination environment 165 (Figure 2c-f and Table S7). Specifically, the Mössbauer spectra for both samples FeN_x-166 C-500 and FeN_x-C-600 can be only fitted with doublet and no singlet and sextet, 167 excluding the existence of zero-valence Fe crystalline phases. On the contrary, not only 168

169	doublets but also singlets and sextets assigned to Fe ⁰ and Fe ₃ C species ²¹ were clearly
170	detected in the FeN _x -C-700 sample, which is in good accordance with the results of
171	XRD and XPS. For the FeN_x -C-500 sample, the two doublets with larger IS (isomer
172	shift, > 0.80 mm/s) and QS (quadrupole splitting) values, can be assigned to the high-
173	spin Fe ^{II} species (S=2) ²¹ . The spectrum for sample FeN _x -C-600 can be fitted robustly
174	with three different doublets (D1, D2, D3). Among these, the D1 exhibited similar
175	parameters to the doublet in the spectrum for sample FeN _x -C-500, and is assigned to
176	high-spin Fe ^{II} -N ₄ sites (S=2). D2, with a relatively low QS value ($0.3 \sim 1.0 \text{ mm/s}$) and
177	an IS value of ~0.34 mm/s was ascribed to high spin Fe ^{III} -N ₄ sites (S=5/2) with an
178	octahedral structure due to the pulling force between Fe atoms and N_4 plane ^{22, 23} .
179	Different from D2, D3 exhibited a similar isomer shift value (~0.37 mm/s) but a much
180	higher QS value (~1.67 mm/s), which can be assigned to low spin $Fe^{III}\text{-}N_4$ species
181	$(S=1/2)^{24}$. In the spectrum for the FeN _x -C-700 sample, approximately 22.0% high-spin
182	Fe ^{III} ($S=5/2$) was still preserved, suggesting the relative stability of this structure at
183	higher pyrolysis temperatures. Additionally, a similar IS value and larger QS value (D2)
184	than for high-spin Fe-N4 structures attributed to the appearance of medium-spin ferrous
185	species (S=1), which is close to the configuration of ferrous iron phthalocyanine.
186	Concurrently, iron carbide and zero valent iron nanoparticles are formed and aggregated,
187	accompanying the destruction of the low-spin ferric structure, which is consistent with
188	TEM images and XRD patterns. To further explore the coordination of iron and nitrogen
189	in sample FeN _x -C-600, low temperature ⁵⁷ Fe Mössbauer spectroscopy was performed

Figure 2. (a) K-edge XANES spectra of sample FeN_x -C-600, Fe_2O_3 , Fe foil, FePc, (b) Fourier transforms of the k^3 -weighted K-edge EXAFS spectra of sample FeN_x -C-600, Fe foil, FePc, (c-f) Room temperature and low temperature ⁵⁷Fe Mössbauer spectra of samples FeN_x -C-500/600/700

202 Evaluation of catalytic activity of FeN_x-C catalysts

203 The adsorption and decomposition toward bisphenol A (BPA) were evaluated using 204 as-synthesized FeN_x-C catalysts. As depicted in Figure 3a, PMS alone and NC catalyst 205 exhibited negligible activity toward BPA decomposition. In comparison with sample FeN_x-C-600 (99.5%), only 16.9% and 59.5% of BPA were removed by FeN_x-C-500 and 206 207 FeN_x-C-700, respectively. The pseudo-first-order kinetic rate constant of sample FeN_x-C-600 exceeded those of samples FeN_x-C-500 and FeN_x-C-700 by factors of 16.23 and 208 209 9.92, respectively (Figure S15a). Moreover, the precursor ratio (Fe-MOF/melamine) at 210 1:5 exhibited a more rapid BPA removal than the other two mixing ratios (1:3 and 1:7, 211 Figure S14c). The distinct difference in the Fenton-like ability between these FeN_x-C 212 catalysts may be ascribed to the differences in surface area and pore structure, different Fe-species (Fe⁰, Fe₃C, Fe-N, Fe-O, etc.) and iron coordination environments²⁶. To better 213 214 understand the relationship between reactivity and surface properties, a specific activity

215	(k-specific), through normalizing the rate constant by the catalyst concentration and
216	specific surface area ¹¹ , is applied to reveal the truly intrinsic capacity of FeN _x -C
217	catalysts. Notably, the <i>k</i> -specific value of sample FeN_x -C-600 (0.013 L m ⁻² min ⁻¹) is 2.0
218	and 22.8 times higher than for samples FeN_x -C-500 (0.0065 L m ⁻² min ⁻¹) and FeN_x -C-
219	700 (0.00057 L m ⁻² min ⁻¹), as well as those previously reported Fenton-like catalysts
220	(Table S5), highlighting the superior catalytic performance of single iron atom
221	decorated catalyst for PMS activation. Furthermore, more than 90% of BPA and phenol
222	degradation can be removed, while only 14.3% of carbamazepine (CBZ), 48.5% of
223	methylene blue (MB) and 44.2% Rhodamine B (RhB) were totally decomposed into
224	carbon dioxide and water (Figure S13b-d), implying a certain level of selectivity
225	towards different aromatic organic pollutants decontamination. Moreover, Figure 3b-c
226	showed that the FeN_x -C-600/PMS system could maintain a stable and superior catalytic
227	ability not only in the presence of various anion ions but also for the degradation of
228	BPA in tap water and actual wastewater, indicating a robust resistance to the background
229	matrix. These phenomena indicated that there might be other dominantly reactive
230	oxidizing species instead of radicals in the FeNx-C-600/PMS system. Apart from
231	degradation efficiency, approximately 75% of total organic carbon (TOC) can be totally
232	removed within 30 min, indicating outstanding decomposition capacity. The detailed
233	decomposition intermediates of BPA in treated solution were detected using mass
234	spectrometry and the possible degradation pathway was correspondingly proposed
235	(Figure S16-17), implying the superior catalytic capacity of FeN _x -C-600 catalyst.

Influence of various anions on BPA degradation in the FeN_x-C-600/PMS system; (c) Kinetics of BPA degradation in tap water and actual wastewater via PMS activation with FeN_x-C-600 catalyst; (d) Mass spectrometry chromatogram for BPA degradation in FeN_x-C-600/PMS system. Reaction conditions: catalyst dosage = 0.2 g/L, [PMS]₀ = 0.50 mM, [BPA]₀ = 20 mg/L, pH₀ = 6.5, [Cl⁻]₀ = [NO₃⁻]₀ = [PO4²⁻]₀ = [CO3²⁻]₀ = 10.0 mM

244 Identification of active species and sites

To explore the contribution of radical species in the FeN_x-C-600/PMS system, scavenging experiments and electron paramagnetic resonance (EPR) spectroscopy measurements were conducted. Herein, methanol (MeOH) and tert-butyl alcohol (TBA) were chosen as quenchers for scavenging •OH/SO₄⁻⁻ and •OH species, respectively²⁷.

249	As depicted in Figure S18, the MeOH, at the concentration 400 times of PMS, exhibited
250	a slight inhibition of BPA degradation, demonstrating that •OH/SO4 • are not the major
251	active species. Moreover, the insignificant inhibition effect of TBA further supported
252	this hypothesis. As shown in Figure 4, no EPR signal was detected with catalyst alone.
253	In contrast, an intensive signal from 5,5-dimethyl-1-pyrroline N-oxide DMPO-•OH
254	adduct and DMPO-SO4 ^{•-} adduct appeared after 5 min in the FeN _x -C-600/PMS system
255	compared with PMS alone, implying that the generated •OH/SO4 - radicals do
256	contribute to BPA decomposition but they are not the dominant oxidant species during
257	the Fenton-like reaction. In addition to the singlet oxygen, triplet signals with similar
258	intensity of TEMPO adduct (2,2,6,6-tetramethyl-4-piperidine-N-oxyl) were observed
259	for PMS alone and the FeN _x -C-600/PMS system after 5min, excluding the formation
260	of ${}^{1}O_{2}$ during PMS activation and BPA degradation. Moreover, the weak intensity of
261	DMPO- O_2^{-} signals in EPR spectra (Figure S18c) was similar to that of PMS alone
262	system, further excluding the formation of O_2^{-1} radicals in FeN _x -C-600/PMS system.
263	The N-doped carbon and Fe atoms coordinated with N-doped carbon material, have
264	been reported to play essential roles in Fenton-like reactions ²⁸ . As expected, the
265	addition of oxalate evidently depressed the catalytic performance (Figure S19a),
266	verifying the important role of iron sites for PMS activation and pollutant
267	decomposition. Furthermore, DFT calculations were performed to explore PMS

adsorption on these possible catalytic sites. As shown in Figure 4c, the adsorption

269 energy on Fe-pyridinic N₄-C, pyridinic N-C, Fe-pyrrolic N₄-C, pyrrolic N-C and Fe-

270	graphitic N ₄ -C were calculated to be -1.471, -0.729, -0.932, -0.455 and -0.174 eV,
271	respectively. The O-O bond length (l_{0-0}) in PMS was 1.562, 1.438 and 1.490 Å after
272	adsorbing on the Fe-pyridinic N ₄ -C, Fe-pyrrolic N ₄ -C, and Fe-graphitic N ₄ -C,
273	respectively, which were obviously elongated compared with pure PMS molecules
274	$(1.410 \text{ Å})^{11}$. It is noted that Fe-pyridinic N ₄ -C interacts more strongly with HSO ₅ ⁻ in
275	PMS molecules compared with other configuration models due to the larger adsorption
276	energy and longer O-O bond length. Moreover, the order of the Bader charge followed
277	Fe-pyridinic $N_4 >$ Fe-pyrrolic $N_4 >$ pyridinic $N_4 >$ pyrrolic $N_4 >$ graphitic $N_4 >$ Fe-
278	graphitic N ₄ (Figure 4c), further confirming that PMS molecule is prone to bond with
279	Fe-pyridinic N4 moiety rather than nitrogen doped carbon material, which obviously
280	accelerated the charge transfer in the FeN _x -C/PMS system. The control homogenous
281	experiments with the addition of FeCl ₂ and Fe(NO ₃) ₃ (1.87 μ mol, the equal Fe content
282	of sample FeN _x -C-600) were carried out (Figure S19b). As expected, the negligible
283	effects of FeCl ₂ and Fe(NO ₃) ₃ completely validate the reactive sites for this Fenton-like
284	reaction are Fe-pyridinic N4 moiety and not Fe ions. Additionally, acid etching
285	treatment of FeN _x -C-600 catalyst was performed to remove the possible existence of
286	surface Fe clusters or tiny nanoparticles rather than Fe- N_x species. With soaking in 2M
287	HCl 60 °C for 3h, the negligible change in XRD pattern, TEM images and insignificant
288	suppression of BPA removal rate (Figure S20) validate the dominant composition and
289	active site of Fe-N _x in the FeN _x -C-600/PMS system.

290 The previous studies reported Fe^{III}/Fe^{II} single atom attached to various carbon

291	materials can efficiently activate PMS or H ₂ O ₂ to generate high-valent iron species
292	(marked as HFeS) ²⁹⁻³¹ . Considering the faint contribution of SO ₄ ^{•-/} •OH radicals, the
293	confirmation of HFeS becomes indispensable in the FeN _x -C-600/PMS/BPA system. To
294	quantitatively analyze the HFeS species, methyl phenyl sulfoxide (PMSO) and methyl
295	phenyl sulfone (PMSO ₂) MS spectrometry were conducted and the corresponding
296	spectra are illustrated in Figure S21. It can be clearly observed that abundant PMSO ₂
297	was detected and the intensity of PMSO ₂ gradually increases with time, and finally
298	levels out at a yield of around 75%. Furthermore, ¹⁸ O isotope-labeled products were
299	detected using ultra-performance liquid chromatography coupled with high resolution
300	time-of-flight mass spectrometry (UPLC-TOF-MS) via the oxygen atom exchange
301	process between $H_2^{18}O$ and high valent iron species (Figure S21 g-j). Two characteristic
302	peaks observed at m/z 157.0321 and 159.0361 in the MS spectrum are assigned to the
303	PMS ¹⁶ O ¹⁶ O and PMS ¹⁶ O ¹⁸ O. Moreover, two prominent peaks with m/z 78.9853 and
304	80.9894 represented the characteristic fragments of $PMS^{16}O^{16}O$ ([M-C ₆ H ₅] ⁺) and
305	$PMS^{16}O^{18}O([M-C_6H_5]^+)$ can be also detected in FeN _x -C/PMS system. Contrarily, only
306	fragment of PMS ¹⁶ O ¹⁶ O but no PMS ¹⁶ O ¹⁸ O was detected in PMS alone system,
307	verifying the successful integration of $^{18}\mathrm{O}$ to PMSO_2 using as-prepared FeNx-C
308	catalyst ^{32, 33} . On the basis of these analysis, the relatively high selectivity towards
309	phenolic organic pollutants and the significant inhibition of various anion ions can be
310	reasonably explained by the electrophilic addition reaction via dominant HFeS species.

313 Figure 4. (a) TEMP-trapped EPR spectra for ${}^{1}O_{2}$; (b) DMPO-trapped EPR spectra of SO₄^{-/} •OH;

(c) The adsorption energy on different FeN_x-C and N-C sites and the corresponding O-O bond

315 length in PMS and Bader charge after PMS adsorption. Reaction conditions: catalyst dosage = 0.2

316
$$g/L$$
, $[PMS]_0 = 0.50 \text{ mM}$, $[BPA]_0 = 20 \text{ mg/L}$, $pH_0 = 6.5$

To understand the specific reaction process in the FeN_x-C-600/PMS system, *in situ* Raman spectra were carried out. As depicted in Figure 5a, the peak located at 1060 cm⁻¹ is assigned to the HSO₅⁻ in PMS, while the peak at 982 cm⁻¹ represents the S=O bond in SO₄²⁻ with symmetric stretching vibration³⁴. Notably, the I_{1060}/I_{982} value significantly decreased from 1.02 to 0.68 in the corresponding FeN_x-C/PMS system, demonstrating the rapid conversion of HSO₅⁻ into SO₄²⁻ via the intense interaction between PMS and Fe-N₄ sites. Moreover, the dynamic PMS concentration was detected via potassium iodide spectrophotometry⁴. It can be observed that the PMS concentration gradually
declined with increasing reaction time and the tendency was almost synchronous with
the BPA degradation process (Figure 5b), amply validating the surface chemical
evolution of Fe-N sites for PMS decomposition rather than adsorption.

Considering that ⁵⁷Fe Mössbauer spectroscopy can particularly distinguish various 328 329 Fe phases with similar structure but in different oxidation and spin states, the effects of 330 different Fe sites in FeN4 moiety for radical generation, high-valent species formation, 331 PMS activation and BPA decomposition were systematically investigated in this work. 332 According to the specific catalytic activity as well as their relative content in Mössbauer spectra, the intermediate-spin Fe^{II} species (S=1) can be first excluded from being 333 334 dominant species. The medium-spin configuration was caused by the interaction of 335 central Fe ions (S=1) with four nitrogen atoms, which are bonded with the surrounding carbon atoms yielding in pseudo-6-fold-octahedral coordination of iron³⁵. The fully 336 filled $3d_z^2$ orbitals in Fe^{II} sites make it difficult to approach peroxymonosulfate and 337 pollutant molecules. Furthermore, this intermediate-spin Fe^{II} coordination (relative 338 339 amount of 32.0%) only exists in the FeN_x-C-700 catalyst, for which the specific activity was just 0.00057 L m⁻² min⁻¹, excluding a major contribution of this specie to the 340 Fenton-like activity. For the high-spin Fe^{II} species (S=2), its larger IS value 341 342 demonstrates a higher density of 3d electrons. Although its relative amounts in samples FeN_x -C-5-500, FeN_x -C-3/5/7-600, were highest, here it did not contribute the most to 343 BPA degradation. This is because decreasing the pyrolysis temperature to 500°C 344

improved the relative Fe content present in high-spin Fe^{II} state, without obviously 345 346 increasing the catalytic performance. However, considering the higher specific activity compared with sample FeN_x-C-700, the high-spin Fe^{II} species in sample FeN_x-C-500 347 348 did provide a certain enhancement in PMS activation and BPA decomposition. This might be ascribed to high-spin Fe^{II} configuration with S=2 and $3d_z^2$ orbital occupied by 349 single electron being conducive to directly activate PMS via electron transfer 350 pathways³⁶. Notably, by comparing the Fenton-like activity with the relative abundance 351 352 of each Fe component, the superior catalytic activity of FeN_x-C catalyst closely correlates with its relatively larger amount of high-spin Fe^{III} species (S=5/2), with a 353 coefficient of determination R² of 0.995 (Figure S22e-f). In comparison with sample 354 FeN_x-C-3-600, the higher HS Fe^{III} and lower LS Fe^{III} phase in sample FeN_x-C-5-600 355 356 resulted in excellent catalytic efficiency toward BPA removal, which can be also 357 identified by the FeN_x-C-7-600 catalyst. When the calcination temperature increased to 700 °C, the relative content of high-spin Fe^{III} in sample FeN_x-C-700 was only 22.0%, 358 far below the content in sample FeN_x-C-5-600. The relative content of high-spin 359 Fe^{III}/Fe^{II} was positively correlated with the catalytic capacity, indicating that the 360 efficiency of PMS activation and BPA oxidation was governed by the spin state of Fe-361 362 N_x sites owing to the space electronic configuration differentiation in d orbitals. 363 Generally, the high-spin state of Fe-N_x sites with large magnetic moments is conducive to participating in σ -bonding with PMS molecule via overlapping with O 2p orbitals³⁶, 364 thereby improving PMS adsorption ability, promoting the oxidation potential and 365

accelerating electron transfer during the Fenton-like reaction. In contrast, the structure of low-spin Fe^{III} is highly saturated and the number of unpaired electrons with the same spin direction is the smallest²³, making it difficult to be a reactive site. Moreover, the newly formed Fe₃C (44.4%) and Fe⁰ (Super-paramagnetic Fe, 1.6%) in FeN_x-C-700 are unlikely to significantly improve the pollutants removal efficiency, excluding the dominant role of these species in the FeN_x-C/PMS/BPA system.

Furthermore, DFT calculations were undertaken to shed light on the pathway of 372 373 PMS activation into SO_4 , OH radicals and Fe(V)=O complex via the proposed Fe-374 pyridinic N₄ configurations with different spin-state. The energy profiles and 375 corresponding intermediate structure were shown in Figure 5c-d. Considering that single-electron, two-electron and oxygen atom transfer pathways³⁷ may occur 376 377 simultaneously in the FeN_x-C/PMS system, multiple binding configurations and the corresponding free energies were calculated. When the PMS molecule was adsorbed on 378 379 the Fe-pyridinic N₄ sites, it can be rapidly activated and subsequently generate intermediate (II) and transition state (TS), and finally form reactive oxygen species 380 381 $(SO_4, \cdot, OH, Fe(V)=O)$. As depicted in Figure 5c, the Gibbs free energies for formation 382 of SO4-, OH radicals were much lower than the reactant, demonstrating that it is 383 thermodynamically favorable. Among them, the most favorable active site for SO_4 . ·OH radical formation with the lowest Gibbs free energy was high-spin Fe^{II} rather than 384 the Fe^{III}-N₄ moiety. Contrarily, the free energy for generating high valent iron species 385 Fe(V) by Fe^{II}-N₄ is about 0.59 and 0.64 eV, which is an endothermic process and cannot 386

happen automatically under ambient conditions. Different from $Fe^{II}-N_4$ moiety, the energy barrier for Fe(V)=O complex formation is easier to overcome by high-spin $Fe^{III}-$ N₄ sites, which is an exothermic reaction and favorable in thermodynamics and kinetics. In other words, the high spin Fe^{III} *S*=5/2 and Fe^{II} *S*=2 sites are much more reactive to bond with PMS to generate Fe(V)=O complexes and SO_4 ., OH radicals, respectively, which is consistent with the experimental results.

393 Low temperature EPR measurement, which could provide detailed information of 394 iron species with half-integer spin and the potential presence of high valent iron components in the redox reaction³⁸, was carried out at 77K. As shown in Figure 5e and 395 396 Figure S23a, an isotropic signal at g=2.0034 was detected in the FeN_x-C-600/H₂O system, ascribed to the partial 3d⁵ orbitals of Fe^{III} with large zero-field splitting and 397 unpaired electrons³⁹. Notably, after mixing PMS with FeN_x-C-600 catalyst, the 398 399 intensity of this signal was enhanced and exhibited a positive shift to a lower value. This phenomenon was consistent with the previous report by Dashdorj et al.,⁴⁰ likely 400 originating the generation of $Fe^{V}=O$ via oxidizing high-spin Fe^{III} sites (S=5/2) during 401 PMS conversion process. Additionally, a broad isotropic signal at g=4.282 originating 402 from rhombic high-spin ferric species was also clearly detected³⁸. In comparison with 403 404 the deionized water system, the increased intensity of ferric sites after addition of PMS demonstrated more production of Fe^{III} species, which are mainly derived from the redox 405 characteristics of Fe^{II}/Fe^{III} and Fe^{III}/Fe^V during activation of PMS via atomically 406 dispersed iron-N sites. Moreover, the current density displayed an obvious drop with 407

the addition of PMS (Figure 5f), likely ascribed to electron redistribution owing to the
interaction between PMS and the surface of the catalyst. The subsequent introduction
of BPA provoked a remarkable decline in current density, indicating the occurrence of
electron transfer between BPA, PMS and FeN_x-C-600 catalyst.

415 Figure 5. (a) *In situ* Raman spectra of FeN_x-C-600/PMS system measured at different reaction

416 times; (b) Variation of PMS concentration and BPA removal rate in the FeN_x-C-600/PMS/BPA

417 system; (c-d) Reaction pathways of SO_4 ., OH radicals and Fe(V)=O generation at different spin

418 state Fe sites; (e) EPR spectra of FeN_x -C-600 in distilled water and PMS solution under 77K; (f)

419 Current response at the FeN_x-C-600 coated working electrode; Reaction conditions: catalyst

420 dosage =
$$0.2 \text{ g/L}$$
, [PMS]₀ = 0.50 mM , [BPA]₀ = 20 mg/L , pH₀ = 6.5 mg/L

421 On the basis of experimental results and theoretical calculations, the overall 422 mechanism for PMS activation and pollutant oxidation using FeNx-C catalyst was proposed in Figure 6. The PMS molecule could first react with Fe-pyridinic N₄ moieties 423 including Fe^{II}N₄ and Fe^{III}N₄ sites to form FeN_x-(HO)OSO₃⁻ intermediates. Due to that 424 425 PMS can be decomposed via cleavage of the O-O bond, and the formed Fe^{II}N_x-(HO)OSO3⁻ was further activated to generate SO4⁻⁻ radicals via a one-electron transfer, 426 while the $Fe^{III}N_x$ -(HO)OSO₃⁻ could form high-valent species (Fe^V=O complex) via a 427 428 two-electron and O-atom transfer⁴¹. The SO₄·⁻ radicals can further react with H₂O in the solution to yield OH. Benefiting from the effect of predominant high-valent iron 429 species and supporting SO_4 .⁻ and $\cdot OH$ radicals, bisphenol A can be efficiently 430 decomposed into small organic substrates, CO2 and H2O. Owing to the consumption of 431 transient Fe^V=O complex by bisphenol oxidation, the Fe^V can be reduced and 432 transformed into Fe^{III}, achieving redox circulation between Fe^V and Fe^{III}. After the 433 Fenton-like reaction, the relative content of Fe^{II} and Fe^{III} remains almost unchanged, as 434 demonstrated by ⁵⁷Fe Mössbauer spectroscopy (Figure S22c) and Fe 2p XPS 435 spectroscopy (Figure S25a), demonstrating an efficient conversion of Fe^{III}/Fe^{II} and 436 Fe^V/Fe^{III} in the FeN_x-C/BPA/PMS system. 437

440

439 Figure 6. Proposed mechanism behind PMS activation over FeN_x-C-600 catalyst toward organic

pollutants decomposition

441 To furnish evidence of the universal applicability of this preparation strategy and 442 mechanistic exploration, a similarly structured Fe-MOF, named MIL-101(Fe) was 443 chosen as a precursor to synthesize single atom catalyst using a procedure being parallel 444 to that of the MIL-53 based FeN_x-C sample. The XRD, HRTEM, XAS results indicated the successful construction of an atomic structure model of the 101FeNx-C catalyst 445 (Figure S24). The ⁵⁷Fe Mössbauer spectra of 101FeN_x-C can be deconvoluted into three 446 447 doublets based on IS and QS values (Figure S22d), which are assigned to the Fe-N4 moieties with different local coordination structures (high-spin Fe^{II} S=2, high-spin Fe^{III} 448 S=5/2 and low-spin Fe^{III} species S=1/2). The coordination of these three components 449 450 was similar to the MIL-53 based FeN_x-C sample, indicating the existence of similar Fe single atomic structures. Notably, the relative amount of high-spin Fe^{III} is close to that 451 in the MIL-53 based FeN_x-C, while high-spin Fe^{II} site is lower and low-spin Fe^{III} is 452 larger than for the MIL-53 based FeN_x-C sample (Table S7). This phenomenon could 453 454 explain the slightly decreased removal efficiency of BPA by sample 101FeNx-C

455 $(k=0.268 \text{ min}^{-1})$ compared with MIL-53 based FeN_x-C $(k=0.357 \text{ min}^{-1})$, further 456 validating the dominant role of high-spin Fe^{III} and supporting effect of high-spin Fe^{II} 457 during the Fenton-like reaction.

458 In view of the durability and practicability, a continuous batch experiment was conducted. With the number of cycles increased, approximately 89.8% BPA 459 degradation efficiency can be still achieved by sample FeN_x-C-600 (Figure S26). The 460 total leached iron (0.37 mg/L) did not give rise to significant catalytic ability towards 461 PMS activation and BPA degradation (Figure S26d). The XPS spectrum of sample 462 463 FeN_x-C-600 indicated that the relative amounts of N and Fe slightly decreased (Figure S25), while O content increased after cyclic experiments. These results illustrate that 464 the attenuation of removal efficiency might be ascribed to the slight loss of Fe and N 465 466 content¹¹, resulting in a reduced number of active sites for PMS activation and pollutant degradation, which is consistent with the result of ⁵⁷Fe Mössbauer spectra of used 467 468 catalysts (Figure S22). Furthermore, XRD pattern and FTIR spectra (Figure S26b-c) signify the highly stable crystal structure and no other Fe species aggregation on the 469 catalyst surface. The practicability of sample FeN_x-C-600 toward BPA decontamination 470 471 in tap water and realistic industrial wastewater was also tentatively evaluated. 472 Wastewater was collected from the effluent of the Tokyo Sewerage system in Tokyo, 473 Japan. The parameters of the wastewater were summarized in Table.S6. As depicted in 474 Figure S26d-e, sample FeN_x-C-600 still fulfilled high removal efficiency of BPA in actual wastewater and tap water via PMS activation. Considering the extremely low 475

476 concentration of metallic ions in the wastewater sample, the outstanding catalytic 477 performance for BPA oxidation was mainly contributed to the catalyst itself, which 478 confirm the distinct advantage of catalyst FeN_x -C-600 in engineering to remediate 479 actual wastewater.

480

Environmental Implications

481 A single-atom iron catalyst with Fe-pyridinicN₄ configuration was successfully synthesized using a facile pyrolysis strategy in this work. As a PMS activator, catalyst 482 FeN_x-C-600 delivered superior catalytic activity for refractory organic pollutant 483 484 decomposition, for which the specific activity was much higher than the control experiments and various previously reported heterogeneous catalysts. Moreover, the 485 robust stability and efficient applicability in practical wastewater remediation clearly 486 487 demonstrate its potential to be a candidate in future environmental remediation. The positive correlation between relative contents of high-spin state species (Fe^{II} S=2 and 488 Fe^{III} S=5/2) and catalytic performance was strongly evidenced by ⁵⁷Fe Mössbauer 489 spectroscopy and DFT calculations, which determined the reactive species generation 490 491 and electron-transfer pathway in the FeN_x-C/PMS/BPA system. Therefore, a thorough 492 understanding of the spin-state dependent mechanism for PMS activation over single 493 Fe atoms was discerned in this work. These findings highlight in detail the exact 494 identifies of the various iron coordination sites and the specific catalytic pathways of 495 these sites during PMS conversion and compounds decontamination, providing valuable guidance to design strategies toward promoting catalytic capacity in future 496

497 real-world applications.

498 Supporting Information

- 499 Details of chemicals, synthesis and characterization of catalysts; analytic methods;
- 500 XRD patterns; TG curve; SEM and TEM images; Raman spectra; N2 adsorption-
- 501 desorption isotherm; XPS, XAS and ⁵⁷Fe Mössbauer spectra; DFT calculation result;
- 502 catalytic performance of pollutants; influence of different parameters; UPLC/MS
- 503 spectra and BPA degradation pathway; scavenging test result; PMSO consumption and
- 504 PMSO₂ generation; ERP spectra; cycling experiment; characterization of 101FeN_x-C-
- 505 600 catalyst; TOC removal efficiency; BPA degradation in actual wastewater;

506 Acknowledgements

507 This work was supported by the Tokyo Human Resources Fund for City Diplomacy

- 508 (H29-1). The authors wish to acknowledge Dr Németh Zoltán, Institute of Wigner
- 509 Research Centre for Physics, for his help in guiding the analysis of the X-ray absorption
- 510 spectra (XAS) results of this study.

511 References

- 512 1. Rojas, S.; Horcajada, P. Metal–Organic Frameworks for the Removal of Emerging Organic
- 513 Contaminants in Water. Chem. Rev. 2020, 120, 8378-8415.
- 514 2. Zhen, Y.; Zhu, S.; Sun, Z.; Tian, Y.; Li, Z.; Yang, C.; Ma, J. Identifying the Persistent
- 515 Free Radicals (PFRs) Formed as Crucial Metastable Intermediates during Peroxymonosulfate (PMS)
- 516 Activation by N-Doped Carbonaceous Materials. *Environ. Sci. Technol.* 2021, 55, 9293-9304.
- 517 3. Bae, G.; Chung, M. W.; Ji, S. G.; Jaouen, F.; Choi, C. H. pH Effect on the H₂O₂-Induced
- 518 Deactivation of Fe-N-C Catalysts. ACS Catal. 2020, 10, 8485-8495.
- 4. Lee, J.; von Gunten, U.; Kim, J. H. Persulfate-Based Advanced Oxidation: Critical
 Assessment of Opportunities and Roadblocks. *Environ. Sci. Technol.* 2020, *54*, 3064-3081.
- 521 5. Peng, Y.; Tang, H.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y. Activation of
- 522 peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants:
- 523 A Review. Chem. Eng. J. 2021, 414, 128800.
- 524 6. Wu, L.; Li, B.; Li, Y.; Fan, X.; Zhang, F.; Zhang, G.; Xia, Q.; Peng, W. Preferential
- 525 Growth of the Cobalt (200) Facet in Co@N–C for Enhanced Performance in a Fenton-like Reaction.
- 526 ACS Catal. 2021, 11, 5532-5543.
- 527 7. Tang, Z.; Zhao, P.; Wang, H.; Liu, Y.; Bu, W. Biomedicine Meets Fenton Chemistry.
 528 *Chemical Reviews* 2021, *121*, 1981-2019.
- 529 8. Jiao, L.; Jiang, H.-L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy
 530 Applications. *Chem* 2019, *5*, 786-804.
- 531 9. Xu, J.; Zheng, X.; Feng, Z.; Lu, Z.; Zhang, Z.; Huang, W.; Li, Y.; Vuckovic, D.;
 532 Li, Y.; Dai, S.; Chen, G.; Wang, K.; Wang, H.; Chen, J. K.; Mitch, W.; Cui, Y. Organic
 533 wastewater treatment by a single-atom catalyst and electrolytically produced H₂O₂. *Nat Sustain.*534 2020, 4, 233-241.
- 535 10. Shang, Y.; Xu, X.; Gao, B.; Wang, S.; Duan, X. Single-atom catalysis in advanced 536 oxidation processes for environmental remediation. *Chem. Soc. Rev.* **2021**, *50*, 5281-5322.
- 537 11. Gao, Y.; Zhu, Y.; Li, T.; Chen, Z.; Jiang, Q.; Zhao, Z.; Liang, X.; Hu, C. Unraveling
- 538 the High-Activity Origin of Single-Atom Iron Catalysts for Organic Pollutant Oxidation via

- 539 Peroxymonosulfate Activation. *Environ. Sci. Technol.* 2021, 55, 8318-8328.
- 540 12. Qian, K.; Chen, H.; Li, W.; Ao, Z.; Wu, Y. N.; Guan, X. Single-Atom Fe Catalyst
 541 Outperforms Its Homogeneous Counterpart for Activating Peroxymonosulfate to Achieve Effective
- 542 Degradation of Organic Contaminants. *Environ. Sci. Technol.* **2021**, *55*, 7034-7043.
- 543 13. Shen, G.; Zhang, R.; Pan, L.; Hou, F.; Zhao, Y.; Shen, Z.; Mi, W.; Shi, C.; Wang,
- 544 Q.; Zhang, X.; Zou, J.-J. Regulating the Spin State of FeIII by Atomically Anchoring on Ultrathin
- 545 Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. *Angew. Chem., Int. Ed.* 2020, *59*,
 546 2313-2317.
- 547 14. Miao, J.; Zhu, Y.; Lang, J.; Zhang, J.; Cheng, S.; Zhou, B.; Zhang, L.; Alvarez, P.
- 548 J. J.; Long, M. Spin-State-Dependent Peroxymonosulfate Activation of Single-Atom M-N Moieties
- 549 via a Radical-Free Pathway. ACS Catal. 2021, 11, 9569-9577.
- 550 15. Zhong, W.; Qiu, Y.; Shen, H.; Wang, X.; Yuan, J.; Jia, C.; Bi, S.; Jiang, J. Electronic
- Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C₂N. J. Am. *Chem. Soc.* 2021, 143, 4405-4413.
- 553 16. Mineva, T.; Matanovic, I.; Atanassov, P.; Sougrati, M.-T.; Stievano, L.; Clémancey,
 554 M.; Kochem, A.; Latour, J.-M.; Jaouen, F. Understanding Active Sites in Pyrolyzed Fe–N–C
- 555 Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and ⁵⁷Fe
- 556 Mössbauer Spectroscopy. ACS Catal. 2019, 9, 9359-9371.
- 557 17. Peng, L.; Duan, X.; Shang, Y.; Gao, B.; Xu, X. Engineered carbon supported single iron
- atom sites and iron clusters from Fe-rich Enteromorpha for Fenton-like reactions via nonradical
 pathways. *Appl. Catal.*, B 2021, 287, 119963.
- 560 18. Zhou, Y.; Zhou, L.; Zhou, Y.; Xing, M.; Zhang, J. Z-scheme photo-Fenton system for
- 561 efficiency synchronous oxidation of organic contaminants and reduction of metal ions. Appl. Catal.,
- 562 *B* **2020**, *279*, 119365.
- 563 19. Weon, S.; Huang, D.; Rigby, K.; Chu, C.; Wu, X.; Kim, J.-H. Environmental Materials
 564 beyond and below the Nanoscale: Single-Atom Catalysts. *ACS ES&T Engg* 2021, *1*, 157-172.
- 565 20. Zhang, B.; Zhang, L.; Akiyama, K.; Bingham, P. A.; Zhou, Y.; Kubuki, S. Self-
- 566 Assembly of Nanosheet-Supported Fe-MOF Heterocrystals as a Reusable Catalyst for Boosting

- 567 Advanced Oxidation Performance via Radical and Nonradical Pathways.
 568 ACS Appl. Mater. Interfaces 2021, 13, 22694-22707.
- 569 21. Xing, Y.; Yao, Z.; Li, W.; Wu, W.; Lu, X.; Tian, J.; Li, Z.; Hu, H.; Wu, M. Fe/Fe₃C
- 570 Boosts H₂O₂ Utilization for Methane Conversion Overwhelming O₂ Generation. *Angew. Chem., Int.*
- 571 *Ed.* **2021,** *60*, 8889-8895.

586

- 572 22. Sahraie, N. R.; Kramm, U. I.; Steinberg, J.; Zhang, Y.; Thomas, A.; Reier, T.;
- 573 Paraknowitsch, J.-P.; Strasser, P. Quantifying the density and utilization of active sites in non574 precious metal oxygen electroreduction catalysts. *Nat. Commun.* 2015, *6*, 8618.
- 575 23. Li, J.; Ghoshal, S.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Halevi, B.; McKinney,
 576 S.; McCool, G.; Ma, C.; Yuan, X.; Ma, Z.-F.; Mukerjee, S.; Jia, Q. Structural and
 577 mechanistic basis for the high activity of Fe–N–C catalysts toward oxygen reduction. *Energy*578 *Environ. Sci.* 2016, *9*, 2418-2432.
- 579 24. Zhu, Y.; Zhang, B.; Liu, X.; Wang, D.-W.; Su, D. S. Unravelling the Structure of
 580 Electrocatalytically Active Fe–N Complexes in Carbon for the Oxygen Reduction Reaction. *Angew.*581 *Chem., Int. Ed.* 2014, *53*, 10673-10677.
- 582 25. Collings, I. E.; Vasiukov, D. M.; McCammon, C. A.; Dubrovinsky, L.; Cerantola, V.;
- 583 Petitgirard, S.; Hübschle, C. B.; Schönleber, A.; Chernyshov, D.; van Smaalen, S.;
- 584 Dubrovinskaia, N. Local Structure of Ferroic Iron Formates at Low Temperature and High Pressure

26. Chen, Z.; Song, J.; Peng, X.; Xi, S.; Liu, J.; Zhou, W.; Li, R.; Ge, R.; Liu, C.;

- 585 Studied by Mössbauer Spectroscopy. J. Phys. Chem. C 2019, 123, 21676-21684.
- 587 Xu, H.; Zhao, X.; Li, H.; Zhou, X.; Wang, L.; Li, X.; Zhong, L.; Rykov, A. I.; Wang,
 588 J.; Koh, M. J.; Loh, K. P. Iron Single Atom Catalyzed Quinoline Synthesis. *Adv. Mater.* 2021,
 589 e2101382.
- 590 27. Li, H.; Zhao, Z.; Qian, J.; Pan, B. Are Free Radicals the Primary Reactive Species in Co(II)-
- 591 Mediated Activation of Peroxymonosulfate? New Evidence for the Role of the Co(II)592 Peroxymonosulfate Complex. *Environ. Sci. Technol.* 2021, 55, 6397-6406.
- 593 28. Jiang, N.; Xu, H.; Wang, L.; Jiang, J.; Zhang, T. Nonradical Oxidation of Pollutants with
- 594 Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. *Environ*.

- 595 Sci. Technol. 2020, 54, 14057-14065.
- 596 29. Liang, J.; Duan, X.; Xu, X.; Chen, K.; Zhang, Y.; Zhao, L.; Qiu, H.; Wang, S.;
- 597 Cao, X. Persulfate Oxidation of Sulfamethoxazole by Magnetic Iron-Char Composites via
- 598 Nonradical Pathways: Fe(IV) Versus Surface-Mediated Electron Transfer. *Environ. Sci. Technol.*
- **2021**, *55*, 10077-10086.
- 600 30. Dong, H.; Li, Y.; Wang, S.; Liu, W.; Zhou, G.; Xie, Y.; Guan, X. Both Fe(IV) and
- Radicals Are Active Oxidants in the Fe(II)/Peroxydisulfate Process. *Environ. Sci. Technol. Lett.*2020, 7, 219-224.
- 31. Jin, Q.; Kang, J.; Chen, Q.; Shen, J.; Guo, F.; Chen, Z. Efficiently enhanced Fentonlike reaction via Fe complex immobilized on silica particles for catalytic hydrogen peroxide
 degradation of 2,4-dichlorophenol. *Appl. Catal.*, B 2020, 268, 118453.
- 606 32. Zong, Y.; Guan, X.; Xu, J.; Feng, Y.; Mao, Y.; Xu, L.; Chu, H.; Wu, D., Unraveling 607 the Overlooked Involvement of High-Valent Cobalt-Oxo Species Generated from the Cobalt(II)-
- 608 Activated Peroxymonosulfate Process. *Environ. Sci. Technol.* **2020**, *54*, 16231-16239.
- 609 33. Zong, Y.; Zhang, H.; Zhang, X.; Liu, W.; Xu, L.; Wu, D., High-valent cobalt-oxo
- 610 species triggers hydroxyl radical for collaborative environmental decontamination. *Appl. Catal., B*
- 611 **2022**, *300*, 120722.
- 612 34. Zhang, T.; Zhu, H.; Croue, J. P. Production of sulfate radical from peroxymonosulfate
- 613 induced by a magnetically separable CuFe₂O₄ spinel in water: efficiency, stability, and mechanism.
- 614 Environ. Sci. Technol. 2013, 47, 2784-91.
- 615 35. Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P.
- 616 On an Easy Way To Prepare Metal-Nitrogen Doped Carbon with Exclusive Presence of MeN4-type
- 617 Sites Active for the ORR. J. Am. Chem. Soc. 2016, 138, 635-40.
- 618 36. Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefevre, M.; Jaouen, F.;
- 619 Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S.; Dodelet, J. P. Structure of the
- 620 catalytic sites in Fe/N/C-catalysts for O₂-reduction in PEM fuel cells. *Phys. Chem. Chem. Phys.*
- **621 2012**, *14*, 11673-88.
- 622 37. Zhao, Y.; Deng, C.; Tang, D.; Ding, L.; Zhang, Y.; Sheng, H.; Ji, H.; Song, W.;

- 623 Ma, W.; Chen, C.; Zhao, J. α-Fe₂O₃ as a versatile and efficient oxygen atom transfer catalyst in 624 combination with H₂O as the oxygen source. *Nat. Catal.* **2021**, *4*, 684-691.
- 625 38. Saveleva, V. A.; Ebner, K.; Ni, L.; Smolentsev, G.; Klose, D.; Zitolo, A.; Marelli,
- 626 E.; Li, J.; Medarde, M.; Safonova, O. V.; Nachtegaal, M.; Jaouen, F.; Kramm, U. I.;
- 627 Schmidt, T. J.; Herranz, J. Potential-Induced Spin Changes in Fe/N/C Electrocatalysts Assessed by
- 628 In Situ X-ray Emission Spectroscopy. *Angew. Chem., Int. Ed.* **2021**, *60*, 11707-11712.
- 629 39. Kramm, U. I.; Herrmann-Geppert, I.; Behrends, J.; Lips, K.; Fiechter, S.; Bogdanoff, P.
- 630 On an Easy Way To Prepare Metal–Nitrogen Doped Carbon with Exclusive Presence of MeN₄-type
- 631 Sites Active for the ORR. J. Am. Chem. Soc. 2016, 138, 635-640.
- 632 40. Dashdorj, J.; Zvanut, M. E.; Stanley, L. J. Iron-related defect levels in SrTiO₃ measured by
- 633 photoelectron paramagnetic resonance spectroscopy. J. Appl. Phys. 2010, 107, 083513.
- 634 41. Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu,
- 635 W.; Jiang, C. Is Sulfate Radical Really Generated from Peroxydisulfate Activated by Iron(II) for
- 636 Environmental Decontamination? *Environ. Sci. Technol.* 2018, *52*, 11276-11284.