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interaction combining vision and wearable
systems
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Jaeseok Kim, Erika Rovini, Member, IEEE, Alessandro Di Nuovo, Senior Member, IEEE, Filippo

Cavallo, Member, IEEE

Abstract— The recognition of human gestures is crucial for im-
proving the quality of human-robot cooperation. This article
presents a system composed of a Pepper robot that mounts
an RGB-D camera and an inertial device called SensHand. The
system acquired data from twenty people who performed five
daily living activities (i.e. Having Lunch, Personal Hygiene, Work-
ing, House Cleaning, Relax). The activities were composed of at
least two "basic" gestures for a total of 10 gestures. The data
acquisition was performed by two cameras positioned laterally
and frontally to mimic the real conditions. The acquired data were
off-line classified considering different combinations of sensors
to evaluate how the sensor fusion approach improves the recog-
nition abilities. Specifically, the article presents an experimental
study that evaluated four algorithms often used in computer
vision, i.e. three classical machine learning and one belonging
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to the field of deep learning, namely Support Vector Machine, Random Forest, K-Nearest Neighbor and Long Short-
Term Memory Recurrent Neural Network. The comparative analysis of the results shows a significant improvement of
the accuracy when fusing camera and sensors data, i.e. 0.81 for the whole system configuration when the robot is in a
frontal position with respect to the user (0.79 if we consider only the index finger sensors) and equal to 0.75 when the
robot is in a lateral position. Interestingly, the system performs well in recognising the transitions between gestures when
these are presented one after the other, a common event in the real-life that was often neglected in the previous studies.

Index Terms— Gesture recognition, Human-robot interaction, Inertial sensor, Social robot

[. INTRODUCTION

Nowadays social robots permeate our daily life such as
workplaces and hospitals. Indeed, they are required to naturally
interact and cooperate with human-beings to recognize what
a person is doing in a particular moment of the day [1]. In
this case, they should be able to sense and perceive what it is
happening around them and proactively operate [2].

Human beings’ communication is made of verbal and non
verbal cues. Among the non verbal ones, we can find emo-
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tions, gestures, body postures and gazes. Gestures are even
more important in noisy environments, at a distance, and for
people with hearing impairments. According to [3], we can
distinguish three types of gestures: i) Body gestures that refer
to the full-body actions or motions; ii) Hand and arm gestures
that include arm poses and hand gestures; iii) Head and facial
gestures that refer to nodding or shaking head such as to
winking lips.

Liu et al. [4] proposed a framework for the recognition of
human gestures for robotic collaboration which is composed
of five essential parts: sensor data collection, gesture iden-
tification, gesture tracking, gesture classification and gesture
mapping, which is the translation of the recognized gestures
into an action command for the robot. For what concerns the
gesture identification and tracking, it is important to find the
right combination of sensors that could track the gesture in
case of occlusion, reduced light conditions and comfort to use
the sensors (e.g. privacy, wearability) above all the issues [5].

As for the gesture classification, in a real case scenario,
simple human hand gestures are usually part of complex ac-
tivities, more difficult to recognize, that could also include the



movement of the body such as different poses. For instance,
the reader can consider the list of "basic gestures" that you are
performing when you are pealing an apple or working at your
desk. For this reason, it is very important that social robots
gain the ability to distinguish these simple gestures even when
they are part of daily living “scenes”.

Therefore, our work aims at developing a multi-modal
system in which inertial and visual data are combined together
to offer robust human gesture recognition during a daily living
scene. Skeleton data were obtained from an RGB-D camera
mounted over a social humanoid robot, Pepper, and they were
combined with the inertial data acquired by a wearable device,
SensHand, that is able to acquire inertial data from the index
finger and the wrist. In this approach, the information about
the fine movements was collected with the wearable device
even when the person was not in the optimal field of view
of the robot (i.e. lateral position). On the other hand, the use
of the depth camera mounted on the robot gives information
about the whole body posture, increasing thus the ability to
distinguish among different activities that could have similar
hand gestures.

In this paper, we evaluate the performances of the system
in realistic cases, specifically investigating if it can reliably
perform the gesture recognition when the subjects perform
some daily living scenes, arbitrarily alternating gestures and
body postures. Since one of the main problems of vision-
based sensors is related to the camera occlusion, in this work
we evaluate the performances of the system in two real-case
scenarios, i.e. when the robot is in front of the person and
when it is on the side.

[I. RELATED WORKS

According to the recent review papers [4][17][18], the most
commonly used sensors in the gesture recognition applications
are the RGB-D video cameras and the inertial wearable sen-
sors. The former are widely available and cost effective. They
provide a rich texture information of the scene and they are
easy to operate. However, they have some limitations related
to background clutter, occlusion, camera position, subject
variations in performing the actions and they are limited
to a constrained space defined by the camera position and
settings [5]. On the contrary, inertial sensors enable coping
with a much wider field of view as well as changing lighting
conditions. Thanks to the decrease in the energy consumption
and the increase in the computational power of the inertial
sensors, long-term recordings have been enabled over the last
years. Indeed, many authors focused on the use of this kind
of sensors to perform human activity recognition. However,
inertial sensors have limitations as well. One of the main
restrictions is the sensor drift that may occur during long oper-
ational times; moreover, measurements are sensitive to sensor
location on the body. In addition, wearable sensors for human
action recognition require to be worn by subjects performing
the actions, which create the disadvantage of intrusiveness or
inconvenience for the subjects [19]. It is also evident that no
single sensor modality can cope with various situations that
may occur in real scenarios. For example, think about all the
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actions you are performing while you are cooking in your
kitchen or you are brushing your teeth. Some of these actions
may be very similar from body/arm movements point of view,
but they could differ from hand fine movements point of view
(i.e fingers movement). Drink from a glass or talking to the
phone have the same arm movement (i.e. bring the arm towards
the face) but a different movement and positions of wrist and
fingers. In this sense, one way to improve the performance
of the human action recognition systems is to combine data
from these two different modality sensors considering that they
provide complementary information [5] [4].

In this context, several works focused on the use of mul-
timodal sensors to perform activity recognition. Particularly,
some of them focused on the recognition of basic body
positions and movements (i.e. walking, running, lying) [15],
[7], [8], [10], [16], rather than more complex activities of
daily living. Other gesture recognition papers, such as public
datasets, selected activities of daily living in addition to the
basic actions [13], [6], [9], [11]. However, they use data
acquired by cameras and/or inertial units placed on the wrist
or chest, focusing more on the recognition of the full body
activities rather than the recognition of fine finger gestures,
even if hand gestures play a pivotal role within actions of daily
living, as showed in [14]. Another limitation of the literature
works relies on the "scene" composition. Indeed, most of the
literature works and public data acquire data from controlled
settings [13] [16], where participants just performed one
"basic" activity at a time in front of the camera. Nevertheless,
this is not a realistic situation, since most of the "scene" we’re
daily performing are composed by basic gestures. Moreover,
the subject may not be positioned in a frontal position with
respect to the camera, but in a lateral one, causing the visual
occlusion of the body joints and affecting the accuracy of the
system. Table [I| summarizes and compares the related works
in terms of type of tracked movements (i.e. wide movements
that involve the whole body or fine movements of the hand),
the activities mapping (i.e. basic, activities of daily living,
scene) and the type of classifiers (i.e. machine learning or
deep learning). Therefore, in this context, the main research
contribution of this paper is three-fold. Firstly, it proposes a
multi-modal data acquisition considering two different points
of view for the cameras (i.e. lateral and frontal) and the
inertial sensors placed on the wrist and on the fingers with
the purpose to evaluate how the information on the fine
movements can increase the recognition accuracy. Secondly, it
proposes to classify a set of "basic" gestures and a set of daily
living "scenes", as the composition of these "basic" gestures.
Lastly, the dataset was acquired from the interaction with the
Pepper robot to promote real-life similarities. Indeed, during
the experimental session, the participants interacted with the
robot and performed the actions that it was explaining and
requiring. Particularly, 20 healthy subjects were enrolled and
were requested to perform five daily living scenes (i.e. having
lunch, personal hygiene, working, house cleaning, relax) in
which they arbitrarily performed two or three "basic" gestures
selected among 10 gestures which were similar in pair. In
our previous work [14], we combined data from a depth
camera mounted on a mobile platform, able to self-localize in
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TABLE |

TABLE OF THE RELATED WORKS IN THE HUMAN ACTIVITY RECOGNITION FIELD: A SUMMARY OF THE SENSORS USED, THE PERFORMED
ACTIVITIES, THE MACHINE LEARNING TECHNIQUES AND THE BEST PERFORMANCES.

Ref.  Used sensors? Activities® Machine Learning  Accuracy

techniques

[6] Wide : cameras and Basic Gesture : UTD-MHAD dataset [swipe left, swipe ~ Collaborative represen-  >0.97
inertial sensors on the right, wave, clap, throw, arm cross, basketball shoot, tation classifier (CRC)
wrist draw X, draw circle (clockwise), draw circle (counter
Fine: - clockwise), draw triangle, walk, sit to stand, stand to

sit, lunge, squat].

ADL: UTD-MHAD dataset [bowling, boxing, baseball
swing, tennis swing, arm curl, tennis serve, push,
knock, catch, pickup and throw, jog].

Scene: -

[7] Wide: cameras and Basic Gesture: stand-to-sit, sit-to-stand, stand-to-lie, ~CNN and LSTM net- Best result:
inertial sensors on the lie-to-stand, sit-to-lie, lie-to-sit, fall, waving a hand,  works 0.99
waist flip to left, flip to right, counterclockwise rotation,

Fine: - clockwise rotation.
ADL: -
Scene: -

[8] Wide: smartphone in- Basic Gesture: walking, upstairs, downstairs, sit, stand, = Naive Bayes, KNN Best result:
ertial sensors in the lying. 0.90
pocket ADL: -

Fine: - Scene: -

[9] Wide: cameras and See activities Ref. [6] K-nearest neighbors  Best result:
inertial sensors on the (KNN), SVM 0.98
wrist or thigh
Fine: -

[10] Wide: smartphone in- Basic Gesture: eight locomotion activities (still, walk, DT, RF, Naive Bayes, Best result:
ertial sensors in the run, bike, car, bus, train, subway). KNN, SVM, Bagging, 0.97
pocket ADL: - AdaBoost, XGB and
Fine: - Scene: - MLP

[11] Wide: inertial sensors Basic Gesture: several types of falls. Multi-Layer Perceptron  Best  result:
on the wrist, chest and ADL: cyclic activities of daily living (ADLs) e.g. (MLP), SVM, KNN, 0.93
waist walking and jogging and transient ADLs e.g. sitting ~RF, CNN, LSTM, SAE
Fine: - down and lying down.

[12] Wide: cameras and Basic Gesture: walking, sitting, standing, simulating ~ SVM, Ensemble classi- SVM: 0.87, E:
smartphone  inertial tripping and falling down frontally. fier 0.91
sensors in the pocket ADL: walking and carrying an object, bending to pick
Fine: - up an object and coming back up, bending and staying
Scene: - down to tie shoelaces, drinking, picking up a phone call,

bending to check under furniture and coming back up.
Scene: -

[13] Wide: cameras and Basic Gesture: - KNN, Random Forest >0.90 in
inertial sensors on the ADL: working on a laptop, watching TV, reading a  (RF) the fusion
chest book, operating a smartphone, vacuuming, lying in bed, approach
Fine: - preparing eggs, eating with the fork, washing the dishes.

Scene: -

[14] Wide: cameras and Basic Gesture: - RF, SVM 0.77 in
inertial sensors on the ADL: chop, drink with a glass, eat with a hand, eat the best
wrist with a spoon, open a pill container, talk on the phone, configuration
Fine: inertial sensors read a book, relax on the couch, stir, talk on the couch.
on the fingers Scene: -

[15] Wide: cameras and Basic Gesture: walking, standing, picking up an object, ~RF, SVM, MLP, kNN 95.93 +0.30 in
inertial sensors on the sitting, jumping, laying and five human falls. the best con-
wrist, neck, pocket of - figuration
pants, waist and ankle Scene: -

Fine: -

[16] Wide: smartphone in- Basic Gesture: inactive, active, walking, driving. SVM 67.22% +
ertial sensors in the ADL: - 13.13%
pocket Scene: overall
Fine: -

This Wide: cameras and Basic Gesture: walking. SVM, RF, KNN, LSTM  0.81 with

work inertial sensors on the ADL: eat, drink, brush teeth, use laptop, write, talk on feature-level

wrist
Fine: inertial sensors
on the fingers

the phone, sweep, relax, read a book.
Scene: these activities were combined in 5 scene of
daily living.

fusion

2°Wide’ and ’Fine’ indicate the sensors used to recognize the wide and fine movements, respectively. Particularly, with the term *Wide’ we refer to
the whole body movements.

b As for the gesture mapping, the activities were clustered into ’Basic Gesture’, e.g. walking, sitting, lying, *ADL’, related to a specific activity of
daily living, and ’Scene’, which includes all the activities composed by two or more activities without restrictions in the passage from one to the
other.
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Fig. 1. System Architecture. On the bottom left: Pepper robot with the
camera mounted on its chest; on the bottom right: SensHand.

the environment, and from a custom inertial wearable device
named SensHand. However, in that case, an experimenter
administered the test and we focused on the recognition of
each single gesture. On the contrary, in this work, we focused
also on the recognition of gestures as part of daily scenes
and the Pepper robot autonomously addressed the protocol.
Then, we evaluated the robustness of the proposed multi-modal
system by using three machine learning algorithms (Support
Vector Machine, Random forest and K-Nearest Neighbor),
and one deep learning algorithm (Long Short-Time Memory).
The use of well-known benchmark algorithms makes the
results directly comparable with the previous works, thus the
effectiveness of the proposed approach is more recognisable.

The operative objectives of this paper are two: i) to find
the optimal combination of sensors that guarantees high op-
erative accuracy in the recognition of gestures "hidden" into
more complex scenes; ii) to investigate whether the system
can manage the transitions from one activity to another by
accurately classifying them.

I1l. STuDY DESIGN

A. System description

As shown in Fig. [T} the proposed system is composed by:

« Pepper Robot and Vision System: Pepper robot is char-
acterized by a multi-modal sensing (i.e. touch sensors,
infrared, cameras and sonars) thanks to which it can
interact with people and move in an autonomous way.
In this paper, to enrich the visual capability of the robot,
a RGB-D camera (i.e. Intel Realsense) was mounted on
its chest over its tablet [20].

o SensHand: SensHand is composed of four customized
inertial measurement units (IMUs) modules positioned on
the wrist and on the intermediate phalanx of the thumb,
index, and middle finger that are linked by spiral cables.
Each module is composed of a complete 9-axis inertial
sensor (6-axis geomagnetic module LSM303DLHC and
3-axis digital gyroscope L3G4200D, STMicroelectron-
ics, Italy) and includes a microcontroller (ARM®-based
32-bit STM32F10RE MCU, STMicroelectronics, Italy)
which can acquire, filter and store data at a frequency
of 100 Hz. The wrist module is the coordinator of the
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Fig. 2. Experimental setup while performing the activity “Drink from a
glass”.

device; it includes also a LiPo battery for power supply
and a Bluetooth module for wireless data transmission.
Moreover, it manages and synchronizes data coming from
the fingers through the CAN-bus standard [21]. It is very
easy to wear and to use thanks to its miniaturised and
light structure; it is independent from the physical shape
of the person wearing it.

o Data Acquisition and Storage The connection of the
devices to a personal computer was established via Blue-
tooth for the SensHand and via WiFi for the robot. A
Python interface was developed to manage the simul-
taneous acquisition of data and guarantee their correct
storage. In particular, as concerns the inertial sensors,
two Python executables were created: one to connect the
device to the computer and the other to start the data
acquisition and transmission. On the contrary, visual data
have been acquired using the Robot Operating System
(ROS) framework.

B. Participants

Twenty healthy participants of different ethnicity were en-
rolled for the experimentation, half males and half females,
right-handed, from 19 to 44 years old. The experimental
phase of this work was conducted in the Smart Interactive
Technology (SIT) research laboratory of the Sheffield Hallam
University (Sheffield, England, UK). At the beginning of the
experimental session, written informed consent was obtained
from the participants. As a token of gratitude, participants
received an Amazon e-voucher of £10 after successfully com-
pleting the experiment. Study, design, and protocol, including
subject privacy and sensitive data treatment, were approved by
the Ethics Committee of the Sheffield Hallam University.

C. Experimental Protocol

The experimentation was designed to reproduce a real case
scenario, in which the participants were asked to perform five
different daily living scenes by alternating ten activities in the
way they preferred. The selected five scenes were: Having
Lunch (HL), Personal Hygiene (PH), House Cleaning (HC),
Working (WO) and Relax (RE). Each scene was composed
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of two or three "basic" gestures according to the mapping
presented in Tab.

Before starting the test, the participant was asked to wear
SensHand on the dominant hand (see Fig. [2). During the
experimentation, Pepper robot gave instructions to the subject
about how to perform the scene. If the participant did not
understand, he could ask Pepper to repeat the assignment. Each
scene was performed for one minute and the subjects could
switch from one activity to another one as they preferred. They
were also free to grab the objects and act in the way they
preferred, so no instruction was given in that sense, giving
the participants the possibility to act as naturally as possible.
Pepper robot autonomously gave the start and the stop signals.

During the acquisition, each activity was labelled manually
by an operator using the interface. The session was recorded
by two cameras, one mounted over the robot and one located
on the right side of the participant to acquire data from two
different points of view. The lateral camera is the same as the
one mounted on Pepper and it was placed at the same height
from the ground. This double synchronous video acquisition
has been used only in the experimental setting to save time,
instead of asking the users to perform twice the protocol. It
would not be necessary, therefore, in the standard use of the
system. At the end of the experimentation, the users were
asked to fill in the System Usability Scale (SUS) questionnaire
to evaluate the usability of the wearable glove SensHand.
A SUS score of 68 is considered usable, higher scores are
considered above average [22].

IV. GESTURE RECOGNITION

A. Feature Extraction

1) Camera: As concerns the RGB images analysis, skeleton
features were obtained thanks to the Openpose software [23].
In particular, from each frame, 25 keypoints were estimated
for the body, where each of them represents the (x,y) pixels’
coordinates of the joints. In this study, we considered only a
restricted set of joints, composed by: head, neck, hands, feet
and torso, which are among the most discriminant information
for activity recognition [24].

The extracted features have then been normalized moving
the original reference frame from the camera to the torso joint,
and scaling the joints with respect to the distance between the
neck and the torso [24], [14]. This results in a set of data which
are independent with respect to the person’s specific size and to
the relative position of the camera. The posture feature vector
was composed by 12 attributes, which corresponded to the
x and y coordinates of the restricted set of joints, excluding
the torso which was used as reference. The signal containing
the skeleton features for each frame was segmented by 50 %-
overlapping moving windows with a size of 3 s, and for each
window the mean x and y joints’ coordinates were extracted.
This procedure was performed for the frontal (FC) and the
lateral (LC) cameras.

2) Inertial Data: According to the results obtained in [25],
in this study only the data coming from the wrist and index
finger sensors of SensHand were used. A Fourier analysis of
the raw signal was performed to identify the cut-off frequency.
Since the main frequencies of the signal were between 0 and

4, a 4th order digital low-pass Butterworth filter was used
setting the cut-off frequency at 5 Hz. In particular, acceleration
and angular velocity data were first filtered on their single
components (x,y, z), and then concatenated computing the
Euclidean norm. These data were then segmented in 3 s win-
dows, same as skeleton data, and, from each of them, different
features were extracted. The final dataset was composed by
10 features related to acceleration values, i.e. mean, standard
deviation, variance, mean absolute deviation (MAD), root
mean square (RMS), skewness, kurtosis, signal magnitude area
(SMA), normalized jerk and power, and 6 features to angular
velocities, i.e. mean value, standard deviation, variance, MAD,
RMS and power. These features were computed for both
wrist (W) and index finger (I), for a total of 32 features.
In the experimentation, we made a continuous acquisition of
data without interruption between activities for each scene.
Therefore, the resulting database has two data types: (i) "pure
data", which are clearly related to only one of the activities in
a scene; (ii) "transition data", that catch the transitions from
one activity to another. In the analysis presented in this article,
when segmenting the data in the window of three seconds, if
two (or more) were annotated as "transition", the sequence
was labeled as corresponding to the most frequent activity.
B. Classification

At the end of the features extraction, the Kruskal Wallis
test was applied to obtain the most significant feature vector
in distinguishing the group of instances. This test confirmed
that the ten gestures, which characterized the activities under
investigation, were statistically different for all the extracted
features (p < 0.05). Then, a correlation analysis was per-
formed in order to retain only the significantly uncorrelated
features (Correlation Coefficient < 0.85), as in [25], and to
use them as input for the machine learning algorithms.

The system was evaluated by considering both inertial and
visual sensors as stand-alone systems and by fusing the two
sensor modalities at feature-level [26] for a total of eleven
datasets: frontal camera (FC), lateral camera (LC), index finger
(D), wrist (W) and their combination (IW, I+FC, I+LC, W+FC,
W+LC, IW+FC, IW+LC).

In the literature, several methods are used for the classifi-
cation and recognition of human gestures [27] (Table [[). Re-
lated works employed supervised machine learning techniques
such as Support Vector Machine (SVM), Random Forest
(RF), Multi-Layer Perceptron (MLP) and k-Nearest Neighbors
(kNN). More recently, traditional machine learning techniques
are compared to the deep learning algorithms. Among them,
convolutional neural network (CNN) and recurrent neural
network (RNN) are two popular ones [11]. Therefore, in
this paper, three commonly used supervised machine learning
algorithms and one deep learning approach were employed in
the stand-alone and in the combined classifications:

o Multiclass Support Vector Machine (SVM): it takes data
which are not linearly separable in the input space and
turns them into linearly separable data in the higher
dimensional feature space. Then, it finds the hyperplane
that can separate the classes with the largest margin. A
third order polynomial kernel function has been used in
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TABLE I
DESCRIPTION OF GESTURES PERFORMED DURING THE EXPERIMENTAL SESSION. IN THE LAST COLUMN, SR STANDS FOR “SITTING ON THE
CHAIR”, ST FOR “STANDING” AND SC FOR “SITTING ON THE COUCH”".

this work.

Activity Description Scene Position
EF: Eat with the fork Take the fork from the table, eat and put the fork ~ Having Lunch (HL) SR
back
DG: Drink from a glass Take a glass from the table, drink and put it back  Having Lunch (HL), Per- SR
sonal Hygiene (PH)
BT: Brush teeth Take the toothbrush, brush teeth and put it back  Personal Hygiene (PH) SR
UL: Use laptop Type on the keyboard with both hands Working (WO) SR
WP: Write on a paper Take a pen and write on a paper Working (WO) SR
TP: Talk on the phone Take the phone, talk on it and put it back Working (WO), Relax SR
(RE)
WK: Walk Walk forward and backward House Cleaning (HC) ST
SB: Sweep with the broom Take the broom, sweep and put it back at the  House Cleaning (HC) ST
end
RC: Relax on the couch Sit comfortably on the couch and relax Relax (RE) SC
RB: Read a book Take the book, read it and turn pages Relax (RE) SC
s : TP
o Random Forest (RF): it operates by constructing a mul- Recall = ——— (3)
TP+ FN

titude of decision trees at training time and outputting
the class that is the mode of the classes of the individual
trees, with the goal of reducing the variance.

o K-Nearest Neighbor (KNN): it stores all available data
and classifies new cases based on similarity measures,
which are distance functions. They are assigned to the
most common class among its k nearest neighbors. We
set k = 1, so the object was simply assigned to the class
of that single nearest neighbor, and the euclidean distance
was used as distance metric.

e Long Short-Term Memory (LSTM): it is a recurrent
neural network (RNN) employed in the field of deep
learning. The proposed LSTM has batch size equal to
8, 512 hidden layers and 128 fully connected layers.
We use the Adam optimizer (learning rate = 0.001) and
L2 regularization (preventing overfitting) during training.
Also, we applied cross-Entropy as loss Function. Three
different number of epochs were used to train the model
(i.e. 100, 200 and 300). For this classifiers we use all
the selected features that were further normalized in the
range (-1,+1) before applying the LSTM classification.

These datasets were classified using a 10-fold cross-
validation technique. The final classification results are ob-
tained as average of the performances of the ten created
models.

C. Evaluation

All the analyses were performed using Matlab2020a and
Pytorch for machine learning and deep learning, respectively.
The classification performances were evaluated in terms of
accuracy, precision, recall and F-measure, which can be de-
scribed as follows:

4 B TP+ TN 0
Y = TP Y TN+ FP+ FN
TP
Precision = ———— )

TP+ FP

Precision - Recall

F — measure = 2

“4)

" Precision + Recall

where TP, TN, FP and FN are true positive, true negative,
false positive and false negative, respectively. The classifica-
tion time was also computed by a built-in MATLAB function,
a stopwatch counter named fic, which measures the amount
of time that the classifiers take to complete each classification
step. In particular, it has been computed for every classifier
while performing the cross-validation and for every combina-
tion of sensors.

V. RESULTS

In this section, the results obtained from the multiple com-
parisons of the four supervised classifiers on eleven datasets
are reported in detail. Overall, 3361 windows were created for
each combination of data concerning the frontal camera (FC,
I+FC, W+FC, IW+FC), while 3213 for the ones concerning the
lateral camera (LC, I+LC, W+LC, IW+LC). Moreover, 3213
windows were considered for inertial sensors alone (I, W, IW).
The number of rows corresponds to the number of windows in
each dataset. On the contrary, the number of columns varies
for each combination and depends on the number of features.
After the feature selection process, the inertial features shown
in Tab. were retained for the machine learning classifi-
cation step. As regards skeleton features, all of them were
selected and used by the classifiers. For what concerns LSTM
approach, all the features were used as input. In this paper,
we only report the LSTM classifier’s best performances (300
epochs), while the other results (100 and 200 epochs) are
reported in the supplementary material.

Generally, the results obtained under the multi-modal
datasets are better than those achieved when considering the
sensors separately and they are comparable with the related
works (Tab. E]) As concern the stand-alone configurations,
the results in Tab. show that the system composed by
the inertial sensors on the index finger (I) and on the wrist
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TABLE Il
INERTIAL FEATURES SELECTED AFTER CORRELATION ANALYSIS.
Index+Wrist Index/Wrist
Wrist acc. mean Index acc. mean Acc. mean
Wrist acc. stdev Index acc. stdev Acc. stdev
Wrist acc. RMS Index acc. RMS Acc. RMS

Acc. skewness
Acc. kurtosis
Acc. SMA
Acc. power
Ang.vel. mean
Ang.vel. stdev
Ang.vel. power

Index acc. skewness
Index acc. kurtosis
Index acc. SMA
Index acc. power
Index vel. mean
Index vel. power

Wrist acc. skewness
Wrist acc. kurtosis
Wrist acc. SMA
Wrist acc. power
Wrist ang. vel. mean
Wrist ang. vel. stdev
Wrist ang. vel. power

TABLE IV
RESULTS OBTAINED BY STAND-ALONE SYSTEMS.
Accuracy Recall F-meas Precision Time [s]
Index (I)
SVM 0.52 0.50 0.51 0.52 88.61
RF 0.55 0.53 0.54 0.56 16.62
KNN 0.51 0.49 0.50 0.52 26.69
LSTM 0.56 0.56 0.56 0.57 4897.21
Wrist (W)
SVM 0.54 0.52 0.53 0.53 88.95
RF 0.57 0.55 0.56 0.58 14.88
KNN 0.50 0.48 0.49 0.50 28.02
LSTM 0.57 0.55 0.55 0.56 3283.57
I+W
SVM 0.65 0.64 0.64 0.65 81.25
RF 0.64 0.63 0.63 0.64 21.90
KNN 0.61 0.59 0.60 0.62 27.72
LSTM 0.66 0.65 0.65 0.66 4285.47
FC
SVM 0.77 0.77 0.77 0.77 97.50
RF 0.75 0.75 0.75 0.76 16.92
KNN 0.75 0.76 0.76 0.77 30.14
LSTM 0.68 0.69 0.69 0.71 5493.14
LC
SVM 0.69 0.70 0.70 0.72 21.47
RF 0.68 0.68 0.69 0.71 17.08
KNN 0.69 0.70 0.71 0.73 30.23
LSTM 0.61 0.62 0.62 0.65 3609.12

(W) obtains accuracy levels up to 0.56 and 0.57, respectively,
while 0.65 of accuracy is obtained when considering the [+W
combination. The frontal camera (FC), which has a good
view of the user performing the activity, is able to recognize
the gestures with 0.77 of accuracy, recall, F-measure and
precision, with the SVM classifier. These values decrease when
considering the camera positioned on the side (LC). In this
case, the accuracy, recall, F-measure and precision are 0.69,
0.70, 0.71 and 0.73, respectively, with KNN classifier. RNN
and machine learning had comparable performances, even if
the LSTM required longer training time.

As concern the multi-modal datasets, the obtained results
show that the fusion-at-feature-level approach improves the

classification accuracy compared to the use of the independent
classifiers. Similarly to the stand-alone combinations, deep
learning and machine learning showed comparable perfor-
mances. Also in this case, LSTM had a longer training time
with respect to the other algorithms. Tab. [V] indicates that
the system is able to recognize the ten activities with 0.81
(IW+FC) and 0.75 (W+LC) of accuracy as best configurations,
obtained with SVM and RF, respectively. Fig. [3] compares the
F-measure values obtained by these two combinations with
the other ones for every single activity. [+FC, W+FC and
IW+FC obtained comparable performance in classifying the
10 gestures; similar results were obtained also with the I+LC,
W+LC and IW+LC datasets. From a visual inspection it is
clear that the worst configuration is IW (blue line) and that the
use of multi-sensors approach increases the performance of the
system. As for the FC dataset classified with SVM (the best
stand-alone configuration), the system can correctly classify
almost all the activities with an average F-Measure equal to
0.77, with some difficulties in recognizing the activities “Drink
from a glass (DG)” (0.7), “Sweep with the broom (SB)” (0.7)
and “Walk (WK)” (0.6). As expected, it is evident from a
visual inspection that the results from the LC are worse than
the ones obtained with the FC dataset, but also from the
ones obtained with the IW dataset for BT and WK gestures.
Indeed, the use of combined sensors increases the recognition
performances also when the robot is not in the optimal position
with respect to the user. Indeed, with respect to the only LC,
the I+LC increases the overall accuracy by 0.6 with the best
configuration (obtained with RF). In particular, by looking at
the single activities, the F-measure values increase by 0.2 for
the activity “Brush teeth (BT)” and by 0.1 for the activity
“Write on a paper (WP)”.

As concerns the evaluation of the usability of SensHand, the
results show that the average SUS score is 72, the standard
deviation 14.5, the maximum 95, and the minimum 40.79. The
results underline a Good Usability of SensHand (Letter Grade
B) [28].

VI. DISCUSSION

In this work, cameras and wearable inertial sensors have
been combined to enhance the capabilities of the robot to
recognize human activities. Indeed, the results make clear that
the inertial sensors alone are not enough to recognize all the
ten activities in a consistent way, since the levels of accuracy,
recall, F-measure and precision are insufficient for a reliable
application, i.e. around 0.65 (IW). Better results are achieved
considering the FC (0.77 of average accuracy). However, this
accuracy value significantly decreases when the camera is in
the lateral position (0.69).

Comparing these results with those relating to previous
works, some of them reach a slightly higher level of accuracy;
however, they classify "basic" activities that are very different
from each other (e.g. walking, sitting, pick-up and object), and
they did not include data relating to the finger movements,
nor those relating to the "scene" (see Table [). For this
reason, we cannot make a direct comparison between these
works. Furthermore, we must take into account two aspects
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TABLE V
FUSION AT FEATURE-LEVEL'S RESULTS. “A” STANDS FOR ACCURACY, “R” FOR RECALL, “F” FOR F-MEASURE, “P” FOR PRECISION AND “T” FOR
CLASSIFICATION TIME EXPRESSED IN SECOND.

I+FC W+FC IW+FC
A R F P T A R F P T A R F P T
SVM 079 079 079 0.79 207.0 079 079 079 0.79 188.26 081 080 081 0.81 356.20
RF 077 077 077 0.78 24.69 0.77 076  0.77 0.78 24.48 077 077 077 0.78 28.36
KNN 074 073 074 0.75 36.58 073 072 073 0.75 30.92 076 075 0.76 0.76 33.84
LSTM 0.74 0.75 0.75 0.76 5475776  0.74 0.75 0.75 0.75 3437,64 074 0.75 0.74 0.76  4473.61
I+LC W+LC IW+LC
A R F P T A R F P T A R F P T
SVM 072 072 073 0.75 140.63 0.72  0.71 0.72  0.74 133.30 074 074 075 0.77 274.1
RF 075 074 075 0.77 25.04 075 075 0.76 0.77 21.20 074 074 074 0.75 25.58
KNN 065 065 066 0.68 42.77 0.64 064 065 0.67 29.53 071 065 067 0.70 32.3
LSTM 072 073 0.73 0.73 5239.81 0.70 0.71 0.71 0.72 328742 073 074 0.74 0.74 431043
-@-|W - |W
=FC = C
I+FC I+LC
—+W+FC —+W+LC
- IW+FC - IW+LC

Fig. 3.

Spider plots in which F-measure values on the axes are compared across the ten activities with different combination of sensors. In

particular, frontal and lateral camera are considered in (a) and (b), respectively. This figure reports only the best machine learning classifiers for
each configuration: SVM for FC, IW, 1+FC, W+FC, IW+FC, IW+LC, RF for I+LC, W+LC and KNN for LC.

related to these results: first, in a life-like situation, the robot
is unlikely to be positioned exactly in front of the person
performing the activity, but it will be more likely in a non
optimal position for the recognition, e.g. on a side. In order
to evaluate more realistic situations, this paper studied two
different visual perspectives (frontal and lateral) to explore
how the relative position between the robot and the user
could affect the recognition task. We found out that the visual
recognition system decreases its capabilities by moving the
position of the camera by only 90 degrees, i.e. it lost 8% of
accuracy when the camera was in a lateral position. This is
due to the natural occlusion problems that make more difficult
to recognize gestures from the video of a single camera.
However, other issues can reduce the performance also when
the camera is frontally. Fig. [3] shows that, even if the overall
average accuracy of the system is quite high, some activities
like “Sweep with the broom (SB)” and “Walk (WK)” are not
well recognized by the system, with a recognition performance

significantly below the average. This is because the way arms
and hands move is different in the two activities, while the
legs act in the same way, so it may be difficult for a camera
to recognize this slight difference.

These issues can be overcome by fusing the information that
is acquired from the cameras, able to capture the gross motor
actions of the body, with the inertial wearable device, able to
capture the fine movements of the hand. Indeed, four different
configurations have been tested with a feature-level fusion
approach, i.e. features from the frontal camera, wrist and
index (IW+FC), from frontal camera and wrist (I+FC), from
the lateral camera, wrist and index finger IW+LC) and from
the lateral camera and the index finger (I+LC), to understand
which is the best combination of sensors.

As shown in Tab. [V] the fusion of inertial features with the
frontal camera leads to the best results achieved in this study.
Indeed, not only the overall accuracy of the system is the
highest on average, but the recognition performance of almost



FIORINI et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 9

every single activity is better than the standalone configuration
(Fig. 3).

Furthermore, it is important to remark that the paper aims to
reproduce real operative conditions as far as possible. Indeed,
in each scene, the participants could switch freely from one
activity to another in one minute. In this amount of time, the
cameras and the SensHand recorded visual and inertial data
continuously, therefore the acquisition stream was unique for
each scene. For this reason, the novelty with respect to Manzi
et al. [24], whose system achieved 0.77 of accuracy, is that in
our work the data corresponding to the transitions from one
activity to the other were present in the acquisition signal,
and the system revealed to be good enough in classifying
them without losing much in terms of performances (0.81 of
accuracy). Results in Fig. [3] suggest that it is still possible to
obtain very good performances by using the robot’s camera
combined with only one inertial sensor on the user’s hand,
which performs even better in activities like “Brush Teeth”
(BT), “Drink from a glass” (DG), “Eat with the fork”(EF)
and “Write on a paper” (WP) in the lateral configuration. On
the contrary, the activities “Relax on the couch” (RC) and
“Talk on the phone” (TP) are better recognized by the frontal
camera alone. This aspect may be discussed by considering
that these two activities are quite static, therefore the inertial
sensors do not give any additional information about the hand,
but, conversely, it introduces some errors. It is worth remarking
that, differently from other public datasets with activities of
daily living, our dataset was created by choosing gestures that
were similar in pairs, adding extra difficulty to the system and
taking a step forward to recognize them. It is important also to
remark that by looking at every single activity, the index sensor
combined with the camera performs better than the wrist one,
so the final system should be lighter and easier to wear. In
this sense, a smart ring could be a good trade-off between
comfort and high performance in recognizing gestures. Addi-
tionally, in this paper, we evaluated the performances of the
system by comparing different classification algorithms, i.e.
from traditional machine learning to innovative deep learning
(LSTM). The results show that the latter does not produce
the best performances. As reported in literature [29], this is
reasonable, since the machine learning methods perform better
than deep learning with small data size, as it is in our case.

For what concerns the limitations of this study, it is still
important to remark that this analysis has been conducted by
classifying windows of three seconds of the signal. However,
in real operative scenarios, the robot will not capture and
analyse the data coming from a single event-window but it will
observe the person for a longer period of time. Future studies
could take advantage of this issue by considering the event-
window as a part of the event’s flow, so that it could be easier
to analyse the recognition performances when the algorithms
also consider the previous and the consecutive event. Future
studies can create ensemble techniques that combine multiple
machine learning algorithms, including Deep Learning, by
merging the predictions of different classifiers at the decision
level to increase the overall accuracy. Particularly, a hybrid
approach could be investigated to understand how to combine
vision and inertial raw data with Deep Learning approach.

Finally, the participant groups could be extended including
people of different ages, thus to investigate whether the
recognition can differ with age.

VII. CONCLUSION

Gesture recognition is a crucial aspect to consider to im-
prove human-robot cooperation. In this article, we proposed a
multi-modal system, composed of a Pepper robot and an iner-
tial device, named SensHand, which was tested in a realistic
environment by 20 healthy participants who were instructed
by the robot to execute 10 different gestures. In summary, the
results indicate that a social robot with an embedded camera
could recognize people’s gestures in a realistic scenario, and
that the system recognition capabilities can be stronger if the
person wears the inertial sensors on his dominant hand while
performing daily living activities. Indeed, the cameras could
capture the big movements of the body, whereas the inertial
sensors can catch fine movements of the hand, especially when
they are not in the camera’s field of view. Additionally, these
findings suggest that the multi-modal sensor approach could
improve the recognition even when the robot is not positioned
in front of the human, improving the task recognition and the
human-robot cooperation.
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