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Abstract: Thermoelectric materials, which directly convert thermal energy to electricity and vice 
versa, are considered a viable source of renewable energy. However, the enhancement of conversion 
efficiency in these materials is very challenging. Recently, multiphase thermoelectric materials have 
presented themselves as the most promising materials to achieve higher thermoelectric efficiencies 
than single-phase compounds. These materials provide higher degrees of freedom to design new 
compounds and adopt new approaches to enhance the electronic transport properties of 
thermoelectric materials. Here, we have summarised the current developments in multiphase 
thermoelectric materials, exploiting the beneficial effects of secondary phases, and reviewed the 
principal mechanisms explaining the enhanced conversion efficiency in these materials. This 
includes energy filtering, modulation doping, phonon scattering, and magnetic effects. This work 
assists researchers to design new high-performance thermoelectric materials by providing common 
concepts. 

Keywords: thermoelectric materials; multiphase; composite; energy filtering; magnetic effect; 
phonon scattering 
 

1. Introduction 
Thermoelectric (TE) materials have been attracting a great deal of interest because of 

their applications in energy recovery from industrial waste heat and high-efficiency 
cooling of next-generation integrated circuits [1]. The efficiency of TE materials is 
characterised by a dimensionless figure of merit 𝑧T =  𝑆 𝜎𝑇/(𝜅 + 𝜅 ), where 𝑇, 𝑆, 𝜎, 𝜅  and 𝜅  are the absolute temperature, Seebeck coefficient, electrical conductivity, and 
electronic and lattice components of the total thermal conductivity (𝜅 ), respectively. Most 
thermoelectric materials used in commercial applications have a zT of around 1 [2], which 
corresponds to an efficiency of roughly 10% in the medium temperature range [3]. To 
increase zT, one would need to increase 𝑆 and 𝜎 and decrease 𝜅 . These parameters are 
interrelated though; the electronic thermal conductivity increases with the increase of 
electrical conductivity, and 𝑆  and 𝜎  are inversely proportional [4]. Therefore, 
optimising these parameters is very challenging and the key to achieving higher 
efficiency. 

One of the most successful approaches to improve the figure of merit is reducing the 
lattice thermal conductivity, and over the years, various phonon engineering approaches 
have been used to enhance phonon scattering and decrease 𝜅  by taking advantage of 
nanoprecipitates [5–7], alloying elements [8–10], nanostructured grain boundaries [11–
14], ionised impurities [15,16], and superlattices [17]. 

A series of band structure engineering approaches have also been employed to 
improve the electronic properties [18–20]. Strategies such as quantum confinement 
[21,22], modulation doping [23–25], introducing resonance energy to the electronic 
density of states [26,27], and energy filtering [28] are being actively pursued. These 
strategies are adopted to modify the band structure and transport properties of the 
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thermoelectric materials by either tuning the electrical conductivity and the Seebeck 
coefficient independently or by increasing them simultaneously. In practice, the best 
results were achieved with a significant increase in one of these parameters and a slight 
decrease in the other, resulting in an increase in the power factor (𝑆 𝜎) and zT. 

The development of highly efficient thermoelectric materials encountered a 
bottleneck when the exploration of single-phase alloys was exhausted. Therefore, 
investigating multiphase compounds is the most viable strategy to enhance the 
thermoelectric performance of bulk materials, where higher degrees of freedom are 
available to design new materials and tune their electronic transport properties [29–31]. 
Figure 1 presents the number of yearly publications on thermoelectric materials, indexed 
by the Scopus database, compared with the numbers of papers published on 
multiphase/composite thermoelectric materials, indicating an increasing interest of the 
research community on this topic over the last five years. 

 
Figure 1. Yearly number of publications on thermoelectric materials, compared with publications 
on multiphase/composite thermoelectric materials. 

The combination of several phases can improve the electrical conductivity, Seebeck 
coefficient, and thermal conductivity [32]. Here, we summarise the main strategies 
discovered to date to increase the thermoelectric efficiency in multiphase materials. This 
includes: (1) energy filtering, creating potential barriers in the electronic band structure of 
the main phase through interfaces with the secondary phases. This results in an increase 
in the overall Seebeck coefficient [33–35]; (2) modulation doping, where the 
heterojunctions between secondary phases with larger bandgaps and higher carrier 
concentrations than the matrix are used to greatly increase the electrical conductivity of 
the multiphase compounds [36–38]; (3) phonon scattering by interfaces, grain boundaries, 
and defects to reduce the lattice thermal conductivity [39–42]; and (4) magnetic effects, 
which utilises the magnon-drag mechanism in magnetic materials [43–45], 
semiconductors doped with magnetic elements [46–48], or semiconductors containing 
secondary magnetic phases [49,50] to improve the thermoelectric efficiency [51,52]. 

2. Energy Filtering 
The concept of energy filtering in thermoelectric materials was first introduced and 

studied in the latter half of the last century [53]. The research on this field has been 
renewed and developed since the 1990s. In general, the Seebeck coefficient increases with 
an increase of the barrier height [54,55] while the electrical conductivity decreases [56–58]. 
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In the presence of multiple potential barriers, the bipolar effect can be suppressed, 
decreasing the flow of minority charge carriers and reducing the decrease in the electrical 
conductivity [59–62]. 

Conventionally, the energy filtering effect could be understood by solving the 
Boltzmann transport equation (BTE) using the relaxation time approximation [63,64]. The 
BTE equation expresses all thermoelectric transport coefficients as a function of the 
energy-dependent relaxation times of the charge carriers 𝜏(𝐸) and the Fermi level 𝐸 . 
The energy filtering effect can be readily verified considering the Seebeck coefficient 
expression [65]: 𝑆 =  − 1𝑞𝑇 ∫ (𝐸 − 𝐸 )𝜎 (𝐸)d𝐸∫ 𝜎 (𝐸)d𝐸  (1)

where 𝑇 is the absolute temperature, 𝐸  is the charge carrier energy, 𝐸   is the Fermi 
level, and 𝜎  is the differential conductivity. The Seebeck coefficient, as shown in 
Equation (1), is the energy average weighted by the electrical conductivity: 𝑆 = − 1𝑞𝑇 ⟨𝐸 − 𝐸 ⟩  (2)

implying that an asymmetry between the density of states and the Fermi level can create 
higher Seebeck coefficients. 

The implementation of energy barriers in thermoelectric materials is made in the 
form of either nanoparticles or grain boundary interfaces embedded in the bulk host 
matrix [66]. At these interfaces, the carriers with higher energy will pass the interface 
preferentially, while the carriers with lower energy are filtered out. A high density of the 
interfaces ensures the positive carrier filtering effect [67]. The band bending between the 
two materials creates an energy barrier that reflects the charge carrier [68,69]. Figure 2 
illustrates the energy filtering effect: given the partial reflection of the lower energy 
electron waves, the high energy electrons mostly contribute to the Seebeck coefficient. 

 
Figure 2. Energy filtering effect, showing that lower energy electrons are scattered by a potential 
barrier. 
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Multiphase materials present themselves as viable candidates to take advantage of 
energy filtering. Given the possibilities of tuning the electronic band structure of each 
phase, the band bending can noticeably enhance the energy filtering effect [70–77]. In the 
following sections, the energy filtering effect will be discussed in multiphase materials. A 
Schottky or ohmic barrier will appear at the interface with a metallic secondary phase, 
while a heterojunction barrier will present at the interface of thermoelectric material with 
a semiconducting secondary phase. 

2.1. Energy Filtering by Metal Secondary Phases 
For metallic phases, the barrier height will be proportional to the work function of 

both the semiconductor and the metal and the electron affinity of the semiconductor. The 
work function, Φ, is defined as the minimum energy required to remove an electron from 
the surface of a material, and its value is equal to the energy difference between the 
vacuum and the Fermi level [78]. The electron affinity, 𝜒, is the energy difference between 
the vacuum and the bottom of the conduction band. At the metal–semiconductor junction, 
the Schottky-Mott rule [79] defines the barrier height, 𝐸 , to be the difference between 
the metals' work function, Φ , and the semiconductor electron affinity, 𝜒 : 𝐸 = Φ − 𝜒  (3)

Small differences cause few restrictions on the movement of the electrons, and this 
barrier is known as ohmic. Both the work function and electron affinity depend on the 
surface impurity and the crystallographic orientation. 

Theoretically, the presence of metals can strongly affect the carrier relaxation time 
and consequently affects both the electrical conductivity and the Seebeck coefficient 
[54,80,81]. The inclusion of metallic nanoparticles was shown to enhance the Seebeck 
coefficient mathematically [66]. The interface of n-type PbTe with metallic Pb 
nanoparticles, with a low work function, effectively scattered the electrons and increased 
both the Seebeck coefficient and electrical resistivity. This mechanism is illustrated 
schematically in Figure 3, where spherical metallic nanoparticles are randomly distributed 
in a host semiconductor. 

 
Figure 3. (a) Schematic of randomly distributed metallic Pb secondary phase in a PbTe matrix (b) 
Calculated potential V(r) and energy diagram for PbTe at 300 K, carrier concentration of 2.5 × 1019 
cm−3, barrier height of 0.11 eV, and radius of 1.5 nm , where 𝐸  is the Fermi level, 𝐸  is the energy 
at the bottom of the conduction band, 𝐸  is the band gap, and 𝐸  is the energy at the top of the 
valence band (c) Carriers' relaxation time as a function of their energy. Reprinted from [66]. 
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Experimental results have proved this concept [82–84]: for instance, Pb precipitates 
in the matrix of n-type PbTe, intrinsically doped with excess Pb, increased the Seebeck 
coefficient and the average resistivity from −98 μV/K and 1.2 mΩ cm for Pb1.03Te to −130 
μV/K, and 3.2 mΩ cm for Pb1.06Te at 300 K, respectively [82]. The addition of metallic Sn 
and Cr to Cu2O doubled the Seebeck coefficient from 700 μV/K to 1400 μV/K [84]. 
Platinum nanocrystals created energy barriers in p-type Sb2T3 thin films [83] and caused a 
large reduction in carrier mobility in about 2.5 orders of magnitude due to the additional 
scattering of charge carriers compared to Sb2Te3 films without Pt nanocrystals. The carrier 
concentration increased, possibly due to the overlapping of energy bands [66]. The band 
overlapping increases the distance between the Fermi energy level and the valence band 
maxima, thereby increasing the total concentration of holes in the semiconductor matrix. 

Silver nanoparticles enhanced the Seebeck coefficient of CdO-Ag composites [85]—a 
potential barrier of 𝐸  = 0.1 eV between the work function of Ag and the electron affinity 
of CdO increased the resistivity from 1.5 mΩ cm to 1.7 mΩ cm for a sample with 0.03% of 
Ag and increased the Seebeck coefficient from −120 μV/K for the pristine sample to −129 
μV/K for the sample with 0.03% of Ag at 800 K. 

2.2. Energy Filtering by Semiconducting Secondary Phases 
For a semiconductor secondary phase, the difference between the bandgaps and 

Fermi levels of the two phases gives rise to a potential barrier at their junction [86]. The 
barrier height will be proportional to the difference between the electron affinity of the 
two semiconductors (𝜒 , 𝜒 ). Anderson’s rule [78] allows a simple estimate of the barrier 
height at the conduction, 𝐸 , and valence, 𝐸 , bands: 𝐸 = 𝜒 − 𝜒  (4)𝐸 = 𝐸 − 𝐸 − 𝐸  (5)

and it has been employed as a rough estimation to design multiphase materials. The actual 
curvature of the band bending can be found using Poisson’s equation for the electric 
potential [87]: −∇ 𝑉 = 𝜌𝜀 = 𝑞(ℎ − 𝑛 + 𝐷)𝜀  (6)

where 𝜀 is the permittivity of the material, ℎ and 𝑛 are the holes and electrons densities, 
respectively, and 𝐷  is the concentration of ionised impurities (extrinsic dopant). The 
relation of the barrier height and conductivity is suggested as [88]: 𝜎 ∝ 𝑇 𝑒  (7)

It should be noted that this equation was developed for homojunctions [89,90]. 
However, experimental data for heterojunctions fit this equation surprisingly well [91]. 
Experimental results show that energy filtering caused by dissimilar semiconducting 
phases can improve the power factor [92–95]. Silicon oxide particles in the 
(Bi2Te3)0.2(Sb2Te3)0.8 bulk alloy increased the Seebeck coefficient from 182 μV/K for the 
pristine sample to 218 μV/K for the sample with 1.1% volume of SiO2 at room temperature 
[92]. Yttrium oxide (Y2O3) particles embedded in a Bi0.5Sb1.5Te3 matrix increased the 
Seebeck coefficient significantly [96], deviated considerably from the ideal Pisarenko 
relation. The Seebeck coefficient is inversely proportional to the carrier concentration, 𝑛, 
by a rate of 𝑛 /  for degenerate semiconductors, according to the Pisarenko relation [97]. 
The deviation from this ideal relationship has been used as an indication of changes in the 
electronic band structure of the material [98]. 

Randomly dispersed titanium dioxide nanoparticles (ranging from 10 to 25 nm) in a 
Ba0.22Co4Sb12 matrix increased the Seebeck coefficient [99]. Although the bandgap for 
Ba0.22Co4Sb12 was unknown, given the large bandgap of TiO2 (3.2 eV [100]), some influence 
of the energy filtering was assumed. At 300 K, the electrical conductivity decreased from 
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2.9 × 105 S/K to 2.8 × 105 S/K, and the Seebeck coefficient increased from −105 μV/K for the 
pristine sample to −110 μV/K for the sample with 0.8% volume of TiO2. The TiO2 particles 
in Bi2Se3 based materials increased the overall power factor of the composite from 0.75 × 
10−3 W/m K to 1.07 × 10−3 W/m K for the sample with 10 wt.% of titanium dioxide [101]. 
The charge carrier concentration varied greatly with the concentration of TiO2, possibly 
due to the formation of Ti2+ ions during hot pressing under the vacuum. 

Interestingly, a double-filtering effect has been reported for a deposited TiO2 on TiC1-

xOx@TiOy (x < 1, 1 < y < 2) heterostructures (Figure 4) [102]. TiC1-xOx, with a narrow bandgap 
and high electrical conductivity, in combination with TiOy and TiO2 nanoparticles, with 
wide bandgaps, produced an effective barrier height for energy filtering. The Seebeck 
coefficient and resistivity of the samples increased where a larger amount of TiO2 was 
deposited. The maximum value obtained for the Seebeck coefficient at 973 K was −156 
μV/K, with an electrical conductivity of ~4 × 104 S/m. 

 
Figure 4. Band diagrams of the TiC1-xOx@TiOy-TiO2 heterostructured interface, where CB is the 
conduction band, VB is the valence band, and 𝐸  is the Fermi level. Reprinted from [102]. 

Silicon-based materials, although not common in thermoelectricity, have also been 
shown to benefit from energy filtering [103–110]. For instance, heavily doped Si with B 
with nanoparticles of Si has shown an increased Seebeck coefficient and electrical 
conductivity in a particular range of dopant concentrations [111]. The increased Fermi 
level for the bulk material explains the increase of the electrical conductivity, and the 
energy filtering effect justifies the increased Seebeck coefficient. 

A half-Heusler compound of (Hf0.6Zr0.4)NiSn0.99Sb0.01, with added nanoparticles of 
tungsten (W), showed a maximum zT of 1.4 at 873 K and average zT of 0.9 in the 
temperature range of 300–973 K for the alloy with 5 wt.% tungsten nanoparticles [112]. 

Table 1 summarises the compositions and fabrication methods of recent studies that 
reported energy filtering effects in multiphase thermoelectric materials. 

Table 1. Compositions, fabrication methods, and corresponding references of multiphase materials that benefited from 
the energy-filtering effect. 

Composition Fabrication Technique Ref. 
Bi0.5Sb1.5Te + (0, 1.0, 2.0, 4.0, and 6.0 wt.%) 

nanoparticles of Sb2O3 
Casting (Bi0.5Sb1.5Te) + ball milling of Bi0.5Sb1.5Te and commercial 

powder of Sb2O3+ sintering 
[113] 

Bi2Te2.7Se0.3 powder + ~2 nm layer of film of ZnO 
Solution-based synthesis of Bi-Te-Se powder + atomic layer 

deposition of ZnO + hot pressing 
[114] 

Bi1−xSbx (x = 0, 0.10, 0.12, 0.13, 0.14, 0.2) + 3 wt.% 
carbon nanotubes 

Ball milling + cold pressing + annealing [115] 

Bi0.46Sb1.54Te3 + (0, 0.1, 0.2, and 0.3 wt.%) SiC Ball milling + sintering [70] 
Bi0.4Sb1.6Te3 + (0.1%, 0.2%, and 0.3 wt.%) CuInTe2 Casting each phase separately + ball milling + sintering [116] 

Lu0.1Bi1.9Te3 + (0, 0.0, 0.05, 1) wt.% carbon nanotubes Hydrothermal synthesis + grinding + hot pressing [117] 

Bi0.5Sb1.5Te3 + (0, 0.1, 0.2, 0.3, 0.4 wt.%) BaTiO3 
Hydrothermally synthesised BaTiO3 + Commercial ingots of 

Bi0.5Sb1.5Te3 were grinded and sintered 
[74] 

Bi0.5Sb1.5Te3 + SrTiO3  Bi0.5Sb1.5Te3 films were grown on SrTiO3 substrates by co-sputtering [118] 

Bi2Te3 + Bi0.5Sb1.5Te3 thin films 
Radio-frequency magnetron sputtering of Bi2Te3/Bi0.5Sb1.5Te3 layers 

on a SiO2/Si(001) substrate 
[119] 

Bi0.4Sb1.6Te3 + (0, 0.2, 0.4, and 0.6 vol.%) CuGaTe2 Vacuum melting + hot pressing [120] 
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Bi0.5Sb1.5Te3 + 2 wt.% (Gd2O3, Gd1.98Bi0.02O3) 
Powders for each phase were prepared by induction melting then 

mixed by spray pyrolysis + sintering 
[121] 

Bi2Te3 + (1, 2, and 5 wt.%) SnS Commercial powders were mixed, cold pressed, and annealed [122] 
Bi0.3Sb1.7Te3 + (0, 0.25, 0.50, and 0.75 wt.%) TiC Ball milling + sintering [123] 

Bi2Te3 + ~4 wt.% of Cu1.5Te Solution-based synthesis (each phase separately) + hot pressing [124] 

Coated grains of SnTe with CuInTe2 
CuInTe2 was formed by cation exchange of Sn by Cu and In on the 

surface of ball-milled SnTe powder 
[125] 

Bi0.5Sb1.5Te3-Cu0.07 + (0, 0.5, and 1.0 wt.%) HfO2 Water atomisation + ball milling + sintering [126] 
SiGe + (2, 4, 6, 8, 10 wt.%) TiB2 Ball milling + hot pressing [108] 

3. Modulation Doping 
Modulation doping is a well-recognised concept to increase the conductivity in 

heterojunction devices [127]. The main idea behind modulation doping is to use the offset 
in the band structure between two semiconductors in combination with heavy doping of 
the material with a wider bandgap so that there is a transfer of carriers from the wide 
bandgap to the narrow bandgap material. The transferred carriers create two-dimensional 
electron gas, and they are essentially separated from the donor phase, which consequently 
increases the charge carrier mobility [128]. Conventionally, this strategy was employed to 
create p-channel devices, called modulation-doped field-effect transistors (MODFET) 
[129]. The difference between energy filtering and modulated doped samples is shown 
schematically in Figure 5. In the case of modulation doping, the secondary phase increases 
the conductivity by donating electrons to the host semiconductor, while in the case of 
energy filtering, the secondary phase scatters electrons and reduces mobility. 

 
Figure 5. Comparison between a modulated doped semiconductor and a multiphase compound 
benefiting from energy filtering. 

The thermoelectric research community has also used this mechanism to enhance the 
thermoelectric performance of materials [15,23,25,29,38]. For thermoelectric materials, a 
combination of two effects has enhanced the thermoelectric efficiency in the modulated 
doped materials: firstly, a large increase in the electrical conductivity and mobility of the 
charge carriers [130], and secondly, a reduction in the lattice thermal conductivity as a 
result of the scattering of phonons by nanostructuring [23,131]. 
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Some attempts have also been made to explore the possibility of using modulation 
doping in structures similar to field-effect transistors (FETs) [129]. In this adopted 
structure, the thermoelectric semiconductor nanowire (channel) is enclosed by the heavily 
doped layer (gate) [132–136]. A modest increase in the power factor was achieved by this 
approach. 

Table 2 summarises the sample compositions, fabrication methods, and 
corresponding references of recent studies that employed modulation doping to enhance 
the thermoelectric performance of multiphase materials. 

Table 2. Sample compositions and fabrication methods of references that employed modulation doping to enhance the 
thermoelectric performance of multiphase materials. 

Composition Fabrication Method Ref. 
Ba8(AlxGa1−x)16Ge30 (x = 0, 0.20, 0.23, 0.25, 0.33, 0.50, and 1) Casting (each phase separately) + ball milling + sintering [137] 

AgBiSe2 + Bi4Se3  [138] 
Cu2SnS3 + (0, 1, 3, and 5% mol) CuCo2S4 Casting (each phase separately) + ball milling + sintering [25,139] 

Sia(Mg2Si + x at. % Bi)1−a (a = 0.39, 0.50, 0.56, 0.59, and 0.67; 
x = 0.3, 0.8, 1.3, 1.8, 2.5) 

Bi-doped Mg2Si fabricated using induction melting + melt 
spinning si + sintering 

[140] 

p-type organic conducting polymer PEDOT:PSS + Ge PEDOT:PSS coated with Ge layer [141] 
(Ge2Te2)x(CuInTe2)1−x (x = 98, 95, 90, 87.5, 85, 70, 30, and 

10%) 
Casting + hand milling + hot pressing [142] 

BiCuSeO + Bi0.8Pb0.2Cu0.8Ni0.2SeO 
Each phase was fabricated by Mechanical alloying + ball 

milling of mixture + sintering 
[143] 

BiCuSeO + Bi0.8Er0.2CuSeO 
Each phase was fabricated by ball milling + sintering. The 
final composition was obtained by ball milling + sintering 

[144] 

BiCuSeO + Bi0.8Ba0.2CuSe0.8Te0.2O 
Each phase was fabricated by mechanical alloying + milling 

the mixture + sintering 
[145] 

Pb(1-x)NaxTe0.65S0.25Se0.1 (x = 0.005, 0.01, 0.0015, 0.02, 0.025, 
and 0.03) 

Casting PbSe and PbS + mixing stoichiometric amounts of 
PbSe, PbS, Pb, Te, and Na (casting) + sintering 

[29] 

Pb0.97Na0.03Te(1-x)Sx (x = 0.1, 0.15, 0.2, 0.25, 0.3, and 0.35) Casting + hand milling + sintering [146] 

4. Phonon Scattering 
When it comes to designing a thermoelectric material, the main goal is to maintain a 

high electrical conductivity while, at the same time, reduce the thermal conductivity to 
reach an amorphous solid [147]. In semiconductors, phonon transport plays a significant 
role in thermal conductivity [148,149]. Increasing phonon scattering has, therefore, proven 
to be a key strategy to improve the efficiency of thermoelectric materials [150]. This is 
mainly performed by nanostructuring of the material [151], introducing grains with sizes 
larger than the mean free path of the charge carriers but smaller than the mean free path 
of the phonons [152], alloy scattering with additional mass or strain fluctuation [153–155], 
nanocomposites [156–159], and embedding interfaces by creating texture between the two 
materials [160]. 

In thermoelectric materials, the phonon-scattering mechanisms are assessed using 
models for the total thermal conductivity. Traditional models are from Klemens [161], 
Holland [162], and Callaway [163]. Impurity scattering, boundary scattering, three-
phonon normal process, and Umklapp process are considered in these models, and 
Matthiessen’s rule is employed to determine the overall relaxation time. 

The Klemens model has been successfully used to evaluate the contribution of each 
phase on the lattice thermal conductivity [164,165]. In this model, the thermal conductivity 
for each type of scattering mechanism is evaluated independently, and the overall thermal 
conductivity is given by [161]: 𝜅 = 𝜅  (8)

For phonon-point defects, the relaxation time is given by [161]: 
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𝜏 = Γ𝑉4𝜋𝜈 𝜔  (9)

where 𝜈  is the average sound speed on the material, 𝑉 is the average atomic volume, 
and Γ is the mass-fluctuation, phonon-scattering parameter [166]: Γ = Δ𝑀⟨𝑀⟩  (10)

where ⟨𝑀⟩ = ∑ ∑ , ,∑ , ⟨Δ𝑀⟩ = ∑ ∑ , ( , ) ∑ , 𝑀 = ∑ 𝑓 , 𝑀 , , 𝑐  is the 
stoichiometry of the 𝑛-th component and 𝑓 ,  is the fraction of the 𝑖-th element that is 
presented in the 𝑛 -th component. Using this formulation, the effect of the material 
composition can be inferred from the lattice thermal conductivity. 

Effective medium approximation, on the other hand, presents a more simplified 
version of the formula described above. The model incorporates an interface resistance, 
called Kapitza resistance (𝑅 ), in series with the inter grain resistance [167]. This model is 
further developed to consider the shapes, orientations, volume fractions, and thermal 
conductivities of the phases [160]. For instance, the thermal conductivity of a two-phase 
material with spherical inclusions is expressed by: 𝜅∗ = 𝜅 𝜅 (1 + 2𝛼) + 2𝜅 + 2𝑓 𝜅 (1 − 𝛼) − 𝜅𝜅 (1 + 2𝛼) + 2𝜅 − 𝑓 𝜅 (1 − 𝛼) − 𝜅 ] (11)

where 𝜅  is the thermal conductivity of the matrix, 𝜅  is the thermal conductivity of the 
secondary phase, and 𝑓  is the volume fraction of the secondary phase. The non-
dimensional parameter, 𝛼, is the ratio of the Kapitza length, 𝐿 , and the second phase 
radius, 𝑎: 𝛼 = 𝐿𝑎 = 𝜅 𝑅𝑎  (12)

An even more simple model than that which has been used to describe the scattering 
in multiphase materials is impedance mismatch [152]. The specific acoustic impedance of 
a material is the analogue of the electrical impedance for electrical circuits. In this case, the 
acoustic impedance measures the opposition of a system when acoustic pressure is 
applied to it and its calculated as: 𝑍 = 𝜌𝜈 (13)

where 𝜌 is the volumetric density of the medium and 𝜈  is the speed of the sound in the 
medium. At the interface of two materials, the reflection (𝑟) and transmission (𝑡) energy 
coefficients are [168]: 𝑟 = 𝑍 − 𝑍𝑍 + 𝑍 , 𝑡 = 4𝑍 𝑍(𝑍 + 𝑍 )  (14)

where 𝑍  and 𝑍  are the acoustic impedance of the two materials. Figure 6 illustrates 
phonon transmission and reflection between two dissimilar materials. 
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Figure 6. Phonon transmission and reflection due to impedance mismatch. 

Experimentally, impedance mismatch between phases has been shown to reduce the 
thermal conductivity of the bulk material. The impedance mismatch between the PbTe 
and PbS rich phases in (Pb0.95Sn0.05Te)1−x(PbS)x samples led to an inhibition of the heat flow, 
with the lattice thermal conductivity reaching 0.4 W·m−1·K−1 for the sample with 8% PbS, 
an 80% reduction in the reported values for the bulk material [169]. 

In general, phonon scattering has proven to be an effective strategy to reduce the 
lattice thermal conductivity in multiphase lead telluride-based materials [170–173] and 
bismuth telluride-based [174–176] materials. For instance, nano-engineered multiphase 
PbTe—x% InSb compounds showed an exceptionally low minimum lattice thermal 
conductivity of ~0.3 W·m−1·K−1at ~770 K for 4% InSb and consequently a zT value of ~1.83 
at 770 K [177]. Even higher zT values of ~2 were observed for Pb(1-x)NaxTe0.65S0.25Se0.1 
compounds [30,31], where the combined effects of phonon scattering at nanoprecipitates 
and the increase in the power factor due to heterogeneous distribution of dopants between 
phases were recognised to be responsible for the high TE efficiency. Nano and micro-sized 
precipitates in Pb1-xGaxTe (x = 0.01, 0.02, 0.03, and 0.04) compounds have shown a 
reduction in the lattice thermal conductivity, reaching 1.6 W·m−1·K−1. A larger fraction of 
a secondary phase with high thermal conductivity can increase the total thermal 
conductivity, reported for PbTe-Gex [178]. Five per cent of GeTe reduced the lattice 
thermal conductivity to 1.1 W·m−1·K−1, while a sample with x = 0.2 showed a lattice thermal 
conductivity similar to the pristine sample. 

Adding a secondary phase of TiO2 to a Bi2Se3 host increased the Seebeck coefficient 
by energy filtering and simultaneously reduced the lattice thermal conductivity by 45% 
[101]. The lattice thermal conductivity of multiphase half-Heusler (Hf0.6Zr0.4)NiSn0.99Sb0.01 
material was reduced from ~4.5 W·m−1·K−1 for the pristine sample to ~2.9 W·m−1·K−1 for the 
sample with 20wt.% of tungsten at 300 K [112]; the combined effects of phonon scattering 
and energy filtering due to the presence of metallic tungsten improved the zT by 55%. 

The lattice thermal conductivity values of several single-phase chalcogenides are 
compared with their multiphase counterparts in Figure 7. The data for single-phase 
materials were manually extracted from the Materials Research Laboratory Energy 
Materials Datamining website [179,180]. This dataset contains information of 573 
thermoelectric materials from various combinations of host materials and dopants along 
with several thermoelectric properties measured experimentally at 300 K, 400 K, and 700 
K. Here, we have selected the lattice thermal conductivity of chalcogenides, measured at 
300 K. Where the lattice thermal conductivity was not available, its value was evaluated 
using the Wiedemann–Franz law and the Sommerfeld limit for the Lorenz number [181]. 
Both the bar and boxplot show that the multiphase materials consistently present lower 
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values of the lattice thermal conductivity. In particular, the boxplot shows that the 
multiphase materials have, on average, lower values of lattice thermal conductivity. 

 
Figure 7. The lattice thermal conductivity of multiphase thermoelectric materials compared with single-phase 
counterparts; data extracted from [1,20,29–31,42,101,131,177,178,182–213]. The inset shows a boxplot of the same data. 

5. Models to Estimate the Transport Properties 
In general, multiphase materials can increase phonon scattering, increase the Seebeck 

coefficient due to energy filtering, and increase electrical conductivity due to modulation 
doping. These micro and nano effects clearly influence the material on a macroscale. It is, 
however, of interest to have simplified expressions to predict the behaviour of these 
materials from the composition and electronic band engineering perspectives. Regarding 
the thermal conductivity, the effective medium theory allows us to approximate the 
effective Seebeck coefficient and the electrical conductivity of multiphase materials [214]. 
There are two main equations to evaluate these properties. The most common equation is 
the one derived from the usual effective mean theory [215]: 𝑣 𝜁 − 𝜁𝜁 + 2𝜁 = 0 (15)

where 𝑣  and 𝜁  are the volume fraction and property of phase 𝑖, respectively, and 𝜁 is 
the effective material property. The electrical conductivity can be calculated by setting 𝜁 = 𝜎, and the Seebeck coefficient can be calculated by setting 𝜁 = 𝑆/𝜎 [216]. The second 
equation is based on the generalised effective mean theory: 

𝑣 𝜁 − 𝜁𝜁 + 𝐴 ⋅ 𝜁  = 0 (16)

where 𝑡 is a measure of the grain structure and morphology, and 𝐴 = (1 − 𝑝 )/𝑝 , where 𝑝  is the percolation threshold. Both parameters can be determined by fitting 
experimental data, and 𝑝  is estimated from the lattice type and dimensions of the 
network [217]. The Seebeck coefficient and the conductivity are estimated similar to the 
previous equation [218]. 

Recently, models based on electrical networks have been introduced to estimate the 
electronic properties [214,219,220] and finite element analysis [221]. These latter models 
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divide the material into pixels (for a 2D analysis) or voxels (for a 3D analysis) grids, where 
each node corresponds to a fraction of the total volume. Each voxel/pixel is required to be 
larger than the mean free paths of the carriers and phonons so that the transport is 
diffusive. Each node is connected to its neighbours by a resistance that is an electric 
resistance (to calculate the electrical conductivity) and a thermal resistance (to calculate 
the thermal conductivity) in series with an interface resistance if needed. Following the 
construction of grids, a nodal analysis will be conducted [222] to determine the 
temperature and voltage profile of the grids. The Seebeck coefficient is estimated by 
assigning each node in the electric grid to a local voltage source in series, representing the 
local Seebeck voltage. By using a Norton equivalent of the voltage source [223], the usual 
nodal formulation can be applied, and the bulk Seebeck coefficient will be estimated. The 
general expression is presented as [220]: 0 = 𝑉 𝐺  + 𝐼  (17)

where 𝑉 ,  is the voltage (or temperature) difference between nodes 𝑘 and 𝑙, 𝐼 ,  is the 
current flowing between nodes 𝑘 and 𝑙, and 𝐺 ,  is the conductivity between nodes 𝑘 
and 𝑙. The conductivity will be determined by the local thermoelectric properties of the 
voxels or pixels: 𝜎 = 𝜎 + 𝜎 , 𝜅 = 𝜅 + 𝜅  (18)

where 𝜎 , 𝜎  is the electrical conductivity of nodes 𝑘 and 𝑙, respectively, and 𝜅 , 𝜅  is the 
thermal resistivity of nodes 𝑘 and 𝑙. 

The main advantage of this approach is that this linear system of equations can easily 
be solved by electric circuit solvers, and the results can be directly interpreted by 
engineers. However, the quantum effects are not approximated by an effective medium 
theory in this model, and therefore, it provides similar accuracy to the more simple models 
described earlier [219]. Overall, from a design perspective, these equations suggest that 
the incorporation of highly conductive phases (both thermally and electrically) results in 
an overall increase in the conductivity of materials. This effect has been experimentally 
proven in several materials. Graphene, a zero-bandgap material [224], has been 
successfully used to create thermoelectric materials with high conductivity [225–227], the 
electrical conductivity of CoSb3 reached 1.2 × 106 S/m, four times larger than the pristine 
sample at 300 K [226]. Copper telluride in Bi0.5Sb1.5Te3 [228] and a composite of ZnSb 
matrix with minority phases of Zn4Sb3, Zn3P2, and Cu5Zn8 [229] have shown higher 
electrical conductivity. It should be noted that the values of electronic transport properties 
are greatly dependent on the fabrication methods [230], quality of the raw materials, and 
oxidisation of the material [231–233]. 

High-temperature, oxide-based thermoelectric materials have also been shown to 
benefit from the presence of secondary phases. A multiphase compound of Ca3Co4O9, 
matrimid polymer + Ag, and carbon black [40] showed a reduction in the electrical 
conductivity compared to the porous Ca3Co4O9, while the highly conductive phase of Ag 
reduced a significant deterioration of conductivity. 

6. Magnetic Effects 
The effects of magnetism on the performance of thermoelectric materials have been 

investigated for some time, but with less detailed analysis. The idea of spin-wave 
scattering and magnon drag was proposed in the middle of the last century, where 
magnon scattering was shown to contribute to an increase in the Seebeck coefficient [234]. 
Magnons are bosonic quasiparticles, the quanta associated with spin waves [235]. When 
a magnetic material is subjected to a temperature gradient, the hotter side contains a 
higher density of magnons that will diffuse towards the cooler side; this magnon flux 
“drags” the free charge carriers due to the electron–magnon collisions and gives rise to a 
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second contribution to the Seebeck coefficient, called the magnon thermopower [236]. A 
hydrodynamical, Galilean based expression for the magnon thermopower is [237] 𝑆 = 23 ⋅ 𝐶𝑛 𝑒 ⋅ 11 + 𝜏𝜏  (19)

where 𝐶  is the magnon specific heat capacity per unit volume, 𝜏  and 𝜏  are, 
respectively, the transport mean-free time for the electron and magnon–electron collision, 𝑒 is carrier charge, and 𝑛  is the charge carrier density. 

When dealing with magnetism in semiconductors, three main strategies have been 
proposed to improve the thermoelectric efficiency: (1) optimise thermoelectric properties 
of magnetic materials using strategies known for non-magnetic materials [43–45,238,239]; 
(2) introduce a magnetic dopant in a non-magnetic material [46–48,240–243]; (3) introduce 
a magnetic secondary phase in a non-magnetic material [49,50]. 

6.1. Magnetic Semiconductors 
Examples of magnetic semiconductors are FeSb2 [244,245], MnTe [246–248], 

Cr2Ge2Te6 [249], MgAgSb [250], MnSe [251], and FeSe [252]. Experimental results have 
shown their potential as thermoelectric materials; for instance, a massive Seebeck 
coefficient of ~27 mV/K has been reported for FeSb2 (albeit at a low temperature of ~12 K) 
[253]. It is not easy, however, to establish a causal relationship between magnetism and 
the Seebeck coefficient. A common method is to check whether a heavily doped sample 
with a high carrier concentration shows a large value of the Seebeck coefficient [254], 
because this indicates a possible effect of electron–magnon scattering, which increases the 
Seebeck coefficient. Fitting mathematical models to the experimental data has also been 
proposed as a method to identify the magnetic thermopower [255]. Clearly, measuring 
the transport properties as a function of the magnetic field is the best method to determine 
the magnetic thermopower [236,256,257]. 

A spin-dependent Seebeck coefficient can occur in magnetic semiconductors [258]; 
since the Seebeck coefficients for the two spin channels of spin-up (S↑) and spin-down (S↓) 
are not equal, a spin current proportional to the difference between S↑ and S↓ flows 
through the magnetic material even in the absence of a charge current [259]. The literature 
refers to spintronics as the field of study that investigates devices that exploit the 
properties of electrons spins. In thermoelectricity, this is known as spin caloritronic [260]. 
This new field of research has attracted the interest of the thermoelectric research 
community [261–263]. 

6.2. Magnetic Dopants in Non-Magnetic Semiconductors 
Doping non-magnetic thermoelectric materials with magnetic elements has 

improved the power factor. Magnetic doping of CuGaTe2 with manganese ions (Mn2+) 
increased the effective mass of the carriers due to the interaction of the magnetic ions and 
the charge carriers and, consequently, increased the Seebeck coefficient [264]. This effect 
has also been reported for a Chromium doped Bi2Te3 [265]. The negative side effect of 
magnetic ion dopants is the decrease in the charge carrier mobility that results in a 
reduction in the electrical conductivity. Overall, the power factor is shown to be increased 
[266–268]. 

6.3. Secondary Magnetic Phases 
The natural extension of using magnetic elements is to include magnetic phases to 

enhance the performance of thermoelectric materials [264,269,270]. The magnetic particles 
of BaFe12O19 in Ba0.3In0.3Co4Sb12 formed a magnetic composite; BaFe12O19 nanoparticles trap 
electrons in the ferromagnetic phase due to the spiral motion of the electrons generated 
by non-uniform spherical magnetic fields. This effectively suppresses the deterioration of 
thermoelectric efficiency in the intrinsic excitation region [271]. In the paramagnetic phase 
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(at temperatures above the Curie temperature), though, the nanoparticles release the 
trapped electrons to increase the carrier concentration in the intrinsic excitation. This effect 
enhances the overall performance of the thermoelectric material. 

Coherent magnetic full-Heusler nanoparticles (Ti(Ni4/3Fe2/3)Sn) in a half-Heusler 
matrix (Ti0.25Zr0.25Hf0.5NiSn0.975Sb0.025) showed significant enhancements of both carrier 
mobility and the Seebeck coefficient [272]. The magnetic nanoparticles interact with the 
spin of itinerant carriers, leading to charge localisation (which consequently leads to a 
decrease in the charge density) and the formation of overlapping bound magnetic 
polarons (that leads to an increase in mobility). 

Interestingly, some magnetic phenomena only occur when the particles are smaller 
than a certain size [273]. Nanoparticles provide a good platform to take advantage of these 
magnetic phenomena for the purpose of optimising the thermoelectric performance of 
materials. If the size of a ferromagnetic nanoparticle is small enough to have only several 
magnetic domains, it can be magnetised similar to a paramagnet under an external 
magnetic field, except with a much greater magnetisation. This mechanism is known as 
superparamagnetism (magnetisation of the nanoparticles can randomly flip direction 
under the influence of temperature, and they can be magnetised similar to a paramagnet 
under an external magnetic field [274]). Experimentally, soft magnet transition metals (Fe, 
Co, or Ni) nanoparticles were embedded in a Ba0.3In0.3Co4Sb12 matrix [275]. The 
superparamagnetism fluctuations of the nanoparticles gave rise to multiple scattering of 
electrons and enhanced phonon scattering. These effects increased the overall 
thermoelectric efficiency of the material. 

In general, secondary magnetic phases introduce a new degree of freedom to enhance 
thermoelectric materials. The effects of magnetism in semiconductors are not fully 
understood yet, and general expressions for the contribution of the magnon-drag on the 
Seebeck coefficient are unavailable yet. The need for more experimental and theoretical 
investigation presents an opportunity for thermoelectricity. 

Table 3 summarises the sample composition and fabrication techniques of recent 
studies that reported magnetic effects in thermoelectric materials. 

Table 3. Sample composition, fabrication technique, and corresponding references which studied magnetic effects in 
thermoelectric materials. 

System  Fabrication Method Type Ref. 
CuGa1-xMnxTe2 (x = 0, 0.01, 0.02, and 0.03) Casting + hand milling + sintering Magnetic dopant [264] 
Bi2-xCrxTe3 (x = 0, 0.01, 0.02, 0.05, and 0.10)  Casting + hand milling + sintering Magnetic dopant [265] 

Fe3−xTixSn (x = 0, 0.25, 0.5, 0.75) Casting Magnetic material [239] 
Sn1.03-xMnxTe (x = 0, 0.05, 0.07, and 0.1) Casting + cold pelletising  Magnetic dopant [266] 

Ba0.3In0.3Co4Sb12 +x BaFe12O19) (x = 0.15%, 0.25%, 0.35%, 
and 0.45%) 

Ball milling + sintering Magnetic phase [271] 

Ti0.25Zr0.25Hf0.5(Ni,Fex)Sn0.975Sb0.025 (x = 0, 0.05, 0.01, 0.15) Casting + hand milling + sintering Magnetic phase [272] 
Mn1-xNaxSe (0 ≤ x ≤ 0.03) Ball milling + annealing + hot pressing Magnetic material [251] 

FeSb2 Hand milling + annealing + hot pressing Magnetic material [244] 

Figure 8 compares the maximum zT values reported for several single chalcogenides 
with their multiphase counterparts. The data for single-phase materials were manually 
extracted from the Materials Research Laboratory Energy Materials Datamining website 
[179,180]. Both the bar and violin plot show that the multiphase materials consistently 
present larger values of zT. In particular, the violin plot shows that many single-phase 
materials have low zT, while the zT for multiphase materials is distributed towards larger 
values. 
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Figure 8. zT values of multiphase thermoelectric materials compared with single-phase counterparts; data extracted from 
[1,20,29–31,42,101,131,177,178,182–213]. The inset shows the truncated violin plot of the same data, where the dashed line 
represents the median and dotted lines represent the quartiles. 

7. Summary and Outlook 
Here, we have reviewed the principal mechanisms and strategies employed to 

enhance the thermoelectric efficiency of multiphase thermoelectric materials. The 
interfaces between phases in a material can be utilised to construct potential barriers in 
the electronic band structure and perform an energy filtering on the charge carriers, where 
the low energy charge carriers will be filtered/scattered. This can increase the average 
energy at which the electronic conduction occurs and consequently increase the Seebeck 
coefficient. The effect of the barrier height can be estimated from the relaxation time 
approximation from the Boltzmann equation. For a metallic secondary phase, the 
potential barrier height can be estimated from the work function of the metal and electron 
affinity of the semiconductor following Schottky’s rule. For heterojunctions (two different 
semiconductors), the potential barrier is proportional to the difference of the electron 
affinities between the two materials and can be estimated from Anderson’s rule. 
Experimental results have shown that the energy-filtering effect can increase the Seebeck 
coefficient while decreasing electrical conductivity. The overall result, however, is an 
increase in the power factor. 

Modulation doping is a well-known technique for enhancing the conductivity of 
semiconductor devices. In this paper, we briefly reviewed the mechanism by which 
modulation doping is used in multiphase thermoelectric materials. 

An increase in phonon scattering due to the presence of secondary phases improves 
the thermoelectric efficiency of these materials. Secondary phases decrease the relaxation 
time of the phonons. Traditional models can be employed to verify the effect of a 
secondary phase on the thermal conductivity of materials. The Klemens model has been 
used to theoretically explain the reduction in thermal conductivity. The effective medium 
approximation has been promising in describing the phonon scattering mechanisms of 
materials with simple structures, such as spherical particles. In an even more simplistic 
view, for some materials, the transmission and reflection coefficients determined based 
on the acoustic impedance of the primary and secondary phases can be readily used to 
evaluate the effect of multiple phases on the reduction of thermal conductivity. 



Materials 2021, 14 16 
 

 

Experimentally, a large increase in the zT has been reported with the use of secondary 
phases. 

Mathematical models based on effective medium theory and networks can also 
estimate the Seebeck coefficient and electrical conductivity of multiphase materials. These 
models can be used as a tool to evaluate and tune the properties of thermoelectric 
materials. 

The incorporation of magnetic doping elements and secondary phases in 
thermoelectric materials has introduced new possibilities to enhance their efficiency. The 
scattering of electrons due to interactions between charge carriers and magnons can 
contribute to an increase in the Seebeck coefficient. A magnon flux generated from a 
temperature gradient “drags” the free carriers and contributes positively to the Seebeck 
coefficient—this effect is called the magnon thermopower. Experimentally, this has 
proven to be a promising strategy to enhance the thermoelectric properties of several 
materials. 

Overall, multiphase materials have been shown to be instrumental in achieving high 
thermoelectric efficiency. Multiple phases allow for more degrees of freedom in the 
materials design as each phase can be finely tuned to improve selected properties of the 
multiphase material. 
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