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Abstract
Swarm intelligence is the study of natural biological systems with the ability to

transform simple locahteractions into complex global behaviours. Swarm robotics
takes these principles and applies them to mubibot systems with the aim of
achieving the same level of complex behaviour which can result in more robust,
scalable and flexible robotic solutisthan singular robot systems. This research
concerns how cooperative mutobot systems can be utilised to solve real world

challenges and outperform existing techniques.

The majority of ths research is focused around @mergency ship hull repair scama
where a ship has taken damage and sea water is flowing into the hull, decreasing the
stability of the shipA bespoke team of simulated robotsingnovel algorithms enable
the robots to perform a coordinated ship hull inspectiatipwing therobotsto locate

the damage faster than a similarly sized uncoordinated team of robots. Following this
investigation, a methods presentedy which the same team of robots can use self
assembly to form a structure, using their own bodies as material, to coveregadr

the hole in the ship hull, halting the ingress of sea water.

The results from a collaborative natumespired scenario are also presented in which a
swarm of simple robots are tasked with foraging within an initially unexplored
bounded arenaMany of the behaviours implemented in swarm robotics are inspired
by biological swarmicludingtheir goals such as optimal distributiovithin
environments.n this scenario, there are multiple items of varying quality which can be
collected from different sorces in the area to be returned to a central depot. The aim
of this study is to imbue the robot swarm with a behaviour that will allow them to
achieve the most optimal foraging strategy similar to those observed in more complex
biological systems such asts. The u$ Z }i@a[rr contribution to this study is the
implementation of an obstacle avoidance behaviour which allows the swarobots

to behavemore similarly to systems of higher complexity.
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Chapter 1. Introduction

Section 1.1 Background

Swarm intelligence is the study of natural biological systems with the ability to
transform simple local interactions into complex global behaviours. Swarm robotics
takes these principles and applies them taltirrobot systems with the aim of
achieving the same level of complex behaviour which can result in more robust,
scalable and flexible robotic solutions than singular robot systdimes.key to
overcoming individual shortcomings in medifjent systems isocnmunication. Isolated
individuals only have access to their immediate surrounds which reduces the
information available to them and limits their ability to make informed decisions. By
communicating with others, these limits are removed and the extenheirt
knowledge is no longer restricted to their individual reach, but to the reach of the
collective. Inter robot communication creates opportunities for individuals to
collaborate, enabling them to achieve tasks they would be incapable of performing
alone and increasing the speed at which achievable tasks can be complétisd.
research demonstrates these principles by showing cooperative multrobot
systems can be utilised to solve real world challenges and outperform existing

techniques.

Section 1.2 Importance of the r esearch

ResearcherbBavebegun to recognise the power of swarm intelligence and the
solutionsit could provide if appropriatelgpplied to multirobot systemdgrom the

early 2000s to the present dagolutions which rely on a sindgkghly complex robot
may be capable of performing a variety of tasks simple robots would be unable to
achieve themselves, however this comes with a number of drawbacks, prime among
these being poor scalability and the infamous single point of failureKpRMen
aspects of a problem grow (such as the size of an environment to be monitored or
explored)it becomes more difficult for a single robot system to scale its solution,
reducing efficiency and increasing the time taken to complete tasks. Shouldla sin
robot break or malfunction the entire system must come to a halt until repairs have

been completed.



Cooperative multrobot systems offer a viable alternative to the conventional single
robot solution which can overcome botf these issues. MuHiobot systems

experience lesseductionin performance when scaling their approach to a growing
problem thanks to the ability to easily add more robots and expand the sygtem

reach. If a single robot breaks or malfunctions in a rroliot system the team can

still continue to function, albeit at a reduced efficiency, removing the SPOF associated
with single robot solutions. When designed correctly, mrdbot systems are even
capable of changing their collective approach to match changing problems such as

navigating dynamic environments.

It stands to show that cooperative multbbot systems may offer many advantages
compared to more complex individual robots, but this is highly dependent on the
behaviours built into each robot. Robots which are incapableoaimunicating or
coordinating with other robots do not offer the benefits of medtibot systems as
listed above. As such, the subject of how to design individual robot behaviours which
result in desired complex global behaviours is of paramount importsmtee field of
swarm robotics research. This thesis presents three novel demonstrations of how
individual robotbehaviour and communication are leveragedcteate complex global
behaviours applied tan entirely new approach temergency ship hull repaiand
nature inspired foraging scenarioBhisresearch ommulti-robot systemsperforming
emergency ship hull repair is a first of its kind study and is the most significant
contribution to knowledgeAll of thestudies serve as new examples of how
coopemative multirobot systems may be applied to address reakld problems and

showcase the possibilities of swarm robotics.

Section 1.3 Motivation

The motivation behind puts]vP §Z]e E ¢« €& Z u (E}u SZ pSZ}E[e ]

robots to efficiently sale real world problems that are deemed hazardous to human

o]( X ME]vVP §Z puSZ}E&EJ[es SJu ]Jv 8Z (E]S8]*Z Z}C o &0 §
conventional methods of emergency ship hull repair and the importance of regaining
ship stability quickly. e task of emergency ship hull repair is entrusted to human

crew members, but being a dangerous and time constrained procedure it increases the

EJ]el }( JVipEC 8} 8z €& AX /8 A+ pE]vP 8Z u3zZ}E[s E

a method of delegatinthe emergency ship hull repair procedurea multi-robot
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system was first formed. Using robots to autonomously repair ship hull damage would
reduce the risk to human life by removing them from the situation and allowing them

to focus on other tasksStudyng at Sheffield Hallam University allowed the author to

learn from some of the most respected swarm robotics researchers while undertaking
Z]l* & « & zZX dZ]e &£ Z vP }(IviAo P v Sus o P v E
knowledge of cooperative multobot systems such that he began consider how this
technologycould be applied to solve other issues beyond ship hull repair. This interest
encouraged the author to participate in a joint researchjpob with another team of

swarm robot researchers at the Univiysof Sheffieldand thecollaboration resulted

in a comprehensive study on designing optimal foraging behaviours in-rohtt

eCe3 ueU AZ] Z « EA 8} A% v $Z HSZ}E[* IVIAo P }(}
robotics, but also how current swarm robots cdide applied to solve other reatorld

problems.

Section 1.4 Research challenges

There areseveralopen issues in the field of swarm robotics yet to be full addressed
which had tobe taken into consideration when proceeding with the studies. One of
the more significant issues to address is the lack of a general design pattern for swarm
robot systemst how to achieve any desired global behaviour from the design of
individual robot behaviourand vice versa. While some progress has been made
towards realising formal design pattesfor some specific global behaviour, a general
design pattern has not yet been formulated. Furthermore, many existing design
patterns are highly dependent ahe robots physicaimorphology which makes them
difficult to implement on multirobot systems using different robots from the example.
Without a general design pattern, the author had to utilise the latest body of research
when designing the individual robot beViaurs to create the desired global

behaviours for the studies.

This research presented a number of additional challenges for the author to overcome.
The ship hull repair scenario made use of bespoke simulated autonomous underwater
robots, whose design wdssed on existing technologies which had been

demonstrated in other underwater robots. There is a variety of epearce and

proprietary robot simulators available for carrying out experiments but few of these

have been optimised for swarm robotics resglarThe simulators which are better
9



designed to run multrobot simulations also vary in their ability to model different
environments such as air, ground, and water. Of the fraction of simulators suitable for
multi-robot systems, only gery smalportion of these can simulate fluids

appropriately. This presented a challenge to the researchers in choosing a suitable

simulator to carry out the ship hull repair experiments while minimising the reality

gap.

Section 1.5 Outline of Thesis
The research is sepated irto six chapters. Chapter 1 opens with a brief introduction
to the subject of artificial swarm intelligence, the main subjects explored within this
thesis,and thesignificance of the research. This is followed by an explanation of the
1S Z} E [ estinpurElingcooperative multirobot systemgesearch and a
discussion of how the author addresses the more prominent open issues and
challengesn swarm robotics through these studies. The Chapter concluitsthis
outline of how the paper will proa, providing a summary of the contents contained

in the main body of the thesis.

Chapter 2 provides a comprehensive review of the historical developments of swarm
robotics and multrobot systems from their inception to the present day. Included are
key publications which established the theories and methodologies found to be most
relevant to the studies performed in this thesis such as: the main principles of swarm
robotics, historical developments, behavidbased robotics, mukiobot modelling,
pattern-formation, coordinated motion, localisation and mapping, mudibot
exploration, aggregation, modularity, selfsembly, and foraging behavioufhe
methodologies present in each subsequehapter are linked to this literature review,
to show how the pproach was informed by established swarm robot methods and
theories.The final section identifies gaps in existing research and indicates how the

studies in this thesis contribute to bridging these gaps.

Chapter 3s an extension of the published work Bigire, et al. (2019a) arpresents

the emergency ship hull repair scenario and proposes solutions which use a group of
cooperative autonomous underwater robots to perform inspectidhe methodology

for the ship hull inspection is explainegddepth and idollowed by a presentation,

analysis and discussion of the results from the experisiefhe morphology of the

10



individualrobotsand their designs discussed along with the simulated environment.
The chapter concludes with a detailed discussion of tisalte and their implications
on future experiments concerning emergency ship hull repair@rdplete area

coverage CAGQalgorithms applied to swarm robot systems.

Chapter 4s an extension of the published work by Haire, et al. (2019b) and presents
the next stage of the emergency ship hull repair process, providing-dapth
explanation of themethodology used for the swarm robots performing setsembly.
Differences in robot morphology from those used in Chaptare identified here

along with the snulated environment used to carry out experiments. The chapter
proceeds to discuss the experimental setup, presentmegresults of the experiments,
and concludes with a discussiontbé implications of the findings on future
experiments concerning emgency ship hull repair and selésembly algorithms

applied to swarms of homogeneousodularrobots.

Chapter Ss an extension of the published wdpk Talamali, et al. (2020) to which the
author of this thesis contributed. Trehapter discussesow natureinspired swarm
robot systems can be applied to solve foraging scenarios and obstagigance tasks
and thendelves ito the methodologies used in the experimentBhe study examines
swarmsizedependant foraging strategiebpw these influence the p&rmance of a
swarmofrobotdJ v Z}A 8Z USZ}E[e Ju%o u v3 S]}v }( } 3
benefited this collaborative studyrhe chapter concludes with a discussion of the
implications of these studies, and how they impact the field of swarm robots ahd wil

influence future studies of the subject.

Chapter @s the final chapter which providessaccinct conclusion for each of the
studies presented in the thesis. Each of the studies provides a contribution to the
existing knowledge of swarm robotiossearchand these are identified here. The
chapterendsby proposing a collection of recommended future studies that could
further advance the field of swarm robotiesth respect to the studies presented
within this thesis All references are provided the section following this along with

appendices containing relevant code, supplemental figures, tables and graphs.

11



Section 1.6 Main Contributions

The research presented within this thesis contains three noweetributions tothe

field of cooperative mui-robot systems Chapter 3 presents an application that utilises
theories of cooperative muHiobot exploration and communication to create a

complete area coverage search method for a swarm of robots tasked with inspecting a
damaged ship hull. The coofive search algorithm was proven in simulation to be
more effective at achieving complete area coverage in less timetttmaamemulti-

robot system using an uncoordinategarchalgorithm Additionally, the chapter

presents a simulated robot sensarrangementthat would allow robots to maintain a

set distance from a 3D object, allowing them to treat their environment more akin to a

2D plane, which allows for simplenplementationsof the search algorithm.

Chapter 4 expands on the scenario presented in Chapter 3 with respect to autonomous
ship hull repaiusing aswarm of robots. The main contribution of this research is a
method of seKassembly that would allow modular robots to form a repair patch
capableof coving a hole in a ship hull. In addition, tiesults from theexperiments

informed an improvedelfassembly approacthich suggests a method of enhancing

the initial approachoy controlling the angle of approach the robots wgeen

navigating theimway tothe damage, or by allowing more th@ne assembly location

for the repair patch

The main contribution of chapter 5 is the implementatiminobstacleavoidance
behaviourwith low computational overheadn a large swarm of robots tasked with
collective foraging in environments. The swarm of robots are able to tune their
responseato their environment to create the best distribution of agents balancing
quality of items to collect against the distance required to retrieve them. The obstacle
avoidance bkaviour solved a major issue of physical rodmsomingstuck against

the walls of their bounded arena and other robpt¢ghich improvel the performance

of the swarm, and creatka system more capable of emulating the collective foraging

behaviours obsenatin biological swarm such as ants.

12



Chapter 2. Literature Review

Section 2.1 Main Principles

Swarm intelligence is considered the study of natural biological systems with the ability
to transform simple local interactions into complex global behaviaush as bees

working together to build nests, ants exploring environments and foraging for food, or
the pattern formation in schools of fish evading predators (Bonabeau, Dorigo, and
Theraulaz, 1999; Camazine, Deneubourg, Franks, Sneyd, Theraulaz, arebBpnab
2003). Swarm robotics takes these same principles and applies them terohdti

systems with the aim of achieving the same level of complex global behaviour from
simple local robotic interactions, which can resalimore robust, scalable and fl&e

&} }S] ec}ousS]itve ~ v]U T1imm&/first defnition bf theXerm swarm

robotics, which is still regarded as the most complete description of the discipline
(Barca and Sekercioglu, 2013; Brambilla, Ferrante, Birattari, and Dorigo, 2013; Navarro
and Matia, 2013; Bayindir, 2016; Nedjah auchior, 2019), was proposed lby Z]v
~1iifie Jv Z]* » u]v 0 % % €& Z"A Eu Z} }8] *W &E}u "}uE -
}( %% 0] S]1}v[W

AA Eu EY }S8] 2 ] 8Z Sp C Y(Z}A o EP vpu E }( C
physically embodied agents can be designedcgbat a desired collective
behaviour emerges from the local interactions among agents and between the

Pv3e v 8Z VA]JE}vu v3X_

Following this definitionb Z [2005) identified the main principles of swarm robot
systems with a focus on three desirpbperties: robustness, flexibility, and scalability.
Robustness is the ability of a system to continue to function, albeit at lower
performance, when a portion of the system fails or in the presence of disturbances in
the environment. Scalability is thd#ity of a system to increase and decrease the
number of individuals of the group and continue to function using only the same local
interaction rules. Flexibility is the ability of a system to adapt and address changing
demands such that the system catonfigure its group members or approach to

address various tasks.

These are the main aspects of a swarm robot system, but in order to further

distinguish them from other closely related subjects and more general Hmaldot
13



systems,b Z [2005) identifiel additional sets of criteria: The individuals that make

up the swarm should be autonomoughey should possess physical embodiment with
the ability to interact with the environment. Studies of social insects (Camazine et al.,
2003) showed that natural sfems are able to achieve robust, flexible and scalable
behaviours without the need for a centralised control; these same attributes are
desired for swarm robot systems and so designers should make effort to ensure their
systems are also decentralised. Tdi®lities of the system should involve coordination

of large numbers of robots, or at least smaller numbers of individuals with the ability
to scale to higher population sizes without the need to change the simple local rules of
interaction. The individua that make up the group should be homogeneous with no
variance between robotg heterogeneous groups of robots with predefined roles and
different rules of interaction are less scalable and robust than homogeneous groups
and as such rarely meet the crite to qualify as a swarm system. The individual robots
should be relatively simple compared to the task at hand, such that an individual
would be incapable of carrying out the task by itself, or completes the task much less
efficiently than a group of indiduals would. Finally, the robots used to make up these
systems should only need to utilise limited sensing and local communication for the
swarm to achieve its desired behaviour. This form or distributed coordination removes
the need for global communrétion methods that would likely hinder the scalability of

swarm.

These definitions were initially intended as a means to determine to what degree the
term swarm robotics might apply to a given mutibot system, buhad since evolved

to serve as the cormrestones for defining most swarm robot systems in use today.

Most importantly, true swarm robot systems today are described as nlbidt

systems which are capable of generating complex global behaviours from simple local
interaction; these are systems wdh are capable of performing more than the mere

sum of its individual parts. Imé following section, the origin of the research of swarm
robotics is discussed with insights into how the subject was originally formed from
fusions of the studies of multobot systems and collective intelligence observed in

nature.

14



Section 2.2 Historical Developments of Swarm Robotics

Swarm robotics is a relatively new area of research, but its founding extends back to

the early 1980s when researchers were using cellldomata to model and replicate

§Z %o 38 Eve v Z AlJJuE+} « EA Jv v SpE ~t}o(E uU i
selforganisation and the ability of cellular automata to produce complex patterns

from simple rules sparked the imagination of sciengising new momentum to the

study of how such natural complex behaviours may be replicated in artificial systems.

In the late 1980s concepts and studies of mrdthot systems with the ability to self
organise began to emerge and a new term to describetheellular robots (Fukuda

and Nakagawa, 1988; Beni, 1988). This term was intended to indicate how these
groups of simple robots could behave like the cells of an organism, assembling to form
more complex structures. The term swarm intelligence began hesed by Beni

(1988), Beni and Wang (1989; 1991), and Hackwood and Beni (1991; 1992) to describe
the ability of these cellular robot systems to generate patterns and complexity through
simple local interactions. However, research into biological systespdaging

collective intelligence such as insect colonies by Pratte, Gervet, and Theraulaz (1990)
was also being conducted the same time, and the crogser between the disciplines
quickly became apparent. These biologists found that the concepts of swarm
intelligence could be used to describe the behaviours they had been observing in
nature. After all, the systems they were describing were also decentralised,
homogeneous and made up of large groups of relatively simple individuals, but

capable of displayig complex behaviours.

Biologists and roboticists alike began utilising the concepts of swarm intelligence in
their research to find new ways of understanding how natural systems functioned and
how these discoveries could be applied to artificial systemngenerate complex
behaviours (Kube and Zhang, 1993; Balch and Arkin, 1994; Dorigo, Maniezzo, and
Colorni, 1996; Bonabeau, Theraulaz, Deneubourg, Aron, and Camazine, 1997; Balch
and Arkin, 1998; Arkin, 1998). It soon became apparent that the term swarm
intelligence could be used to describe both the behaviours of natural and artificial
systems, and by the late 1990s the definition was extended to include attempts to
design algorithms or distributed problesolving devices inspired by the collective

behaviou of social insect colonies and other animal societies (Bonabeau et al., 1999).
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In the early 2000s it had been revealed that social insects indeed functioned without
centralized coordination and yet their interactions and behaviours formed a natural
systemthat was robust, flexible and scalable (Camazine et al., 20p8)perties
considered desirable for distributed muttobot systems. This helped solidify the idea
that artificial systems with these properties could be developed if behaviours from
naturalsystems could be replicated, which boosted research into reproducing the
behaviours observed in ants, bees, fish, and birds in rolot systems. By this point

in time, there were a variety of terms being used to describe these kinds of-rabtit
sysems such as the earlier mentioned cellular robotics, robot colonies, distributed
robotics, and collective robotics (Kube et al., 1993; Arkin and Bekey, 1997; Martinoli,
1999). With no universal terminology yet in place Sahin (2005) sought to establish the
term swarm robotics as the title of this disciple, distinguishing the subject from general
multi-robot systems. He provided the first definition and listed the three main
principles of robustness, flexibility, and scalabilitywhich are still recognisedsahe

defining points of swarm robot systems today (Nedjah et al., 2019).
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definition of swarm robotics, but by the mi2000s some of the moreoughtafter

domains of aplication had become cleareThese domains included: tasks that

covered a region, such as space exploration (Burgard, Moors, Stachniss, and Schneider,
2005), environmental monitoring (Dhariwal, Sukhatme, and Requicha, 2004),

surveillance (Solomon, 2004), lbmzard detection (Zarzhitsky, Spears, and Spears,

2005); tasks considered too dangerous for humans, such as robot mieetide

(Kumar and Sahin, 20Q3asks that may scale up or down in time, such as

containment of oil spills (Kakalis and Ventikos,@0@nd tasks where redundancy is a

benefit, such as forming dynamic communication networks in disaster scenarios

(Witkowski, EHabbal, Herbrechtsmeier, Tanoto, Penders, Alboul, and Gazi, 2008).

The subject area of swarm robotics only continued to grotik wasearchers tackling a

plethora of problems with the aim of one day realising many of the suggested

applications of this new technology. Along with the advances came a number of

taxonomies on the subject of swarm robotics each identifying the most prenti

problems being tackled by researchers and categorising them into various subject

areas. Of the variety of suggested classifications of the subject, Brambilla et al. and
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2019). Brambilla divided the works of swarm robotics into the two classes of methods
and collective behaviours as shown in Table 2.1. While Bayindir divided the subject
into the five main axis of modelling, behaviour, design, communication, analytica

studies, and problems shown in Table 2.2.
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_ Behaviourbased design methods
Design methods

Automatic design methods

Methods Microscopic models

Analysis methods Macroscopianodels

Realrobot analysis

Aggregation

Pattern formation
Spatiallyorganising

Chain formation

behaviours
Selfassembly and morphogenesis
Object clustering and assembling
Collective Collective exploration
behaviours Navigation behaviours Coordinated motion

Collective transport

_ o _ Consensus achievement
Collective decisiomaking

Task allocation

Other collective

behaviours
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Sensotbased

Microscopic
Modelling

Macroscopic

Cellular Automata

Nonadaptive

Behaviour design Learning Reinforcment Learning

Evolution

o Interaction via Sensing
Communication

Interaction via Communicatior|

Analytical Studies

Pattern Formation

Aggregation

ChainFormation

Selfassembly
Problems

Coordinated Movement

Hole Avoidance

Foraging

SelfDeployment
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a study belongs to and help identify how it may relate to other research categories. For
instance, in this thesis the following subjects could be categorised accoading t
Brambilla as follows: Complete area coverage algorithms using a swarm of robots in
Chapter 4 can be categorised as collective behaviours, navigation behaviours or
spatiallyorganizing behaviours, collective exploration, coordinated motion, and chain
formation. Selfassembly using a swarm of robots in Chapter 5 can be categorised as
collective behaviours, spatialyrganizing behaviours, aggregation, setsembly and
morphogenesis, collective decisiomaking, and consensus achievement. Foraging with
obstacle avoidance in Chapter 6 can be categorised under methods, analysis methods,

and real robot analysis. It could also be categorised under collective behaviours,
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collective decision making, task allocation, or navigation behaviours and collective

exploraton.

The following sectionand studies withirwere mainly selected according to the
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most applicable to the subsequerdsearchpresented in Chapters 3, 4, anabthis
thesis. They include discussions of the most prominent studies that have contributed
to the advancment of swarm robotics, the methods and approaches that have
emerged, and identifies the papers that have had a significat influence on this thesis

and heped inform the design process for each robot system

Section 2.3 Behaviour Based Robotics

The most widely used approach to designing robots with artificial intelligence (Al),
prior to the mid1980s, used what became known as the symbolic system, where
robots used symbols to represent the world around them and perform mathematical
functions to solve various scenarios (Feldman, and Sproull, 1977). This approach to Al
saw many successes in solving problems encountered by robots, but as the scenarios
to solve became more complex, the computation needed to obtain solutions became
increasingly expensive. To solve this dilemma, a new approach to achieving robotic
solutions was proposed: behaviebased robotics (Brooks, 1986; 1990). The symbolic
system approacko Al relied heavily on higlevel cognitive processes such as
representation and reasoning to achieve desired robot behaviours, but in the
behaviourbased approach the perceptions of the robots were directly coupled with
actions resulting in solutions & were much less computationally expensithe key

to this is in how the task to be performed is decomposed into subtasks. In the symbolic
system approach the control system of the robot is divided into separate modules to
find solutions via a process functional decomposition, where the problem is split

into series of sequential processes such as perception, modelling, planning, and
execution as shown in Fig.2.3.1. Conversely, behadiased robot control systems
develop solutions using behaviours@@bmposition, where the solution is represented

as separate independent processes running simultaneously following the subsumption

architecture as shown in Fig.2.3.2
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Fig.2.3.1 Functional decomposition of a desired robot task, adapted from Brooks
(1986.

Fig.2.3.2 Behavioural decomposition of a desired robot task, adapted from Brooks
(1986).

Contrary to the sequential function blocks of the symbolic system, behabiased
architectures are typically represented as stacks of parallel concurrent lmehrayviOne

of the first methods of dictating how the layers interact is known as subsumption
architecture (Brooks, 1986), called such due to the way it subsumes lower levels of
behaviour. In subsumption architecture the bottom layers deal with the mostiaruc
behaviours to theE } }SUrvival such as obstacle avoidance and the top levels
control more complex processes such as object recognition, localization or mapping.
These systems are designed withatom-up approach, starting with the simplest

most essential behaviours and only adding higher behaviour oncéatver-level
behaviours have been tested, refined, and proven functional and robust. Although
higher level behaviours can rely on the functionindosfer-levelbehaviours, they do

not explicitlyuse the lower levels as subroutines, only as a set of existing competences.
Subsumption is one of the better documented methods of coordinating the different

levels but there are alternative methods of showing how the different levels of
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behaviourbased robotics.

When subsumption architecture was first proposed, Arkin (1989) authored an
alternative approach to behaviodrased robotics using the concept of motor schema.
Motor schema theory is a method that is able to describe the behaviour of agents
using a higher level of abstraction and representing them as modules. There are a
number of definitions of schema which depend on the area of application but for the

purpose of ecoding robotic behaviours, Arkin (1998) defined schema as follows:
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constructed; it consists of the knowledge of how to act or perceive as well as

the computational process by whichS ]J¢ v § X _

Much like other behavioubased methods, motor schema demonstrated advantages
over the symbolic system approach to the design of control systems for autonomous
robots. In motor schema the modules that represent different behaviours execute
concurrently and all of the responses formed by the modules are represented as
vectors using potential fields. Unlike subsumption architecture, coordination between
the modules is achieved using vector addition and there is nalpfimed hierarchy for
this cooperation. However, the biggest distinction between the approaches is the
inclusion of a second layer between the schema and the output of the motors, where
the information generated in each schema is fused to form a single resultant action.
This is bst illustrated by Arkin (1989) in Fig.2.3.3 where he applied motor schema
theory to solve robot navigation with his perceptiaction schema. This method

results in extremely fast computation since only a single vector is required to be

computed atthero}S[¢ PEE vS o} S§]}vX
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Fig.2.3.3 Motor schema theory applied to robot navigation; percegaion schema

relationship, adapted from Arkin (1998).

Floreano and Mattiussi (2008) provided a good summary of the main benefits and
drawbacks of the symbolgystem design and behaviebased design. The symbolic
approach to design excels at producing robotic systems that are precise, controllable,
and predictablet qualities well suited to domain applications such as surgical robotics
or assembly line machine$he main drawback of this approach is its failure to cope

well with noise and uncertainty, which are commonly encountered in autonomous
robots. Furthermore, each function is dependent on the preceding stage of the
process, which is less robust as faikiet earlier stages can greatly impact the
functioning of the system as a whole. It is also a computationally expensive process
due to the systems needs to build models and produce plans at the same time in order

to function.

The main advantages of behawurebased robotics over the symbolic approach, such as
faster reactions, stem from the systems method of directly connecting sensory
information onto motor actions. It is a more robust design since processes run in
parallel and can operate independent of@another. This means that if one of the
behaviours fails the remaining behaviours can continue to function, although they may

see a minor impact on performance dependant on the task. It can also handle multiple
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goals which can be dealt with by individbs&haviours at different levels, with the

need for significantly higher computational power.

Both subsumption and motor schema approaches have been proven to be appropriate
methods of creating robot control systems using behawvoased design, breaking

away from the mainstream method of using representational knowledge and instead
emphasise the use of behavioural decomposition, and tight coupling between sensors
and actuators. The robots presented in Chapters 4 and 5 were designed using the
bottom-up approah of behaviowbased design, with motor schema approach

selected as the base architecture due to its focus on-lagered cooperative

interaction between the separate behaviours.

For instance, the simulated ship hull inspection robot described Chapterfdrms a
number of separate behaviours that execute in parallel to allow the robot to navigate
the ship hull. The data obtained from its forward facing distance sensors is passed
througha controller which links directly to a corresponding propeller, Wlattows the
robot to maintain a set distance from the ship hull at all times. While this process is
being executed, the robot uses additional proximity sensors to detect the presence of
other robots or obstacles and adjust its position accordingly. Ttvesdehaviours

execute simultaneous)ydemonstrating a method of generatifigrmation control.

Section 2.4 Multi -Robot Models

When designing cooperative mutbbot systems, mathematical models of the swarm
are essential to evaluate several aspects, such as the feasibility of the task to be carried
out, the minimum number of robots necessary to achieve the desired behaviour, and
the effect of any disturbance to the system. There are two main methods of
describing system behaviours and in swarm robotics that fall under the categories of
microscopic and macroscopic studies. Microscopic models use a boipotesign and
focus on thendividual behaviour and interaction between members of the swarm,
while the macroscopic approach is more of a-tigwvn design concerned with the
function of the swarm as a whole (Brambilla et al., 2013). Microscopic models of
swarm robots are typicallyescribed at different levels of abstraction from simple
points representing robots on a 2D plane, to full 3D simulations where environmental

forces, sensors, and actuators are modelled. These different levels of abstraction come
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with inherent reality gapssuch that when the behaviour is implemented on a real
robot system the results may not align with the simulations. This is an important factor
to consider when selecting an appropriate simulator to represent swarm robot models

and is discussed further Bection 3.4.

Macroscopic models typically use mathematical formula to describe collective
behaviours and one of the most popular categories of these are the rate and
differential equations. In swarm robotics, rate equations can be used to describe the
different proportions of robots exhibiting a set number of states which are derived
from probabilistic finite state machines (PFSM). PEBMist of different states with
descriptions of how an agent transitions between them. The transitions that govern
the shft between states can be determined by more than just the previous event, such
as specific interactions with external processes. PFSM are a form -afeterministic
finite state automata where the probability of a given transitions betweettest is
alsoprovided. Eq. (2)Jishows an implementation of a PFSA applied to a swarm of
robots tasked with collaboratively collecting sticks while avoiding the wall of their

arena (ljspeert, Martinoli, Billard, and Gambardella, 2001).
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where grepresents the number of probabilities at each iteration, is the
probability of encountering a wall,,/for encountering a robot, yfor finding a sck,
ksand g gfor holding a stick and another robot respectively. is the surrounding

wall of the arena, ¢is the entire arena, and /is a single robot.

In rate equations, the states from the PFSM are represented as variables with an
equationassigned to each of #m much like those of Eq. (3. These variables cédme

used to track the number abbots in a given state as time evolves and show how
many transitions between states occur within a given time frame and under which
conditions. Inded, rate equations has been proven effective at modelling swarm

robot systems in foraging scenarios in the presence of interference (Lerman and
Galstyan, 2002), when foraging from multiple sources (Campo and Dorigo, 2007), and

when collecting energy unit&iQ and Winfield, 2010). The experimental challenges of
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microscopic and macroscopic design were investigated by Mermoud, Upadhyay, Evans,
and Martinoli (2014), where they compared the two design methods when used to

solve a given scenario. Their resultdigated that for both models, toplown

approaches were less effective than the bottamp approaches for designing

distributed controllers, but concluded that a modahsed control design methodology

that incorporated the aspects of both tegiown and bottomup approaches would be

the most effective.

Both the bottomup microscopic and togdown macroscopic approaches have seen
success in designing swarm systems capable of carrying out simple tasks, and a
combination of the design methods may be more benefitiah focusing on a single
approach. However, determining exactly which local interactions between agents at
the microscopic level leado a desired global behaviour at the macroscopic level and
vice-versa is a difficult task. Some promising work towaxdsieving a quantitative link
between these macroscopic and microscopic behaviours was conducted by Reina,
Miletitch, Dorigo, and Trianni (2015) where they identified quantitative links between
the dynamics of the microscopic implementation of a robot swaasked with
shortestpath discovery, and the dynamics of a macroscopic model of a foraging task

based on besbf-n site selection in honeybees.

Their study used centrgdlace foraging strategy in an environment consisting of a
bounded space, a singlerteal nest, and two resources sites at different distance
from the nest. The microspac behaviour of each robatas implemented as a
probabiligic finite state machine (PFSM). The states indicatbith resource site the
agent was committed to, if ivere uncommitted and whether it wasn an interactive
or latent state t indicating if the state of a neighbour would affect its own
commitment state t with probabilities dictating each transition. Their microscopic
implementation was evaluated in simulatiaihe results of which were compared to
their macroscopic model by investigating the decismaking dynamics for varying
probabilities and for sets of different decision problems by varying the distance of the
resource sites. Their results revealed that fhmal distribution of agents according to
their macroscopic model and the mu#igent simulation were in agreement,
confirming the existence of a quantitative miemeacro link. This work represented a

significant step toward achieving a formal design pattwhich was later refined to
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address the spatial and topological factors that impact the mioexro link (Reina,
Valentini, Fernande®to, Dorigo, and Trianni, 2015), thoughore research is required

before a general design pattern for swarm robots banestablished.

As observed, many existing swarm robot systems are modelled through either
microscopic or macroscopic lenses and see implementation and validation in
simulation or real robots. However, Kazadi et. al (2007; 2009) found another way to
describe the propertie and performance of a swarm using mathematical language to
prove their validity. Their modehdependent approach used a combination of
bottom-up and topdown design to describe a desired global behaviour in terms of
tangible quantities and measurements.their 2007 studythey used their method to
form a hexagonal pattern using a swarm whose movement was dictated by the
summed forces of individuals using artificial physld¢gss was extended irneir 2009
studyto proposethat desired behaviours can breore readily achievedhen a swarm
system can be described in termsméasurements within the environmeniThe
methods by which individual robatbtainthese measurementare left open to the
interpretation of designers whicthey argueallows for implenentation of the

behaviours across different swarms with varying morphologies.

There exist alternative methods to modelling swarm behaviour, but methods and
equations provided in thiSectionwere highlighted as they are most applicable to

swarm robot studés discussed in Chapters 4, 5 and 6 of this thEsisinstance, the

robots presented in the ship hull inspection and foraging scenarios were each designed
using either nordeterministic finite state machines or PFSM to describe their
microscopic behaviauwith the aim of achieving a desired macroscopic behavidthe.

yield variable R of chaptéris an example of how the optimal performance of a swarm

can be quantified using measurements directly obtained from the environment

Section 2.5 Exploration

Swam robot systems are inherently mobile and many applications require agents to
move within a given environment in order to accomplish their tasks. This raises the
guestion of how these agents should move in the environment and if there is an
optimal methodof exploration that can be used for tasks such as searching an area,

building maps, or monitoring changes in an environment. Exploration of unknown
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environments has been a subject of immense interest to researchers over the years for
both singular and muitrobot systems since solutions can be used to solve many real
world problems of navigation in autonomous systems. These studies mainly focused
on robots gathering information about their surroundings to better inform their
decisions of how to best reachspecified goal locatiorGonsequently, many

algorithms and methods have been developed to solve issues concerning optimal
exploration techniques such as dispersion, coverage, pattern formation, path planning,
flocking, localization, and mapping. Thextion discusses the various methods

employed in exploration which we found most applicable to the studies of ship hull
inspection and ship hull repair using mulbbot systems presented in Chapters 4 and

5 respectively.

Section 2.5.1 Dispersion and Patt ern Formation

Dispersion is a method used by a group of robots to distribute themselves in a given
environment, without falling out of communication range in order to maximise their
coverage of an area. In order to increase the robustness of the techrdigpersion is
typically designed as a process that is not centrality planned. Effective dispersion
techniques should result in a network of distributed robots which have maximised the
area they can monitor while remaining able to communicate with thearast

neighbours. Dispersion is a useful tool for scenarios where a swarm of robots is tasked
with monitoring environments for hazards (Zhang, Fricke, and Garg, 2011), mapping of
unknown environments (Wang, Liang, and Guan, 2011), or searching for alnjects
landmarks in unknown environments (Liu and Nejat, 2013). Pattern formation can be
interpreted as a variant of the dispersion task, where robots tasked with occupying a
space display a repeatable pattern. Swarms that incorporate pattern formations in

their dispersion technique often result in systems more robust to the failure of units or
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to recovery from gaps formed in the swarm and minimises the risk of leavingspace
uninspected. There are many proposed approaches to solving area coverage using
dispersion and pattern formation and the following section discusses a selection of

notable studies.

When robots are tasked with dispersion and pattéonmation, they requirea way of
ensuring they maintain a specific distance from their closest neighbours and do not fall
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out of communication range, and there exist a number of ways this has been achieved
in literature such as interobot communication (Batalin and Sukhatme 020

McLurkin and Smith, 2004; Falconi, Sabattini, Secchi, Fantuzzi, and Melchiorri, 2015).
Approaches that utilise interobot communication rely on either the direct exchange

of information between agents, or the ability of the robot to react to the preseof

other robots that fall within their sensor range. Another approach to modulating the
distance between robots in a group is to instead use the intensity of received wireless
signals from neighbouring robots to determine how far these agents are éach

other ta method referred to as distance estimation using wireless signal strength
(Ludwig and Gini, 2006; Ugur, Turgut, and Sahin, 2007). An alternative method to
achieving dispersion uses virtual forces (Spears, Spears, Hamann, and Heil, 2004;
Sallan and Baroudi, 2015). The virtual forces approach takes inspiration from models
in physics, assigning forces to each robot and using the resultant vectors to determine

the directions agents should travel relative®Z & v J]PZ }pE[s SE i S}E] *>

One of he most debated methods of dispersion is the use of artificial potential fields
(Reif and Wang, 1999; Balch and Hybinette, 2000; HoWarD § E] U v ~ulzZ Su U
2002;Poduri and Sukhatme, 2004; Mikkelsen, Jespersen, and Ngo, 2013). Artificial
potential fidds assign attractive and repulsive forces to all of the robots, obstacles, and
goals within an environment and use the resultant forces to achieve optimal dispersion
and path planningWhile effective at allowing robots to navigate known environments,
artificial potential fields has been criticized as being ill suited towexald

environments as it often times relies on environment features such as obstacles and
goal location to be know prior to executioBach of these approachédsscussedas

proved swcessful in achieving dispersion and pattern formation for the purpose of
area coveragevhich is used to inform the approach to complete area coverage in
chapter 3. They alsorpvide valuable insights into optimal dispersion theory which is

discussed below

Batalin et al. (2002) proposed two methods of dispersion for a swarm of autonomous
robots in order to maximise their sensor coverage; their informative approach where
robots explicitly communicating with other agents to determine where they should
move,and their molecular approach which communicated implicitly, following

boundary conditions with the ability to distinguish between robots and obstacles.
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These were compared against a basic approach which used obstacle avoidance only.
Their results showed #Ht control strategies that allow agents to communicate with
each other outperform simple obstacle avoidance techniques when performing
dispersion, and the approach which did not explicitly communicate with neighbours
but could distinguish between robots drmther obstacles converged to optimal
distributions the fastest. The theory that control algorithms whadlow robots to
distinguishother robots from other obstaclesan outperform algorithms that neglect

this distinction waseinforced in a study by Mtok and Gini (2007) which proved that
not only does knowledge of the locations of the other robots help to speed up the
exploration process, but that cooperative exploration can outperform random walks
and simple wall following behaviours in maximisingaacoverage of enclosed spaces.
These studies are prime example supporting the supposition that a coordinated swarm
of robots could perform a complete area coverage search more efficiently than an

uncoordinated swarm of robots.

McLurkin et al. (2004) alsmonducted experiments with swarms of robots to test their
algorithms of directed dispersion within bounded spaces where their robots spread
out according to information received from local neighbours about their positions.
Further, they proposed an algdniin that allowed a swarm of robots to explore an
arena larger than the maximum distributed formation of the swarm using a pulling
strategy which guided the whole swarm into unknown regions without losing
connectivity or breaking the achieved pattern. Theisults showed that path planning
and directed motion algorithms become easier to develop when the primary input is
the paositions of other nearby robots. This guided the decision to design the robots of
chapter 3 so they would seek to maintaining contadtvat least one other robot at

all times to prevent formations splintering into different groups which could increase

the risk of missing sections of ship hull while performing a search.

Falconi et al. (2015) also provide a good example of how robatg tis¢ positions of
neighbours can be leveraged by introducing a method of conseasisd formation
control which allows groups of robots to maintain a given formation even in the
presence of communication delays. This method relies on direct commumcatio
between robots and could be used as another method of exploring unknown

environments in a given formation if the optimal dispersion of a swarm of robots does
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not cover the entire area to be explored. Their results compare favourably against
other formation control techniques using potential fields which are more susceptible

to communication errors and propagation delays.

Ludwig et al. (2006) identified a vulnerability of intebot communication approaches

to dispersion in that these approaches reliedalidy on receiving accurate information

of the relative distance and bearing of other robots through sensors. Their solution
was to propose an approach that instead used the strength of received wireless signals
from other robots to approximate their disteee and use this information to effectively
disperse. This promised to be an effective alternative which they proved through
simulation. Ugur et al. (2007) took this approach a step further with experiments in
both simulation which more accurately modelldte sensors and on real robots. In
addition, they applied attractive and repulsive forces to robots based on the received
wireless signal intensities, similar to approaches used in potential fields, to modulate
the distance robots would travel from neigbbrs to ensure they did not travel out of
range or remain too tightly clustered. Their results reinforced that this was an effective
method of dispersion, but demonstrated that the detected signal strength was largely
susceptible to the orientation of theommunicating robots, which highlighted the
necessity of selecting appropriate hardware and contingencies for signal errors in such

systems.

Spears et al. (2004) were one of the first to propose a method of creating pattern
formations in large groups obbots using physics inspired virtual forces referred to as
physicomimetics. In their approach the robots display repulsive or attractive forces
acting on neighbouring robots that fall within range of their sensors. Each robot is
given a threshold value wiin their sensor range allowing the force on their

neighbours to transition from attraction to repulsion and vice versa. This method was
demonstrated in 2D and 3D simulation to be capable of forming square and hexagonal
lattices which were capable of adapg to the loss of agentssuch robustness is

greatly desired in real world swarm robot systems where loss afitage a possibility.
Sallam et al. (2015) adapted the virtual forces framework to develop their own method
(COVER) of cooperative area cogeravith robots using virtual forces to achieve

desired formations and population densities around landmarks in an unknown
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environment. Their results demonstrated a way of deploying this technigue to solve

scenarios concerning discovery and monitoring efarof interest, such as inspection.

Reif et al. (1999) were the first to propose social potential fields for distributed
behavioural control of swarms of robots. In their approach, they apply artificial force
laws to all robots giving agents both attractive and repulsive forces. As suth, eac

E} }mption is determined by the resultant artificial force imposed by other robots
and components of the system. Balch et al. (2000) employed a similar technique on a
simulated swarm of goairiented robots in a bounded arena with goals and obstacles.
These @stributed control techniques, where calculations of motion are performed
asynchronously, proved successful at demonstrating pattern formation and obstacle
avoidance when navigating towards goals. However, these experiments did identify
issues with the apach such as scenarios where agents converged taptimal

solutions and local minima.

Finding an optimal solution to local minima avoidance (LMA) and local minima escape
(LME) is a subject which has received much attention since the first applications
social potential fields to swarm robots. Notable examples of such solutions include
works by Mabrouk and Mclnnes (2008) who allow agents to use their internal states to
influence the potential field in way that allows them to achieve LME. Alternatively,
Couceiro, Rocha, and Ferreira (2011) implemented a social inclusion and exclusion
concept which formed a punisteward system allowing agents close to becoming

stuck in suboptimal solutions to achieve LMA and LME.

Despite these limitations, researchersch as Howard et al. (2002) and Poduri et al.

(2004) were still able use social potential fields to develop effective systems of

deployable sensor networks, which successfully tackled area coverage scenarios with
results comparable to other techniques bgiemployed at the time. One of main

criticisms of potential field approach is the difficulty of implementation of real robot

swarm without use of centralised control but researchers are continuing to develop

new methods to address this shortcoming suchihesProbabilistic Communication

based Potential Forces (PCPF) model proposed by Mikkelsen et al. (2013). PCPF assigns
both attractive and repulsive forces based only on the probability of communication

between robots and the received signal strength, réaglin a method which is more
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robust to unreliable sensor readings and external noise. This makes PCPF arguably
easier to implement on real robots than the basic potential fields approach since PCPF
better compensates for such factors which are likelfp¢éoencountered in realobot

systems.

Section 2.5.2 Coordinated Motion/Flocking

Another key feature of efficient exploration in swarms of robots is the ability to
achieve coordinated motion. Coordinated motion, or flocking behaviour, iseitme
ascribed b collections of robots capable of navigating towards a common goal in a
given formation or pattern while retaining the ability to avoid collisions with both
obstacles and other robots. Such techniques are especially useful in scenarios where
the maximum a&ea of dispersion for a group of robots performing area coverage is
smaller than that of the environment to be explored (Falconi et al., 2015). Robots
performing coordinated motion must remain within communication range of
neighbouring robots in order tova@id splintering into separate groups, much like
robots tasked with pattern formation. Indeed, pattern formation is considered a
necessary precursor to achieving effective coordinated motion and studies on both

subjects are often complimentary.

Flocking blaviour was originally inspired by the abilities of groups of social animals to
move with a coordinated motion such as flocks of birds flying in formation, or schools
of fish evading predators (Okubo, 1986). Reynolds (1987) was the first to reproduce
flocking behaviour in simulated agents, which he achieved by instilling members of the
swarm with three rules: collision avoidance, velocity matching, and flock centring. This
seminal paper demonstrated that any mudtjent system made up of individuals that

can sense the distance and relative heading of other members of the swarm are
capable of achieving coordinated motion with the appropriate behaviour. These three
rules served as the basis for subsequent studies into achieving coordinated motion in
swarm robdas, even though more recent studies have since demonstrated that flocking
behaviour can still be achieved without exchanging heading information (Antonelli,
Arrichiello, and Chiaverini, 2010; Moeslinger, Schmickl, and Crailsheim, 2010; Stranieri
et al., 2A1; Ferrante et al., 2012).
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Balch and Arkin (1998) advanced the field of coordinated motion in robot teams by
identifying three methods agents could use to maintain a given formation:aamtre-
reference, leadereference, and neighbour reference (Fi§.2). In the unicentre-
reference approach, each robot computes the centre of the formation by averaging
the x and y coordinates of all of the robots involved in the formation and determines
its position relative to that centre. In the leadezferenced proach, each robot
determines its position based on the position of a leading robot, except the leader who
does not attempt to maintain the formation, but whose decisions affect the actions of
its followers. The neighbotreference method tasks each robwith maintaining a

position relative to a praletermined neighbour only.

Fig.2.5.1 Formation position determined by the three referencing techniques (From left
to right: unit-centre, leader, neighbour), reproduced from Balch et al. (1998).

The effectieness of these referencing techniques to achieve coordinated manoeuvres,
such as 90turns and maintaining formation across an obstacle field, were tested on
four formations common to mechanised infantry units used in the military: line,
column, diamond, ad wedge. The results from these experiments demonstrated that
the unit-centred approach performed the best at both turns and formation control
across obstacles for all formations, but identified there are scenarios where this
approach would be less suitlh Unitcentre is very dependent on the ability of

member to sense the position of every other member of the swarm which becomes
impracticable in systems made up of many more units with limited sensing capability.
It is also a technique 4Huited to scearios where communication is restricted. In such
scenarios, the leadereferenced or neighboureferenced approaches would prove

more practicable.

Neighbourreferenced approach presents its own issues, such as scenarios where an
agent fails resulting in formation that splits into two or more separate groups. Balch

and Hybinette (2000) remedied this shortcoming in an alternate study which used
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virtual forces (social potentials) to create flocking behaviour and enact formation
control. In this approach, thposition of each robot was calculated relative to the
positions of multiple neighbours that fell within its short sensor range. This
modification allowed their swarm of robots to form and maintain more complex
formations such as lattice structures whilavigating to goals and avoiding obstacles
(Fig.2.5.2), resulting insystemthat was more robust to unit failure. The success of
this study and subsequent works concerning flocking was so distinct from the original
neighbourreferenced technique it leadbta new classification, known as multi
neighbourreference (Navarro and Matia, 2013), which remains a popular method

used to achieving flocking behaviour.

Fig.2.5.2 Multineighbourreferenced approach to coordinated motion; a forratof

24 robots following square attachment geometry successfully navigates around an
obstacle reforming on the other side, abstracted from Balch et al. (2000). The small
grey circles represent the robots and the large dark grey object is the obstasleido
Studies on achieving coordinated motion in swarm robotics fall under two broader
categories: direction by global target and emergent direction (Bayinder, 2016). In the
direction by global target category, some or all members of the swarm have docess
global target location which can be used to guide them to their goal and help maintain
formations while in transit and avoiding obstacles. This was the approach used by

Balch et al. (1998) in the studies discussed previously and similarly by Hdyes an
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DormianiTabatabaei (2002) in their work concerning leaderless distributed flocking

algorithms for swarm robots.

Allowing agents access to global information can serve as an advantage in that all
agents know where they must navigate to without needingdonmunicate this with
neighbours, so communication between agents is only needed for maintain
formations. In groups where only a fraction of the swarm has access to global
information, communication between agents is also used to spread this knowledge
thr JuPZ}us 8Z <A Eu 8} Jv(}EuU 8Z u }( 8Z Z ]JvP ~ o]ll v ¢
and assist in reaching consensus on priority targets when there are multiple goals
(Ferrante et al., 2014). However, swarm systems that rely on prior knowledge are only
applicabé in known or partially known environmentsand so are ill suited to

exploration of unknown areas. Coordinated motion algorithms that function on
emergent direction are preferred for scenarios where prior information is not available

and the area to be gored is unknown.

In the emergent direction category, swarms achieve coordinated motion without using
shared knowledge of global information, but from using only local interactions
between agents. Turgut et al. (2008) implemented such a flocking algooithan

swarm of real and simulated robots, using only proximal control and heading
alignment to achieve coordinated motion. Their approach was successful in navigating
arenas with obstacles in the absence of global information. Their system was also
shown b be more robust to errors in relative heading measurements shared between
swarm memberst a resilience which only increased when more agents were added to
the swarm. Moeslinger et al. (2010) demonstrated how flocking could be achieved
using emergent dirg®n with their implementation of a lowend flocking algorithm

which was based on simple rules of collision avoidance, separation, and cohesion.
Their results showed that with appropriate distance threshold applied to the infrared
sensors of theobots;flocking behaviour could emerge even without communication

or preassigned tasks of alignment.

Vasarhelyi et al. (2014) implemented a decentralised flocking algorithm on flying
robots which controlled the distance between agents using GPS data and wireless

communication between agents. Their approach used a repulsive distzagsd force
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between neighbouring units to avoid collisions and defined an upper threshold for
repulsion to avoid oveexcitation. To compensate for time lag in communication,
robots cbse to each other damp their velocity difference to reduce oscillations and
synchronise their collective motion with a viscous frictlike term. Their control
algorithm resulted in a swarm robot system with a high stability with resistance to
noise and élays in communication and sensing. This study was of particular
importance because it was one of the first that identified how to address real world

limitations, such as time lag, in swarm robot systems performing coordinated motion.

Section 2.5.3 Localization and Mapping

Navigation of any unknown environment presents challenges for both singular and
multi-robot systems, but there are two particular problems which have a distinct effect
on the effectiveness of the exploration of these environments: loattin and

mapping. Localization is the ability of a robot to determine its position relative to
objects, landmarks, and other robots in either its immediate surrounding or globally,
and mapping is the process by which the robots construct a record of feasgres

for future reference There are a number of prospective muibibot systems capable

of performing path finding without localization and mapping by instead utilising
communication and the dispersion of team membavghin an environmentas their
method of navigating to a desired goal (Cohen, 1996; Payton et al., 2001; Ducatelle,
Forster, Di Caro, and Gambardella, 2009; Mullins, Meyer, and Hu, 2012). However, a
greater variety of complex behaviours become possible to achieve by implementing
localizaion or mapping in multirobot systems, such as path planning within unknown
dynamic environments. In this section, key approaches to achieving decentralised

localization and mapping in multbbot systems and their benefits are discussed.

In decentralisednulti-robot systems, the task of determining the position of robots
without the aid of external references such as global positioning system (GPS) is non
trivial. This challenge is known as the localization problem and the best solutions
devised to solvéhese issues can be categorised into two classes: range based
methods and rangdree methods. Rangbased methods rely on the ability of
individuals to measure the distance between themselves and global references or
neighbouring robots using the ReceivBmnal Strength (RSS), Time of Arrival (TOA) or
Time Difference of Arrival (TDOA) of two signals known to have different speeds of
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propagation (Mao, Fidan, and Anderson, 2007). Rdregemethods are able to
estimate the position of robots without measugrdistance, instead relying heavily on
external references or the presence of recognisable markers within the environment.
Rangefree solutions typically require fewer resources than raibgsed methods
making them more economical, but their results ar¢ as accurate (Yun, Lee, Chung,
Kim, and Kim, 2009).

Fox, Burgard, Kruppa, and Thrun (2000) developed one of the earlier-basge
localization techniques for multbbot systems working in indo@nvironments. Based
on Markov bcalization, their approdcallowed a team of heterogeneous robots
equipped with sensors of different granularity to achieve localization faster than
robots performing the task individually by workingllaboratively. Their results
supportthe theory that robots performing localigan cooperatively could outperform
uncoordinated individual efforts, but also identified several limitations with their
approach such as only operating if the robot is able to detect and identify the robot it
has seen, and a lack of error handling foséglositive detection of robots greatly

reducing robustness.

Roumeliotis and Bekey (2002) set out to address some of the limitations of previous
approaches by devising a muitibot localization technique based on the popular
extended Kalman filter (EKM).their approach, they devised a centralised EKF
designed to account for the position and orientation of all members of the swarm and
split it into component equations which they distributed across the team of robots.
Each robot collected information frotheir proprioceptive and exteroceptive sensors
and used their respective equation to make estimations of position and orientation,
which was made more accurate by comparing estimations from neighbouring robots
within communication range. This approach végd less computation and
communication than previous approaches and was scalable to larger teams.
Furthermore, they showed that information sharing between robots with different
levels of capability allowed the fully functioning robots to improve thenesates of

malfunctioning or less capable robots, increasing robustness of the swarm.
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seminal to multirobot localization studies and many papers which followed adopted
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EKF athe leading method. Martinelli, Pont, and Siegwart (2005) built on the original
paper by using a similar implementation of the EKF to achieve decentralised

localization using the relative observations between robots, such as relative bearing,
relative dstance, and relative orientation to successfully increase the accuracy of the
estimations than had been achieved previously. Madhavan, Fregene, and Parker (2004)
used an EKF to propose a scheme for distributed outdoor localization and terrain
mapping, whib was a significant step for addressing how to achieve muffipt

localization in uneven environments. Their approach was shown to operate well in
unmapped and unknown environments, and was further distinguished from previous
studies for being the firsthat required no restriction on the number of robots that

could move at any one instant while performing localization.

More recent studies have begun to move away from the use of external references
such as GPS in efforts to increase the type of environsgdir methods could be
applied to, such as underwater environments where access to such systems is not
possible but localization is still required. To this end, De S4, Nedjah, and De Macedo
Mourelle (2016) proposed two algorithms to aid in localizatiathout the use of

external references such as GPS; one based on the Particle Swarm Optimization (PSO),
and another based on the Backtracking Search Algorithm (BSA). In both approaches,
the robot locations are determined relative to neighbouring robotsi\ggangebased
methods and applying confidence values to the measurements obtained to better
determine how accurate the reading is. Their inclusion of the confidence factor
improved the reliability of their techniques, which was shown to be more signtfican

when fewer neighbouring robots were available for the calculations.

Understanding the objects surrounding a robot at any instant via localizatlaghty
beneficial in robotic systas performing path planning, anthvigation can be
improved further byusing this information to create records of previous instances via
the process of mapping. Maps are representations of the physical environment
surrounding a robot created by transforming data from sensors into spatial models,
which are typically either feological or geometric (Thrun, 2002). The task of
constructing a high resolution map when the location of a robot is already known has
already been achieved in previous studies using sonar sensors (Moravec and Elfes,
1985), and vice versa using variousoalipms (Borenstein, Everett, and Feng, 1996).
38



However, the task of mapping becomes much less trivial when the locations are yet to
be determined, and this complexity increases when the task is to be performed by
distributed swarm robot systems working queratively due to the lack of centralised
control, and limited resources such as memory, computation and comntigrnca

There are numerous studies which have attempted to overcome these limitations, but
of the many approaches dedicated to finding an optisautions to localization and
mapping, the most effective methods developed to date involve a process that
undertakes both of these tasks at the same time; Simultaneous Localization and

Mapping (SLAM) (DurraiWwhyte and Bailey, 2006).

Robots performingsLAM estimate their trajectory and the locations of landmarks

using onboard capabilities and without the need for a priori knowledge. These
estimates of landmark locations carry a degree of error, however the differences
between true and estimate landmat&cations is common between the landmarks due
to the observing robots initial error in estimating its own location. This means the
relative locations between any two observed landmarks are known with high accuracy
even when the true location of a givemidmark is uncertain. These discoveries led to
one of the more important insights into the SLAM technique; increasing the number of
observations always improves the estimates of relative landmark locations (Bailey,
Nieto, and Nebot, 2006), and as the acayraf the map increases the estimate of the
location of the robot relative to these landmarks also improves resulting in highly

accurate localization.

However building maps with this technique requires that the individual robots
performing the mapping preess have access to a significant amount of memory and
computational power. fie multirobot systems examined within this study are fully
decentralised and only have access to very little memory and computational ability,
which significantly reduces the fedility of implementing such mapping techniques.
As such, it was decided that for these studies localization techniques alone would
suffice,while implementation ofadvanced mapping techniques would be delegated to

future studies.
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Section 2.6 SeltAssembly

Selfassembly is a complex spatially organised behaviour employed in swarm robot
systems which can allow the swarm to perform functions individual robots are not
capable of, such as navigating difficult terrald } v § oXU 1iiAv K['E CU "
Christensen, and Dorigo, 2018nd collaborative transportation of objects (Grand
Dorigo, 2009). However, seEsembly in swarm robot systems are typically facilitated
only through local interactions between agents and so require many members to be
within communication range of one another. Many swarm robot scenarios involve
members initially being dispersed within an environment and so require a method
they can follow to regroup at a common locatiethis is the task of aggregation. Both
aggregation ad flocking behaviouro(ly the latter was discussed in Sec 2)%2n be
considered precursors to achieving safisembly in swarm robots. This section
discusses the various approaches to aggregation anéhsséfmbly which werthe

most influential to he design of the mukiobot system and methodology used in

emergency ship hull repair studty Chapter 4

Section 2.6.1 Aggregation

Like many swarm robot studies, the task of aggregatias originally inspired by
behaviours observed in social insects ethsaw them gathering at common locations
under specific conditions. Some notable dugesed artificial behaviours, where the
gathering of agents is influenced by environmental conditions, were developed to
mimic those observed in nature, such as bees cmgp® rest in areas of high
temperature (Schmickl and Hamann, 2011) or cockroaches being drawn to areas with
less light to safely rest (Garnier, Gautrais, Asadpour, Jost, and Theraulaz, 2009). In
these examples, aggregation is guided by both externalutiamd interrobot
communication which was shown to be more effective at achieving aggregation than
relying on environmental information alone. Other studies indicate that it is also
possible to achieve aggregation in systems that do not use environmargal known

as selorganised aggregation, utilising only irtebot communication and artificial
forces instead (Mogilner and Edelstdfeshet, 1999). The methods of control used to
achieve aggregation in artificial systems which are most pertinerttécstudies in this
thesis can be categorized into two types: virtual forces, and probabilistic finite state

machines.
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Virtual forces are a popular method used in swarm robotics to maintain set distances
between agents as discussed in Section 2.5.1 foriegdpins of pattern formation.

When nonlocal virtual attractive and repulsive forces are applied to the components

of a swarm robot system, it can influence the movement of agents across great
distances, allowing them to stay grouped together while avgdiollisions between
themselves and objects. The magnitude of the attractive and repulsive forces acting
between a robot and its neighbours is typically dictated by distance, such that robots
will move towards each other when the distance between thetarge, but will

transition to repulsing one another once they cross a given distance threshold. This
allows swarms to gather at common locations and form clusters while maintaining safe
distances between agents so as to avoid collisions (Mogilner e98B; ¥Vanualailai

and Sharma, 2010; Fetecau and Meskas, 2013). Thesacalnvirtual force

techniques have successfully achieved aggregation behaviour in simulated
environments, but it is significantly harder to implement such behaviours in real robot
sydems where the robot sensing capabilities necessary to perform such techniques
are not considered cost effective, or as scalable as more distributed techniques. These
are some of the main reasons why there are relatively few studies on implementing

non-local virtual forces for the purpose of aggregation in real radbot systems.

Another method of achieving aggregation in swarm robot systems is to employ
probabilistic strategies. In probabilistic finite state machines, the behaviour of the
robot is repregnted as various states with a given probability of transitioning between
them. When applied to swarm systems performing aggregation, robots decide
stochastically whether to transition between: 1) approaching other robots, 2)
remaining still, or 3) movingway from other robots (Soysal and Sahin, 2005). The
probability of transitions can be fixed or vary according to influences from
environmental cues, such as the number of robots present in their current location or
more complex interrobot communication $ahin et al., 2002). One of the main reasons
studies modelling aggregation behaviours using finite state machines employ
probabilistic strategies over deterministic methods is the ability of PFSM to form
unstable aggregates where robot join and break frexisting clusters at random
intervals. Introducing such instability has proven effective at ensuring single large

aggregates form while reducing the risk of stagnation ingptimal solutions which
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form several separate clusters (Garnier et al., 2005; & amSchmickl, Woérn, and

Crailsheim, 2012).

Bayinder (2016) categorised the various aggregation algorithms employed in swarm
robotics into two main types: free aggregation and environmergdiated

aggregation. Free aggregation algorithms are designeddw ahultiple robots to

form aggregates anywhere in an environment, without preference for any particular
location. In environmentnediated aggregation algorithms, the conditions of the

robot f surroundings influence the robot behaviour such that certasations and
conditions increase the likelihood of robots forming groups. The studies within this
thesis are more concerned with achieving aggregation at specific locations, thus
environmentmediated aggregation algorithms are more relevant. In particilavin

et al. (2014) demonstrated an aggregation algorithm which allowed a group of
dispersed robots to aggregate at a specific location using an acoustic signalling system.
In their approach, the area of aggregation was specified by emitting a sound tiadm t
location using a speaker. The robots used microphones to detect the direction and
intensity of the signal and move accordingly. This system resulted in a successfully
formed group at the specified location. Schmickl, Méslinger, and Crailsheim (2606) al
provided a notable method of enabling swarms of robots to aggregate at two assembly
points of different size with the requisite that the number of robots at each site should
be proportional to size of the assembly location. Their agents were equippbd wi
minimal sensors capable of detecting when they were at one of the specified regions
but unable to determine its size, and communicating with neighbours. Their system of
communication between agents resulted in a collective perception capable of
collectvely measuring the size of the target areas and to communicate these sizes with

the whole swarm.

Section 2.6.2 Self-Assembly

One of the most prominent advantages of mutibot systems is their ability to

perform tasks which individuals alone are not caleat, and there is no task in swarm
robotics which exemplifies this better than sesembly. In swarm robot systems,
selfassembly refers primarily to muitobot systems where agents have the ability to
communicate and connect with one another to fostructures and configurations
capable of more than the sum of the individuals acting independently. Studies-n self
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assembling swarm robot systems focus on two major aspects: robots autonomously
connecting with each other in order to create a desired tagjeucture, known as
morphogenesis, and controlling the resultant structure to perform novel tasks. In their
comprehensive review, Grof3 and Dorigo (2008) categorised studies on morphogenesis
In macroscopic systems by their primary function such as foomagrowth, sel

reconfiguration, selfepair, and template replication.

Formation studies focused on using swarms to produce one or more objects of a
predefined size and structure (Hosokawa, Shimoyama, and Miura, 1994). Growth
studies were concerned witimcreasing the number of robots that make up a given
structure, which is considered an essential feature of altastembling robot systems
(Fukuda, Husband, and Ueyama, 1994) -®elbnfiguration studies worked towards
designing systems capable of clgarg an existing entity structure to form a new entity
better adapted to changes in the environment or capable of performing different
functions than the original (White, Kopanski, and Lipson, 2004; White, Zykov, Bongard,
and Lipson, 2005). Setpair studies investigate ways entities could replace faulty or
damaged modules with other fully functioning modules (Bererton and Khosla, 2001).
Template replication studies use modules to recreate templates of objects with a
known size and structure (Griffith, &evater, and Jacobson, 2005). The rest of this
section identifies studies which have advanced the field ofasd&mbly with respect

to swarm robot systems.

There are three notable aspects of morphology that are routinely considered when
designing selassembling swarm robot systems: binding mechanisms, sensors, and
communication methods. Swarm robot systems that utilise passive binding techniques
such as the use of permanent magnets and electromagnets (Hosokawa et al., 1994;
White et al., 2004; Doyle et.a2016) are advantageous due to their relative simplicity
and low power consumption, but they come at the cost of limited connection strength.
Alternatively, passive mechanical connection methods can be used in swarm robot
systems to address connectiotrength, such as the pin and hole connection method
(Yim, Duff, and Roufas, 2000; Castano, Behar, and Will, 2002) in which robots are
designed with faces and pins that correspond to holes on the face of another robot.
This form of attachment results in ka more resistant to shear stress, but the robots
require a higher degree of accuracy for the task of aligning faces. Active mechanical
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links such as actuated mechanical hooks can ensure much stronger links between
robots with lower accuracy requirementsan passive mechanical techniques (Fukuda
and Kawauchi, 1990; Mondada et al., 2004; Wei, Chen, Tan, and Wang, 2010), but
typically consume more power and have a higher risk of failure than their passive

counterparts.

Sensors can be assumed to be essettiall swarm robot systems, but in studies
concerning setissembly, sensors have played a smaller role in externally propelled
systems than sefpropelled systems. Externally propelled robots which rely on

external manipulators to move such as magnetsigng agents and thus designing

robots to store information about their surrounds has been considered less essential
to the functioning of the system. However, splopelled robots which use internal

power sources to move themselves with propellers or wh&equire more data about
their surroundings to make informed decisions, and a variety of sensors have been
used to ensure this. There are many types of sensors used to gather information
about robots surroundings in sedssembling swarm robot systenscluding the use

of bump switches to detect collisions and confirm physical interactions between
agents (Bererton at al., 2001), infrared detectors and ultrasonic distance sensors for
detecting the presence of obstacles or other robots (Fukada et al4;d&stano et al.,
2002; Wei et al., 2010), inclinometers to detect changes in angles of slope or elevation
of a robot (Yim et al., 2003; Murata, Kakomura, and Kurokawa, 2006), and cameras to
gather addition information about obstacles, robots and envinemtal features

(Yamakita, Taniguchi, and Shukuya, 2003; Mondada et al., 2004; Bonani et al., 2010).

Communication is a vital component to achieving many of the behaviours in swarm
robot systems, and sedssembly is no exception. Some of the most popular
communications methods for sedfssembly swarm robots include infrared emitters
and receivers for lin@f-sight communication (Fukuda et al., 1990; Yim et al., 2000;
Castano et al., 2002; Murata et al., 2006);RViBluetooth, and Zigbee for more
reliablewireless communication in crowded environments (Grolf3, Bonani, Mondada,
and Dorigo, 2006; Wei, et al., 2010; Bonani et al., 2010), and LEDs for close range
communication between individual modules and signalling of states (Grol3 et al., 2006;
O'Grady et aJ.2009; Doyle et al., 2016). The method of communication chosen for the
system can greatly impact the complexity of formations and reconfigurations possible
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to create. The chosen method is also subject to the environment the robot is expected
to perform the assembly in, for instance, direct lt&sight communication methods
are ill equipped to function in environments with many obstacles and wireless

communication may be a more appropriate choice.

The effective synthesis of these technologies has leaitamber of notable
achievements for swarm robot systems performing-ssi$embly. Some of the notable
platforms developed for muliobot selfassembly experiments include the Swarmbot,
MarXbot, Kilobots, Symbrion, and Mori. Grol3 et al. (2009) used Svedsrid
demonstrate seHassembly for the purpose of collaborative object transportation,
where a group would surround objects of different shapes and sizes, connect to each
other, and pull the object to a desired location with their increased pulling power
O'Grady at al. (2009) used tis same platform to demonstrate their SWARMMORPH
protocol which could guide Swarmbots into achieving different morphologies using
LEDs to inform where the robots should approach and connect to each other. Bonani
et al. (2010developed the MarXbot to improve on various aspects of the Swarmbot
design including an improved binding mechanism and methods of communication.
Mathews et al. (2011) were able to utilise the MarXbot to perform directional self
assembly, which robots formg part of a desired structure guided other robots using
radio signals, informing them where they could best attach in order to complete the
entity. The Symbrion and Replicator projects (Levi and Kernbach, 2010) investigated
many aspects of sefssemblinggwarms but focused primarily on the realisation of
symbiotic multirobot organisms. The resultant Symbrion modules (Liu and Winfield,
2010) were capable of operating as fully autonomous agents in swarm mode, but could
also transition to form part of a geger structure in organism mode where energy and
computational resources could be shared between neighbours. Rubenstein, Cornejo,
and Nagpal (2014) were some of the first to demonstrate-assiembly and pattern
formation in very large swarms using one tisand Kilobots. Their approach allowed
the swarm to form various shapes using four stationary robots to serve as an anchor
point and having agents connect to them appropriately. Doyle et al. (2016) developed
a prototype floating robot capable of controlfrthe motion of a structure built from

their modules using modular hydraulic propulsion, demonstrating how such

technology could be used to guide such structures. Belke and Paik (2017) developed
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the Mori platform; a triangular twalimensional lattice typeeconfigurable modular
origami robot, which is notable for its genderless connection mechanism and flexibility
with regards to the variety of complex shapes it can assume from simple component

modules.

Section 2.7 Foraging

Foraging is considered to be ookthe more complex forms of collective behaviour to
replicate in multirobot systems as it relies on the correct execution of a number of
behaviours considered difficult in their own right, such as exploration, global and local
communication, collectivernsport, and collective decision making. From an
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following behaviours: exploration of an environment surrounding a nest, identifying
objects and areas of interest, t@hing the objects to the nest, communicating its
discovery with other robots, and returning to the area of interest to collect more
objects (Dorigo and Di Caro, 1999). The task of foraging in swarm robot systems was
inspired by observations from biologla@llectives such as bee swarms (Montague,
Dayan, Person, and Sejnowski, 1995) and ant colonies (Traniello, 1989) and their ability
to use local interactions between individuals to exploit resources surrounding their
nests. One notable extension of thishmaviour is multforaging, where there are

multiple types of retrievable objects in an environment (Campo and Dorigo, 2007),
which presents a promising basis for accomplishing complex practical tasks using
multi-robot systems such as mining or search aggtue operations. In this Section,
some prominent foraging strategies applied to swarm robot systems are presented

according to their applicability to the studies presented in Chapters 4 and 5.

It has been proven that the problem of resource collectiodynamic environments

can be solved by social insect colonies using collective cenéreg foraging (Olsson et
al. 2008; Detrain and Deneubourg 2008), and it is this success that has spurred
research into recreating such efficient and scalable approachewarm robot

systems. A popular method of achieving foraging behaviours in swarm robot systems
involves first deconstructing the behaviour into simpler tasks that flow in sequence.
However, the defining features of these systems often lie in the methtioels use to
communicate information between individuals. There are a number of methods

researchers have implemented to achieve foraging behaviour analogous to those
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observed in biological sup@rganisms and these can be categorised under the
following two categories: direct communication as outlined in Section 2.6 and
stigmergic communication where information is shared via modification of the

environment (Bayinder, 2016).

Swarm robots systems using global forms of direct communication such as signal
broadcasting can share information between robots over moderate distances. This
approach can aid in aggregation behaviour (Arvin et al., 2014) for the task of foraging

so that robots can inform others of an area of interest (Vaughan, Stgy, Sukhatme, and
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scale well to very large numbers of robots or over increased distances which is an
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to implement such features on simple robots with limited capabilities, of which most
swarm robot systems consist, making it a more impractical option for certain
platforms. Thus this method of communication may be considered appropriate for
multi-robot systemghat use fewer agents and operate over short distances, but sub
optimal for swarms consisting of many more agents that operate in larger arenas or

unbounded search spaces.

Conversely, local direct communication methods which rely on exchange information
between neighbouring robots that fall within a given range can be considered highly
effective at facilitating effective foraging behaviour in swarm robot systems. Direct
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the direction of objects, areas of interest, or the location of a central nest to
neighbouring robots (Arkin, Balch, and Nitz, 1993; Rybski et al., 2004). This information
can be used to improve the robots present behaviour and help it achieve itsnturre
goal more effectively, be it searching for objects, or returning them to the nest. In
addition to direct data exchange, local sensing strategies which simply detect the
presence of nearby robots or obstacles can also be used as an effective tool to aid
foraging behaviour (Hoff, Sagoff, Wood, and Nagpal, 2010). These direct
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overcrowding (Goldberg and Mataric, 2000) and form more organised paths between
nests and areas of interesédat and Vaughan, 2010; Penders and Alboul, 2012),
enabling more effective foraging strategies.
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Bee algorithms are a notable class of natiurgpired collective behaviour that use

direct communication technigues to mimic the foraging strategies of home&g b
(Karaboga and Akay, 2009). In bee colonies, foraging consists of a sequence of
behaviours starting with exploration of the sear surrounding the central nest. On
discovery of a food source, the bee collects the precious nectar resource and returns
to the hive to deposit what it has gathered. After completing its deposit, the bee then
performs a special dance of varying direction and intensity to indicate the direction
and distance of its last collection source in the hope of recruiting more bees tb iassis
retrieval. This dance is the aspect of bee communication which when applied to swarm
robot systems has been shown to yield effective methods of-tdisication and

foraging (Jevtic, Gutiérrez, Andina, and Jamshidi, 2011; Schmickl et al., 2011). These
individual interactions between agents can be combined to produce an effective
collectivedecisiormakingprocess when the correct tuning parameters are selected,

as demonstrated by Reina et al. (2015) in tishiortestpath selection study.

Making change®o the environment in order to communicate between agents, known

as stigmergic communication, is perhaps the most well studied form of indirect
communication found in biological superganisms and applied to swarm robots
performing coordinated resource}wo S]}v ~'}ee § o0oXU id06TV t EP &
1996; Payton et al., 2001; Nouyan et al., 2009; Campo et al., 2010). In natural systems,
this form of communication is best exemplified by certain species of ants which can
secrete and detect pheromonesa chemical substance they can use to mark the
environment (Holldobler and Wilson, 1990). Ants deposit this pheromone on return to
the nest from a resource site to serve as a mass recruitment mechanism helping to
guide other ants to the same source of foea@Gumpter and Pratt, 2003). Foraging ants
follow these trails, gravitating to paths with a high concentration of pheromone to
exploit the best resource. This system allows ant colonies to form consensus on
selecting the best resource site in the environmhaccording to factors such as food

guality (Beckers et al., 1990), path length (Goss et al., 1989), and predation risk

(Nonacs and Dill, 1990). This positive feedback mechanism is typically disadvantageous

to systems seeking to maintain adaptability dtexibility to a changing environment.
However, there are alternative mechanisms observed in other ant species capable of

overcoming this limitation such as: repellent pheromone to mark off undesirable paths
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(Stickland et al. 1999; Robinson et al. 2005)ng tandem running to recruit ants to
newly available highequality food sources (Beckers et al., 1990), or using quality
dependent linear recruitment and qualiyependent abandonment (Shaffer et al.,
2013).

To recreating stigmergic communication in smaobots using techniques that mimic
pheromones is a challenging task that must take into account how the pheromones are
deposited, detected by others, and how the resultant trails change over time. The

three most advanced approaches found in literatuegyron either using robots as
beacons, robots with otoard sensors and actuators, or smart environments. Beacon
robot techniques use the robots themselves to act as a physical embodiment of
pheromone, commutating the presence and strength of pheromonedighbouring
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al., 2009; Campo et al., 2010; Ducatelle et al., 2011; Hoff et al., 2012). This approach is
beneficial since it can be implemented on many simple robotsjdlimited by beacon
robots being unable to contribute to the item collection task, ever increasing

population size requirements to address larger environments, and beacon robot

robots serving as obstacles in the environment also. These issues can bssadidoy
allowing the beacon robots to remain mobile and contribute to item retrieval (Sperati

et al., 2011; Ducatelle et al., 2011), but performance of this approach relies on

balancing the swarm size and communication range with the size of the sea spa

There are a variety of ways researchers have tried to implement stigmergic
communication in swarm robots using-toard actuator and sensors such as using
marker pens to draw lines on a path to represent pheromone (Svennebring and Koenig
2004), emittirg gas which other robots can detect (Purnamadjaja and Russell, 2007),
energising phosphorescent paint using-UEDS (Mayet et al. 2010), and using ethanol
(Fujisawa et al. 2008, 2014). Of these varied attempts, only the ethanol experiments of
Fujisawa et b (2008, 2014) were able to model the four critical characteristics of
pheromones observed in natural systems: evaporation, diffusion, locality, and
reactivity. The evaporation aspect is considered especially important to avoid runaway
positive feedbackGarnier et al. 2007, 2013) which can cause swarms to become mired

in suboptimal solutions or become unable to break from expended resource sites.
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The final category is smart environments which have the ability to store and supply
virtual pheromone informaon to swarm robots in redaime (Sugawara et al. 2004;
Garnier et al. 2007; Hecker et al. 2012; Garnier et al. 2013; Arvin et al. 2015; Valentini
et al. 2018). Smart environments are considered one of the most popular approaches
to implementing indireccommunication in swarm robots, due to their low cost and
adaptability to different sizes of swarms and search spaces. However, it is far less
practical to use smart environments in real applications than the previously discussed
alternative methods, so itgse is instead delegated to targeted reseangiimicking
pheromone trails using smart environments can be accomplished using radio
frequency identification (RFID) tags (Mamei and Zambonelli 2005, 2007; Herianto et al.
2007; Herianto and Kurabayashi 208@sien et al. 2012; Khaliq et al. 2014), simulated
pheromones using projected lights or other custom hardware (Sugawara et al. 2004;
Garnier et al. 2007, 2013; Arvin et al. 2015; Valentini et al. 2018), or augmented reality
tools in which a virtual enviranent is interacted with by robots using virtual sensors

and actuators (Reina et al. 2015, 2017).

Determining what constitutes an optimal foraging model requires the selection of
appropriate metrics with consideration given to currencies of c{gisntities to be
maximised in order to achieve optimality) and benefits. The two metrics most often
selected to measure success in foraging theory are the net rate gain of energy and
efficiency (Kacelnik 1984; Houston and McNamara 2014). The net rateyegain is
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expenditure, while efficiency is the gross rate of energy gain divided by the rate of
energy consumption (Houston and McNamara 2014). However, optimal foraging
theory does not always apply to real systems and developing a theory that works for
several foraging species seems inherently difficult, as the mechanisms underlying
foraging can be quite different (Traniello 1989). Though there are many ant species
where theproduction of pheromone trails is crucial in the foraging process, other
aspects which are more generally related to the state of the forager and the
environmental conditions should also be considered when developing an optimal

foraging model.

In foragingscenarios, the problem of inteobot interference also tends to arise

frequently with multiple robots sharing a confined space. This increase in robot
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congestion is noteworthy for the effect it can have on the efficiency of the overall
swarm with respecto foraging. Increases in robot avoidance events or the length of
time taken to overcome a near collision can increase the gross energy expenditure and
time taken to complete the task. There are two methods of measuring the quantity

and frequency of theseccurrences: the number of collisions between robots (Maes et
al., 1996; Goldbergan® § E] U orithe time spent avoiding a robot while trying

to perform another task such as transport an object to the n&steger and Billeter,

2000. Both ofthese methods can be used in combination with other establish metrics

to assess the impact increased collisions or manoeuvring time has on system efficiency

and net energy gain.

Section 2.8 Summary

The literature explored in the above sections tells atirhow far the field of swarm
robotics has progressed over the past few decades, identifies the most predominate
methods that have evolved out of the research, and can provide clarity on what could
be done to ensure swarm robotics research continues &ure. This section identifies

some ofthe gaps in existing knowledge that motivated the studies within this thesis.

The subjects of obtaining effective dispersion, pattern formation, coordinated motion,
localization, and selissembly in multrobot systens has been explored at length in
ground and akbased scenarios but significantly less so in underwater environments.
This is in part due to the difficulty in translating these techniques, many of which rely
on high frequency sensors and telemetry suclG&S (global positioning system)
coordinates, into the underwater realm where such communication techniques do not
work effectively due to the high absorption of the surround medium (water).
Nevertheless, there are many underwater problems that could biefreim multi-

robot solutions such as underwater inspection of ship hulls esbfire rigs,

monitoring and surveillance of marine life, and underwater construction. This gap in
knowledge is partially what motivated the research into using swarm robots to

perform underwater inspection and repair ship hulls.

Foraging strategies in swarm robot systems can be considered a more mature field of
research given the many studies concerned with how to achieve optimal foraging

strategies. However, perfect emulatiof an ant colony has not yet been achieved due
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in part to the complexity of such systems. Indeed biological swarm intelligence is still a
thriving field of study to this day, helping to inform how swarm roboticists may

improve on their own designs. Therk being undertaken at the University of

Sheffield, with respect to swarm robot foraging strategies, represented another step
toward creating a swarm robot system more capable of emulating the emergent
behaviour observed in ant colonies, and was the nmagtivating factor behind

developing obstacle avoidance behaviour for the robots. Ultimately, allowing the
swarm of robots to more accurately represent the biological ant colony their behaviour

was modelled after.
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Chapter 3. Ship Hull Inspection: Complet e Area Coverage
Algorithm

In this chapter, a novel approach to emergency ship hull repair using a swarm of
autonomous underwater robots is introducetihis research uses theories of

cooperative multirobot exploration and communication to inform the desigha

complete area coverage search method for a swarm of robots tasked with inspecting a
damaged ship hull. The results from this Chapter show how the cooperative search
algorithm is more effective at achieving complete area coverage in less time than the
same multirobot system using an uncoordinated search algorithm. Additionally, the
chapter presents a simulated robot sensor arrangement that would allow robots to
maintain a set distance from a 3D object. This novel utilisation of an additional
constrairt enables the robots to treat their environment more akin to a 2D plane,

which allows for simpler implementations of search algorithms.

The general approado emergency ship hull repais presented in Section 3.1 but the
majority of thechapter focuses on the first major stage of the ESHR scenario: ship hull
inspection using a collaborative muitibot system.This task poses the distinct

challenge of how to fully inspect the submerged hull of a ship using multiple robots,
how to do so efctively, and in a timely manner. To address this challenge, two
complete area coverage (CAC) algorithms were devised: a sweeping search pattern and
a lawnmower search pattern which are described in more detail in Section 3.2. The
search patterns are intated to be used by homogeneous muibbot systemgo

inspect the ship hull while it is still in the water as this is the repair process intended to
take pace immediately following damage. To test the effectiveness of the algorithms
and compare their resudt the code was implemented on a simulated group of custom

designed robot modules.

The simulated robot modules used to test the algorithms do not yet have a physical
counterpart and as such, the robot module specifications are restricted to their
geometricshape, key sensors and actuators, and descriptions of their capabilities
which are based on existing technologies currently employed in mobile robotics and
machine vision. A more detailed description of the technical and physical aspects of
the robots isprovided in Section 3.3, however it should be noted that these are
features the simulated robot modules are assumed to possess for the purpose of the
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algorithms. The experiments were wholly conducted in a simulated 3D environment
built using Webots; a sintation suite which is renowned for its ability to correctly
model mobile robotsThe key features and reasons for its use in this study, along with
the experimental setup used to compare the effectiveness of the CAC algoritinens
presented in Section 3.4 he results of the experiments are presented in Section 3.5

and are followed by a discussion of the findings and their implications in Section 3.6.
Section 3.1 Emergency Ship Hull Repair

Section 3.1.1 Background

Emergency ship hull repair (ESHR) is dmaany stages of damage control that takes
place in the event of a hull breach while at sea. Innovations in materials, mechanical
engineering, and naval architecture have ensured that the strength and resilience of
ship hulls has remained steadfast thisspaentury, but no sedaring vessel is immune
to accidental or deliberate damage. When a ship finally suffers a fracture or hull

breach, the race to prevent the loss of the ship begins.

Repairing hull damage immediately after an incident is necessametept the loss of

a ship. Reducing the ingress of water minimises the effect of flooding and supports
efforts to restore buoyancy and stability to the damaged vessel, enabling it to either
continue its course or return to a ship yard for extensive refd@diere are numerous
types of breaches that vary in size, shape, depth, and location; each of which affects

whether the breach can be addressed by conventional means.

The standard approach to repairing ship hull breaches, known as shoring, has
remained modly unchanged from the end of the second world war and amounts to
three general methods: (i) plugging the hole from the interior of the ship using soft
wooden plugs, (ii) covering it with prefabricated patches from the exterior of the ship,
and (iii) estabsh and maintain flooding boundaries within the ship to prevent further
progress of the flooding (Center, 2013; Press, 1945). These are intended as temporary
repairs and in most cases are not perfectly watertight, but even reducing water ingress

by half ca allow crew to quickly bring flooding under control using pumps.

These techniques serve to mitigate damage but are far from optimal given the delay

between detecting a breach, assessing the damage, transporting materials, and
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carrying out the repair. Thegre dangerous, time constrained procedures and with

modern naval services moving towards greater autonomy with fewer crew members
(Levander, 2017) it is beginning to stand out as a point of vulnerability. To remedy this
situation, a modern approach to emgency ship hull repair is proposed, using a swarm

of autonomous underwater robots to investigate the ship hull and carry out repairs. If
realised, this solution could remove the requirement for engineers to carry out

inspections to locate the damage andal with most of the repairs, promoting greater
autonomy of large sed EJVP A e¢ 0¢ v Z 0%]VP &} « ( Pu E 3Z 0]

crew.

Section 3.1.2 General ESHR method

The EHSR method discussed is intended to address hull breach scenarios wheee ingre
of water must be halted to prevent excess listing and quickly restore the stability of the
vessel. The proposed approach suggests using a decentralised group of homogeneous
autonomous underwater robots to collectively carry out ship hull inspectiormeagde

at the hull breach location, se#fssemble to form a sheet of connected robots, and use
the resultant structure to cover and seal the hull breach. If carried out correctly, this
would significantly decrease the ingress of water and allow human arembers to

safely deploy pumps to drain the flooded compartments, restoring stability.

Using robots to operate in hazardous environments in place of human operators has
been shown to be an effective solution to reducing the risk to human life and
equipmentwhile making processes faster and more reliable. Using multiple robots

which work cooperatively to complete tasks, rather than individual robots, compounds
these advantages by making the system more robust, flexible and scalable as discussed
in Section 2L. For this reason, the proposed ESHR solution suggests the use of multiple
robots working together in order to maximise performance in terms of speed of

completion, robustness to failure, and even distribution of workload.

When using multiple robots to cg out a coordinated task, it can be beneficial to

employ decentralised control schemes. This is so that the system can scale its response
to address more demanding scenarios without sacrificing performance due to

increasing computational requirements asged in multirobot systems which rely on

centralised control schemes, as identified in Section 2.1. The ESHR method is intended

55



to address scenarios which require the detection and repair of ship hull breaches of
various sizes and shapes, making theitghilf the system to scale according to the
requirements essentiat thus the proposed solution uses a decentralised control

scheme without a master control.

Multi-robot systems can help perform inspection of the ship hull more quickly, but
utilising theirgreater numbers for the repair task would also be advantageous. One of
the more commonly employed methods of repairing ship hull breaches from the
exterior of the ship involves the use of patches to cover and seal the breach. This
approach could be adapdtefor use by robot systems in two ways: collective transport
or selfassembly. Using a swarm of robots to collectively transport prefabricated
patches to the hull breach presents a number of issues such as patches biitegl ill

to the hole, difficulty é transporting objects underwater due environmental
disturbances, or accidental damage to the patch serving as a single point of failure in

the system.

Seltassembling techniques such as those discussed in Section 2.6.2 could be employed
to address the shrdcomings of the collective transport approach. If the robots were
designed as modular homogenous units, they could be programmed to form larger
structures using their bodies which could then be used to cover holes of various shapes
and sizes. The sadis®mbly approach was selected as the repair method as the robots
can adapt their resultant structure to more accurately address damage while reducing
the number of points of failure. The modular robots are homogenous because using
heterogeneous robots to catuct selfassembly has been shown to decrease the

scalability of the system.

Forming a structure of appropriate shape and size is atrioial task, however

ensuring the structure can remain attached to the vessel once it has covered the hole
is equally ballenging. The precise method of underwater adhesion falls outside of the
scope of this thesis, however the leading suggestion could involve the use of an
underwater epoxy or fibre reinforced polymers (FRP) to be administered by the robot
modules. Rubina\istico, Tucci, and Carlone (2020) performed an extensive review of
the use of FRP in underwater construction and repair of ship, arshoife platforms.

Their findings show that while the industry still prefers using metal as the primary

56



material for canstruction and longerm repair, FRP remains a promising alternative
with marked success in the restoration of structures damaged by exposure to the

marine environment, chemical agents, or marine life.

As discussed in Section 2.4, when designing cooperatiiti-robot systems it is

important to select a model which can be used to predict how the system will function.
This allows of the evaluation of aspects such as feasibility of the task, number of robots
required, and the effect of disturbances. Finitate machines (FSM) are a prominent
method of modelling multrobot system behaviour which has be used to solve various
tasks such as exploration, pattern formation and collaborative mappatgooth the
macroscopic ad microscopic scale. These tasksl@selg aligned with the ESHR

scenario and thus FSM was selected as the most appropriate model for the robot
behaviour. The FSM of Fig.3.1 describes the robot behaviour and shows how

inspection, assembly, and repair process is expected to unfold.

The emergacy ship hull repair process begins with the robot modules being deployed
into the water, entering the start state (S). If the robots receive no signal to indicate
that a complete repair structure has been formed (!f) they immediately transition to
begin ®arching the ship hull for damage (ES). The robots will continue to explore and
inspect the ship hull until they either locate a hull breach (b) or detect a signal from
another robot that has found a breach (s). If a robot is the first to locate a br@ach
changes to the transmit state (TS) and begins broadcasting asimgé acoustic

signal to other robots in its vicinity, notifying them of the location of damage they have
discovered. However, if robots in the search state (ES) have not locadndhch but
have instead detected a signal from a robot that has (s), they transition to the follow
state (FS) where they will move toward the origin of the signal until they find a robot in
the area matching the location of the signal (r). This methoguading robots to a

specific location was inspired by studies of sigassisted aggregation and self

assembly which were discussed in Section 2.6.1.
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States Transitions
S | Deploy and start f | Complete repair structure formed
ES | Explore ship hull b | Hull breach located
FS | Follow signal s | Signal detected
AT | Attach to robot r | Robot located
TS | Transmit location signal p | Repair structure attached to ship hu
SB | Seal breach a | attached to robot
F | Finished

Fig.3.1. Finite state machine (FSM) of émeergency ship hull repair robot behaviour,
showing the stages the robots move through: Searching for the damage, aggregating
at the location, forming a repair structure, and sealing the hull breach.

Once two or more robots rendezvous at the hull breadatmn, they can begin
communicating with each other using their local sensors to determine where to attach
to each other in order to best form a repair structure (AT). Successfully attaching to an
appropriate part of the structure (a) will allow the robwiodule to transition to the
transmit state (TS). In order to avoid transmitting multiple signals at once, all robots in
the transmit state (TS) will communicate with each other via local sensors and reach a
consensus which single robot should transmit signal based on factors such as

location and remaining power. This approach to choosing a unit for signal transmission

was inspired by studies of collaborative decision making as discussed in Section 2.7.2.

58



The structure will continue to form by using@bot in the transmit state to guide

robots in the follow state (FS) to optimal attachment positions until a structure of
appropriate shape and size has been full constructed (f). The fulfilment of this
transition condition will be determined as a resuftrobot modules communicating

the number of robots connected to them and their location in relation to intact and
damaged sections of the ship hull using local sensors. With a repair structure fully
formed, the robot modules transition to the seal stat@®§Sluring which they will
collectively move to cover the breach and being adhering to the intact sections of hull
surrounding the damage. When the modules have completed sealing themselves to
the hull (p) they will transition to their final state (F) ingling that the operation is

complete and that it is safe to deploy pumps into the flooded compartments.

Section 3.2 Simulated Robot Morphology

In order for the proposed CAC algorithms to be assessed, a suitable robot model on
which the code can be implemtad is required. Section 3.2.1 specifies the robot
functions and physical capabilities required to carry out the algorithms, demonstrate
how existing underwater robots only fulfil some of these requirements, and identify
the need for a bespoke simulatedlyot design. Section 3.2.2 delves into the specifics

of the simulated robot morphology giving details of the various sensors, actuators, and
communication techniques used with explanations of their function with respect to

coordinated exploration of the spihull.

Section 3.2.1 Robot Specification

There are five main abilities the autonomous underwater vehicles (AUV) must possess
in order to carry out the CAC algorithms: they must be able to move freely underwater,
inspect the ship hull, detect objects anther robots, communicate with other robots
over short distances, and selésemble to form larger watdrght structures. Since

their inception in the mieR0" century, there have been many AUVs developed for the
purposes of underwater inspection, envinmental monitoring, and various military
applications. As a result, a plethora of methods and mechanisms have emerged with
the aim of achieving more efficient navigation, communication, localisation, and
mapping in the underwater domain (Paull, Saeedi, Satal Li, 2013; Aguirre, Vargas,
Valdes, and Tornero, 2017). The ability to move freely underwater can be attributed to

factors such as hull shape, method of propulsion, and buoyancy control. The geometry
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through the watert hydrodynamic designs such as the torpedo hull type (McPhail,
2009) are commonly employed in the design of many AUVs primarily for their ability to
generate low drag force (Aguirre et al., 2017). Howeaklernative hull geometries

such as open structure types (Boeing and Bréaunl, 2012) are also worth considering for
applications less concerned with maximum speed and more focused on incorporating
irregular sensors and actuators for achieving applicatiaich &s underwater

construction.

With the rise of biomimetic underwater robots designed to move using actuation
similar to biological counterparts such as fish (Wang, Hang, Wang, and Xiao, 2008) a
variety of methods of locomotion now exist for AUVs. Howetlegse new

technologies have yet to be implemented in commercial products and without further
testing and verification, propellers and water jets remain as the most reliable methods
of movement for AUVs. There are many ways propellers have been incoegdardb

AUVs to achieve systems with powerful forward thrust and the technology has
continued to mature. In recent years, modifications to improve factors such as
protection from marine debris using enclosed propellers (Kopman, Cavaliere, and
Porfiri, 201}, and using quadoper configurations to improve manoeuvrability
underwater (Ranganathan, Thondiyath, and Kumar, 2015) have seen increased
utilisation in robot designs. AUVs have also been shown capable of move freely using
internal pumps that create watgets (Mazumdar, Triantafyllou, and Asada, 2015) and
while this method is typically less effective at generating thrust than propellers, it can
at least be used as an additional tool to assist in positional control. Pumps have also
been shown to be an edttive tool for injecting and ejecting water from internal

ballasts enabling active buoyancy control in AUVs (Woods, Bauer, and Seto, 2012).

Every AUV requires methods of sensing its surrounds in order to achieve behaviours
necessary for navigation such@sstacle avoidance, localization, and mapping. There
are a variety of sensors available but additional considerations must be,rieagely

due to the difficulties associated with operating underwater. A common method of
distance sensing for robots openat) on the ground or in the air is infrared (IR)
sensors, but when placed underwater the effective range of these devices is heavily

restricted due to the absorption of rate of the water (Farr et al., 2010). Though even
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with such restrictions, there areiftof AUVs that prove it is possible to perform basic
obstacle avoidance using such sensors, albeit at a restricted range (Deng et al., 2015).
Acoustic signals such as sonar are much lower frequency than IR signals which allows
them to propagate much fuhter through water. Sonar sensors can reliably detect
objects at range and this leatb the widespread implementation of these sensors in
AUVs for applications such as obstacle avoidance, localization, and mapping (Teo, Ong,
and Lai, 2009; Mallios et a010). Acoustic sensors are especially useful for
underwater localization tasks where technologies that rely on radio frequencies such
as GPS cannot be used. Instead AUVs can perform localization using underwater
positioning systems (UPS) which use beaamthe surface of the water to determine

the relative position of a robot using trilateration (Tan, Diamant, Seah, and
Waldmeyer, 2011). Recent studies have also demonstrated the benefit of combining
acoustic sensors with cameras (Evans et al., 2003)islgdivat machine vision

techniques and sensdusion can accomplish more accurate mapping and feature
detection tideal for visual applications such as autonomous docking or underwater

inspection (Hover et al., 2012).

Using acoustic sensors to detect theepence of objects can allow AUVs to perform
obstacle avoidance, but they also allow for indirect communication between robots.
Stigmergic communication is a powerful tool that can be exploited to produce
formation control or obstacle avoidance behaviosmply from detecting

environmental changes made by other robots (Dorigo et al., 2006), or inferred
positions of other members of the swarm (Balch et al., 2000). Some complex
behaviour such as selissembly, are at present too complex to be achieved with
indirect communication alone and require a more direct method of communication.
However, direct communication is not necessary for the CAC algorithms to function
and so discussion of this can instead be found in Chapter 4 where exploitation of direct

communication for seHassembly and signalling is addressed more fully.

The existing AUVs identified in the preceding section reveal that there are several
robots capable of performing some of the four major tasks necessary to carry out CAC
algorithms. Howevemone of the robots identified in the literature possess a

geometry which would allow for seffssemblyt a fifth ability which is required for the

formation of larger watettight structures. The ability to sedfssemble is not necessary
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for the CAC algadtim, but is of paramount importance to the success of the complete
emergency ship hull repair method and failure to account for this necessary quality in
the early stages of design could cause issues later in the design process. While there is
no existingrobot that possesses all of the necessary qualities required for the CAC and
selfassembly experiments, the varied abilities of existing models arguably shows that

a robot capable of performing all of the tasks should be possible to design and
construct. r this reason, the CAC algorithms were chosen to be examined in
simulation using robots with a bespoke design, with a geometry that would allow for

selfassembly, and based on existing technologies demonstrated in current AUVS.

Section 3.2.2 Simulated Robot Design

The morphology of the simulated robot was determined according to the
requirements identified in section 3.2.1 and focuses on the following aspects: robot
hull shapes that would allow for sedssembly, methods of propulsion that allow for
highmanoeuvrability and buoyancy control, and sensors that accurately and reliably
retrieve information about the environment and allow for indirect communication
between robots. One of the most limiting factors of the robot design was hull shape.
Typical AUVUIl designs tend towards torpedo shapes due to their many advantages
with respect to high manoeuvrability and low drag generation, but formation of larger
water-tight structures can hardly be achieved with such irregular shapes. Therefore,
simpler geometies such as triangles, squares, or hexagons may be a more appropriate
option as these are more commonly selected to carry outassienbly in existing

ground and air robot systenas discussed in Section 2.6.2. A square geometry was
ultimately selected de to the ability to more easily incorporate multigheopellers

and water jets for positional control, and to simplify the design of theastembly
algorithms addressed in ChapterFgure 3.2 illustrates the square structure of the
simulated robot wih simple representations of each of its sensors and actuators

details of which will follow.
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Fig.3.2. shows aisual representation of the simulated repair robot used in CAC
experiments. The larger circles represent the four encloseudaitional thusters, the
smaller rectangles bordering the thrusters represent the distance sensors, the small
square in the centre of the robot represents the forwkacing camera, and the semi
spheres on each of the smaller sides of the robot represent both the samsors and
water-jets to control distance from other robots and obstacles.

The simulated robots measure 50cmx50cmx5cm; a similar scale to that of larger ariel
quadcopters which served as inspiration of the propeller arrangement and control
scheme discussl later. This scale makes the implementation of embedded electronics
and mechanical parts more feasible than using smaller casings but decreases it
resistance to shear stress from ocean currents due to its larger-sexgnal area.
However, propellerpowerful enough to compensate for these increased stresses can
be implemented, allowing it to maintain its position even in the presence of greater
forces exerted on the robot. The selected scale also allows for the use of mechanical
links with greater stength and size, to be used between robots for linking together in
the selfassembly process. Using relatively large robots reduces the total number of
robots necessary to form a repair patch of adequate size, which means the total
number of mechanical lirckbetween agents is less than a larger swarm of smaller

robots, which in turn reduces the likelihood of linkage failures occurring.

The robots used to cover the hull breach should not be too large or singular for several
reasons. For instance, if a single very large robot were used to address the repair and
the unit was to malfunction, the repair process would fail making the system le

robust than using multiple agents. A singular robot would only be able to address

breaches of a given size and shape, as opposed to swarms of robots which are able to
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scale their approach to repair breaches of any reasonable size and shape. Using
multiple robots with semflexible casing would also allow the resultant repair patch to
better conform to the shape of ship hulls which are typically curved. A robot diameter
of 50cm was selected because a collection of 20 robots with these dimensions would
be adequate to repir breaches measuring up tar2m. A single hull breaches that
measure more than 2w2m on a standard bulk carrier ship which measures
100mx80mx10m would be considered unsalvageable by conventional methods, so
designing the system to try andpair damage of a much larger scale could be
considered unrealistic. There is a limit to the amount of damage a structure can suffer
and still be considered salvageable, and the approaches discussed in this thesis are

only intended to repair damage thélls within these limits.

The simulated robotase a combination of propellers and water jets to control the
position of the robot underwater, which were selected due to their proven reliability.
Similarly, to unmanned air vehicles (UAV), vehicles usiragyr blades typically require
three or more propellers to control their position and orientation. The simulated robot
was designed to operate using fourdirectional propellers which are primarily sued

to maintain a set distance from the ship hull dgimspection. The decision to use four
propellers was inspired by the methods of movement employed in quadcopter UAVs
which commonly use a combination of four or more rotary blades, and sophisticated
controllers to control their position and orientation ¢g@n, 2017). Unlike the

guadcopter however, the simulated robots will be operating in a denser fluid
environment which must be accounted for in the control strategy and selecting an
appropriate method of buoyancy control can help compensate for these additi
constraints. To this end, the simulated robots are assumed to pogsasssveneutral
buoyancy which allows them to stay submerged at 2 meters below the surface of the
water without needing to engage its actuators to maintain this depth. Using aveassi
buoyancy system, rather than an active system allows for a simpler design of the robot

and its controllers.

The four propellers and the neutral buoyancy of the robot serve as sufficient actuation
for most tasks requiring underwater manoeuvring, butriorease its ability further
the simulated robot also possesses internal pumps to create water jets. These pumps
push and pull fluid through the main body of the robot via connected channels that
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run between the four faces of the robot with the smallestgssectional area,

allowing it to further control its movement when the four main propellers are working
to maintain a set distance from the ship hull. This method of routing water through the
body to generate thrust is known as hydraulic propulsiboyleet al., 2016 and is

illustrated in Fig. 3.3.

Fig.3.3. Three connected robot modules creating a netwarkerinal pumpsshowing

the resultant motiorof the structurefrom different pumps being activated. The red

arrows indicate the motion of the fldipushed through theobot using the pumpsand

the green arrows indicate the resultant direction of motidrithe structure
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hydraulic propulsion robots, is that it can continue to function when robot modules

become connected to each other. When two or more robot modules connect to each

other as show, their channels become linked and the hydraulic propulsion of each
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module continues to function, strengthens the connection between modules, and
influences the resultant direction of movement of the new robot configuration. Due to
the dimensions of theabot selected earlier in the design process, the size of the
motors that could feasibly be implemented to enable these methods of movement is
also limited. Thus, the potential maximum speed of each robot is restricted to less than

or equal to 5 m/s in anglirection the water inlets are facing.

The selected hull shape and methods of propulsion provide an appropriate base for
the repair robot, but in order to carry out the inspection in earnest the robot requires
methods of sensing its surrounds so it caremfs position in the environment. In

section 2.5.2 one of the more common methods of localisation for swarm robots was
identified tthe use of beacons or landmarks. The purpose of the CAC algorithm is to
carry out inspection of a ship hull, and thisasrething we can exploit to our

advantage by selecting the ship hull as a known landmark in an otherwise boundless
environment. To enable a positive identification of the ship hull, the robot is fitted with
a forwardfacing camera close to the centre of th@bot, and four infrared distance
sensors that border the four propellers as described in Fig.3.2. Section 3.2.1 discussed
how IR sensors are ill equipped for lerange underwater sensing but can function
adequately over short ranges such as the 2 metiestance the robots will be working

to maintain from the ship hull.

The simulated robot alspossessefour sonar sensors; one on each of the 4 faces of
the robot with the smallest crossectional area, which it can use to confirm the
location of neighboting robots and potential obstacles in the water, such as debris,
seaweed, or moving sea creatures. The robots use these proximity sensors to detect
when another robot is in range of the sensor closest to the waterline, and in range of
the sensor furthesaway from the waterline ensuring that it always remains in contact
with these other modules throughout the inspection process. Each robot works to
equalize the measured distance between itself and its two closest neighbours using
virtual forces techniquemuch like those discussed in sections 2.5.1 and 2.5.2. The
robots use the error between their two opposing proximity sensor readings to affect
the magnitude and direction of their internal pumps which control the position of the
robot using hydraulic prodsion, enabling effective pattern formation and control. By

ensuring each robot follows this protocol, the formation of robots shown in Fig. 3.4 can
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be created and maintained, enabling a more complete examination of the ship hull to

be performed.

Figure3.4. Optimal configuration of the swarm of repair robots for conduction ship hull
inspection. Each robot works to maintain this formation as it conducts the inspection by
first positively identifying two robots either side of itself and movingdoalizethe

distance between the two. The exception to this rule is the robot closest to the
waterline, which always works to stay with 1 meter of the waterline.

The main method of inspection of the ship huliade performed bya forward-facing
cameraand accorpanying lightwhich sits close to the centre of the largest face of the
robot. There are a number of aspects to consider when choosing an appropriate
camera including lighting, camera field of view, presiolutionand the subject of the
images capturegndwhetherit is stationary or in motion. Each of these features can

be used to dictate the type, resolution and size of camera that would be most suitable
for the job. However,he visual computation method used to detect defects and
deformations in theship hull lies outside the scope of this study on complete area
coverage. Instead, the field of view of each robot (2mx2m) is the main metric used to
determine if sections of the ship hull are being inspected by more than a single robot,
which we can useotdiscernif the areacoverageof the ship hull ifompleteor not.

However, here are examples of machine vision techniques that have been successfully
applied to autonomous underwater vehicles with limited computational poteer

enable visual detection and featurecognition For instancegdge detection and line
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extractionwhich arecommonlyemployed in machine vision and work well when the
robot has access to information about the structure being imaged, which could be
suitable for this scenario where the object of inspection is known to be a ship hull.
Gamroth (2010) demonstrated how automatic detection and tracking of-made
objectsin subsea environments can laehievedwith such techniques in the presence

of marine snowand poor visibility.

In simulation, the distance sensors the robot is equipped with are visualised as red
dots wherever they intersect with the ship hull, and the forwdading cameras can
detect this. This information is used to confirm the overlaparhera fields of view
between two or more robots inspecting the ship hull near one another as shown in
Figure 3.5. If the camera detects more than four red dots, this indicates that the extra
red dots are from the distance sensor of another neighbouringtoBach camera has

a field of view that allows it to examinea ©section of the ship hull at any one time
while maintaining a distance of 2 meters from the ship hull in accordance with the

constraints enacted on the mobile robots carrying out the insipec

Fig3.5. Overlap of camera field of view, signified by the presence of more than four
simulated red dots, from the robopdistance sensors, on the camera image.

With appropriate sensors and actuator selected, the simulated robot now possesses
the ability to move freely underwater and sense its surroundd of which are
necessary for carrying out the CAC algorithms in this study. In addition, it possesses

capabilities that will allow for effective sefissembly behaviours to be implemented
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such as direct communication over short ranges, interlocking mechanisms, and an
appropriate hull geometry which are discussed further in Chapter 4. The next section
delves intothe methodology and discusses how these functionalities are utilised to

perform a ship hull inspection using CAC algorithms.

Section 3.3 Ship Hull Inspection Methodology

The proposed CAC algorithms are designed to work on-naldtit systems in which
eachindividual robot possess the same morphology and programming. As described
previously in section 3.2, the robofimodules are capable of moving freely underwater
in any direction, but to simplify the search algorithms and the subsequent controllers
forth @E} }&e JVeSE Jvs A o §} $-BpacE WithFegpdc} & tHey P
ship hull. This constraint compels the robot to use its four forwfadng distance
sensors and corresponding-thirectional propellers to maintain a set distance of 2
metersfrom the ship hull, as illustrated in Fig. 3.6. Ensuring the robot stays aligned
with the ship hull reduces the chance that the robot will lose contact with the target
and its neighbours while allowing for simpler control schemes to be considered. More
discussion on the benefits of this additional constraint and how it affects the outcome

of the simulated experiments is presented in Section 3.6.

Fig 3.6. Robot works to achieve a set distance and orientation to the ship hull, by
maintaining equal readingsn their four forward facing distance sensors. (a) The
forward-facingdistance sensors detect a difference in measured distance from the ship
hull, indicating the robot is not parallel to the hull as required, and (b) Fhe bi
directional propellers have agsted the magnitude and direction of their thrust to
equalise the distance sensor readings, giving a better indication that the robot is more
parallel to the ship hull than was previously recorded.
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The PID controller as shown in Fig. 3.7 and describEd.iif3.1) was implemented on
each of the four forwardacing propellers individually, the collective result of which
enables the robot to align with the ship hull as parallel as possible. Each propeller
generates the most appropriate direction and magudieuof thrust using an error signal
which is determined by the difference between the desired distance between the
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corresponding distance sensor. There are many clésep controllers that could have
been used to achieve the desired set point, but the classical PID controller was chosen
because it is well understood, has been proven highly reliable in the control of motors
and positioning (Astréom, Hagglund, and Astrom)@0/isioli, 200§, and continues to

prove successful in recent applications to AUV control (Khodayari and Balochian, 2015;

Sartadi, Noei, and Khosravi, 2016).

Fig.3.7 Block diagram showing (a) the PID controller implemented on forward facing
propellers of the robot to control its distance from the ship hull, and (b) the internal
working of the plantSmogeli, (2006).

The desired set point: - of the controller represents a distance sensor reading of 2
meters between the sensor and the ship hdlhis set point’:—is compared against

the measured outpub> : - creating an error signat: - which represents the difference
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between the current state and the desired state. The PID controller applies
proportional, integral, and derivative gains to this sijas described in Eq. 1 to create
a controlsignal——. This signal is then passed through the placimposed of the
motor, gearbox, and propellerto affect the speed of rotation and resultant position
of the robot, changing the measured output signal; from the corresponding
distance sensor, which is fed back to the comparator to generate a new error
signalf: —.

QPR L -3AR E—ui4gAPﬁ;@E-x@—éP’F,
Where Q R is the control variable A P is the error between the desired set point and

the measured output, and 54- ;and - x are the respective proportional, integral, and
derivative gains\(isioli, 2006)

Tud;

The complexity of propulsion systems such as that of Fig.3.7 (b) and their design is not
to be understated, with the many factors that affect the efficiency and effectiveness of
the propeller performance that need to be accounted florthis example fronsogeli
(2006), 3 is the motor torque, 3; «is the desired motor torquefiis the angular

velocity ofthe propeller, 35is the propeller torque,6; is the desired thrustand 6;is

the actual propeller thrustComprehensivéow-level system desigmvolving such
parametersfalls outside the scope of this study, but has been examined extensively by
other researchers investigating marine propulsi@mogeli 2006; Pivano, 2008).

Instead, these aspects of the system will be ergadl in future studies concerning the

use of propellers for positional control of AUVs in dynamic environments.

With the robots[movements constrained to maintain a set distance from the ship hull,
the CAC algorithms become more comparable to those usedftore 2D spaces

where only the X¥plane consideredBoth CAC approaches described here after,
operate using the same conditions described above, maintaining an equal distance
from the ship hull as often as the controllers will allow. The two methodermed to

as the lawnmower search (uncoordinated) and the sweeping search (coordinated), are
both designed to fully inspect the middle section of a ship hull. Studies on area
coverage using multiple robots have demonstrated the benefit of minimising tarns
such approaches (Vandermeulen, Grol3, and Kolling, 2019), which indicates that the

sweeping search should marginally outperform the lawnmower approach. The results
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of the following experiments should confirm this while also indicating the effect of

allowing coordination amonghe robots.

The lawnmower search (Fig. 3.8) is arcaordinated complete area coverage method
which can be used to measure the performance of a swarm of homogeneous robots
where each robot operates independently of the actions shieéighbours. In this
method, the robots are evenly distributed along one side of the vessel at the
waterline, allowing for an initial overlap of their forwafdcing camera field of view
Note thatthis initial even distribution of robots is not contradidy the robots
themselves, but by the mechanism used to deploy the robots into the water the

side of the ship, and once deployed the robots do not communicate with each other.

Fig.3.8the four distinct phases of thenecoordinated lawnmower searghattern with

robots represented by green squares and movement pattern represented by red
arrows (a) Shows the initial distribution of the robots, (b) shows their direction of
movement for the first pass under the ship hull, (c) shows the lateral moverih2nt,

and (d) shows the next pass back under the ship hull.

Each robot performs and individual search in a straight line that stretches under the
vessel until the waterline on the other side of the ship hull has been reached. Once this
point has been reeghed, the robot will turn and move parallel to the ship hull for 2
meters (half the width of its cameras field of view). The robot then completes the

initial pattern by performing the same straight line search under the vessel once more
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until the originalside is reached. This pattern then repeats until the entire hull has

been examined. In this approach sensors are only used to maintain a set distance from
the ship hull, inspect its condition with the camera, and perform basic obstacle
avoidance to preventollisions anagnsure completion of the searchformation

control between robots is not used.

The sweeping search (Fig. 3.9) is the coordinated approach which is intended to
outperform the uncoordinated lawnmower search in terms of time to complete the
search, and robustness to sensor noise or population failure in agreement with the
findings of section 2.5 of the literature review. The robots are initially evenly
distributed underneath the vessel, forming a line that follows the curvature of the hull.
The search stretches the length of the ship hull from front to back and terminates once
the main body of the ship hull has been examined. Although this approach starts with
a different initial configuration, the main distirion of this approach is thahe robots

are instructed to stay within sensor range (4 meters) of one another while performing
their search of the ship hull. The robdtke measurements of the distance themselves
and their two closest neighbours using their proximity sensors on oppoglag. SThis

data is passed through a PID controlgy. (3.1}0 minimise the difference between

these two values, which would indicate an equal distance between the robot and each
of its neighbours has been achieved. The maximum allowed space betweeroeath

is defined by the point at which the overlap of their forwdeting camea field of

view falls to zero.

In the lawnmower approach, coordinated motion is achieved using a method of
formation control which enables each robot to set the direction aabbeity of its
internal propellers responsible for moving the robot about theyxplane, using
hydraulic propulsion. The direction and velocity of thesepellersare determined
using the readings from the proximity sensors which measure the difference i

distance between its two closest neighbours, as described in Eq. (3.2).

AR L e<eQ5&d=F eco2 5 &d= [Ud;

The error value (e(t)) is generated by subtracting the minimum distance measurements
of its left proximitysensor 2 5), and its right proximity sensoi2(%) which indicates

whether it needto move closer or fdher away from its respective neighbours. A
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minimum is used to limit the speed at whichetrobot moves to equalise the distance
between itself @ad a missing neighbouas using the maximum range of the sensor
instead of a cap of 4.0 (representing 4 meters) could cause the robot to accelerate
faster than is desired, which could cause collisions with newly discovered neighbours.
Negativeerror values indicate the robot would need to move closer to its neighbour

on the left, while positive error values indicate that it would need to move closer to its
neighbour on the right. Passing this error value though a PID controller, as described in
Eq. (3.1) wuld allow the robot to safely equalize the distance between its neighbour

at a controlled speed, forming a more stable formation.

Fig.39. the three distinct phases of the coordinated sweeiegrch patterrwith
robots represented by green squares amavement pattern represented by red
arrows (a) Shows the initial distribution of the robots, (b) shows their direction of
movement for their pass under the ship hull, and (c) shows their final distribution
following a successful inspection.
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In scenariosvhere the robot has lost sight of one of its neighboufsr instance when

a robot has broken downlintroducing the cap of 4.0 in the error calculation also helps
prevent the robot from losing contact with the neighbour that is visible while searching
for a neighbour on its unoccupied side. The robots are assumed to be capable of
discerning when they are within 1 meter of breaching the waterline. When a robot
detects this, it will ignore a lack of neighbours closer to the water line that themselves
and wak to maintain a set distance of 1m below to waterline, serving as one end of

the line formation of robots under the hull.

Section 3.4 Experiment Setup

Webots is the simulation software that was selected to carry out the ship hull
inspection experiments. This allowed for the creation of more realistic models of the
swarm of swimming robots, the underwater environments, and the ship hull to be
inspected. Tie experimental setup for the lawnmower and sweeping search
experiments is kept relatively simple by modelling only the ship hull, the robots, and
the fluid environment, but omitting the inclusion of additional obstacles. The body of
water was modelled wit a high clarity to ensure that the image quality of the robots
forward-facing camera was not impacted by anomalies such as mud, oil, or other
impurities. In order to assess the performance of the system under ideal conditions,
fluid qualities such as tutdence, complex currents, and tides were not initially
modelled and instead a static body of water is used so that only the viscosity of the
fluid and the buoyancy of the robots are considered. Exactly how the results and
system performance are expected ¢cbange when implemented in a turbulent
environment is a subject which has been delegated to future experiments. The
simulated ship used in the experiments is that of a bulk carrier ship, the second most
common sea faring vessels used in international @hig of dry cargoes with a high
weight to cost ratio such as coal, grain, and ore (Global merchant-fleghber of

ships by type 2019 | Statista, 2020). The ship hull inspection technique discussed in
this study could also be applied to the more commeneral cargo tankers, but the
bulk carrier ship hull was selected because these types of ship typically carry more
valuable cargo and as such are at the greatest risk of loss. The scale of the modelled
bulk carrier ship is relatively small, measuring 108mx10min length, height and

width respectively(Fig. 3.10). If a different size of vessel or a ship with a wholly
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different shape of hull were to be used the CAC algorithms for inspection should in
theory not need adjustmentdoweverthe number of robotdeployed to conduct the
search may need to be increased or decreased to avoid sparsity or overcrowding of
robots carrying out the work. Given the size of the simulated ship, the total area of the
hull section to be inspected, and the maximum size of dnehat could be consider
salvageable (as discussed in Section 3.2.2), a population of 20 robots with dimensions
of 50cmx50cmx5¢cm per module and an average field of viewedt would be

sufficient to achieve complete area coverage and conduct subsequpairseby

following the ESHR approach outlined in Section 3.1.2.

Fig.3.10.Threedimensionamodel of the bulk carrier ship used in the ship hull
inspection simulations with fluid environment colorized.
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ship remains in place, simply floating in the body of water to allow the robots to
conduct search. The ship sits very low in the water so that the majority of the hull is
submerged, which would be the case if the ballastk of the vessel was full. In
addition, since both methods of ship hull inspection are intended to examine a ship
which has taken on additional water, the hull is submerged even further to the point
where only a meter of the hull section sits above theface, allowing realistic
simulations of scenarios where the ship is holding even more water than the ballast
would allow. This configuration represents the largest area to be examined and the

worst-casescenario before the ship begins to sink in earnest.
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The two methods of ship hull inspection described in section 3.3 as teamlinated
lawnmower approach and the coordinated sweeping approach are tested, and three
scenarios are examined for each of the two methods in environments with no
additionalobstacles. The first scenario tests the system performance in an ideal

setting, where every robot in the swarm is fully functioning throughout the experiment
and there is no excessive noise or errors present in any of the sensor measurements or
camera imags. The second scenario examines the performance of each system in the
presence of some sensor noise which is evenly distributed among the distance sensors
used to maintain a set distance from the ship hull. Noisy reading from sensors such as
the IR device discussed in section 3.2 are a common occurrence in underwater
robotics applications and so the forwafdcing IR sensors of the simulated robots are
modelled with additive white Gaussian noise (AWGN) which is fortunately an available
method of modellingnhoisy sensor reading in the Webots simulation software. AWGN

is a basic noise model used to mimic the effects on signals caused by random
processes that occur naturalyuch as the temperature and clarity of the water or the
intensity of ambient light and is added to any noise that may be intrinsic to the

sensor model. The noise is modelled with standard deviations of 5%, 10%, and 15%

respectively, as shown in Figure 3.11.

Fig.3.11. Additive White Gaussian noise (AWGN) with a standard devigtiirb@o
added to the distance sensor values to examine how the system functions in the
presence of noise. The highlighted red section identifies the range within which the
majority (68.2%) of noise values will be generated. Standard deviations of 5%, 10%,
and 15% are modelled in separate experiments, but following the same Gaussian
distribution curve as shown.
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The third scenario tests the system performance with ideal sensor readings, but
examines how the robots adapt when a percentage of the robot populationpletely
fails and does not recover. Three experiments will be run per search method, where
5%, 10%, and 15% of the team of robot will be randomly selected to fail at different
times during the experiment, at which point the functioning robots will iasté¢reat

the faulty robots as obstacles to be avoided. In such a scenario, the remaining robots
must then either distribute the work evenly among the remaining robots by
collectively filling the gaps that have formed, or delegate the work of each faileat ro

to its closest functioning neighbour.

The performance of the lawnmower and sweeping searches, in each of the three
scenarios, is determined by the successful completion of the CAC task and three
additional factors: field of view (FOV) overlap, FOV gapd completion time. One
method of assessing the completeness of the CAC algorithms is to measure the total
area of overlap and total area of gaps generated between the camera FOVs of each
robot. If a single robot is tasked with inspecting an objectibwperating with faulty
sensors it may develop a false image of the target. However, if two or more units
inspect a section of the same object and can reach consensus on their measurements,
even if one is faulty this reduces the risk of taking errone@aslings or false positives

as fact. So the more FOV overlap present, the higher the chance of observing the true
state of a section of hull that is inspected. The quantity of FOV overlap and gaps
generated are found by recording the global positions oheaicthe robots andhe

FOV measurements from the J¥¥ne, all of which are readily accessible through the
simulator. These values are then applied to 893 where the total FOV overlap or

gap can be calculated.
#Uéél— @UééF ¥¢T6E(,LPAH ka‘)éél: (,\/Oé. TUal;

Where 4, represents the area of overlap or resultant gap formed between two

robots FOV. 4n,and 4mkepresent the minimum xplane FOV measurements of the

E} }S Jv <p ¢S]}v Ju% &E P JveS ]S o0} ¢S v |]PZ }JUuEX PA
differences in position of the two robot cameras in the x, y and z coordinates,

respectively.
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The measurements ahsubsequent calculations from Eq.3)3are carried out for each
robot and occur every 50cm that is traversed by the swarm. If the calculation yields a
negative value, this indicates a gap has formed between the respective robot FOVs,
while positive valus represent an area of FOV overlap. Higher levels of overlap
indicate a higher probability that the robots are observing the true state of the ship
hull, contributing towards a more complete inspection. Gaps in FOV indicate sections
of ship hull that havgone uninspected and are thus counted as incomplete searches.
Only approaches that do not generate gaps can be classed as complete. Figure 3.12
illustrates the concept of FOV overlap between two robots in the same arrangement

that is used in the experimén

Fig.3.12. Field of view overlap diagram. The image shows two robots angled towards a
hollow cylinder, the field of view and camera frustums are drawn in red for robot 1 and
green for robot 2. The yellow shaded section represents the overlap betheend
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The final factor for measuring the performance of each approach is simulation
completion time. Time is an important element of emergency ship hull repair as the
longer a breach remains in disrepair, the higher the likelihdwd flood boundaries

within the ship will fail, leading to worse flooding and greater instability of the ship.

The quicker the system can perform a complete search, the faster it can discover any
potential hull breaches, and thus the more well suited il i to forming part of the

automated emergency ship hull repair system. These experiments should reveal the
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approach which yields the fastest and most complete search of the ship hull, even in

the presence of failed robot modules or erroneous sensor iregsl

Section 3.5 Results

In this section, theperformance of the lawnmower and sweeping searcbes

simulated generic cargo tankare assessed in three separate scenarios: ideal
conditions, sensors with 5%, 10%, and 15% additive noise, and 5%, 10%, and 15%
population failure. Fifty separate simulations were carried out for each variable that
was changed in each scenario for both aggarhes, resulting in a combined total of

700 simulations for the weoordinated lawnmower search and the coordinated
sweeping search. The results were compiled and compared in MATLAB to help identify
the search method that yielded the quickest completioné and the most complete
searchlnall the figures shown forthwith, each bar represents the median result of the
50 simulations per variable change. Error bars are included indicating the maximum
and minimum values obtained, except for Fig.3.13 in whiehresults are

deterministic and therefore no variation in behaviour was observed.

Section 3.5.1 Ideal Conditions

Figure 3.13 shows the comparison of results between the lawnmower and sweeping
search in the ideal scenario, where all robot sensors opesgtteout erroneous

readings or noise, and none of the robot population fails throughout the simulation.
Neither approach generates gaps throughout the experiment proving that complete
area coverage has been achieved by both. It can be observed that th@isgesearch
achieves greater FOV overlap than the lawnmower approach, indicating that the
sweeping search has a higher probability of observing the true state of the ship hull,
providing a greater degree of certainty concerning the recorded sensor measatem
The largest distinction that can be observed between the two search methods is how
the sweeping search takes less time to complete the same search while achieving a
higher FOV overlap. These results are in agreement with other studies investideing t
effect of turn minimising behaviour in robot teams for area coverage (Vandermeulen
et al., 2019) further confirming the hypothesis that search methods with fewer turns
typically result in fast completion times for area coverage. Under ideal conditioms,
sweeping search seems to outperform the lawnmower search in terms ofttme

completion and FOV overlap.
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Fig.3.13. Ideal scenario comparison for the lawnmower search and the sweeping
search, where all agents operate with perfect sensor measureraedtsone of the
population fails.

Section 3.5.2 Noisy Sensor Measurements

Figure 3.14 compares lawnmower and sweeping search performance in three
scenarios where théorward-facingdistance sensors of the robots return erroneous
measurements due to the ihgsion of additive white Gaussian noise (AWGN) with
variances of 5%, 10% and 15%. Though errors are present, none of the population fully
fails throughout these simulations so that each robot completes their individual
search. From the results, it is ctehat the lawnmower does not generagaps,but

the sweeping search does. This indicates that when significant noise is introduced to
the distance sensors only the lawnmower approach achieves complete area coverage
while the sweeping approach fails. Theeeping search yields greater FOV overlaps
when less errors are present; however, it is quickly outperformed by the lawnmower
approach once errors begin to build, and this performance gap widens when the
magnitude of erroneous reading increases. In additibe overlap generated by the
lawnmower approach is more consistent, with low deviation across different
percentages of error. The sweeping search may take less time to complete its search

pattern than the lawnmower search, but because it has begun tegee gaps it can
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no longer qualify as a complete search. This indicates that when erroneous sensor
measurements are more prevalent, the lawnmower search is superior to the sweeping
search. On completion of the initial experiments, several simulationg wenducted

with extreme erroneous sensor measurements of 30% which revealed that both
systems quickly break formation and fail to complete the search. This demonstrated
that while the lawnmower approach is more tolerant to sensor noise than the

sweeping sarch, neither system is wholly immune.
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Fig.3.14. Error Scenario Comparison; (a) the sweeping search (coordinated), and (b) the
lawnmower search (uncoordinated). In these experiments, the robots operated with
erroneous sensor measurements with variances of 5%, 10%, and 15%. None of the
robots fuly fail in this scenario but the noisy sensor readings have a negative effect on

the robots[ability to complete their tasks.
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Section 3.5.3 Partial Population Failure

Figure 3.15 compares the partial population failure scenarios for the lawnmower and
sweeping searches. In these scenarios all robot sensors operate without erroneous
measurements onoise,but a percentage of the population fails at a random time
intervaland does not recover, instead serving as obstacles that the remaining
functioning robots must avoid. The robots are configured so that 5%, 10%, and 15% of
the total population will fail in three respective separate scenarios. The results show
that neithersearch method generates gaps in FOV which indicates that complete area
coverage is still achieved in both cases. The lawnmower search achieves
cumulativeoverlap than the sweeping search, indicatthgt it has ahigherprobability

of observing le true state of the ship hull. However, this comes at the cost of a
significantly longer completion time than the sweeping search whose completion time
is almost unaffected by decreases in population of up to 18%act, the lawnmower
approach takes approxiately 5 times longer to complete its search than the sweeping
search, but only yields 1.5 times the overall area of FOV overlap. This indicates that the
uncoordinated lawnmower seardh less efficient than the coordinated sweeping

search at redistributingdditional workload when part of the population fails, which is

in agreement with section 2.5.1 where the benefits of distributed systems are

discussed.

Full videos of these simulations showing the lawnmower and sweeping searches under

ideal conditions ca be accesed via the GitHub repository:

https://github.com/MattSHaire/Emergenc@hipHul-Repair

Additionally, the code used to construct the Webots environment can be accessed vi
the same link, while experts of the programs used to control the robots can be
examined in greater detail in Appendix A: Ship Hull Inspection Webots Simulation

Code.
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Fig.3.15. Partial population failure scenario comparison; (a) the sweeping search
(coordinated), and (b) the lawnmower search (uncoordinated). In these experiments, all
the robots operated with ideal sensor measurements, but a percentage of the
population completely failed and did not recover. Percentage failures of 5%, 10%, and
15% areshown which represent scenarios where one, two, or three robots completely
fail at a random interval, and serve as obstacles from that point forward.
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Section 3.5.4 Effect of Ship Size on Results

As mentioned in Section 3.4, these simulations were carried out in Webots Wwittka
carrier shiphull measuring 100mx8mx10serving as the object of interest. The
algorithms deployed on the robots for maintaining a desired distance and orientation
relative to the ship hull are designed to allow them to inspect various ship hull shapes
without increasing the time of completgearcheor reduce FOV overlap. However,
using the same number of robots to inspect ship hulls of different lengths than our
simulated model could significantly impact the results. For instance, if the
circumferenceof the ship hull to be inspected wasilved such that the hull was
narrower, and the same number of robots was used to perforspection t this could

decreasehe completon time, but increase the risk of collisions between robots.

Similarly, if thecircumferenceof the ship hull was double that of the simulated model,
more robots would be required to achieve comparable completion times and FOV
overlap to that of the rest. Therefore, to achieve similar results recorded in these
scenariosEq. (3.4xan be used to determine how many robots should be deployed
basedon the circumferenceof the ship hull, and theidth of the robot FOV while the

width of the robot largesface isno greater than “hat of its FOMWvidth.

Og L\ - &Baj a Tud,

where Ogis the recommended number for robots required for the insection of the
ship hull, 9 4 is thecircumferenceof the ship hull in meters, and; ; @nd §; 5 are the
horizontal and vertical dimensions of the robots F@égpectively. The minimum of
the FOV dimensions is used so that the robot can perfasrimgpection at any
orientation. Thigesult in multiplied by 1.5 to ensudequateFOV overlap and is
finally rounded to thesmallest iteger greater than or equal to the result to give the
number of required robots. For example, thiecumferenceof the simulated ship hull
from the experimats wast x| and the *y56L 8;36L t1 whichgivesa result of 20

robots.

Section 3.6 Discussion
It may seem as though the question of which method is superior under the three

circumstances is rather clear, however there are additional considerations that must
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be made for the sweeping search method. This is because as a coordinated method it
relies onthe accuracy of its sonar sensorsibto maintain contact with its neighbours.

It was found that while many of the sensors in Webots quite accurately represent their
reaklife counterparts, the sonar sensors are regrettably less accurate. Rather than
detecting objects that come within a given range of the sensor, in Webots sonar
sensors are modelled as multiple laser rays emitting from a point, and objects are only
detected when they intersect with these rays (Fig.3.16). This means objects that can fit
between these rays can become more easily lost to the sensor, causing the robot to
believe the object it was sensing has suddenly vanished. This is a scenario that
frequently occurred in simulation when the robots turned at sharp angles while
following thecurvature of the ship hull. In these scenarios, the PID controller that
works to equalize the distance measurements on each side of the robot quickly moves
to regain equilibrium. When the robots fail to see each other in these scenarios they
have a highelikelihood of colliding, which causes both agents to fall away from the

arranged line, and ultimatelafl to complete their searches.

Fig3.16. Webots simulated representation thie sonar sensors in operation on two of

the ship hull inspection robotMultiple rays are used to represent the sonar sengors

red rays indicate a beam which has not detected an obstacle, but when a ray turns
green this indicates it has passed through an obstacle. This image shows the common
scenario where the robot on the jpgx left of the frame can see the other robot, g

robot of the loweright-handside of the frame cannot see the robot on the upper left
hand side of the frame.
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In the second set of experiments, where errors were introduced to the foriacthg
distance sensors, the inaccuracies caused the robots to sway slightly, increasing the
likelihood that neighbouring agents would fall between the already scattered sonar
rays and become lost to the robot. To address this issue, a more accurate
representation othe sonar sensors should be used in subsequent simulations to see
how the system behaves without this unintended disturbance. It is reasonable to
assume that a more accurate representation of sonar sensors would remove some of
the instability that has cawsl gaps to form, and would further serve to reduce the
reality gap between the simulated and real world systems. However, at present the
lawnmower search appears to outperform the sweeping search in terms of robustness

to sensor noise.

Despite these shortimings, the coordinated sweeping search method was able to
adapt well to losing a percentage of its population. In fact, when a higher percentage
of the agents were removed the speed of completion appears to have slightly
increased. This increase in spezlild be due to how the area of the ship hull narrows
towards the back of the vessel. When the area to be inspected becomes smaller, using
larger populations of robots can lead to some overcrowding and begins serve as more
of a hindrance than a benefit. Tk, it seems reducing the size of the population when
approaching narrower section of the hull increases the speed of inspection by reducing
overcrowding. Understanding this aspect could allow for adjustments to the search
method so that the robot populabin size can be increased or reduced according to the
collective space between robots rather than the predetermined maximum length
between two points on the ship hull. This improvement could serve to increase the
efficiency of the system by only recruitingbots from the available population which

are deemed essential to the search, instructing others to form a second line of
inspection or remain on standby. Such adjustments could also make implementation of
this search method more readily applicable topshwith different hull shapes and

sizes.

Comparison of the results from Fig.3.13 and Fig.3.15 (b) confirms that the completion

time for the uncoordinated lawnmower search method is severely impacted by partial

population failure as was predicted. When eve single agent (5% of the population) is

removed, the time required to complete the inspection can increase by up to 100%.
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This effect is compounded when a group of two or more consecutive agents fail near
each other. This is due to the closest remairfungctioning neighbour robot having to
perform the work that would have been performed by the faulty robot, increasing the
workload of the individual rather than the work being evenly distributed throughout
the swarm as is the case in the sweeping seaceimario. This reduces the scalability

of the lawnmower approach, as larger swarms will perform less efficiently when the

workload of failed agents is simply shifted to its closest neighbour.

The results show how the coordinated sweeping search method ofdpes the unr
coordinated lawnmower search method under ideal conditions and in the face of

partial population failure, which is in agreement with the literature findings of Section
2.5 concerning coordinated motion and area coverage in dynamic and 2Eatic
environments. Comparisons between these CAC experiments which took place in a 3D
simulated environment and the 2D search space experiments from literature are
possible thanks to the implementation of constraints to the robots working space. This
allowedthe swarm robots movements and pattern formations to mimic that of robots
exploring 2D bounded arenas, despite carrying out an inspection of a curved surface

without a solid boundary.

However, due to inaccuracies of the sonar sensors modelled in the Webots simulator
as mentioned above, the sweeping search is presently more sensitive to sensor noise
than the lawnmower search and leads to instabilities which render the inspection
incomplde under certain conditions. The sweeping search may be superior in terms of
time taken to complete the inspection, and robustness to partial population failure,

but not to erroneous sensor readings. Provided the sonar sensors are modelled more
accuratelyand the sweeping search method are modified to better adapt to sensor
noise, it could in theory outperform the lawnmower searchaitthe scenarios. As it
stands, the lawnmower search method is the only inspection which qualifies as

complete in all scenasand must be recognised as such.
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Chapter 4. Ship Hull Repair: Self-Assembly Algorithms

The research presented within this chapter pertains to $keond stage of the

emergency ship hull repair scenario outlined in Section 3.1 and is intended to follow
successful completion of the ship hull inspection stage described in Sectiorh& 3.

study examines the ability of the robot swarm to aggregate at a specified location and
form a patch using a novel s@l§sembly technique which relies on direct optic
communication.Selfassembly is a branch of robotics research which studies how
distributed groups of robots can interact and arrange to form new configurations

which are capable of more than the sum of the individual parts. As discussed in Section
2.6, thetype of selfassembly detailed in these studies pertains to how a swarm of
autonomous underwater modular robots can combine to create a patch of a given
shape and size using their own bodies. The purpose of the resultant structure will be to
cover and repir the ship hull damage which it has been created to addrBss effect

that increased robot traffic has on this robot assembly proceaks@studied by

varying the population density across multiple simulations and scenarios

The main contribution ofhis research is a method of sa@§sembly that allows

modular robots to form repair patches, using their own bodies as material, which are
large enough to coving a holes of various shapes and sizes in a ship hull. The results
from the experiments are usetd inform the design of an improved selfsembly

approach which suggests a method of enhancing the initial approach by controlling the
angle of approach the robots use when navigating their way to the damage, or by

allowing more than one assembly locatifor the repair patch.

Much like the simulated repair robots of the ship hull inspection scenario, the
simulated robots used in this study do not yet hawealworld counterpart and are
instead restricted to more abstract descriptions of their abilitssl morphology.
Section 4.1 provides more insight into the use of direct communication for the purpose
of selfassembly, and is followed by a description of the simulated robot morphology.
The robots in these experiments are intended to possess mucheadme abilities as
those in Chapter 3 but their morphology and representation have been changed to
allow for simpler simulation of larger robot populations. The necessity of these
adjustments is provided in more detail in Section 4.1.2. Section 4.2 setheamethod
of aggregation used to guide robots to the location of the ship hull damage, referred to
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as the primary assembly point (PAP), and theasdiembly method which uses direct
communication techniques to form a correctly sized repair patch. @edti3 discusses

the experimental setup and explains how the success of each simulation is intended to
be measured. The results of the experiments are provided in Section 4.4, and the
chapter concludes with a discussion of these results and their imgicatn Section

4.5.

Section 4.1 Simulated Robot Morphology

In Chapter 3, the robot morphology was designed primarily for assessing the ability of
the robots to move relative to the ship hull and other robots using indirect
communication methods. In thiswdly however, the robots will require more direct
forms of communication in order to carry out the aggregation behaviour ane self
assembly procedures being tested. To this end, Section 4.1.1 lists the functions and
physical capabilities the robot will regaj in addition to those specified in Section

3.1.1, to carry out the selissembly task. Section 4.1.2 presents the new simulated
robot designed to meet these requirements and explains the reasons behind the

changes which were deemed necessary to cartytloel selfassembly behaviour.

Section 4.1.1 Robot Specification

To perform the aggregation and s@l$sembly behaviours presented in this Chapter, at
a minimum the AUVSs require the ability to directly communicate with one another

over short distances, and to connect with other robots to form larger structures. This is
in addition to possessing an appropriate geometry which allows them to create water
tight seals between robot modules and the ability to effectively move underwater as
described in Section 3.2.2. Direct communication between robatsbeen

successfully dgeved underwater using acoustic signalling (Paull, Huang, Seto, and
Leonard, 2015), but this method operates at low bandwidth and is more subject to
noise introduced from reflections from objects in close proximity in the water
(Joordens and Jamshidi, 2L)1 Optic communication is an alternative method for short
range underwater communication that uses light pulses (Schmickl et al., 2010). This
approach overcomes some of the limitations observed in acoustic signalling but can be
subject to other factors sth as water clarity and ambient lighting conditions.

Minimising the influence of environmental conditions on optic communication can be

achieved by reducing the distance between agents. However, the shortcoming of both
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systems may be better compensated fba combination of the two communication
methods is used instead (Lodovisi, Loreti, Bracciale, and Betti, 2018). A hybrid system
could be well suited to mukAUV systems that communicate under varied conditions,
due to the ability to adapt the communittan method based on the environmental

conditions and transmission range.

As discussed in Section 2.6, swarm robots tasked witraseémbly are often

dispersed within an environment and so require a method of aggregation to allow
them to regroup at a comon location to begin assembly. The purpose of the robots in
this scenario is to address ship hull damage by usingaseémby} to form a repair

patch near thdocationof the damage Therefore, environment mediated aggregation
methods which rely on infonation from theenvironment may be morappropriate.

In Section 2.6.1it was explained hovarvin et al. (2014) used acoustic signalling
systems to achievsuchaggregation behaviours in robots. This is a technique which
may be adaptable to underwater swarrobot scenarios since acoustic signalling has
been shown to be effective at communicating over short and long distances in such

environments.

There are a variety of sedfssembly methods which have seen application in ground
and air environments, as prmwsly identified in Section 2.6.2, but relatively fewer

have been applied to the underwater domain. As such, some of thassfimbly
methods used for inspiration and guidance come from systems originally intended for
a different environment than underwar, but could still be realistically implemented.
The robots are intended to create a repair patch using their own bodies, a category of
selfassembly methods referred to a morphogenesis, and the structure they form
should be suited to the shape and safethe damage found on the ship hull. To

achieve the proposed sedfssembly behaviour, the robots require: a method of
assessing the size and shape of the damage, sensing the presence of other robots,
communicating their state to each othex,morphology Wich allows them to form
watertight seals between unitgnda method offorming physical connections

between robots which are strong enough to withstand underwater currents and

collisions.
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Section 4.1.2 Simulated Robot Design

In this study the robot morpology slightly diverges from the robots described in
Section 3.2.2 by simplifying their representation for a 2D environment while
implementing new direct communication and physical connection functions. These
changes in simulation environment and robopresentation were made to address
issues surrounding simulation speed and accuracy. This study is primarily concerned
with studying how well a swarm robot system can follow the proposedassiémbly
protocol in the presence of high traffic scenarios wherere than 20 robots are used.
The complexity of the simulated robots and their sensors in Webots environment did
not allow for efficient simulation of a significantly higher quantity of the robots tested
in Chapter 3. With single runs of simulations takdays to complete, it was decided
that using a simpler model in a simulation environment better suited to very high
numbers of agents would be more beneficial for the initial tests of the algorithm. To
this end, the experiments were conducted in Netlotiee multi-agent programmable
modelling environment, but underwater effects such as drag force and signal

attenuation wereomitted from the model.

The new simulated robots are assumed to possess much of the same abilities of the
robots described in the shipull inspection scenario from Chapter 3. These include the
ability to maintain a set distance from the ship hull using propellers and distance
sensors, detect the presence of other robots and obstacles usingrsideted sonar
sensors, and assess the cdarmh of the ship hull using a forwa#fécing camera. The

new abilities available to these robots include direct communicate over short distances
using sonar transmitters and receivers, connecting to other robots to form larger
structures, disconnecting taeconfigure the resultant structure, and the ability to
exchange information with neighbouring robots using optic communication (LEDs).
maindistinctions between the previous and new simulated robots are their size,

speed, and representation in the environment.

The robot modules described here are modelled at one tenth the size of the original
simulated robots from Chapter 3, mgaring 0.05m § 0.05m.Reducing the size of

each robot module allowed for more accurate representation in the Netlogo simulator
where the complexity of the agents modelled is more limited than Webots. However,
to maintain this accurate representation it is necessarglsm scale back the

93



maximum possible speed of each robot module to correspond with their reduced
stature. Therefore, each robot is modelled with a maximum spedd@F m/s which
roughly equates to moving at one body length per simulated second of tintiee 12D
Netlogo environment, these robots are represented as simple squares with different
colours to represent their states. In the Webots simulator and on real world robots
these states would instead be communicated via multi colours LEDs and corragpondi

colour sensitive photdransistors.

Unlike the indirect communication methods used in the CAC algorithm experiments,
the aggregation and seffssembly behaviours require more direct methods of
information exchange. To allow the robots to gather at thesltion of the ship hull
damage, the robots are assumed to possassictive omnidirectional low frequency
acoustic signalling systewhich operates using sonar transmitters and receivers. This
allows for any of the robots which discover the ship hull dgentb send a global
transmission about the location to the other robots within range on the same
transmission/receiver frequencithe system is configured so that robots are only able
to do one of these actions at a time; either they are transmitting beeahey have
located the breach and are forming part of the repair patch using their bodies, or they
are open to receiving signals because they are still in the ship hull inspection process,
at which point they will abandon their search and move to pastité in the repair at

the specified location.

To perform the selassembly behaviours, the robots use close range methile

module interactions between connected agents to communicate the state each
module is currently occupyinginformation which is essential for the seésembly
protocol to functon as intended. This is achieved using radtoured LEDs on one
robot and corresponding RGB colour sensors on the connected neighbouring robot.
This form of optic communication has been shown to be as reliable as acoustic
signalling at exchanging informman at close range, as discussed in Section 2.6.2 of the
literature review. The state of each of these robots determines whether their current
connections are sufficient or if ad@nfiguration should be attempted to form a
structure with a more appropaite shape or size. This form of direct communication is
only achievable once the modules are aligned with each other so that the LEDs and

phototransistors of two robots have an unobstructed line or sight. An effective method
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of ensuring the robotbeingaligned is to allow this communication only once they

have physically connected to omamother. There are benefits and drawback to both
mechanical and magnetic links, as discussed in Section 2.6.2, but active magnetic links
were selected as the connectionetinod due to their ease of coupling and-deupling

and decreasedHKelihood of mechanical failure.

As described in Section 3.3 of the previous chayiterse robotsare able to control

their orientation relative to the ship hull using four forwafacingpropellers The

robots use thes@ropellersand corresponding distance senstosmaintain adistance

of 2m from the ship hullenablingthem to implement algorithms which allow them to
treat the ship hull as though it is a 2D plane and more easily intevih neighbouring
robots. Robots then use their internal pumps to move closer or further away from
other robots; working to align themselves so they may communicate their respective
states directly using thezorresponding-EDs and Phototransistors. Eleeexperiments
were carried out in simulations that modelled static bodies of water so while the risk
ofeach®&} }8[e }&E] v8 §]}v Z VP]VP }v %% E} Z S} }$Z & &}
possible Becausehe risk of thisoccurrencen simulationwas low,motorised controls

to correct such a change in orientation were not implemented. Instead, the magnetic
links used to couple robots together could be used to correct any minor tilts in

orientation as illustrated in Figure 4.

As a tilted robot approachesrabot it intends to directly communicate with, it will
attempt to align its most forward leading magnetic link with that of the other robot. As
indicated in Figure 4.1(b), minor tilts can be corrected by the strength of the upper
magnets coming togethenudging the robots orientation back into place. While this
adjustment is sufficient to correct minor changes in orientation, corrections to major
changes in robot orientation may require additional propellers in combination with an
inertial measurement uni(IMU) to be included in future models to ensure greater

control and stability.
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Fig.41. lllustration of repair robots (light grey squares) correcting minor orientation tilit
using magnetic links (purple squares on the corner of each robot faceho(@$ Sne

robot on approach to another at an unfavourable angle of orientation, indicated by the
red arrow. (b) shows the moment the robots first make cotact, with the green circle
highlighing the two magnetic links used to pull the robot back into oriématc)

shows the final configuration of the two robots, now linked together by both magnetic

links.

Inthe Netlogo simulations the time taken for robots to identify ship hull damage,
recognise when they are within sensor range of another robot, directhymunicate

with other robots, and their magnetic coupling/decoupling procedure are all modelled
to be instantaneous. However, in more complex 3D simulations and real world
experiments a time lag between these events in inevitable and the potential ingbact

these factors is discussed in Section 4.5.

Section 4.2 Methodology

The selassembly method presented in this section is intended for scenarios where a
robot has already successfully identified hull breach damage. This robot serves as the
primary assemly point (PAP) and sends out a signal which informs any robots within
range of the transmission of its location. The first set of experiments examines
scenarios where all the repair robots approach from a common direction as this
increases the likelihoodfdigh congestion events, and allows for the study how the
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swarm robots adapt under such circumstances. Theassémbly protocol followed by
the robots in this scenario instructs them to form a square structure which is wide
enough and long enough to cewa circular breach, based on the diameter of the hole.
The second set of experiments seeks to increase congestion further with the inclusion
of obstacles for the robots to avoid when-ooute to the PAP. This is included to
examine how the system will perm under increasingly challenging condition in

terms of time to completion and recorded collisions between robots.

The robot serving as the beacon for the PAP is working to maintain its position at the
edge of the hole between the damaged and intaattsen of the hull. Much like the
simulated environment in the ship hull inspection experiments, the ship is stationary
and does not roll or drift which makes it easier for the robots to maintain their
positions relative to the ship hull. However, in moealistic scenarios and simulations
the ship hull is likely to roll and drift, requiring the robots to work to maintain their
position by using connections to the ship hull such as physical tethers, magnets, or on
board image processing. The robot is alngéitted with a forwardfacing camera to
recognise a damaged section of ship hull, and this same camera could be used to take
pictures of the ship hull that the robot could use as a reference to where it wants to
stay. Using this image to recognise whea #hip hull is moving, the robot could
calculate the direction of the drift and move in a similar direction to match the change
In position, waiting for the moment when its current view of the ship hull and the
saved image of its desired location are atigronce more. The robot broadcasts its
location using the acoustic signalling system described in Section 4.1.2, while it is
working to maintain its desired position, providing a rough estimate of its location to

any robots within transmission range.

Inall the ship hull repair scenarios, the robots are capable of indirect communication
using sidemounted proximity sensors to detect the presence of other robots and
obstacles and avoid or communicate as appropriate. They are also capable of two
forms of dire¢ communication, which they use to relay information about the general
location of the breach and recognise the state of another robot forming part of the
repair patch while also providing information about their own state. The first method
of communicatio is an acostic signalling system (Fig24which uses shostanged

sonar transmitters and receivers to send and receive signals from robots located at the
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hull breach indicating the PAP. The second method enables each robot to use their tri
coloured LEBand corresponding RGB sensors to read the state of neighbouring
robots, which indicates if the robots they are connecting to need other robots to

connect to them, or if they should look for a diféat robot to attach to (Fig.3).

Fig.42. Simulated sbot modules using direct communication techniques to inform

each other of the location of the hull breach and the primary assembly point (PAP).The
Robot that has located the breach transmits (Tx) the signal using an omnidirectional
low frequency sonar anithe robots that have not located the breach receive (Rx) this
signal moving towards the PAP.
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Fig.43. Robot modules communicate their state with neighbours using LEDs (red,
green, and orange circles) and RGB sensors (white triangles). Red LEDsandioatte

that is in transit to the primary assembly point (PAP). Orange LEDs indicate a robot that
is directly communicating with other robots and trying to find an appropriate place to
attach to the structure. Green LEDs indicate a robot that has foursd@ptable

position, attached, and is now counted as a part of the repair patch.

Inspired by the rules of cellular automata, ea@} } Sthte is determined primarily

by the states of other connected robots that form arMdeumann neighbourhood

(Fig.44) and its position relative to the ship hull damage. The robot states are
communicated to one another using LEDs, with states represented as different colours.
When robot A(x, y) is in the red state and on route to the PAP it only takes into account
the state of robot D(x, y1) when deciding to transition to the orange state. When

robot A(X, y) is in the orange state it uses the states of robot§ Lyfxand R(x+1, y) to

determine when if transitions to the green state. Finally, when robot A(x, y) is in the

green state, it uses its position relative to the ship hull and the states of all the robots
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in its Von Neumann neighbourhood to determine when it transitions to the purple
state, indicating the repair structure is complete. Table 4.1 shows the parttal tru
table each robot uses to determine its state transitions based on the statés of
neighbours, while Figure 8shows how these transitions might unfold. Using LEDs to
communicating robot states as different colours is a simple but effective method
which can be used to inform other robots if there is a befiesition,they could

occupy to better achieve the regeid shape and size of the repair structure.

Fig.44. Typical Von Neumann neighbourhood with notation adjusted to accurately
represent the % plane is represented in Netlogo simulation software. A (X, y)
represents the agent in question, El(xy) is theagent to the left, R (x+1, y) is the agent
to the right, U (x, y+1) is the agent upwards, and D-{},ig the agehdown from

P vS [ %}*]5]}vX
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Table.4.1. Partial truth table of the s@l§sembling repair robot A(X, y) when it is

located at the PAP ahin the orange state indicating that it is forming the central part

of a block that is under construction. As discussed above, in this position it only uses the
states of the neighbouring robots (%, y) and R(x + 1, y) to dictate its state

transitions Only when robot A(X, y) detects that these robots are in the green state

does it decide to transition to the green state also. Number 1 represents the red state,
number 2 represents the orange state, and number 3 represents the green state.

A(xy)
(t+1)

Wl N N N N N N NN
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(t+1)

(t+2)

Fig.45. this diagram shows a state transition example using the state transition truth
table from Table 4.1. Robot Ay, at time (t) examines the states of robots-L(¥)

and R(x+1, y) to determine whether it should turn green or remain orange. It observed
that robot R(x+1, y) was not in the green state during inspection and so chooses to
remain orange. At time (t+1pbot A(X, y) examines the states of robots1,(x) and

R(x+1, y) again to check if there has been a change, this time confirming that both
robots are in the green state. At time step (t+2) robot y(kas transitioned to green
based on the states dafs neighbours observed during the previous step.
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Once a robot module has successfully navigated to the location of a robot module
close to the breach location, it can begin the CD-asffembly protocol. The protocol
instructs each robot to begin attactgrto other robots until they collectively form a
block of robots that spans the full diameter of the breach. The length of this block is
determined by the cameras which can recognise when the modules have formed a line
of adequate length, which is achievbg checking if the modules that form each end

of the block are centred over an intact section of ship hull, but also connected to a
robot that is centred over the breach. Once the first block has fully formed, the block
advances by one module bodisngth (0.05m) and the unattached modules begin
forming a second block above the first, increasing the total area of the structure. This
process then repeats until every module on the perimeter of the breach can confirm
they are not directly above the breach bate still connected to a module that is. In

this case the robots communicate to each other that a patch of appropriate size has
been achieved and they enter their final state where they prepare to attach to the hull
and seal the breach. The result is aagusheet formed of robot modules which is

large enough to cover the hole.

At the beginning of this section it was stated that the simulated damage to be repaired
would be a circular hole and here we revealed that the-asfemblyalgorithm is

designed tdorm a square patch cable of coving this hole. However, the algorithm can
be adapted to form square patches for a variety of hole shapes by using the forward
facing camera to determine the maximum diameter of the hole and using this to
determine the lengh of connected modules the robot must forfhis length ensures

the patch formed would be sufficient to cover the entire bregaotovided enough

chairs of modules are connected togethddowever, the current approach is best

suited for addressing circulaoles, which were selected as they represent the most

common form of battle damage sustained from a direct torpedo hit.

In order for the proposed Se#fssembly algorithm to function effectively, the robots

must be able to link and unlink with relative eage discussed in section 4.1.2 the

robots are designed to use actively controlled magnetic links as they have a lower

tendency of failure than more common mechanical linking methods in repeated

coupling/decoupling scenarios. Should the magnetic linksgtowbe insufficient in

withstanding the pressure from the surround fluid and forces of waves, a combination
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of mechanical and magnetic links may be substituted to improve the integrity of the
patch t even if this mayncreasethe risk of failures of linkig and unlinking from other
robots. However, the ability of the swarm to maintain the integrity of the completed
structure they form using magnetic links alone is a question that falls outside the scope
of this scenario and is instead delegated to futurerks. For the purpose of this
algorithm, it is assumed that the robots experience no failures to link or unlink during

the seltassembly process.

The pseudocode in Figedepresents our selassembly algorithm used in all of the
experiments including those where additional obstacles are modelled. It shows the
protocols for navigation, obstacle avoidance, and the state transitions each robot

module undergoes to create thesdired square structure.

Algorithm 1 CD SeltAssembly Algorithm

1: begin program

2.

3: while unattached to bloc#o

4 if obstacle ahead = falsehen

5 if agent ahead = falsethen

6: face reference point module.

7 moveforward by 0.05m.

8 else

9 if agent ahead = redthen

10: move backwards by 0.05m.
11: else ifagent ahead = greenthen
12: attach to top of agent

13: else ifleft neighbour of agent aheadgreen then
14. attach to right side of block.
15: else

16: attach to left side of block.
17: end if

18: end if

19: else

20: if space left of agent emptyen

21: turn left
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22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:

move forward by).05m

else ifspace right of agent empityen
turn right
move forward by 0.05m
else
turn left
end if
end while
while RZQ VwWDwWbB « JUHHQ
if hull breach in line of sight = falséhen

own state = green.

else

if OHIW QHLJKERXhnVWDWH « JUHHQ

own state = orange.

else

if ULJKW QHLJKERXENVWDWH « JUHHQ

own state = orange.
else
own state = green.
end if
end if
end if
end while
while RZQ VWDWdd « SXUSOH
if all neighbour states = greethen

advance 0.05m to cover hull breach.

if hull breach in line of sight = falséhen

own state = purple.
end if
else

if all neighbour states = purpléhen

ownstate = purple.
end if
end if

end while
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57: while EUHDFK «do0/HDOHG
58: approach argal hull breach.
59: end while

60:

61:end program

Fig.46. Pseudocode for the navigation, obstacle avoidance, and statsitions of our
algorithm, instructing agents which module to attach to, and which state to occupy
based on their displayed state.

Section 4.3 Experimental setup

As mentioned in Section 4.1, the experiments are conducted in the 2D simulation
environmentNetlogo using simplified robot morphology. This allowed for simulation of
larger robot populations which could positively identify surrounding robots and
obstacles more reliably than in the 3D Webots simulations of Chapter 3. The
experimental setups areasigned to test the ability of the robot swarm to self

assemble in scenarios of high congestion, where many robots are simultaneously vying
for limited space to complete their task. The first setup is concerned with testing how
varying the robot populationlensity affect the time taken to complete repair

structures of various sizes and how frequently collisions or errors occur. The second
setup uses a similar configuration to the first, but includes additional obstacles placed
at three different positions etween the approaching robots and the PAP. This

inclusion is to examine how the inclusion of additional obstacles affects the congestion
observed in the experiments, and whether is hinders or benefits the system relative to

the first experiments where nodalitional obstacles were present.

The simulated robot modules can freely move in the simulation space, but to reduce
the widening reality gap related to the simpler morphology used, the robots are
modelled with a boundary that cannot be crossed by othdxats or obstacles. This
embodiment of the robots means they are unable to move through, over, or under
other robots and obstacles. In order to overcome obstacles and other robots blocking
the robots path to the PAP, one of two methods must be used. Ifstacle is
encountered ahead of the robot it will stop, examine the spaces to its left and right,
and take the path less obstructed until the obstacle is no longer blocking its path. If

instead another robot is encountered, it follows the rule which corapielo give way
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to other robots that are either ahead or to the right of them. When all members of the
swarm adhere to this rule of avoidance, it reduces the likelihood of collisions with
robots and obstacles which would hinder the ability of the swarraggregate at the

PAP and perform the assembly in an orderly manner.

All of thesimulated environments use a rectangular arena, which represents a section
of the ship hull to be inspected as shown in Fig.Zhe light grey area represents the
section ofship hull above the waterline, the blue area is the section of ship hull
beneath the waterline, and the black area represents the hull bre@bh.robot

modules are represented as small squares which display one of four colours,
representing the colour aheir LEDs which they use to communicate their respective
states when in close proximity to other robots: red, orange, green, and purple. All
robots begin as red squares indicating they have received a signal informing them of
the PAP location and are inrcently in transit to join the repair effort. Green blocks
represent robots that are forming part of the repair structure and have settled on their
final location. Orange blocks represent robot modules that are in the process of
examining the states of ber modules while moving to an appropriate place to attach,
or connected to the structure, but forming part of an incomplete section. When a
complete repair structure has been formed, the robots use their state and the states of
their neighbours to propagda this information and become purple blocks, indicating

that the process is complete and shown in Fig(8).
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Fig.47. Netlogo simulated environment, showing (a) robot modules carrying out the
seltassembly protocol, and (b) robmtodules that have successfully completed the
repair patch. The colours of each block represent the LEDs on each face of the robot,
which indicates their state: red for in transit, orange for looking for a place to attach,
green for having already attachdd a robot in an appropriate position, and purple
indicating that a complete structure has been formed.

All simulations begin with a group of robot modules already deployed in the water,
ready to approach the ship hull breach. The initial number of rodefdoyed in the
environment is deliberately insufficient to form complete repair patch, requiring that
more robot modules are introduced as the simulation progresses. The number of
robots added to the simulation each minute to assist with the repair isafriee

controlled variables, and these deployments occur at steady rates ranging from 2 to 40
additional robots per minute. This rate of deployment is how increases and decreases
in robot population density are implementetlbreaking high congestion eveninto
multiple separate instances allowing for a clearer vision of the effect these high
congestion events have on the sadsembly process. In addition to the deployment
rate, the number of robots currently on route to the PAP is also considered and the
system prevents additional robots from being deployed until less than two full
deployments of robots are approaching the PAP. It is hypothesised that controlling the
number of robots deployed to form the repair patch in this way may reduce the risk of
sydgem failure due to overcrowding while still allowing high congestion events to

occur. A series of 100 simulated experiments are performed for each variable changed,
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including increases of decreases in robot deployment rate. The results from these
experimens are graphed in Section 4.4, with each point represents the median value

obtained all the simulations.

Section 4.3.1 Robot Congestion Setup

These experiments address hull breaches less than or equal to 0.6 m in diameter, since
this represents the upperdund of common torpedo diameters. In this scenario, a hull
breach has led to a single compartment becoming fully flooded, but flood boundaries
have been established within the ship to seal the room off from other sections of the
ship. The constants of thexperiment are the shape of the breach (circular), the
maximum movement speed of the repair robots (0.05m/s), the speed of coupling and
decoupling of modules (instant), and the speed of information exchange between the
robots (instant). The variables dfis experiment include the location of the hull

breach (depth of 0.6m to 4.2m) and the size of the breach (diana 0.1m to 0.6m).
Tables 4.2 and 4 $how these constants and variables and list the range of values

examined.

Table.4.2 Constants of theigh congestion experiments with their value listed

Constant Value
Ship hull breach shape Circular
Robot maximum speed (meters per 0.05
second)
Coupling/decoupling speed Instant
Communication speed Instant

Table.4.3Variables of the high congestierperiments, with their range of variables
listed.

Variable Values
Hull breach depth (meters) 1.2,2.4,and 3.6
Hull breach diameter (meters) 0.2,0.4,and 0.6

Robot deployment rate (per minute) | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
28, 30,32, 34, 36, 38, and 40

109



A multirobot system can be identified as suffering from high congestion when a
significant fraction of the population is forced to change their speed or direction as a
result of avoiding collisions with other robots. In the contekthese experiments, a
swarm is considered to be experiencing high congestion if more than 50% of the
robots must perform robot avoidance on route to the PAP. By varying the number of
robots deployed each minute and measuring how long it takes the sw@oomplete

the repair against the frequency of robot avoidance events (high congestion), it may be
possible to identify the point at which the system performance begins to suffer due to
overcrowding. This could be used to determine which of the deploymreaat

achieves the highest speed of completion without causing more than 50% of the
population to avoid robot collisions (high congestion). Increasing the depth and
diameter of the hull breach will change the angles of approach each robot follows
when navwgating to the PAP. This can be used as a secondary method of increasing the
likelihood of high congestion forming and may reveal another point at which high
congestion begins to occur due to robots using steep angles of approach, resulting in

less spacea manoeuvre when avoiding collisions with other robots.

Section 4.3.2 Obstacle Avoidance Setup

The second set of experiments examine how the inclusion of additional obstacles
between the approaching robots and the hull breach affects their ability to cetapl

their selfassembly task relative to the results from the first scenario. In these
experiments the hull breach diameter and depth are kept constant at 0.4m and 2.4m
respectively, choosing to vary the size and location of the obstacles ingté#uke
obstacles have a circular shape and come in one of three different diameters: 0.2m for
half the width of the breach, 0.4m for the same size as the breach, and 0.6m for one
and a half times the size of the breach. In addition to this, each obstatlecsipy

one of three separate locations between the starting point of tbleots [journey and

the PAP; above and left of the breach, directly above the breach, and above and right
of the breach as illustrated in Fig34Tables 4.4 and 4 $how the constats and

variables of these obstacle avoidance experiments and list the range of values

examined.
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Fig.48. Netlogo simulated environment, showing (a) small obstacle (0.2m diameter)
placed above and to the left of the breach, (mhedium obstacle (0.4m diameter)
directly above the breach, and (c) a large obstacle (0.6m diameter) above and to the

right of the breach.

Table.4.4. Constants of the obstacle avoidance experiments with their value listed.

Constant Value
Obstacle shape Circular
Ship hull breach shape Circular
Hull breach diameter (meters) 0.4
Hull breach depth (meters) 2.4
Robot maximum speed (meters per 0.05
second)
Coupling/decoupling speed Instant
Communication speed Instant
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Table.4.5 Variables of the obstackroidance experiments with their range of
variables listed.

Variable Values
Obstacle location Left, centre, and right
Obstacle diameter (meters) 0.2,0.4,and 0.6

Robot deployment rate (per minute) | 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24,
28, 30,32, 34, 36, 38, and 40

The inclusion of additional obstacles may serve to slow the overall progress of the
assembly, or prove a benefit in scenarios using higher deployment rates of robots by
shifting the location of the congestion away from the PABwahg for faster assembly

of the structure by reducing overcrowding. The inclusion of an obstacle may also cause
some robots to alter their original course such that they encounter fewer robots along

their new path, reducing the congestion experiencedoasrthe swarm as a whole.

Section 4.4 Results

In this section, the results from the robot congestion and obstacle avoidance
experiments, as described in Section 4.3, are presented and compared. A series of 100
simulated experimentss performed for each vaable changed in the two scenarios,

such as increases or decreases in robot deployment rate, and the size and location of
the hull breaches and additional obstacles. Each subsection presents six of the most
significant graphs, with the reainder delegatedo Appendix CEach point on these
graphs represents the median value obtained from successful runs of each set of 100
simulations, excluding the scenarios where robots become stuck close to the PAP,
causing a blockage to form and preventing any furtheseanbly actions of robots. The
cause of these blockage events andithmplications are discussed within this section,
while how this information can be used to improve the ssd6embly approach is
discussed irsection 4.5. The graphs are presented its & two according to varying
breach depth, with the first graph in each set showing the time taken for each robot
population to complete the selissembly of a repair patch. The second graph of each
set shows the percentage of each robot population whealksountered another robot

on route to the PAP, causing it to change it speed and direction, referred to as robot
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congestion percentage. In Section 4.4.2 the second graph of each set also includes the
percentage of the robot population which have encourtgan obstacle on route to
the PAP, referred to as obstacle avoidance percentage, to measure how this affects the

results.

Section 4.4.1 Robot Congestion Results

The robot congestion experiments examined the swrability to perform the self
assemblyprotocol on hull breaches of varying size and at varying depths beneath the
waterline. The results of these experiments revealed truths that hold across all
scenarios such that it is only necessary to show a sample of the results here to identify
varying tends. As such, the graphs only show results from scenarios using a breach
diameter of 0.4 meters. Table 4¢hows samples frorall the scenarios to demonstrate
some of the correlations, but otherwisalf results are delegated tAppendixC
Increasing tke diameter of the breach predictably increases the time taken for each
robot population to repair the breachi doubling the size of the breach doubles the
time taken to perform the repair. Increasing the numberaibots deployed each

minute decreases theme taken to complete seldissembly, but also increases the
number of robots performing robot avoidance ciin be observed from figure9(a)

and (b) that as the percentage of the robot population experiencing congestion

increases, the gains in compéit speed start to decrease.

This correlation may at first seem to be the primary cause of the decreased
performancehowever this trend is notgrfectly mirrored in figures 40and 411

where the time taken to complete the sedssembly is closely oelated with that of

figure 49 (a), but the percentage of robot congestion decreases when the depth of the
breach decreases. This would indicate that the depth of the breach has a more
significant impact on the number of robot avoidance events than initalhsidered.
However, the reason for this may have less to do with breach depth and more to do
with the angle of approach each robot takes on approaching the PAP. As the depth of
the breach decreases, robots deployed at the top right and left of the dbegan to

use shallower angles of approach than those deployed in the top middle. Shallower
angles of approach seem to form paths that are more evenly spread across the arena
than steep angles of approach, which concentrates the density of the robot pagulat

in the area directly above the PAP.
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Our original measure of optimal robot deployment rate was to be determined by the
robots which could complete the sedssembly procedure in the fastest time without
pushing more than 50% of the total population teperience robot avoidance (high
congestion). The results show that robot congestion varies according to the depth of
the breach and the consequent angles of approach used by the swarm, so the optimal
deployment rate varies also. So for swarms using thepsed selassembly protocol

to address breaches with a diameter of 0.4m, the optimal deployment rate (robot
congestion < 50%) at 3.6m is 8 robots per minute (rob/m) which resulted in a
completion time of 15.5 minutes, at 2.4m is 12 rob/m which resultea @mpletion

time of 10.33 minutes, and at 1.2m is 16 rob/m which resulted in a completion time of
7.7 minutes. These results have helped identify aspects of the approach which could
be adjusted to improve the setfissembly protocol, such as changing siystems

reliance on a PAP and controlling the robot angles of approach, whichsangsded

further in Section 4.5.
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Fig.49. Graphs of results from the robot congestion experiments that shows (a) the
time taken for each robot population to complete selfassembly, and (b) the robot
congestion percentage formed for varying deployment rates. Each result represents the
median value obtained from 100 simulations, with error bars showing the standard

This plot shows the results of the expernits using a breach diameter of 0.4

deviation.
meters at

a breach depth of 3.6 meters.
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Fig.410. Graphs of results from the robot congestion experiments that shows (a) the
time taken for each robot population to complete the ss§embly, and (b) the robot
congestion percentage formed for varying deployment rates. This plot shows the
results of the experiments using a breach diameter of 0.4 meters at a breach depth of
2.4 meters.
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(a) Breach Diameter of 0.4m at Depth of 1.2m
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Fig.411. Graphs of results from the robot congestion experiments that stjajthe
time taken for each robot population to complete the ss§embly, and (b) the robot
congestion percentage formed for varying deployment rates. This plot shows the
results of the experiments using a breach diameter of 0.4 meters at a breadhafept
1.2 meters.
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Table 46 Sample results from across all robot congestion scenarios.

Breach Breach Robot Time Robot
Diameter Depth Deployment Taken Congestion
(meters (meters) Rate (seconds) (%)

(per minute)

Section 4.4.2 Obstacle Avoidance Results

In the obstacle avoidance experiments the same-asfembly protocol is examined,

but additional obstacles are introduced to the environment to measure if their
inclusion affects the prevalence of robot congestion. The depth and diameter of the
hull bread are kept the same at 2.4m and 0.4m respectively, but the size and location
of the obstacles are varied. The results from these experiments reveal some

interesting effects of including obstacles at the three locations: above and left of the
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PAP, directhabove the PAP, and above and right of the PAP. Obstacle diameters of
0.2m and 0.4m result in fewer obstacle avoidance events and so their effect is less
pronounced than experiments using obstacle diameters of 0.6m. For this reason, the
graphs show the redts from the experiments using the largest obstacle diameter to
make the effect of their inclusioclearer. Table 4.6 provides samples from all of the
scenarios to help demonstrate trends, while full results of the smaller obstacle

experiments aredelegated to ApendixC

Companng the results from figures 42{a), 4.8(a), and 4.4 (a) to figure 410(a)

reveals that that inclusion of additional obstacles has not had a significant impact on
the time taken to complete the selissembly task. However, including the obstacles at
the aforementioned locations has had a marked effect on the percentagebot ro
congestion expeenced by the swarm. Figures 2.4nd 4.4 provide a mirror image of
each other, showing how placing obstacles directly in the path of the robots
approaching the PAP with trehallowestangles of approach has a significant effect on
the amount of recorded robot congestioomparing Figure 431(b) to Figure 4.0 (b)
shows how the obstacle avoidance events occurring directly above the PAP has had a
less significant effect on the recorded robot congestion percentage than when placed
diredly in the path of robots following shallow angles but has also increased the total
amount of robot congestion. The inclusion of the obstadigsnot noticeably change

the number of robots than can be deployed per minute before experiencing high
congestim (> 50%) when placed above the PAP. However, including obstacle above
and left or above and right has effectively reduced the deployment rate from is 12
rob/m which resulted in a completion time of 10.33 minutes, to 8 rob/m which

resulted in a completiotime of 15.23 nmutes.

Avoiding the obstacles placed on the left and the right seems to have caused the
robots to take alternate routes to the PAP with a different angle of approach, with a
knockon effect of increasing the number of recorded robot avaoida events. This
supports the view that controlling the angle of approach used by the robots on
approach to the PAP may be leveraged to decrease robot congestion, which could
allow for a greater number of robots to be deployed at one time to perform tik se
assembly protocol, and ultimately decreasing the time taken to complete the ship hull
repair. These considerations are discussed in more detail in the following Section 4.5.
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The full program code used to conduct these experimentcisidied inAppendixB

and full videos of the simulations showing the ssembly protocol can be accessed
via the dedicated GitHub repository at https://github.com/MattSHaire/Emergency
ShipHullRepair.

120



Time (s)

4000
3500 -+
3000
2500 \
2000 \
1500 ¥\
1000 \&\\

500 \\\\‘\\"‘*-»

(a) Obstacle Diameter of 0.6m at Position Above and Left

\

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Robot Deployment Rate (per minute)

Percentage (%)

100

90 }_—%”f__%,;i»ﬂ{» D e e

80

60

50 + }F~37/
RN

40 Ts

k = - ~ - £ - I I I - - = I
30 - o . 4

20
10 /

(b) Obstacle Diameter of 0.6m at Position Above and Left

A
2 4

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Robot Deployment Rate (per minute)

——Robot Congestion (%) Obstacle Avoidance %

Fig.4.2. Graphs of results from the obstacle avoidaegperiments that shows (a) the

time taken for each robot population to complete the ss§embly, and (b) the robot
congestion and obstacle avoidance percentages formed for varying deployment rates.
Each result represents the median value obtained frofhslfiulations, with error bars
showing the standard deviation. This plot shows the results of the experiments using an
obstacle diameter of 0.6 meters at the location above and left of the PAP.

121




(a) Obstacle Diameter of 0.6m at Position Directly Above
4000

3500 +

3000 -

2500 -

2000

Time (s)

1500

1000 =

500 i

0

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Robot Deployment Rate (per minute)

(b) Obstacle Diameter of 0.6m at Position Directly Above
100
90 -
80 .
70 -
60
50 <y
40 |
30
20

i

2 4 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Robot Deployment Rate (per minute)

Percentage (%)

Robot Congestion (%) —— Obstacle Avoidance %

Fig.4.B. Graphs of results from the obstacle avoidanggegiments that shows (a) the
time taken for each robot population to complete the se§embly, and (b) the robot
congestion and obstacle avoidance percentages formed for varying deployment rates.
This plot shows the results of the experiments usingbastasle diameter of 0.6 meters

at the location directly above the PAP.
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(a) Obstacle Diameter of 0.6m at Position Above and Right
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Fig.4.4. Graphs of results from the obstacle avoidance experiments that shows (a) the
time taken for each robot population to complete the ss§embly, and (b) the robot
congeston and obstacle avoidance percentages formed for varying deployment rates.
This plot shows the results of the experiments using an obstacle diameter of 0.6 meters
at the location above and right of the PAP.
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