

Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

BHATTACHARJEE, Natalia V., SCHAEFFER, Lauren E., HAY, Simon I., LU, Dan, SCHIPP, Megan F., LAZZAR-ATWOOD, Alice, DONKERS, Katie M., ABADY, Gdiom Gebreheat, ABD-ALLAH, Foad, ABDELALIM, Ahmed, ABEBO, Zeleke Hailemariam, ABEJIE, Avenew Negesse, ABOSETUGN, Akine Eshete. ABREU, Lucas Guimarães, ABRIGO, Michael R. M., ABU-GHARBIEH, Eman, ABUSHOUK, Abdelrahman I., ADAMU, Aishatu L., ADEDEJI, Isaac Akinkunmi, ADEGBOSIN, Adevinka Emmanuel, ADEKANMBI, Victor, ADETOKUNBOH, Olatunji O., AGUDELO-BOTERO, Marcela, AJI, Budi, AKINYEMI, Oluwaseun Oladapo, ALAMNEH, Alehegn Aderaw, ALANEZI, Fahad Mashhour, ALANZI, Turki M., ALBRIGHT, James, ALCALDE-RABANAL, Jacqueline Elizabeth, ALEMU, Biresaw Wassihun, ALHASSAN, Robert Kaba, ALI, Beriwan Abdulgadir, ALI, Sagib, ALINIA, Cyrus, ALIPOUR, Vahid, AMIT, Arianna Maever L., AMUGSI, Dickson A., ANBESU, Etsay Woldu, ANCUCEANU, Robert, ANJOMSHOA, Mina, ANSARI, Fereshteh, ANTONIO, Carl Abelardo T., ANVARI, Davood, ARABLOO, Jalal, ARORA, Amit, ARTANTI, Kurnia Dwi, ASEMAHAGN, Mulusew A., ASMARE, Wondwossen Niguse, ATOUT, Maha Moh'd Wahbi, AUSLOOS, Marcel, AWOKE, Nefsu, QUINTANILLA, Beatriz Paulina Ayala, AYANORE, Martin Amogre, AYNALEM, Yared Asmare, AYZA, Muluken Altaye, AZENE, Zelalem Nigussie, DARSHAN. B. B., BADIYE, Ashish D., BAIG, Atif Amin, BAKKANNAVAR, Shankar M., BANACH, Maciej, BANIK, Palash Chandra, BÄRNIGHAUSEN, Till Winfried, BASALEEM, Huda, BAYATI, Mohsen, BAYE, Bayisa Abdissa, BEDI, Neeraj, BELAY, Sefealem Assefa, BHAGAVATHULA, Akshaya Srikanth, BHANDARI, Dinesh, BHARDWAJ, Nikha, BHARDWAJ, Pankaj, BHUTTA, Zulfigar A., BIJANI, Ali, BIRHAN, Tsegaye Adane, BIRIHANE, Binyam Minuye, BITEW, Zebenay Workneh, BOHLOULI, Somayeh, BOHLULI, Mahdi, BOJIA, Hunduma Amensisa, BOLOOR, Archith, BRADY, Oliver J., BRAGAZZI, Nicola Luigi, BRUNONI, Andre R., BUDHATHOKI, Shyam S., NAGARAJA, Sharath Burugina, BUTT, Zahid A., CARDENAS, Rosario, CASTALDELLI-MAIA, Joao Mauricio, CASTRO, Franz, CERNIGLIARO, Achille, CHARAN, Jaykaran, CHATTERJEE, Pranab, CHATTERJEE, Souranshu, CHATTU, Vijay Kumar, CHATURVEDI, Sarika, CHOWDHURY, Mohiuddin Ahsanul Kabir, CHU, Dinh-Toi, COLLISON, Michael L., COOK, Aubrey J., CORK, Michael A., COUTO, Rosa A. S., DAGNEW, Baye, DAI, Haijiang, DANDONA, Lalit, DANDONA, Rakhi, DANESHPAJOUHNEJAD, Parnaz, DARWESH, Aso Mohammad, DARWISH, Amira Hamed, DARYANI, Ahmad, DAS, Jai K., GUPTA, Rajat Das, DÁVILA-CERVANTES, Claudio Alberto, DAVIS, Adrian Charles, WEAVER, Nicole Davis, DENOVA-GUTIÉRREZ, Edgar, DERIBE, Kebede, DESALEW,

Assefa, DESHPANDE, Aniruddha, DESSIE, Awrajaw, DEUBA, Keshab, DHARMARATNE, Samath Dhamminda, DHIMAL, Meghnath, DHUNGANA, Govinda Prasad, DIAZ, Daniel, DIDARLOO, Alireza, DIPEOLU, Isaac Oluwafemi, DOAN, Linh Phuong, DUKO, Bereket, DURAES, Andre Rodrigues, DWYER-LINDGREN, Laura, EARL, Lucas, ZAKI, Maysaa El Sayed, TANTAWI, Maha El, ELEMA, Teshome Bekele, ELHABASHY, Hala Rashad, EL-JAAFARY, Shaimaa I., FARIS, Pawan Sirwan, FARO, Andre, FARZADFAR, Farshad, FEIGIN, Valery L., FELEKE, Berhanu Elfu, FEREDE, Tomas Y., FISCHER, Florian, FOIGT, Nataliya A., FOLAYAN, Morenike Oluwatoyin, FRANKLIN, Richard Charles, GAD, Mohamed M., GAIDHANE, Shilpa, GARDNER, William M., GEBEREMARIYAM, Biniyam Sahiledengle, GEBREGIORGIS, Birhan Gebresillassie, GEBREMEDHIN, Ketema Bizuwork, GEBREMICHAEL, Berhe, GHAFFARPASAND, Fariborz, GILANI, Syed Amir, GININDZA, Themba G., GLAGN, Mustefa, GOLECHHA, Mahaveer, GONFA, Kebebe Bekele, GOULART, Bárbara Niegia Garcia, GUDI, Nachiket, GUIDO, Davide, GULED, Rashid Abdi, GUO, Yuming, HAMIDI, Samer, HANDISO, Demelash Woldeyohannes, HASABALLAH, Ahmed I., HASSAN, Amr, HAYAT, Khezar, HEGAZY, Mohamed I., HEIDARI, Behnam, HENRY, Nathaniel J., HERTELIU, Claudiu, DE HIDRU, Hagos Degefa, HO, Hung Chak, HOANG, Chi Linh, HOLLA, Ramesh, HON, Julia, HOSSEINI, Mostafa, HOSSEINZADEH, Mehdi, HOUSEH, Mowafa, HSAIRI, Mohamed, HU, Guoging, HUDA, Tanvir M., HWANG, Bing-Fang, IBITOYE, Segun Emmanuel, ILESANMI, Olayinka Stephen, ILIC, Irena M., ILIC, Milena D., INBARAJ, Leeberk Raja, IOBAL, Usman, IRVANI, Seved Sina Naghibi, ISLAM, M. Mofizul, IWU, Chidozie C. D., IWU, Chinwe Juliana, JAIN, Animesh, JANODIA, Manthan Dilipkumar, JAVAHERI, Tahereh, JOHN-AKINOLA, Yetunde O., JOHNSON, Kimberly B., JOUKAR, Farahnaz, JOZWIAK, Jacek Jerzy, KABIR, Ali, KALANKESH, Leila R., KALHOR, Rohollah, KAMATH, Ashwin, KAMYARI, Naser, KANCHAN, Other Tanuj, KAPOOR, Neeti, MATIN, Behzad Karami, KARIMI, Salah Eddin, KASAYE, Habtamu Kebebe, KASSAHUN, Getinet, KASSEBAUM, Nicholas J., KAYODE, Gbenga A., KARYANI, Ali Kazemi, KEIYORO, Peter Njenga, KELKAY, Bayew, KHALID, Nauman, KHAN, Md. Nuruzzaman, KHATAB, Khaled http://orcid.org/0000- 0002-8755-3964>, KHATER, Amir M., KHATER, Mona M., KHATIB, Mahalagua Nazli, KIM, Yun Jin, KIMOKOTI, Ruth W., KINYOKI, Damaris K., KISA, Adnan, KISA, Sezer, KOSEN, Soewarta, KRISHAN, Kewal, KULKARNI, Vaman, KUMAR, G. Anil, KUMAR, Manasi, KUMAR, Nithin, KUMAR, Pushpendra, KURMI, Om P., KUSUMA, Dian, VECCHIA, Carlo La, LAD, Sheetal D., LAMI, Faris Hasan, LANDIRES, Iván, LANSINGH, Van Charles, LASRADO, Savita, LEE, Paul H., LEGRAND, Kate E., LETOURNEAU, Ian D., LEWYCKA, Sonia, LI, Bingyu, LI, Ming-Chieh, LI, Shanshan, LIU, Xuefeng, LODHA, Rakesh, LOPEZ, Jaifred Christian F., LOUIE, Celia, MACHADO, Daiane Borges, MALED, Venkatesh, MALEKI, Shokofeh, MALTA, Deborah Carvalho, MAMUN, Abdullah A., MANAFI, Navid, MANSOURNIA, Mohammad Ali, MAPOMA, Chabila Christopher, MARCZAK, Laurie B., MARTINS-MELO, Francisco Rogerlândio, MEHNDIRATTA, Man Mohan, MEJIA-RODRIGUEZ, Fabiola, MEKONNEN, Tefera Chane, MENDOZA, Walter, MENEZES, Ritesh G., MENGESHA, Endalkachew Worku, MERSHA, Abera M., MILLER, Ted R.,

MINI, G. K., MIRRAKHIMOV, Erkin M., MISRA, Sanjeev, MOGHADASZADEH, Masoud, MOHAMMAD, Dara K., MOHAMMADIAN-HAFSHEJANI, Abdollah, MOHAMMED, Jemal Abdu, MOHAMMED, Shafiu, MOKDAD, Ali H., MONTERO-ZAMORA, Pablo A., MORADI, Masoud, MORADZADEH, Rahmatollah, MORAGA, Paula, MOSSER, Jonathan F., MOUSAVI, Sevved Meysam, KHANEGHAH, Amin Mousavi, MUNRO, Sandra B., MURIITHI, Moses K., MUSTAFA, Ghulam, MUTHUPANDIAN, Saravanan, NAGARAJAN, Ahamarshan Jayaraman, NAIK, Gurudatta, NAIMZADA, Mukhammad David, NANGIA, Vinay, NASCIMENTO, Bruno Ramos, NAYAK, Vinod C., NDEJJO, Rawlance, NDWANDWE, Duduzile Edith, NEGOI, Ionut, NGUEFACK-TSAGUE, Georges, NGUNJIRI, Josephine W., NGUYEN, Cuong Tat. NGUYEN, Diep Ngoc, NGUYEN, Huong Lan Thi, NIGUSSIE, Samuel Negash, NIGUSSIE, Tadesse T. N., NIKBAKHSH, Rajan, NNAJI, Chukwudi A., NUNEZ-SAMUDIO, Virginia, OANCEA, Bogdan, OGHENETEGA, Onome Bright, OLAGUNJU, Andrew T., OLUSANYA, Bolajoko Olubukunola, OLUSANYA, Jacob Olusegun, OMER, Muktar Omer, ONWUJEKWE, Obinna E., ORTEGA-ALTAMIRANO, Doris V., OSGOOD-ZIMMERMAN, Aaron E., OTSTAVNOV, Nikita, OTSTAVNOV, Stanislav S., OWOLABI, Mayowa O., MAHESH, P. A., PADUBIDRI, Jagadish Rao, PANA, Adrian, PANDEY, Anamika, PANDI-PERUMAL, Seithikurippu R., PANGARIBUAN, Helena Ullyartha, PARSEKAR, Shradha S., PASUPULA, Deepak Kumar, PATEL, Urvish K., PATHAK, Ashish, PATHAK, Mona, PATTANSHETTY, Sanjay M., PATTON, George C., PAULOS, Kebreab, PEPITO, Veincent Christian Filipino, PICKERING, Brandon V., PINHEIRO, Marina, PIWOZ, Ellen G., POKHREL, Khem Narayan, POURJAFAR, Hadi, PRADA, Sergio I., PRIBADI, Dimas Ria Angga, SYED, Zahiruddin Quazi, RABIEE, Mohammad, RABIEE, Navid, RAHIM, Fakher, RAHIMZADEH, Shadi, RAHMAN, Azizur, RAHMAN, Mohammad Hifz Ur, RAHMANI, Amir Masoud, RAI, Rajesh Kumar, RANABHAT, Chhabi Lal, RAO, Sowmya J., RASTOGI, Prateek, RATHI, Priya, RAWAF, David Laith, RAWAF, Salman, RAWASSIZADEH, Reza, RAWAT, Rahul, RAWAT, Ramu, REGASSA, Lemma Demissie, REGO, Maria Albertina Santiago, REINER, Robert C., RESHMI, Bhageerathy, REZAPOUR, Aziz, RIBEIRO, Ana Isabel, RICKARD, Jennifer, ROEVER, Leonardo, RUMISHA, Susan Fred, RWEGERERA, Godfrey M., SAGAR, Rajesh, SAJADI, S. Mohammad, SALEM, Marwa Rashad, SAMY, Abdallah M., SANTRIC-MILICEVIC, Milena M., SARASWATHY, Sivan Yegnanarayana Iyer, SARKER, Abdur Razzague, SARTORIUS, Benn, SATHIAN, Brijesh, SAXENA, Deepak, SBARRA, Alyssa N., SENGUPTA, Debarka, SENTHILKUMARAN, Subramanian, SHA, Feng, SHAFAAT, Omid, SHAHEEN, Amira A., SHAIKH, Masood Ali, SHALASH, Ali S., SHANNAWAZ, Mohammed, SHEIKH, Aziz, SHETTY, B. Suresh Kumar, SHETTY, Ranjitha S., SHIBUYA, Kenji, SHIFERAW, Wondimeneh Shibabaw, SHIN, Jae II, SILVA, Diego Augusto Santos, SINGH, Narinder Pal, SINGH, Pushpendra, SINGH, Surya, SINTAYEHU, Yitagesu, SKRYABIN, Valentin Yurievich, SKRYABINA, Anna Aleksandrovna, SOHEILI, Amin, SOLTANI, Shahin, SORRIE, Muluken Bekele, SPURLOCK, Emma Elizabeth, STEUBEN, Krista M., SUDARYANTO, Agus, SUFIYAN, Mu'awiyyah Babale, SWARTZ, Scott J., TADESSE, Eyayou Girma, TAMIRU, Animut Tagele, TAPAK, Leili, TAREQUE, Md. Ismail, TARIGAN,

Ingan Ukur, TESEMA, Getayeneh Antehunegn, TESFAY, Fisaha Haile, TESHOME, Abinet, TESSEMA, Zemenu Tadesse, THANKAPPAN, Kavumpurathu Raman, THAPAR, Rekha, THOMAS, Nihal, TOPOR-MADRY, Roman, TOVANI-PALONE, Marcos Roberto, TRAINI, Eugenio, TRAN, Bach Xuan, TRUONG, Phuong N., TSEGAYE, Berhan Tsegaye B. T., ULLAH, Irfan, UMEOKONKWO, Chukwuma David, UNNIKRISHNAN, Bhaskaran, UPADHYAY, Era, UZOCHUKWU, Benjamin S. Chudi, VANDERHEIDE, John David, VIOLANTE, Francesco S., VO, Bay, WADO, Yohannes Dibaba. WAHEED, Yasir, WAMAI, Richard G., WANG, Fang, WANG, Yafeng, WANG, Yuan-Pang, WICKRAMASINGHE, Nuwan Darshana, WIENS, Kirsten E., WIYSONGE, Charles Shey, WOYCZYNSKI, Lauren, WU, Ai-Min, WU, Chenkai, YAMADA, Tomohide, YAYA, Sanni, YESHANEH, Alex, YESHAW, Yigizie, YESHITILA, Yordanos Gizachew, YILMA, Mekdes Tigistu, YIP, Paul, YONEMOTO, Naohiro, YOSEF, Tewodros, YOUNIS, Mustafa Z., YOUSUF, Abdilahi Yousuf, YU, Chuanhua, YU, Yong, YUCE, Deniz, ZAFAR, Shamsa, ZAIDI, Syed Saoud, ZAKI, Leila, ZAKZUK, Josefina, ZAMANIAN, Maryam, ZAR, Heather J., ZASTROZHIN, Mikhail Sergeevich, ZASTROZHINA, Anasthasia, ZELELLW, Desalege Amare, ZHANG, Yunguan, ZHANG, Zhi-Jiang, ZHAO, Xiu-Ju George, ZODPEY, Sanjay, ZUNIGA, Yves Miel H. and HAY, Simon I.

Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/28963/

This document is the Supplemental Material

Citation:

BHATTACHARJEE, Natalia V., SCHAEFFER, Lauren E., HAY, Simon I., LU, Dan, SCHIPP, Megan F., LAZZAR-ATWOOD, Alice, DONKERS, Katie M., ABADY, Gdiom Gebreheat, ABD-ALLAH, Foad, ABDELALIM, Ahmed, ABEBO, Zeleke Hailemariam, ABEJIE, Ayenew Negesse, ABOSETUGN, Akine Eshete, ABREU, Lucas Guimarães, ABRIGO, Michael R. M., ABU-GHARBIEH, Eman, ABUSHOUK, Abdelrahman I., ADAMU, Aishatu L., ADEDEJI, Isaac Akinkunmi, ADEGBOSIN, Adeyinka Emmanuel, ADEKANMBI, Victor, ADETOKUNBOH, Olatunji O., AGUDELO-BOTERO, Marcela, AJI, Budi, AKINYEMI, Oluwaseun Oladapo, ALAMNEH, Alehegn Aderaw, ALANEZI, Fahad Mashhour, ALANZI, Turki M., ALBRIGHT, James, ALCALDE-RABANAL, Jacqueline Elizabeth, ALEMU, Biresaw Wassihun, ALHASSAN, Robert Kaba, ALI, Beriwan Abdulqadir, ALI, Saqib, ALINIA, Cyrus, ALIPOUR, Vahid, AMIT, Arianna Maever L., AMUGSI, Dickson A., ANBESU, Etsay Woldu, ANCUCEANU, Robert, ANJOMSHOA, Mina, ANSARI, Fereshteh, ANTONIO, Carl Abelardo T., ANVARI, Davood, ARABLOO, Jalal, ARORA, Amit, ARTANTI, Kurnia Dwi, ASEMAHAGN, Mulusew A., ASMARE, Wondwossen Niguse, ATOUT, Maha Moh'd Wahbi,

AUSLOOS, Marcel, AWOKE, Nefsu, QUINTANILLA, Beatriz Paulina Ayala, AYANORE, Martin Amogre, AYNALEM, Yared Asmare, AYZA, Muluken Altaye, AZENE, Zelalem Nigussie, DARSHAN, B. B., BADIYE, Ashish D., BAIG, Atif Amin, BAKKANNAVAR, Shankar M., BANACH, Maciej, BANIK, Palash Chandra, BÄRNIGHAUSEN, Till Winfried, BASALEEM, Huda, BAYATI, Mohsen, BAYE, Bayisa Abdissa, BEDI, Neeraj, BELAY, Sefealem Assefa, BHAGAVATHULA, Akshaya Srikanth, BHANDARI, Dinesh, BHARDWAJ, Nikha, BHARDWAJ, Pankaj, BHUTTA, Zulfigar A., BIJANI, Ali, BIRHAN, Tsegave Adane, BIRIHANE, Binvam Minuve, BITEW, Zebenay Workneh, BOHLOULI, Somayeh, BOHLULI, Mahdi, BOJIA, Hunduma Amensisa, BOLOOR, Archith, BRADY, Oliver J., BRAGAZZI, Nicola Luigi, BRUNONI, Andre R., BUDHATHOKI, Shyam S., NAGARAJA, Sharath Burugina, BUTT, Zahid A., CÁRDENAS, Rosario, CASTALDELLI-MAIA, Joao Mauricio, CASTRO, Franz, CERNIGLIARO, Achille, CHARAN, Jaykaran, CHATTERJEE, Pranab, CHATTERJEE, Souranshu, CHATTU, Vijay Kumar, CHATURVEDI, Sarika, CHOWDHURY, Mohiuddin Ahsanul Kabir, CHU, Dinh-Toi, COLLISON, Michael L., COOK, Aubrey J., CORK, Michael A., COUTO, Rosa A. S., DAGNEW, Baye, DAI, Haijiang, DANDONA, Lalit, DANDONA, Rakhi, DANESHPAJOUHNEJAD, Parnaz, DARWESH, Aso Mohammad, DARWISH, Amira Hamed, DARYANI, Ahmad, DAS, Jai K., GUPTA, Rajat Das, DÁVILA-CERVANTES, Claudio Alberto, DAVIS, Adrian Charles, WEAVER, Nicole Davis, DENOVA-GUTIÉRREZ, Edgar, DERIBE, Kebede, DESALEW, Assefa, DESHPANDE, Aniruddha, DESSIE, Awrajaw, DEUBA, Keshab. DHARMARATNE, Samath Dhamminda, DHIMAL, Meghnath, DHUNGANA, Govinda Prasad, DIAZ, Daniel, DIDARLOO, Alireza, DIPEOLU, Isaac Oluwafemi, DOAN, Linh Phuong, DUKO, Bereket, DURAES, Andre Rodrigues, DWYER-LINDGREN, Laura, EARL, Lucas, ZAKI, Maysaa El Sayed, TANTAWI, Maha El, ELEMA, Teshome Bekele, ELHABASHY, Hala Rashad, EL-JAAFARY, Shaimaa I., FARIS, Pawan Sirwan, FARO, Andre, FARZADFAR, Farshad, FEIGIN, Valery L., FELEKE, Berhanu Elfu, FEREDE, Tomas Y., FISCHER, Florian, FOIGT, Nataliya A., FOLAYAN, Morenike Oluwatoyin, FRANKLIN, Richard Charles, GAD, Mohamed M., GAIDHANE, Shilpa, GARDNER, William M., GEBEREMARIYAM, Binivam Sahiledengle, GEBREGIORGIS, Birhan Gebresillassie, GEBREMEDHIN, Ketema Bizuwork, GEBREMICHAEL, Berhe, GHAFFARPASAND, Fariborz, GILANI, Syed Amir, GININDZA, Themba G., GLAGN, Mustefa, GOLECHHA, Mahaveer, GONFA, Kebebe Bekele, GOULART, Bárbara Niegia Garcia, GUDI, Nachiket, GUIDO, Davide, GULED, Rashid Abdi, GUO, Yuming, HAMIDI, Samer, HANDISO, Demelash Woldeyohannes, HASABALLAH, Ahmed I., HASSAN, Amr, HAYAT, Khezar, HEGAZY, Mohamed I., HEIDARI, Behnam, HENRY, Nathaniel J., HERTELIU, Claudiu, DE HIDRU, Hagos Degefa, HO, Hung Chak, HOANG, Chi Linh, HOLLA, Ramesh, HON, Julia, HOSSEINI, Mostafa, HOSSEINZADEH, Mehdi, HOUSEH, Mowafa, HSAIRI, Mohamed, HU, Guoqing, HUDA, Tanvir M., HWANG, Bing-Fang, IBITOYE, Segun Emmanuel, ILESANMI, Olayinka Stephen, ILIC, Irena M., ILIC, Milena D., INBARAJ, Leeberk Raia, IOBAL, Usman, IRVANI, Seved Sina Naghibi, ISLAM, M. Mofizul, IWU, Chidozie C. D., IWU, Chinwe Juliana, JAIN, Animesh, JANODIA, Manthan Dilipkumar, JAVAHERI, Tahereh, JOHN-AKINOLA, Yetunde O., JOHNSON, Kimberly B., JOUKAR, Farahnaz, JOZWIAK, Jacek Jerzy, KABIR, Ali, KALANKESH, Leila R., KALHOR, Rohollah, KAMATH, Ashwin, KAMYARI, Naser, KANCHAN, Other Tanui, KAPOOR, Neeti, MATIN, Behzad Karami, KARIMI, Salah Eddin, KASAYE, Habtamu Kebebe, KASSAHUN, Getinet, KASSEBAUM, Nicholas J., KAYODE, Gbenga A., KARYANI, Ali Kazemi, KEIYORO, Peter Njenga, KELKAY. Bayew, KHALID, Nauman, KHAN, Md. Nuruzzaman, KHATAB, Khaled, KHATER, Amir M., KHATER, Mona M., KHATIB, Mahalagua Nazli, KIM, Yun Jin, KIMOKOTI, Ruth W., KINYOKI, Damaris K., KISA, Adnan, KISA, Sezer, KOSEN, Soewarta,

KRISHAN, Kewal, KULKARNI, Vaman, KUMAR, G. Anil, KUMAR, Manasi, KUMAR, Nithin, KUMAR, Pushpendra, KURMI, Om P., KUSUMA, Dian, VECCHIA, Carlo La, LAD, Sheetal D., LAMI, Faris Hasan, LANDIRES, Iván, LANSINGH, Van Charles, LASRADO, Savita, LEE, Paul H., LEGRAND, Kate E., LETOURNEAU, Ian D., LEWYCKA, Sonia, LI, Bingyu, LI, Ming-Chieh, LI, Shanshan, LIU, Xuefeng, LODHA, Rakesh, LOPEZ, Jaifred Christian F., LOUIE, Celia, MACHADO, Daiane Borges, MALED, Venkatesh, MALEKI, Shokofeh, MALTA, Deborah Carvalho, MAMUN, Abdullah A., MANAFI, Navid, MANSOURNIA, Mohammad Ali, MAPOMA, Chabila Christopher, MARCZAK, Laurie B., MARTINS-MELO, Francisco Rogerlândio, MEHNDIRATTA, Man Mohan, MEJIA-RODRIGUEZ, Fabiola, MEKONNEN, Tefera Chane, MENDOZA, Walter, MENEZES, Ritesh G., MENGESHA, Endalkachew Worku, MERSHA, Abera M., MILLER, Ted R., MINI, G. K., MIRRAKHIMOV, Erkin M., MISRA, Sanjeev, MOGHADASZADEH, Masoud, MOHAMMAD, Dara K., MOHAMMADIAN-HAFSHEJANI, Abdollah, MOHAMMED, Jemal Abdu, MOHAMMED, Shafiu, MOKDAD, Ali H., MONTERO-ZAMORA, Pablo A., MORADI, Masoud, MORADZADEH, Rahmatollah, MORAGA, Paula, MOSSER, Jonathan F., MOUSAVI, Seyved Meysam, KHANEGHAH, Amin Mousavi, MUNRO, Sandra B., MURIITHI, Moses K., MUSTAFA, Ghulam, MUTHUPANDIAN, Saravanan, NAGARAJAN, Ahamarshan Jayaraman, NAIK, Gurudatta, NAIMZADA, Mukhammad David, NANGIA, Vinay, NASCIMENTO, Bruno Ramos, NAYAK, Vinod C., NDEJJO, Rawlance, NDWANDWE, Duduzile Edith, NEGOI, Ionut, NGUEFACK-TSAGUE, Georges, NGUNJIRI, Josephine W., NGUYEN, Cuong Tat, NGUYEN, Diep Ngoc, NGUYEN, Huong Lan Thi, NIGUSSIE, Samuel Negash, NIGUSSIE, Tadesse T. N., NIKBAKHSH, Rajan, NNAJI, Chukwudi A., NUNEZ-SAMUDIO, Virginia, OANCEA, Bogdan, OGHENETEGA, Onome Bright, OLAGUNJU, Andrew T., OLUSANYA, Bolajoko Olubukunola, OLUSANYA, Jacob Olusegun, OMER, Muktar Omer, ONWUJEKWE, Obinna E., ORTEGA-ALTAMIRANO, Doris V., OSGOOD-ZIMMERMAN, Aaron E., OTSTAVNOV, Nikita, OTSTAVNOV, Stanislav S., OWOLABI, Mayowa O., MAHESH, P. A., PADUBIDRI, Jagadish Rao, PANA, Adrian, PANDEY, Anamika, PANDI-PERUMAL, Seithikurippu R., PANGARIBUAN, Helena Ullyartha, PARSEKAR, Shradha S., PASUPULA, Deepak Kumar, PATEL, Urvish K., PATHAK, Ashish, PATHAK, Mona, PATTANSHETTY, Sanjay M., PATTON, George C., PAULOS, Kebreab, PEPITO, Veincent Christian Filipino, PICKERING, Brandon V., PINHEIRO, Marina, PIWOZ, Ellen G., POKHREL, Khem Narayan, POURJAFAR, Hadi, PRADA, Sergio I., PRIBADI, Dimas Ria Angga, SYED, Zahiruddin Quazi, RABIEE, Mohammad, RABIEE, Navid, RAHIM, Fakher, RAHIMZADEH, Shadi, RAHMAN, Azizur, RAHMAN, Mohammad Hifz Ur, RAHMANI, Amir Masoud, RAI, Rajesh Kumar, RANABHAT, Chhabi Lal, RAO, Sowmya J., RASTOGI, Prateek, RATHI, Priya, RAWAF, David Laith, RAWAF, Salman, RAWASSIZADEH, Reza, RAWAT, Rahul, RAWAT, Ramu, REGASSA, Lemma Demissie, REGO, Maria Albertina Santiago, REINER, Robert C., RESHMI, Bhageerathy, REZAPOUR, Aziz, RIBEIRO, Ana Isabel, RICKARD, Jennifer, ROEVER, Leonardo, RUMISHA, Susan Fred, RWEGERERA, Godfrey M., SAGAR, Rajesh, SAJADI, S. Mohammad, SALEM, Marwa Rashad, SAMY, Abdallah M., SANTRIC-MILICEVIC, Milena M., SARASWATHY, Sivan Yegnanarayana Iyer, SARKER, Abdur Razzague, SARTORIUS, Benn, SATHIAN, Brijesh, SAXENA, Deepak, SBARRA, Alyssa N., SENGUPTA, Debarka, SENTHILKUMARAN, Subramanian, SHA, Feng, SHAFAAT, Omid, SHAHEEN, Amira A., SHAIKH, Masood Ali, SHALASH, Ali S., SHANNAWAZ, Mohammed, SHEIKH, Aziz, SHETTY, B. Suresh Kumar, SHETTY, Ranjitha S., SHIBUYA, Kenji, SHIFERAW, Wondimeneh Shibabaw, SHIN, Jae II, SILVA, Diego Augusto Santos, SINGH, Narinder Pal, SINGH, Pushpendra, SINGH, Surya, SINTAYEHU, Yitagesu, SKRYABIN, Valentin Yurievich, SKRYABINA, Anna

Aleksandrovna, SOHEILI, Amin, SOLTANI, Shahin, SORRIE, Muluken Bekele, SPURLOCK, Emma Elizabeth, STEUBEN, Krista M., SUDARYANTO, Agus, SUFIYAN, Mu'awiyyah Babale, SWARTZ, Scott J., TADESSE, Eyayou Girma, TAMIRU, Animut Tagele, TAPAK, Leili, TAREQUE, Md. Ismail, TARIGAN, Ingan Ukur, TESEMA, Getayeneh Antehunegn, TESFAY, Fisaha Haile, TESHOME, Abinet, TESSEMA, Zemenu Tadesse, THANKAPPAN, Kavumpurathu Raman, THAPAR, Rekha, THOMAS, Nihal, TOPOR-MADRY, Roman, TOVANI-PALONE, Marcos Roberto, TRAINI, Eugenio, TRAN, Bach Xuan, TRUONG, Phuong N., TSEGAYE. Berhan Tsegaye B. T., ULLAH, Irfan, UMEOKONKWO, Chukwuma David, UNNIKRISHNAN, Bhaskaran, UPADHYAY, Era, UZOCHUKWU, Benjamin S. Chudi, VANDERHEIDE, John David, VIOLANTE, Francesco S., VO, Bay, WADO, Yohannes Dibaba, WAHEED, Yasir, WAMAI, Richard G., WANG, Fang, WANG, Yafeng, WANG, Yuan-Pang, WICKRAMASINGHE, Nuwan Darshana, WIENS, Kirsten E., WIYSONGE, Charles Shey, WOYCZYNSKI, Lauren, WU, Ai-Min, WU, Chenkai, YAMADA, Tomohide, YAYA, Sanni, YESHANEH, Alex, YESHAW, Yigizie, YESHITILA, Yordanos Gizachew, YILMA, Mekdes Tigistu, YIP, Paul, YONEMOTO, Naohiro, YOSEF, Tewodros, YOUNIS, Mustafa Z., YOUSUF, Abdilahi Yousuf, YU, Chuanhua, YU, Yong, YUCE, Deniz, ZAFAR, Shamsa, ZAIDI, Syed Saoud, ZAKI, Leila, ZAKZUK, Josefina, ZAMANIAN, Maryam, ZAR, Heather J., ZASTROZHIN, Mikhail Sergeevich, ZASTROZHINA, Anasthasia, ZELELLW, Desalege Amare, ZHANG, Yunguan, ZHANG, Zhi-Jiang, ZHAO, Xiu-Ju George, ZODPEY, Sanjay, ZUNIGA, Yves Miel H. and HAY, Simon I. (2021). Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018. Nature Human Behaviour, 5 (8), 1027-1045. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Supplementary information

Mapping inequalities in exclusive breastfeeding in low- and middle-income countries, 2000–2018

In the format provided by the authors and unedited

Contents

Supplementary Figures	2
Supplementary Tables	3
1.0. Compliance with the Guidelines for Accurate and Transparent Health Estimates R (GATHER)	
2.0. Data Sources and Processing	6
2.1. Data excluded from model 2.2. Data processing 2.3. Geographic inclusion 3.0. Covariates	26 30
4.0. Statistical model	40
 4.1. Ensemble covariate modelling process 4.2. Geostatistical model 4.3. Model validation 4.4. Post-estimation 4.4.1. Calibration to Global Burden of Disease 2019 	41 47 52
4.4.2. Aggregation to first- and second-level administrative units	53
4.4.3. Geographic Inequality	53
4.4.4. Projections	53
5.0. Supplementary Results	55
5.1. National differences in rates of change from 2000 to 2018	56 62 67
7.0. Supplementary Discussion	78
8.0. Collaborators and Affiliations	79
9.0. Author Contributions	93
10.0. Supplementary References.	98

Supplementary Figures

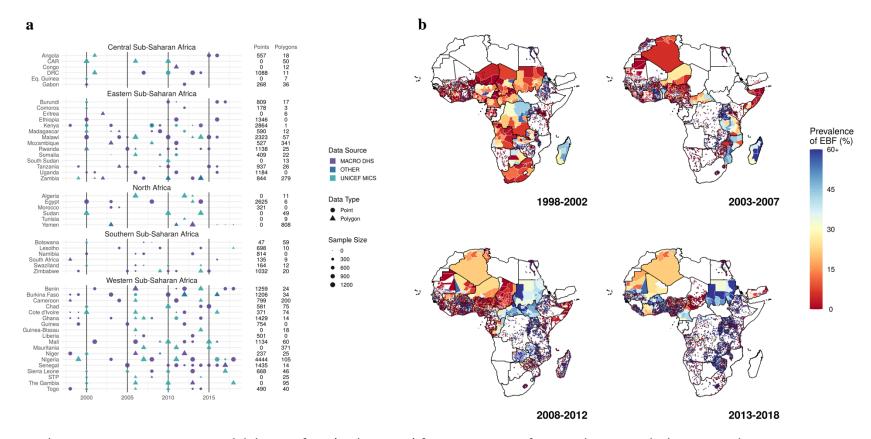
Supplementary Figure 1. Data availability in Africa (with Yemen) for EBF among infants under
6 months by type and country, 1998–2018
Supplementary Figure 2. Data availability in Central Asia and Middle East for EBF among
infants under 6 months by type and country, 1998–2018
Supplementary Figure 3. Data availability in Southeast Asia and Oceania for EBF among infants
under 6 months by type and country, 1998–20189
Supplementary Figure 4. Data availability in South Asia for EBF among infants under 6 months
by type and country, 1998–2018
Supplementary Figure 5. Data availability in Latin America for EBF among infants under 6
months by type and country, 1998–201811
Supplementary Figure 6. Flowchart for data extraction (a) and data cleaning (b) processes 28
Supplementary Figure 7. Countries included in this analysis and modeling regions
Supplementary Figure 8. Map of spatial covariates
Supplementary Figure 9. Example of finite elements mesh for geostatistical models
Supplementary Figure 10. Posterior means and 95% uncertainty intervals for EBF prevalence by
5×5 -km level in 2018
Supplementary Figure 11. Posterior means and 95% uncertainty intervals for EBF prevalence by
the first administrative level in 2018
Supplementary Figure 12. Posterior means and 95% uncertainty intervals for EBF prevalence by
the second administrative level in 2018
Supplementary Figure 13. In-sample comparison of data and estimates, aggregated to the
national level and year48
Supplementary Figure 14. In-sample comparison of data and estimates, aggregated to the first
administrative level and year
Supplementary Figure 15. In-sample comparison of data and estimates, aggregated to the second
administrative level and year50
Supplementary Figure 16. Probability of meeting the ≥50% WHO GNT for EBF in 2018 57
Supplementary Figure 17. Projected prevalence for exclusive breastfeeding for 2025 and
probability of meeting the WHO GNT by 2025
Supplementary Figure 18. Probability of meeting the ≥70% WHO GNT for EBF in 2018 62
Supplementary Figure 19. Comparison of ORS (oral rehydration solution) prevalence among
children under 5 years and EBF prevalence by area69
Supplementary Figure 20. Comparison of access to piped water and EBF prevalence by area 70
Supplementary Figure 21. Comparison of diarrhea prevalence among children under 5 years and
EBF prevalence by area71
Supplementary Figure 22. Comparison of stunting prevalence among children under 5 years and
EBF prevalence by area
Supplementary Figure 23. Comparison of mortality rate of children under 5 years (U5MR) and
EBF prevalence by area73

Supplementary Tables

Supplementary Table 1. Data excluded from both the geostatistical model and GBD estimates 12
Supplementary Table 2. Data excluded from GBD estimates but included in geostatistical model
Supplementary Table 3. Data excluded from geostatistical model but included in GBD estimates
Supplementary Table 4. Countries included in the analysis (94) grouped by modelling regions. 31
Supplementary Table 5. Sources for covariates used in mapping
Supplementary Table 6. Covariates used in ensemble covariate modelling via stacked
generalization, stratified by modeling region
Supplementary Table 7. Validation metrics by level of aggregation
Supplementary Table 8. Countries with annualized increases and decreases in all districts 55
Supplementary Table 9. Countries and administrative units achieving the original WHO GNT of
50% prevalence of EBF with high and low probabilities
Supplementary Table 10. Countries and administrative units achieving the updated WHO GNT
of 70% prevalence of EBF with high and low probabilities
Supplementary Table 11. Countries meeting and not meeting GBS ⁴⁴ criteria
Supplementary Table 12. First administrative-level units with the lowest decile of EBF
prevalence, as well as either the lowest decile of oral rehydration solution (ORS) coverage,
highest prevalence of child diarrheal disease, highest decile of child stunting prevalence, or
highest under-5 mortality rates, for year 201774

1.0. Compliance with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER)

Item #	Checklist item	Description of Compliance
Objectives a	and funding	•
1	Define the indicator(s), populations (including age, sex, and geographic entities), and time period(s) for which estimates were made.	Summary; Introduction
2	List the funding sources for the work.	End Notes
Data Inputs		
For all data	inputs from multiple sources that are synthesized as part of	of the study:
3	Describe how the data were identified and how the data were accessed.	Methods (Data); SI section 2
4	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.	SI section 2; Supplementary Tables 1–3
5	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant.	Supplementary Figures 1–5; List of included data sources provided through http://ghdx.healthdata.org/lbd-publication-data-input-sources?field_rec_ihme_publication_tid=29093
6	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).	SI section 2.2
For data inp	outs that contribute to the analysis but were not synthesized	l as part of the study:
7	Describe and give sources for any other data inputs.	SI section 3, Supplementary Table 5
For all data	inputs:	
8	Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.	Available through http://ghdx.healthdata.or g/lbd-publication-data- input- sources?field_rec_ihme _publication_tid=29093

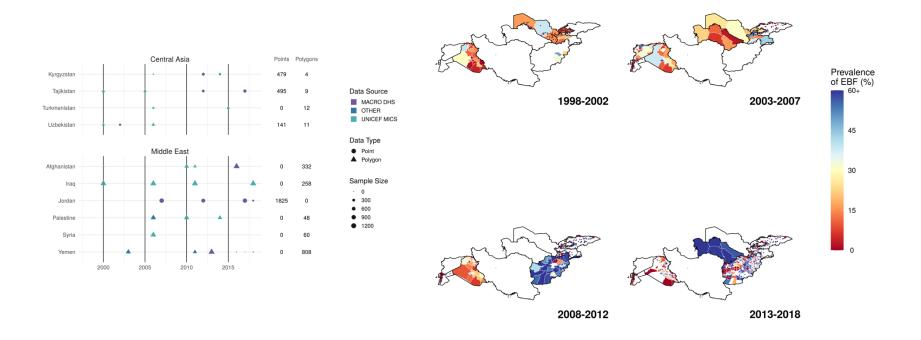

Data anal	ysis	
9	Provide a conceptual overview of the data analysis method. A diagram may be helpful.	Methods (Analysis), Extended Data Figure 1; SI section 2; Supplementary Figure 6
10	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data sources, and mathematical or statistical model(s).	Methods; SI sections 4
11	Describe how candidate models were evaluated and how the final model(s) were selected.	SI section 4.3; Supplementary Figures 13–15, Supplementary Table 7
12	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.	SI section 4.3; Supplementary Table 7
13	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.	Methods (Geostatistical model); SI sections 4 and 6
14	State how analytic or statistical source code used to generate estimates can be accessed.	Available through https://github.com/ihmeuw/lbd/tree/ebf-lmic-2021
Results an	nd Discussion	
15	Provide published estimates in a file format from which data can be efficiently extracted.	Available through http://ghdx.healthdata.org/record/ihme-data/global-exclusive-breastfeeding-prevalence-geospatial-estimates-2000-2019
16	Report a quantitative measure of the uncertainty of the estimates (e.g., uncertainty intervals).	Supplementary Figures 10–12, Extended Data Figure 3
17	Interpret results in light of existing evidence. If updating a previous set of estimates, describe the reasons for changes in estimates.	Discussion
18	Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data limitations that affect interpretation of the estimates.	Methods (Limitations); SI section 6

2.0. Data Sources and Processing

The data sources used to model EBF are described below. Information on geographic detail, the citation(s) and name(s) of the survey(s) used in the mapping of EBF prevalence among infants under 6 months in low- and middle- income countries (LMICs) can be downloaded through the GHDx website (http://ghdx.healthdata.org/lbd-publication-data-input-sources?field_rec_ihme_publication_tid=29093).

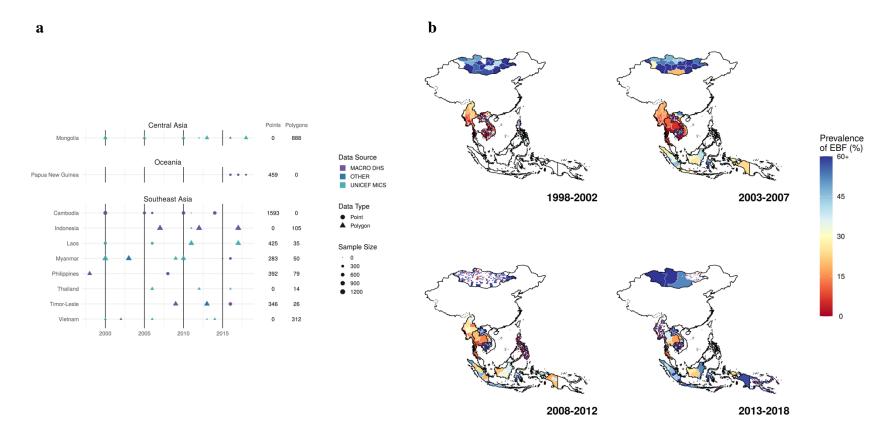
Out of 349 surveys, 162 were from the Demographic and Health (DHS) series, 156 from the UNICEF Multiple Indicator Cluster Survey (MICS) series, and 31 from other sources. Supplementary Figures 1–5 show the spatial and temporal extent of data availability by country.

Supplementary Information (SI) Section 2.1 provides detailed information on surveys that were not included in the modelling (Supplementary Tables 1–3). Although they are categorized as LMICs, we do not estimate for Libya, Djibouti, Ecuador, Venezuela, Malaysia, Sri Lanka, Iran, or Dominica for which no data were identified meeting the inclusion and exclusion criteria described below (Sections 2.1 and 2.2), nor do we estimate for island nations where survey data were not available (Mauritius, Seychelles, and Cape Verde). Supplementary Figure 6 describes the detailed steps performed during data extraction and data processing workflow.

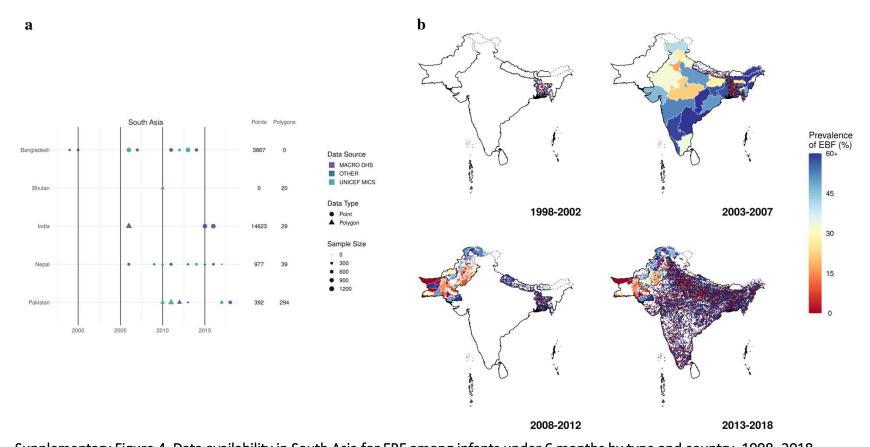


Supplementary Figure 1. Data availability in Africa (with Yemen) for EBF among infants under 6 months by type and country, 1998–2018 a, EBF data used in this study for Africa by country. Color indicates the data source: DHS; MICS; or other survey type. Shape type indicates whether a data source has point (GPS) or polygon (for example, aggregated to an administrative level) location information. Size indicates the relative effective sample size for each source. A full list of data sources, with additional details about data type (such as survey microdata and survey reports) and geographic details, is provided through the GHDx website (https://ghdx.healthdata.org/lbd-publication-data-input-sources?field-rec_ihme_publication_tid=29093). b, Maps of EBF data coverage displayed at 5-year intervals. Maps show the spatial resolution of the underlying data in our models, and the color indicates the EBF prevalence as estimated from the data sources. Countries in white have no available survey data in the given time range.

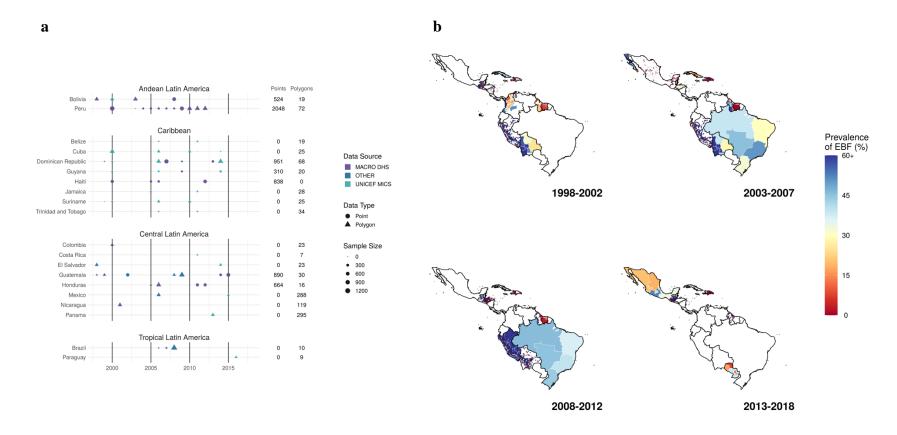
a b


15

20


Supplementary Figure 2. Data availability in Central Asia and Middle East for EBF among infants under 6 months by type and country, 1998–2018

a, EBF data used in this study for Central Asia and Middle East by country. Color indicates the data source: DHS; MICS; or other survey type. Shape type indicates whether a data source has point (GPS) or polygon (for example, aggregated to an administrative level) location information. Size indicates the relative effective sample size for each source. A full list of data sources, with additional details about data type (such as survey microdata and survey reports) and geographic details, is provided through the GHDx website (https://ghdx.healthdata.org/lbd-publication-data-input-sources?field-rec_ihme_publication_tid=29093). b, Maps of EBF data coverage displayed at 5-year intervals. Maps show the spatial resolution of the underlying data in our models, and the color indicates the EBF prevalence as estimated from the data sources. Countries in white have no available survey data in the given time range.



Supplementary Figure 3. Data availability in Southeast Asia and Oceania for EBF among infants under 6 months by type and country, 1998–2018

a, EBF data used in this study for Southeast Asia and Oceania by country. Color indicates the data source: DHS; MICS; or other survey type. Shape type indicates whether a data source has point (GPS) or polygon (for example, aggregated to an administrative level) location information. Size indicates the relative effective sample size for each source. A full list of data sources, with additional details about data type (such as survey microdata and survey reports) and geographic details, is provided through the GHDx website (https://ghdx.healthdata.org/lbd-publication-data-input-sources?field-rec_ihme_publication_tid=29093). b, Maps of EBF data coverage displayed at 5-year intervals. Maps show the spatial resolution of the underlying data in our models, and the color indicates the EBF prevalence as estimated from the data sources. Countries in white have no available survey data in the given time range.

Supplementary Figure 4. Data availability in South Asia for EBF among infants under 6 months by type and country, 1998–2018 a, EBF data used in this study for South Asia by country. Color indicates the data source: DHS; MICS; or other survey type. Shape type indicates whether a data source has point (GPS) or polygon (for example, aggregated to an administrative level) location information. Size indicates the relative effective sample size for each source. A full list of data sources, with additional details about data type (such as survey microdata and survey reports) and geographic details, is provided through the GHDx website (https://ghdx.healthdata.org/lbd-publication-data-input-sources?field-rec_ihme_publication_tid=29093). b, Maps of EBF data coverage displayed at 5-year intervals. Maps show the spatial resolution of the underlying data in our models, and the color indicates the EBF prevalence as estimated from the data sources. Countries in white have no available survey data in the given time range.

Supplementary Figure 5. Data availability in Latin America for EBF among infants under 6 months by type and country, 1998–2018 a, EBF data used in this study for Latin America by country. Color indicates the data source: DHS; MICS; or other survey type. Shape type indicates whether a data source has point (GPS) or polygon (for example, aggregated to an administrative level) location information. Size indicates the relative effective sample size for each source. A full list of data sources, with additional details about data type (such as survey microdata and survey reports) and geographic details, is provided through the GHDx website (https://ghdx.healthdata.org/lbd-publication-data-input-sources?field_rec_ihme_publication_tid=29093). b, Maps of EBF data coverage displayed at 5-year intervals. Maps show the spatial resolution of the underlying data in our models, and the color indicates the EBF prevalence as estimated from the data sources. Countries in white have no available survey data in the given time range.

Supplementary Table 1. Data excluded from both the geostatistical model and GBD estimates

Country	Series	Year(s)	Citation	NID*	Rationale for exclusion
Ethiopia	LSMS	2015–2016	Central Statistical Agency (Ethiopia), World Bank. Ethiopia Socioeconomic Survey 2015– 2016. Washington DC, United States: World Bank, 2015.	286657	Estimates considered implausible (zero values)
Mali	Multiple Indicator Cluster Survey (MICS)	2009–2010	Ministry of Health (Mali), National Institute of Statistics (INSTAT) (Mali), United Nations Children's Fund (UNICEF). Mali Multiple Indicator Cluster Survey 2009–2010. New York, United States: United Nations Children's Fund (UNICEF), 2017.	270627	Survey estimates are systematically low compared to estimates from other established survey series (2006 DHS, 2012 DHS)
Mali	LSMS	2014–2015	Ministry of Rural Development (Mali), National Institute of Statistics (INSTAT) (Mali), World Bank. Mali Agricultural Integrated Economic Survey 2014–2015. Washington DC, United States: World Bank.	260407	Survey estimates are implausibly high compared to estimates from other established survey series (2012 DHS)
Nigeria	Core Welfare Indicators Questionnaire Survey (CWIQ)	2006–2007	National Bureau of Statistics (Nigeria). Nigeria Core Welfare Indicators Questionnaire Survey 2006. Abuja, Nigeria: National Bureau of Statistics (Nigeria).	9522	Survey estimates are systematically high compared to administrative-level estimates and estimates from other established survey series (2008 DHS, 2007 MICS).
Senegal	Multiple Indicator Cluster Survey (MICS)	2015–2016	National Agency of Statistics and Demography (Senegal), United Nations Children's Fund (UNICEF). Senegal — Dakar Urban Multiple Indicator Cluster Survey 2015–2016. New York, United States: United Nations Children's Fund (UNICEF), 2018.	287639	Estimates considered implausible (zero values).
Uganda	LSMS	2010–2011	Uganda Bureau of Statistics. Uganda Living Standards Measurement Survey — Integrated Survey on Agriculture 2010–2011. Washington DC, United States: World Bank.	142934	Survey estimates are systematically high compared to estimates from other

Country	Series	Year(s)	Citation	NID*	Rationale for exclusion
					established survey series (2006
					DHS, 2011 DHS, 2016 DHS)
Uganda	LSMS	2011–2012	Uganda Bureau of Statistics. Uganda Living	142935	Survey estimates are
			Standards Measurement Survey — Integrated		systematically high compared
			Survey on Agriculture 2010–2011. Washington		to estimates from other
			DC, United States: World Bank.		established survey series (2006
					DHS, 2011 DHS, 2016 DHS)
Zambia	LSMS	1998	Central Statistical Office (Zambia), London	14015	Estimates considered
			School of Hygiene and Tropical Medicine.		implausible (zero values).
			Zambia Living Conditions Monitoring Survey		
			1998. Lusaka, Zambia: Central Statistical Office		
			(Zambia).		
Zambia	Zambia Living	2002–2003	Central Statistical Office (Zambia). Zambia	14027	Estimates considered
	Conditions		Living Conditions Monitoring Survey 2002–		implausible (zero values).
	Monitoring		2003. Lusaka, Zambia: Central Statistical Office		
	Survey		(Zambia).		

*NID = Data source unique identifier in the Global Health Data Exchange (GHDx) (http://ghdx.healthdata.org/). Additional information about each data source is available via the GHDx, including information about the data provider and links to where the data can be accessed or requested (where available). NIDs can be entered in the search bar to retrieve the record for a particular source.

Supplementary Table 2. Data excluded from GBD estimates but included in geostatistical model

Country	Series	Year(s)	Citation	NID*	Rationale for exclusion
Brazil	Brazil Survey of Prevalence of Breastfeeding in Capitals and the Federal District	2008	Ministry of Health (Brazil). Brazil Survey of Prevalence of Breastfeeding in Capitals and the Federal District 2008.	233960	Not extracted
Dominican Republic	Multiple Indicator Cluster Survey (MICS)	2006	National Statistics Office (Dominican Republic), United Nations Children's Fund (UNICEF). Dominican Republic Multiple Indicator Cluster Survey 2006.	3465	Not extracted
Dominican Republic	Dominican Republic National Multipurpose Household Survey	2009	International Labour Organization (ILO), National Statistics Office (Dominican Republic), United Nations Children's Fund (UNICEF). Dominican Republic National Multipurpose Household Survey 2009–2010. 2011.	65416	Not extracted
India	India National Health Profile	2005	Central Bureau of Health Intelligence (India). India National Health Profile 2011. New Delhi, India: Central Bureau of Health Intelligence (India), 2012.	59322	Not extracted
Iraq	Multiple Indicator Cluster Survey (MICS)	2018	Central Statistical Organization (Iraq), United Nations Children's Fund (UNICEF). Iraq Multiple Indicator Cluster Survey 2018. New York, United States of America: United Nations Children's Fund (UNICEF), 2019.	385708	Released after GBD 2019 data addition deadline
Laos	Multiple Indicator Cluster Survey (MICS), DHS Standard Demographic and Health Survey (DHS), Lao Social Indicator Survey	2017	Lao Statistics Bureau, Ministry of Education and Sports (Laos), Ministry of Health (Laos), United Nations Children's Fund (UNICEF). Laos Multiple Indicator Cluster Survey 2017. New York, United States of America: United Nations Children's Fund (UNICEF), 2018.	375362	Not extracted

	(LSIS), DHS Program Surveys				
Madagascar	Multiple Indicator Cluster Survey (MICS)	2012	National Institute of Statistics (Madagascar), United Nations Children's Fund (UNICEF). Madagascar — South Multiple Indicator Cluster Survey 2012. New York, United States of America: United Nations Children's Fund (UNICEF), 2015.	125594	Not nationally representative. Only sampled the south of Madagascar.
Mali	Multiple Indicator Cluster Survey (MICS)	2015	Ministry of Health (Mali), Ministry of Planning (Mali), National Institute of Statistics (INSTAT) (Mali), United Nations Children's Fund (UNICEF). Mali Multiple Indicator Cluster Survey 2015. New York, United States of America: United Nations Children's Fund (UNICEF), 2017.	248224	Not extracted
Mali	Multiple Indicator Cluster Survey (MICS)	2010	Ministry of Health (Mali), National Institute of Statistics (INSTAT) (Mali), United Nations Children's Fund (UNICEF). Mali Multiple Indicator Cluster Survey 2009–2010. New York, United States of America: United Nations Children's Fund (UNICEF), 2017.	270627	Not extracted
Mali	Mali National Anthropometric Nutrition Survey and Mortality Retrospective	2016	National Directorate of Health (Mali), National Institute of Statistics (INSTAT) (Mali). Mali National Anthropometric Nutrition Survey and Mortality Retrospective June–August 2016.	297069	Not extracted
Mexico	Mexico National Survey of Health and Nutrition (ENSANUT)	2006	National Institute of Public Health (Mexico). Mexico National Survey of Health and Nutrition 2005–2006. Cuernavaca, Mexico: National Institute of Public Health (Mexico).	8618	Not extracted
Mongolia	Multiple Indicator Cluster Survey (MICS)	2016	National Statistical Office of Mongolia, United Nations Children's Fund (UNICEF). Mongolia — Nalaikh District Multiple Indicator Cluster Survey 2016. New York, United States of America: United Nations Children's Fund (UNICEF), 2018.	336042	Not nationally representative. Only sampled Nalaikh district in the municipality of Ulaanbaatar.

M 1! -	Managha Nadianal	2016	Minister of Health (Meneralis) National Contents	240262	NI-44 d
Mongolia	Mongolia National Nutrition Survey	2016	Ministry of Health (Mongolia), National Center for Public Health (Mongolia), United Nations Children's	340363	Not extracted
	Nutrition Survey		Fund (UNICEF). Mongolia National Nutrition		
			Survey 2016.		
Nanal	NA	2009	Renzaho AMN. Child Grant Programme and the	330625	Not extracted
Nepal	INA	2009	Health and Nutritional Well-being of Under-Five	330023	Not extracted
			Children in the Karnali Zone of Nepal: Assessing		
			the Impact of Integrated Social Protection Services		
			and Trend Analysis in Five Districts-Re-analysis of		
			secondary data. New York, United States: United		
			Nations Children's Fund (UNICEF), 2017.		
Nepal	NA	2013	Renzaho AMN. Child Grant Programme and the	330625	Not extracted
пераг	INA	2013	Health and Nutritional Well-being of Under-Five	330023	Not extracted
			Children in the Karnali Zone of Nepal: Assessing		
			the Impact of Integrated Social Protection Services		
			and Trend Analysis in Five Districts-Re-analysis of		
			secondary data. New York, United States: United		
			Nations Children's Fund (UNICEF), 2017.		
Nepal	NA	2015	Renzaho AMN. Child Grant Programme and the	330625	Not extracted
терш		2013	Health and Nutritional Well-being of Under-Five	330023	1 vot extracted
			Children in the Karnali Zone of Nepal: Assessing		
			the Impact of Integrated Social Protection Services		
			and Trend Analysis in Five Districts-Re-analysis of		
			secondary data. New York, United States: United		
			Nations Children's Fund (UNICEF), 2017.		
Niger	Niger Nutrition and	2009	Ministry of Public Health (Niger), National Institute	160053	Not extracted
C	Child Survival		of Statistics (Niger). Niger Nutrition and Child		
	Survey		Survival Survey 2009.		
Pakistan	DHS Standard	2018	ICF International, Ministry of National Health	286783	Released after GBD 2019
	Demographic and		Services, Regulations & Coordination (Pakistan),		data addition deadline
	Health Survey		National Institute of Population Studies (Pakistan).		
			Pakistan Demographic and Health Survey 2017–		

	(DHS), DHS		2018. Fairfax, United States of America: ICF		
	Program Surveys		International, 2018.		
Pakistan	Multiple Indicator Cluster Survey (MICS)	2017	Pakistan Bureau of Statistics, Planning and Development Department, Government of Gilgit-Baltistan (Pakistan), United Nations Children's Fund (UNICEF). Pakistan — Gilgit-Baltistan Multiple Indicator Cluster Survey 2016–2017. New York, United States of America: United Nations Children's Fund (UNICEF), 2020.	308316	Not nationally representative. Only sampled Gilgit-Baltistan in Pakistan.
Palestine	Pan Arab Project for Family Health (PAPFAM)	2006	League of Arab States, Palestinian Central Bureau of Statistics, United Nations Children's Fund (UNICEF). Palestine Family Health Survey 2006–2007.	9999	Not extracted
Rwanda	NA	2006	Concern Worldwide. Rwanda — Gisagara Knowledge, Practices, and Coverage of Services Survey 2006.	24148	Not extracted
Somalia	Somalia District Nutrition Survey	2003	International Federation of Red Cross and Red Crescent Societies, Muslim Aid, United Nations Children's Fund (UNICEF). Somalia — Jubbada Hoose Nutrition Survey in Kismayo District 2003.	142166	Not extracted
Thailand	Multiple Indicator Cluster Survey (MICS)	2016	National Health Security Office (Thailand), National Statistical Office (Thailand), United Nations Children's Fund (UNICEF). Thailand Multiple Indicator Cluster Survey 2015–2016. New York, United States of America: United Nations Children's Fund (UNICEF), 2018.	296646	Not extracted
Timor-Leste	NA	2013	Ministry of Health (Timor-Leste). Timor-Leste Food and Nutrition Survey 2013.	286211	Not extracted
Yemen	NA	2011	Ministry of Public Health and Population (Yemen), United Nations Children's Fund (UNICEF). Yemen — Al Hudaydah Nutrition Survey Among Under 5 Children 2011.	291261	Not extracted

Yemen	Yemen Nutritional	2016	Ministry of Public Health and Population (Yemen),	292315	Not extracted
	Status and Mortality		United Nations Children's Fund (UNICEF). Yemen		
	Survey		— Ad Dali Nutritional Status and Mortality Survey		
	•		2016.		
Yemen	Yemen Nutritional	2017	Ministry of Public Health and Population (Yemen),	292489	Not extracted
	Status and Mortality		United Nations Children's Fund (UNICEF). Yemen		
	Survey		— Shabwah Nutritional Status and Mortality Survey		
	•		2017.		
Yemen	Yemen Nutritional	2016	Ministry of Public Health and Population (Yemen),	292491	Not extracted
	Status and Mortality		United Nations Children's Fund (UNICEF). Yemen		
	Survey		— San, Äòa Nutrition Survey 2016.		
Yemen	Yemen Nutritional	2018	Action Against Hunger (ACF), Ministry of Public	373856	Not extracted
	Status and Mortality		Health and Population (Yemen), United Nations		
	Survey		Children's Fund (UNICEF). Yemen — Hajjah		
			Nutrition and Retrospective Mortality Survey 2018.		
Yemen	Yemen Nutritional	2018	Abyan Governmental Health Office, Action Against	373862	Not extracted
	Status and Mortality		Hunger (ACF), Ministry of Public Health and		
	Survey		Population (Yemen). Yemen — Abyan Nutrition		
			and Retrospective Mortality Survey 2018.		
Yemen	Yemen Nutritional	2017	Ministry of Public Health and Population (Yemen),	373869	Not extracted
	Status and Mortality		United Nations Children's Fund (UNICEF). Yemen		
	Survey		— Ibb Nutrition and Mortality Survey 2017.		
Zambia	Zambia Living	2010	Central Statistical Office (Zambia). Zambia Living	58660	Not extracted
	Conditions		Conditions Monitoring Survey 2010.		
	Monitoring Survey				
Zambia	NA	2014	European Union (EU), Government of Zambia,	281731	Not extracted
			Liverpool School of Tropical Medicine, United		
			Nations Children's Fund (UNICEF). Zambia Lot		
			Assurance Quality Sampling Survey 2014.		

^{*}NID = Data source unique identifier in the Global Health Data Exchange (GHDx) (http://ghdx.healthdata.org/). Additional information about each data source is available via the GHDx, including information about the data provider and links to where the data can be accessed or requested (where available). NIDs can be entered in the search bar to retrieve the record for a particular source.

Supplementary Table 3. Data excluded from geostatistical model but included in GBD estimates

Country	Series	Year(s)	Citation	NID*	Rationale for exclusion
Afghanistan	Multiple Indicator	2003	Central Statistics Organization	561	The data is not
	Cluster Survey		(Afghanistan), United Nations Children's		subnationally
	(MICS)		Fund (UNICEF). Afghanistan Multiple		representative.
			Indicator Cluster Survey 2003.		
Afghanistan	Afghanistan Health	2006	Indian Institute of Health Management	18468	The data is not
	Survey (AHS)		Research (IIHMR), Johns Hopkins		subnationally
			University, Ministry of Public Health		representative.
			(Afghanistan). Afghanistan Health Survey		
			2006.		
Algeria	Multiple Indicator	2000	Ministry of Health and Population (Algeria),	26449	There is no sample size for
	Cluster Survey		National Institute of Public Health (Algeria),		each of the subnational
	(MICS)		National Office of Statistics (Algeria),		location.
			United Nations Children's Fund (UNICEF).		
			Algeria Multiple Indicator Cluster Survey		
			2000.		
Algeria	Pan Arab Project for	2002	National Office of Statistics (Algeria),	627	Missing age in months.
	Family Health		Ministry of Health, Population and Hospital		
	(PAPFAM)		Reform (Algeria), League of Arab States.		
			Algeria Family Health Survey 2002–2003.		
Colombia	DHS Standard	2004	Macro International, Inc, Profamilia	19324	Estimates considered
	Demographic and		(Colombia). Colombia Demographic and		implausible (zero or
	Health Survey (DHS),		Health Survey 2004–2005. Fairfax, United		extreme values).
	DHS Program Surveys		States of America: ICF International, 2005.		
Colombia	DHS Standard	2009	ICF Macro, Profamilia (Colombia).	21281	Estimates considered
	Demographic and		Colombia Demographic and Health Survey		implausible (zero or
	Health Survey (DHS),		2009–2010. Fairfax, United States of		extreme values).
	DHS Program Surveys		America: ICF International, 2011.		
Dominican	DHS Standard	2002	Center for Social and Demographic Studies	19444	Estimates considered
Republic	Demographic and		(Dominican Republic) (CESDEM), Macro		implausible (zero or
	Health Survey (DHS),		International, Inc. Dominican Republic		extreme values).
	DHS Program Surveys		Demographic and Health Survey 2002.		

			Fairfax, United States of America: ICF International.		
El Salvador	Reproductive Health Survey (RHS)	2002	Asociación Demográfica Salvadoreña (ADS), Division of Reproductive Health — Centers for Disease Control and Prevention (CDC). (2004) El Salvador Reproductive Health Survey 2002–2003. San Salvador, El Salvador: ADS.	27599	Missing relevant breastfeeding indicators.
El Salvador	Reproductive Health Survey (RHS)	2008	Asociación Demográfica Salvadoreña (ADS), Division of Reproductive Health — Centers for Disease Control and Prevention (CDC). (2009) El Salvador Reproductive Health Survey 2008. San Salvador, El Salvador: ADS.	27606	Missing relevant breastfeeding indicators.
Equatorial Guinea	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2011	ICF International, Ministry of Health and Social Welfare (Equatorial Guinea), Ministry of Planning, Economic Development and Public Investment (Equatorial Guinea). Equatorial Guinea Demographic and Health Survey 2011. Fairfax, United States of America: ICF International, 2012.	76884	The data is not subnationally representative.
Guinea-Bissau	Multiple Indicator Cluster Survey (MICS)	2000	Secretary State of Planning, National Institute of Statistics and Census (INEC), United Nations Children's Fund (UNICEF). Guinea-Bissau Multiple Indicator Cluster Survey 2000. New York, United States: United Nations Children's Fund (UNICEF).	4808	Estimates considered implausible (zero or extreme values).
Guinea-Bissau	Multiple Indicator Cluster Survey (MICS)	2010	Centers for Disease Control and Prevention (CDC), National Statistics Institute (Guinea-Bissau), United Nations Children's Fund (UNICEF). Guinea-Bissau Multiple Indicator Cluster Survey 2010. New York, United	27215	Missing relevant breastfeeding indicators.

			States: United Nations Children's Fund (UNICEF), 2018.		
Honduras	Reproductive Health Survey (RHS)	2001	Honduras Family Planning Association (ASHONPLAFA), Ministry of Health (Honduras), and Division of Reproductive Health — Centers for Disease Control and Prevention (CDC). Honduras Reproductive Health Survey 2001. Tegucigalpa, Honduras: Honduras Family Planning Association (ASHONPLAFA).	27551	Missing relevant breastfeeding indicators.
India	Multiple Indicator Cluster Survey (MICS)	2000	United Nations Statistical Division, World Health Organization (WHO), United Nations Educational, Scientific, and Cultural Organization (UNESCO), United Nations Population Fund (UNFPA), World Bank (WB), London School of Hygiene and Tropical Medicine, United Nations Children's Fund (UNICEF). India Multiple Indicator Cluster Survey 2000. New York, United States: United Nations Children's Fund (UNICEF).	5127	There is no sample size for each of the subnational location.
Indonesia	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2002	Macro International, Inc, Ministry of Health (Indonesia), National Family Planning Coordinating Board (Indonesia), Statistics Indonesia. Indonesia Demographic and Health Survey 2002–2003. Fairfax, United States of America: ICF International.	20011	Estimates considered implausible (zero or extreme values).
Jordan	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2002	Department of Statistics (Jordan), Macro International, Inc. Jordan Demographic and Health Survey 2002. Fairfax, United States of America: ICF International.	20073	Estimates considered implausible (zero or extreme values).

Kenya	Multiple Indicator Cluster Survey (MICS)	2007	Kenya National Bureau of Statistics, United Nations Children's Fund (UNICEF). Kenya — North Eastern Province Multiple Indicator Cluster Survey 2007. Nairobi, Kenya: Kenya National Bureau of Statistics.	155335	Estimates considered implausible (zero or extreme values).
Laos	Laos Reproductive Health Survey	2005	National Statistical Center (Laos). Laos Reproductive Health Survey 2005.	43045	The survey does not specify a 24-hour recall period.
Lesotho	Multiple Indicator Cluster Survey (MICS)	2000	Bureau of Statistics (Lesotho), United Nations Children's Fund (UNICEF). Lesotho Multiple Indicator Cluster Survey 2000. New York, United States of America: United Nations Children's Fund (UNICEF).	7721	Missing survey weights.
Morocco	Multiple Indicator Cluster Survey (MICS)	2006	Ministry of Health (Morocco), United Nations Children's Fund (UNICEF). Morocco Multiple Indicator Cluster Survey 2006.	8852	The data is not subnationally representative.
Nepal	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2001	Macro International, Inc, Ministry of Health and Population (Nepal), New ERA. Nepal Demographic and Health Survey 2001. Fairfax, United States of America: ICF International.	20450	Estimates considered implausible (zero or extreme values).
Nicaragua	Reproductive Health Survey (RHS)	2006	Division of Reproductive Health, Centers for Disease Control and Prevention (CDC), National Institute for Development Information (Nicaragua). Nicaragua Reproductive Health Survey 2006–2007. Managua, Nicaragua: National Institute for Development Information (Nicaragua).	9270	Missing relevant breastfeeding indicators.
Nigeria	Nigeria General Household Survey	2008	Central Bank of Nigeria, National Bureau of Statistics (Nigeria), Nigerian Communications Commission (NCC). Nigeria General Household Survey 2008.	24915	Estimates considered implausible (zero or extreme values).

Pakistan	Multiple Indicator Cluster Survey (MICS)	2014	Bureau of Statistics Punjab (Pakistan), United Nations Children's Fund (UNICEF). Pakistan — Punjab Multiple Indicator Cluster Survey 2014. New York, United States of America: United Nations Children's Fund (UNICEF), 2015.	236266	Estimates considered implausible (zero or extreme values).
Paraguay	Reproductive Health Survey (RHS)	2004	Division of Reproductive Health — Centers for Disease Control and Prevention (CDC). (2005): Paraguay Reproductive Health Survey 2004. Asunción, Paraguay, Paraguayan Center for Population Studies (CEPEP).	10370	Missing relevant breastfeeding indicators.
Paraguay	Reproductive Health Survey (RHS)	2008	Paraguay Center for Population Studies (CEPEP). Paraguay Reproductive Health Survey 2008. Asunción, Paraguay: Paraguayan Center for Population Studies (CEPEP).	27525	Missing relevant breastfeeding indicators.
The Philippines	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2003	Macro International, Inc, National Statistics Office (Philippines). Philippines Demographic and Health Survey 2003. Fairfax, United States of America: ICF International.	20699	Estimates considered implausible (zero or extreme values).
Republic of the Congo	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2005	Macro International, Inc, National Center for Statistics and Economic Studies (Congo, Rep.). Congo Demographic and Health Survey 2005. Fairfax, United States of America: ICF International.	19391	Missing relevant breastfeeding indicators.
Sudan	Multiple Indicator Cluster Survey (MICS)	2010	Federal Ministry of Health and Central Bureau of Statistics, Sudan Household and Health Survey — 2, 2012, National report. Khartoum, Republic of Sudan: Federal Ministry of Health and Central Bureau of Statistics.	153563	Missing age in months.

Syria	Pan Arab Project for Family Health (PAPFAM)	2001	Central Bureau of Statistics (Syria), League of Arab States. Syria Family Health Survey 2001.	12379	Missing relevant breastfeeding indicators.
Syria	Multiple Indicator Cluster Survey (MICS)	2006	General Administration for Palestine Arab Refugees (GAPAR), Palestinian Central Bureau of Statistics, Pan Arab Project for Family Health (PAPFAM), United Nations Children's Fund (UNICEF). Palestinians in Syria Multiple Indicator Cluster Survey 2006.	10023	The data is not representative of Syrian population.
Tunisia	Multiple Indicator Cluster Survey (MICS)	2006	Ministry of Public Health (Tunisia), National Office for Family and Population, Ministry of Public Health (Tunisia), United Nations Children's Fund (UNICEF). Tunisia Multiple Indicator Cluster Survey 2006.	12985	Lacking geographic information.
Turkmenistan	DHS Standard Demographic and Health Survey (DHS), DHS Program Surveys	2000	Gurbansoltan Eje Clinical Research Center for Maternal and Child Health (GECRCMCH), Macro International, Inc, Ministry of Health and Medical Industry (Turkmenistan). Turkmenistan Demographic and Health Survey 2000.	20956	The report is in Turkmen and has not been translated for this round of modeling.
Uganda	Child Verbal Autopsy Study (CVAS)	2007	MEASURE Evaluation Project, Carolina Population Center, University of North Carolina, Macro International, Inc, Ministry of Health (Uganda), Uganda Bureau of Statistics. Uganda Child Verbal Autopsy Study 2007. Calverton, United States: Macro International, Inc.	23289	Lacking geographic information.
Vietnam	Multiple Indicator Cluster Survey (MICS)	2010	General Statistics Office (Vietnam), United Nations Children's Fund (UNICEF). Vietnam Multiple Indicator Cluster Survey 2010– 2011. New York, United States of America: United Nations Children's Fund (UNICEF).	57999	The data can not be geomatched to the correct subnational locations.

Zambia	Zambia Living	2004	Central Statistical Office (Zambia). Zambia	14063	Estimates considered
	Conditions Monitoring		Living Conditions Monitoring Survey 2004–		implausible (zero or
	Survey		2005. Lusaka, Zambia: Central Statistical		extreme values).
			Office (Zambia).		

^{*}NID = Data source unique identifier in the Global Health Data Exchange (GHDx) (http://ghdx.healthdata.org/). Additional information about each data source is available via the GHDx, including information about the data provider and links to where the data can be accessed or requested (where available). NIDs can be entered in the search bar to retrieve the record for a particular source.

2.1. Data excluded from model

To identify potential survey biases, we reviewed national-level survey estimates for each country and compared with national-level estimates from DHS, GBD, and the geospatial model. In cases where a survey's estimates appeared implausible in comparison with other existing survey-based data sources, we inspected differences in definitions, data collection, or other methodological explanations. Supplementary Table 1 provides a list of surveys that were excluded from both geostatistical model and GBD 2019 estimates¹. Supplementary Table 2 provides a list of surveys that were included in the geostatistical model but excluded from GBD estimates (in cases where surveys were non-nationally representative but could provide spatial information for the geostatistical model). Additionally, a number of surveys were included in GBD estimates but excluded from the geostatistical model (Supplementary Table 3). For each case, we specified reasons for exclusion in the tables.

2.2. Data processing

80

85

95

100

105

110

115

The technical descriptions of data processing and methods for resampling are consistent with those previously used in the geospatial modelling of EBF across Africa².

The scope of our data extraction included Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS) and country-specific surveys collected from 1998 to 2018 in LMICs. As a first step, we completed the following data extraction process:

- Searched the Global Health Data Exchange (GHDx: http://ghdx.healthdata.org/) for all surveys in LMICs tagged as containing exclusive breastfeeding indicators of interest;
- Designed and tested a codebook, or survey data extraction framework, for breastfeeding variables present in the household surveys;
- Extracted and geo-matched (either to GPS data or administrative units) all surveys available for LMICs;
- Refreshed our query of the GHDx for surveys performed in LMICs.

Some surveys directly ask the question: "did you exclusively breastfeed?". However, in our preliminary analysis we found that responses to this question were widely inconsistent across surveys. This is likely because the respondent may not understand the meaning of "exclusively breastfeed" or the question may be misinterpreted with translation. Instead, we used the following survey response information to determine exclusive breastfeeding for children under six months:

- Whether the child is still being breastfed;
- Food and liquid items given to a child in the past 24 hours.

Surveys were excluded from this analysis if they lacked subnational geographic identifiers, were not available at the individual level, or did not contain sufficient information to generate the exclusive breastfeeding indicator. Specifically, our inclusion criteria for survey microdata with complete records were the following:

- "Survey responses must be available at the individual level;
- Survey must contain subnational geographic identifiers, which could include either subnational areal units (typically administrative units) or GPS coordinates. Data

- referenced to subnational areal units must also contain survey weights for each observation;
 - Survey must have been conducted between 1998 and 2018;

135

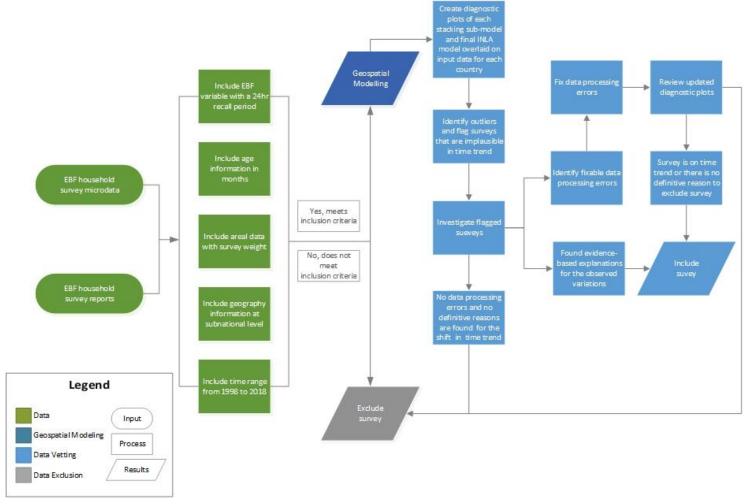
145

150

155

160

• Survey must contain questions about the age of the child, whether the child is still being breastfed, and whether the child has consumed other food or liquid items. Typically, consumption during the past 24 hours is recorded. In 22 out of 349 household surveys, the question about food or liquid items did not specify a particular recall period. After performing sensitivity analysis, we decided to keep those surveys in our model.


In cases where survey microdata were not available, we were instead able to include estimates of EBF prevalence from survey reports. Survey reports were excluded from this analysis if they lacked subnational geographic identifiers, did not include a sample size or confidence interval, or the estimates reported appeared implausible. Specifically, our inclusion criteria for these surveys were the following:

- Survey must contain subnational identifiers, which could include subnational areal units (typically administrative units);
- Survey must have been conducted between 1998 and 2018;
- Survey must contain the prevalence of exclusive breastfeeding with a sample size or the lower and upper bounds for the 95% confidence interval.

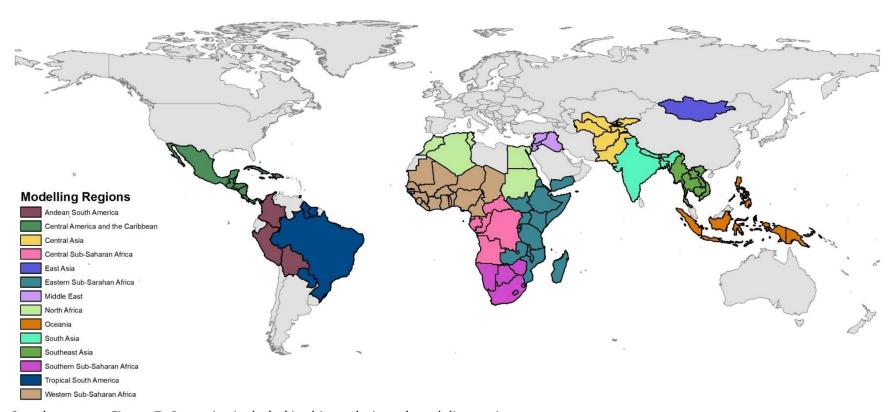
140 After data extraction, the following steps were performed prior to using these data in our models:

- Aggregated the individual-level responses from survey microdata to calculate EBF
 prevalence and the effective sample size at the finest possible spatial resolution available,
 incorporating individual-level sample weights and using the Kish approximation³ for the
 effective sample size.
 - For surveys where a latitude and longitude pair representing the location of each survey cluster were available ("point data"), data were aggregated to these specific coordinates.
 - o For surveys where cluster-specific latitude and longitude pairs were not available, the smallest geographic area was used instead ("polygon data"). Typically, these polygons correspond to administrative units.
- Resampled data matched to polygons to generate pseudo-point data based on the underlying population distribution within the polygon.

The methods for the resampling are consistent with those previously used in geospatial modelling of under-5 mortality⁴. Specifically, for each polygon-level observation, we randomly sampled 10,000 locations among 5×5 -km grid cells in the given polygon with probability proportional to grid-cell population. Grid cells were defined to be contained within the polygon if their centroid fell within the geographic boundary. We performed k-means clustering (with k set to 1 per 40 grid cells) on the sampled points to generate a reduced set of locations to be used in modelling based on the k-means cluster centroids. Weights were assigned to each pseudopoint proportional to the number of sampled points contained in each of the k-means clusters (i.e., the number of sampled points divided by 10,000). Each pseudo-point generated by this process was assigned the EBF prevalence and sample size observed for the polygon as a whole, and the weights associated with each pseudo-point were applied during all stages of model fitting.

Supplementary Figure 6. Flowchart for data extraction (a) and data cleaning (b) processes

(a) Data extraction refers to the manual extraction process where a survey will be excluded if it does not contain geography variables that we can match to, specific questions for exclusive breastfeeding, and field for age information; (b) Data cleaning refers to the process where the extractions are collapsed in our post-processing code and we exclude a survey if it does not contain survey weights, sufficient geographic information, age


information that can be converted to months, observations in our time study period, observations for children 0–5 months, or valid responses for specific breastfeeding questions. We also exclude surveys that contain outlier observations at this stage.

2.3. Geographic inclusion

175

180

We included 94 low- and middle- income countries (LMIC) in this analysis. LMIC status was determined by the Global Burden of Disease's (GBD) Socio-demographic Index (SDI), which is a composite variable of poverty, education, and fertility and which indicates a country's level of development. The countries of Ecuador, Venezuela, Malaysia, Sri Lanka, Iran, Djibouti, Libya, Cape Verde, Dominica, Grenada, and Seychelles were excluded despite Low, Low-Middle, or Middle status due to insufficient data. Supplementary Figure 7 represents a map of the countries included in this study, and Supplementary Table 4 provides the list of 94 countries along with region name, SDI and ISO3 code for each country.

Supplementary Figure 7. Countries included in this analysis and modeling regions

Supplementary Table 4. Countries included in the analysis (94) grouped by modelling regions.

Region name	Country name	ISO3 Code	Socio-demographic Index
Andean South America	Bolivia	BOL	Low-Middle SDI
	Colombia	COL	Middle SDI
	Peru	PER	Middle SDI
	Trinidad and Tobago	TTO	Middle SDI
Central America and the	Belize	BLZ	Low-Middle SDI
Caribbean	Costa Rica	CRI	Middle SDI
	Cuba	CUB	Middle SDI
	Dominican Republic	DOM	Low-Middle SDI
	El Salvador	SLV	Low-Middle SDI
	Guatemala	GTM	Low-Middle SDI
	Haiti	HTI	Low SDI
	Honduras	HND	Low-Middle SDI
	Jamaica	JAM	Middle SDI
	Mexico	MEX	Middle SDI
	Nicaragua	NIC	Low-Middle SDI
	Panama	PAN	Middle SDI
Central Asia	Afghanistan	AFG	Low SDI
	Kyrgyzstan	KGZ	Low-Middle SDI
	Pakistan	PAK	Low-Middle SDI
	Tajikistan	TJK	Low-Middle SDI
	Turkmenistan	TKM	Middle SDI
	Uzbekistan	UZB	Middle SDI
Central sub-Saharan	Angola	AGO	Low-Middle SDI
Africa	Central African Republic	CAF	Low SDI
	Democratic Republic of the Congo	COD	Low SDI
	Equatorial Guinea	GNQ	Middle SDI
	Gabon	GAB	Middle SDI
	Republic of the Congo	COG	Low-Middle SDI
East Asia	Mongolia	MNG	Middle SDI
Eastern sub-Saharan	Burundi	BDI	Low SDI
Africa	Comoros	COM	Low SDI
	Eritrea	ERI	Low SDI
	Ethiopia	ETH	Low SDI
	Kenya	KEN	Low-Middle SDI
	Madagascar	MDG	Low SDI
	Malawi	MWI	Low SDI
	Mozambique	MOZ	Low SDI
	Rwanda	RWA	Low SDI
	Somalia	SOM	Low SDI
	South Sudan	SSD	Low SDI

	Tanzania	TZA	Low SDI
	Uganda	UGA	Low SDI
	Yemen	YEM	Low SDI
	Zambia	ZMB	Low-Middle SDI
Middle East	Iraq	IRQ	Low-Middle SDI
	Jordan	JOR	Middle SDI
	Palestine	PSE	Low-Middle SDI
	Syria	SYR	Middle SDI
North Africa	Algeria	DZA	Middle SDI
	Egypt	EGY	Low-Middle SDI
	Morocco	MAR	Low-Middle SDI
	Sudan	SDN	Low-Middle SDI
	Tunisia	TUN	Middle SDI
Oceania	Indonesia	IDN	Middle SDI
	Papua New Guinea	PNG	Low SDI
	The Philippines	PHL	Middle SDI
	Timor-Leste	TLS	Low-Middle SDI
South Asia	Bangladesh	BGD	Low SDI
	Bhutan	BTN	Low-Middle SDI
	India	IND	Low-Middle SDI
	Nepal	NPL	Low SDI
Southeast Asia	Cambodia	KHM	Low-Middle SDI
	Laos	LAO	Low-Middle SDI
	Myanmar	MMR	Low-Middle SDI
	Thailand	THA	Middle SDI
	Vietnam	VNM	Middle SDI
Southern sub-Saharan	Botswana	BWA	Middle SDI
Africa	Eswatini	SWZ	Low-Middle SDI
	Lesotho	LSO	Low-Middle SDI
	Namibia	NAM	Middle SDI
	South Africa	ZAF	Middle SDI
	Zimbabwe	ZWE	Low-Middle SDI
Tropical South America	Brazil	BRA	Middle SDI
1	Guyana	GUY	Low-Middle SDI
	Paraguay	PRY	Middle SDI
	Suriname	SUR	Middle SDI
Western sub-Saharan	Benin	BEN	Low SDI
Africa	Burkina Faso	BFA	Low SDI
	Cameroon	CMR	Low-Middle SDI
	Chad	TCD	Low SDI
	Côte d'Ivoire	CIV	Low SDI
	Gambia	GMB	Low SDI
	Ghana	GHA	Low-Middle SDI
	Guinea	GIN	Low SDI
	Guinea-Bissau	GNB	Low SDI

Liberia	LBR	Low SDI
Mali	MLI	Low SDI
Mauritania	MRT	Low-Middle SDI
Niger	NER	Low SDI
Nigeria	NGA	Low-Middle SDI
São Tomé and Príncipe	STP	Low-Middle SDI
Senegal	SEN	Low SDI
Sierra Leone	SLE	Low SDI
Togo	TGO	Low SDI

3.0. Covariates

The descriptions of covariates for the underlying geostatistical model are consistent with those previously used in the geospatial modelling of EBF across Africa².

In these analyses, we included the following socioeconomic, environmental, and health-related covariates to improve the predictions of exclusive breastfeeding: urban proportion of the location TV, night-time lights TV, travel time to the nearest settlement >50,000 inhabitants, population TV, Human Development Index (HDI) TV, educational attainment in women of reproductive age (15–49 years old) TV, number of people whose daily vitamin A needs could be met, number of children under 5 per woman of childbearing age TV, Healthcare Access and Quality Index (HAQI) TV, proportion of pregnant women who received four or more antenatal care visits TV, and human immunodeficiency virus (HIV) prevalence TV (TV=time-varying covariates). Of these, the covariates for the Healthcare Access and Quality Index and the proportion of pregnant women who received four or more antenatal care visits were indexed at the national level, while all others were indexed at the subnational level.

200

205

210

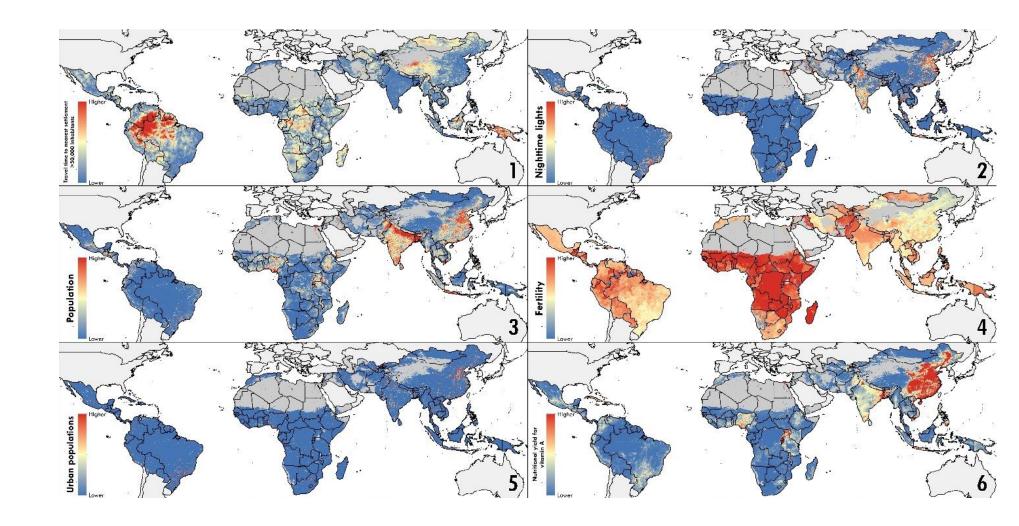
215

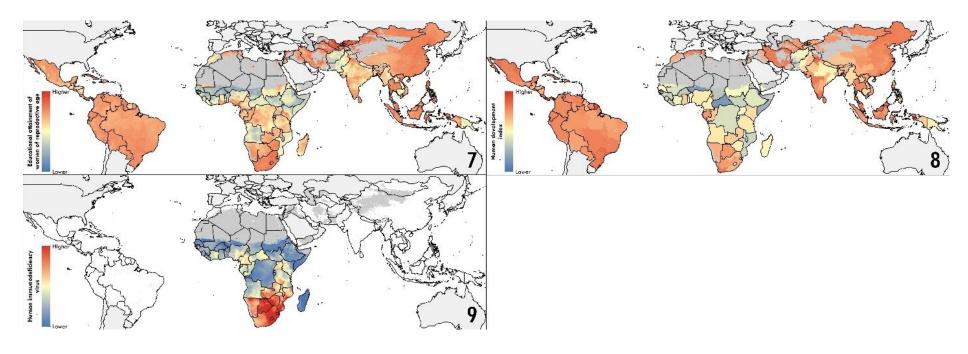
185

These covariates were selected because they are factors or proxies for factors that previous literature has identified to be associated (not necessarily causally) with exclusive breastfeeding prevalence. The first four covariates were included as measures or proxies for connectedness and urbanicity as EBF is typically found to be different in urban areas compared to rural locations⁷ ¹¹. Human Development Index (HDI; a composite indicator of key aspects of development: namely, education, economy, and health) was chosen based on prior studies relating country development to EBF¹². Educational attainment in women of reproductive age (15–49 years old) was included because previous studies highlight education as a maternal factor influencing the decision to initiate and continue EBF^{13,14}. Number of people whose daily vitamin A needs could be met was chosen as a proxy of maternal nutrition while breastfeeding^{15,16}. Number of children under 5 per woman of childbearing age was selected as a previous study suggest that EBF rates are higher among women with more than 4 children¹⁷. Healthcare Access and Ouality Index was chosen because maternal care practices that promote breastfeeding are influenced by access to high-quality health care ^{18,19}. Proportion of pregnant women who received four or more antenatal care visits due to positive association between EBF and antenatal care²⁰. Human immunodeficiency virus (HIV) was included given the known risks of mother-to-child transmission of HIV and consequent potential avoidance of breastfeeding in hyperendemic settings over the study period^{21–24}. These covariates underwent spatial and temporal processing in preparation for their inclusion in analysis.

Spatial processing involved resampling the input covariate raster to align the spatial resolution of the covariate to the 5×5 -km resolution used in modelling. For covariates that were originally at a finer resolution, we resampled the raster by taking the neighbourhood average (travel time to the nearest settlement of more than 50,000 inhabitants, night-time lights) or using the nearest neighbour (urbanicity) or sum (total population) of the finer covariate raster to produce one at a 5×5 -km resolution. Educational attainment in women of reproductive age and HIV covariates were natively at a 5×5 -km resolution and thus did not require additional spatial processing. For covariates that were originally at lower resolution (HDI and nutritional yield for vitamin A), we resampled the raster using bilinear interpolation, with the effect of smoothing some of the hard grid-cell boundaries in the raw data to make for a 5×5 -km resolution raster.

Temporal processing was required in instances where the original temporal resolution of the covariate was anything other than annual. To resolve from a coarser time period to an annual time period, we filled the intervening years with the value from the nearest neighbouring year (urbanicity) or utilizing an exponential growth rate model (total population). Night-time lights, educational attainment, and HIV prevalence were available at a one-year temporal resolution and did not require interpolation. As travel time to the nearest settlement of more than 50,000 inhabitants and nutritional yield for vitamin A covariates were available only for a single representative year (2015 and 2005, respectively) these covariates were set to be unchanged over time. After interpolation, night-time lights, human development index and urbanicity were still missing the most recent years of the 2000 to 2018 analysis period, and in these instances we filled out the end of the time-series carrying forward the most recent year without modification.


We filtered these covariates for multi-collinearity within each modeling region (see


Supplementary Figure 7) using variance inflation factor²⁵ (VIF) analysis based on a threshold of
VIF <3. We list detailed information on temporal resolution and source(s) for each included
covariate (11) in Supplementary Table 5. In addition, calendar year was utilized as a covariate in
our model. Supplementary Figure 8 provides maps of spatial covariates. Supplementary Table 6
lists the final covariates selected for each region based on VIF analysis.

Supplementary Table 5. Sources for covariates used in mapping.

Supplemental	Y	urces for covariates used	m mapping.
Covariate	Temporal resolution	Source	Reference
Educational attainment in women of reproductive age (15–49 years old) ^{TV}	Annual	Institute for Health Metrics and Evaluation (IHME), University of Washington	Graetz, N. <i>et al.</i> Local variation in educational attainment in low- and middle-income countries, 2000–2017. <i>Nature</i> 577 , 235–238 (2020).
Night-time lights ^{TV}	Annual	NOAA DMSP	National Oceanic and Atmospheric Administration (NOAA) (United States), United States Air Force (USAF). DMSP-OLS Nighttime Lights Time Series, V4. United States of America: National Oceanic and Atmospheric Administration (NOAA) (United States).
Population ^{TV}	Annual	WorldPop	Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. <i>Sci. Data</i> 4 , (2017). World Pop. Get data. Available at: http://www.worldpop.org.uk/data/get_data/. (Accessed: 25th July 2017)
Travel time to nearest settlement >50,000 inhabitants	Static	Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford	Weiss, D. J. <i>et al.</i> A global map of travel time to cities to assess inequalities in accessibility in 2015. <i>Nature</i> 533 , 333–336 (2018).
Urban proportion of the location (landcover) ^{TV}	Annual	MODIS	Friedl, M. & Sulla-Menashe, D. MCD12Q1v006.MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid https://doi.org/10.5067/MODIS/MCD12Q1.00 6 (NASA EOSDIS Land Processes DAAC, 2019).
Number of people whose daily vitamin A needs could be met (nutrient yield)	Static	Herrero et al (modelled)	Herrero, M. et al. Farming and the geography of nutrient production for human use: a transdisciplinary analysis. <i>Lancet Planet</i> . <i>Health</i> 1 , e33–e42 (2017).
Human Development Index (HDI) TV	Annual	Kummu et al (modelled)	Kummu, M. et al. Gridded global datasets for Gross Domestic Product and Human Development Index over 1990–2015. Scientific data, 5:180004 (2018)
Human Immunodeficiency Virus (HIV) ^{TV}	Annual	Institute for Health Metrics and Evaluation (IHME), University of Washington	Dwyer-Lindgren, L. et al. Mapping HIV prevalence in sub-Saharan Africa between 2000 and 2017. <i>Nature</i> 570 , 189–193 (2019).

Covariate	Temporal resolution	Source	Reference
Number of children under 5 per woman of childbearing age (fertility) ^{TV}	Annual	WorldPop (derived)	Lloyd, C. T., Sorichetta, A. & Tatem, A. J. High resolution global gridded data for use in population studies. <i>Sci. Data</i> 4 , (2017).
Healthcare Access and Quality Index (HAQI) ^{TV}	Annual	Institute for Health Metrics and Evaluation (IHME), University of Washington	Fullman, N. et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. The Lancet 391, 2236–2271 (2018).
Proportion of pregnant women who received four or more antenatal care visits ^{TV}	Annual	Institute for Health Metrics and Evaluation (IHME), University of Washington	Lozano, R. et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 392, 2091–2138 (2018). Note: SDI numbers were updated based on the GBD 2019 studies

270 Supplementary Figure 8. Map of spatial covariates

275

280

Covariate raster layers of possible socioeconomic, environmental, and health-related covariates used as inputs for the stacking modelling process: (1) travel time to the nearest settlement >50,000 inhabitants, (2) nighttime lights^{TV}, (3) population^{TV}, (4) number of children under 5 per woman of childbearing age^{TV}, (5) urban proportion of the location^{TV}, (6) number of people whose daily vitamin A needs could be met, (7) educational attainment in women of reproductive age (15–49 years-old)^{TV}, (8) Human Development Index (HDI)^{TV}, and (9) human immunodeficiency virus (HIV) prevalence^{TV} (TV=time-varying covariates). The two other covariates in the model were (10) Healthcare Access and Quality Index^{TV} and (11) the proportion of pregnant women who received four or more antenatal care visits^{TV}, but these were indexed at the national level and thus not shown in this figure. Time-varying covariates are presented for the most recent year. For the year of production of non-time-varying covariates, please refer to the individual covariate citation in Supplementary Table 5 for additional detail. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1 × 1-km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis²⁶⁻³¹.

Supplementary Table 6. Covariates used in ensemble covariate modelling via stacked generalization, stratified by modeling region

Region	Educational attainment ^{TV}	Night- time lights ^{TV}	Popula- tion ^{TV}	Travel time	Urban proportion of the location ^{TV}	Nutrient yield	HDI ^{TV}	HIVTV	Fertility TV	HAQITV	Antenatal care ^{TV}
Andean South America	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	TRUE	FALSE
Central America and the Caribbean	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE
Central Asia	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE
Central sub- Saharan Africa	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE
East Asia	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE
Eastern sub- Saharan Africa	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
Middle East	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE
North Africa	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
Oceania	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE
South Asia	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE
Southern sub-Saharan Africa	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE
Tropical South America	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	TRUE
Western sub- Saharan Africa	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE

4.0. Statistical model

305

325

The technical descriptions of methods for the underlying geostatistical model are consistent with those previously used in the geospatial modelling of EBF across Africa².

4.1. Ensemble covariate modelling process

We implemented an ensemble covariate modelling method to select covariates and capture possible non-linear effects and complex interactions between them³². Our methods largely follow the approach described by Bhatt and colleagues³³ and that was previously applied to mapping child growth failure, educational attainment, under-5 mortality, diarrhoea, and lower respiratory infections^{34–39}.

- We fit three sub-models (a generalised additive model, boosted regression trees, and lasso regression) to the exclusive breastfeeding data covariates described above. We selected these three sub-models based on ease of implementation through existing software packages, the fundamental differences in their approaches, and a proven track record in predictive accuracy³³. Sub-models were fit in R using the mgcv, xgboost, glmnet, and caret packages.
- Each sub-model was fit using five-fold cross-validation to avoid overfitting, and hyper-parameter fitting was performed to maximise predictive power. For each sub-model, we produced two sets of predictions: out-of-sample and in-sample. Out-of-sample predictions for each model were generated by compiling the predictions from the five holdouts from each cross-validation fold, and in-sample predictions were generated by re-fitting the sub-models using all available data.
- The out-of-sample sub-model predictions were used as explanatory covariates when fitting the geostatistical model described below, and the in-sample predictions were used when generating predictions from the geostatistical model in order to maximise data use. In both cases, the logit-transformation of the predictions was used to put these predictions on the same scale as the linear predictor in the geostatistical model.

4.2. Geostatistical model

365

370

We fit the geostatistical model below for 14 regions as defined in GBD (see Supplementary Figure 7)⁴⁰. For each region, we write the hierarchy that defines our Bayesian model as follows:

$$ebf_{i}|p_{i}, N_{i} \sim \text{Binomial}(p_{i}, N_{i})$$

$$\log \operatorname{it}(p_{i}) = \beta_{0} + X_{i}\beta + \gamma_{ci} + \epsilon_{GPi} + \epsilon_{i}$$

$$\sum \beta = 1$$

$$\gamma_{ci} \sim \operatorname{N}(0, \sigma_{country}^{2})$$

$$\epsilon_{i} \sim \operatorname{N}(0, \sigma_{nug}^{2})$$

$$\epsilon_{GP}|\Sigma_{space}, \Sigma_{time} \sim \operatorname{GP}(0, \Sigma_{space} \otimes \Sigma_{time})$$

We modelled the number of children who were categorized as "exclusive breastfed" (ebf_i) among a sample size (N_i) at space-time location i as a binomial random variable. The logit-transformed prevalence of exclusive breastfeeding (p_i) was specified as a linear combination of a regional intercept (β_0) , a weighted combination of the logit-transformed predictions from the three sub-models $(X_i\beta)$, country-level random effects (γ_{ci}) , a correlated spatiotemporal error term (ϵ_{GPi}) , and an independent nugget (unstructured residual error) effect (ϵ_i) . Weighting coefficients (β) are constrained to sum to 1^{33} . The spatial covariance, Σ_{space} , is modelled using an isotropic and stationary Matérn function⁴¹. The temporal covariance, Σ_{time} , is an annual autoregressive function over the 18 years represented in the model.

The intercept captures the overall mean level of EBF prevalence while the covariate effects
capture the spatial and temporal variation in EBF prevalence that can be described as a function
of spatial and temporal variation in the included covariates. The country random effects capture
additional variation between countries, while the spatially and temporally correlated random
effects capture additional variation by location (within and between countries) and time that
varies smoothly in space and time. Finally, the uncorrelated error term (or nugget effect) captures
any additional, non-structured variation by location and time.

The Matérn covariance function is associated with two hyperparameters, κ and τ (ν is fixed at 1), while the AR1 covariance function is associated with one hyperparameter, ρ . The following hyper-priors were set for each these parameters:

$$\begin{aligned} \theta_1 &= \log(\tau) \sim \text{Normal} \big(\mu_{\theta_1}, \sigma_{\theta_1}^2 \big) \\ \theta_2 &= \log(\kappa) \sim \text{Normal} \big(\mu_{\theta_2}, \sigma_{\theta_2}^2 \big) \\ \log((1+\rho)/(1-\rho)) &\sim \text{Normal}(4, 1.2^2) \end{aligned}$$

The prior for the temporal correlation parameter, ρ , corresponds to a mean of 0.96 and a distribution that is wide enough to include approximately 0.2 to 1 within three standard deviations of the mean. This relatively informative prior was chosen because temporal

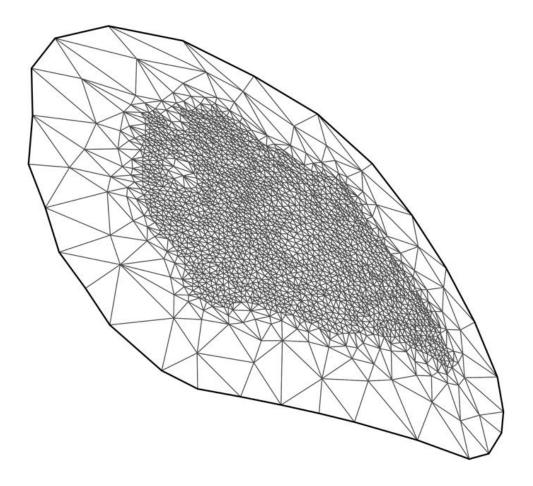
correlation was expected to be high. μ_{θ_1} , σ_{θ_1} , μ_{θ_2} , and σ_{θ_2} were automatically determined by INLA. Priors for fixed effects and hyper-priors for other random effects were set as:

$$\beta_0 \sim \text{Normal}(0, 3^2)$$

390

395

400


$$1/\sigma_{country}^2 \sim \text{gamma}(\text{rate} = 1, \text{shape} = 0.00005)$$

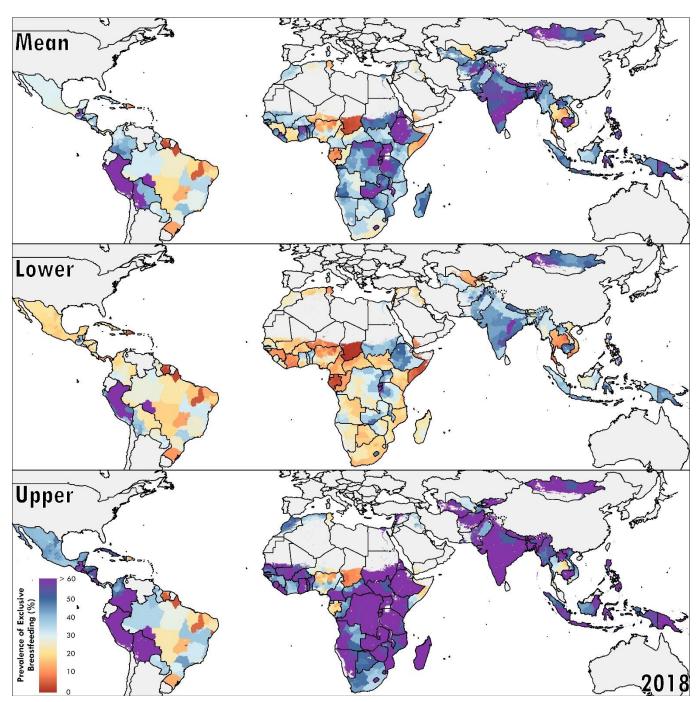
 $1/\sigma_{nugget}^2 \sim \text{gamma}(\text{rate} = 1, \text{shape} = 0.00005)$

- This model was fit in R-INLA⁴² using the stochastic partial differential equations (SPDE)⁴³ approach to approximate the continuous spatiotemporal Gaussian random fields (ϵ_{GPi}). We constructed a finite elements mesh for the SPDE approximation to the Gaussian process regression using a simplified polygon boundary (Supplementary Figure 9).
- After fitting each model based on regional classification, we generated 1,000 draws of all model parameters from the approximated joint posterior distribution using the inla.posterior.sample() function in R-INLA. For each draw s of the model parameters we constructed a draw of $p_i^{(s)}$ as:

$$p_i^{(s)} = logit^{-1} \left(\beta_0^{(s)} + X_i \boldsymbol{\beta}^{(s)} + \gamma_{ci}^{(s)} + \epsilon_{GPi}^{(s)} + \epsilon_i^{(s)} \right)$$

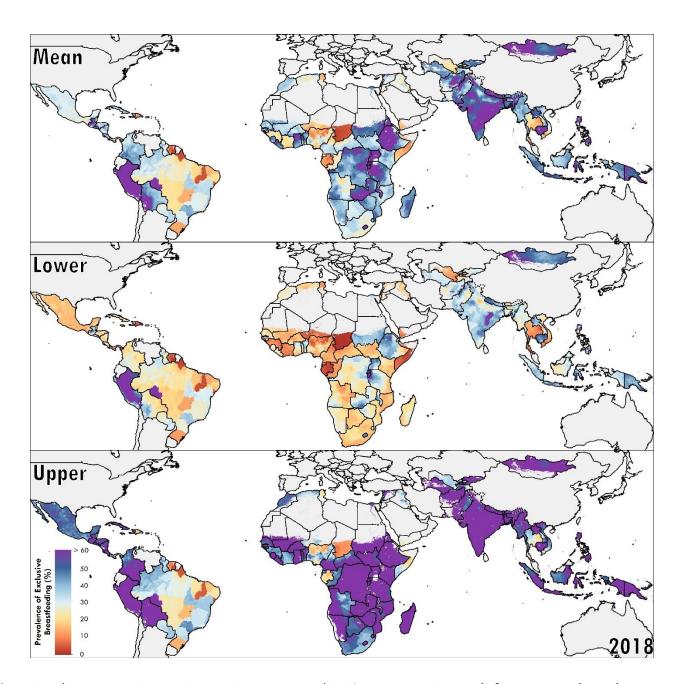
Additional processing of the output from inla.posterior.sample() is required for the correlated spatiotemporal error term $(\epsilon_{GPi}^{(s)})$ and the nugget effect $(\epsilon_i^{(s)})$ prior to constructing $p_i^{(s)}$ according to the equation above. Specifically, for $\epsilon_{GPi}^{(s)}$, draws are generated initially only at the vertices of the finite element mesh, so we project from this mesh to each location i desired for prediction (i.e., the centroid of each grid cell on a 5×5 -km grid) as well as years from 2000 to 2018. For the nugget effect, we generate $\epsilon_i^{(s)}$ for each i by sampling from Normal $(0, \sigma_{nug}^2)$. At the end of this process, we have 1,000 draws of p_i for each grid cell and year. Supplementary Figure 10-12 present posterior means and 95% uncertainty intervals maps for EBF in 2018 by aggregation levels $(5 \times 5$ -km, and first- and second-administrative levels).

Constrained refined Delaunay triangulation


Supplementary Figure 9. Example of finite elements mesh for geostatistical models The finite elements mesh used to fit the space-time correlated error for the eastern sub-Saharan Africa (ESSA) region overlaid on the countries in ESSA. Both the fine-scale mesh over land in the modelling

region and the coarser buffer region mesh are shown.

Supplementary Figure 10. Posterior means and 95% uncertainty intervals for EBF prevalence by 5×5 -km level in 2018.


Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included his analysis 2^{6-31} .

Supplementary Figure 11. Posterior means and 95% uncertainty intervals for EBF prevalence by the first administrative level in 2018.

425

Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Figure 12. Posterior means and 95% uncertainty intervals for EBF prevalence by the second administrative level in 2018.

435

Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

4.3. Model validation

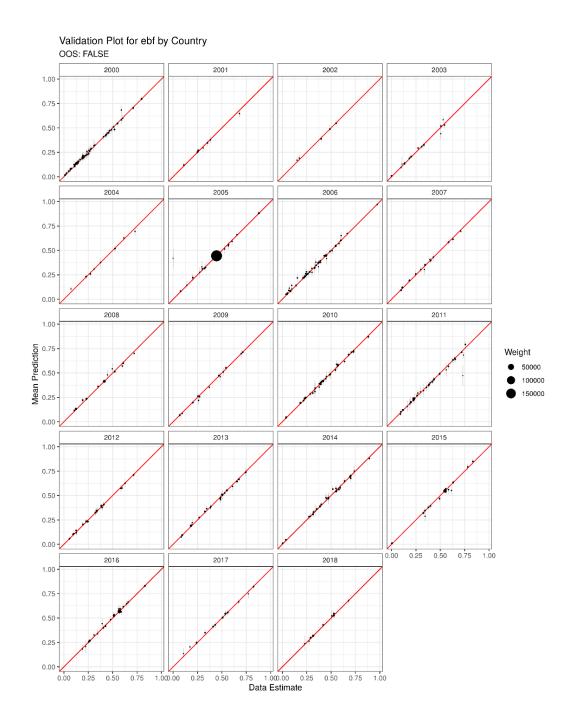
The technical descriptions of methods for model validation are consistent with those previously used in the geospatial modelling of EBF across Africa².

440

445

We utilized five-fold cross-validation in order to assess the performance of the modelling framework described above. To do so, we first split all survey data into five groups by randomly sorting a list of unique identifiers for each survey, calculating the cumulative effective sample size represented by the surveys in this list, and then dividing the list into five parts at the point where this cumulative sample size was closest to 20%, 40%, 60%, and 80% of the total. This results in five groups that are approximately equal in terms of the total effective sample size and which contain entire surveys (i.e., all of the data points derived from each survey are contained exclusively within only one fold). We then fit the model described above five times, excluding each of the five groups of data in turn.

450

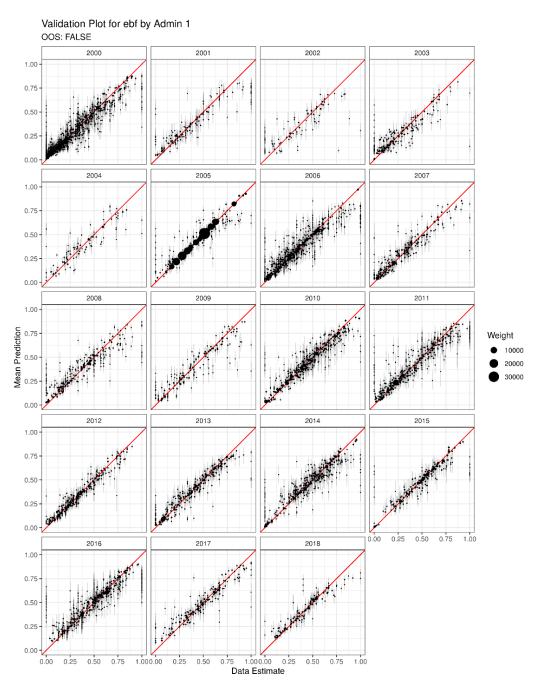

455

460

465

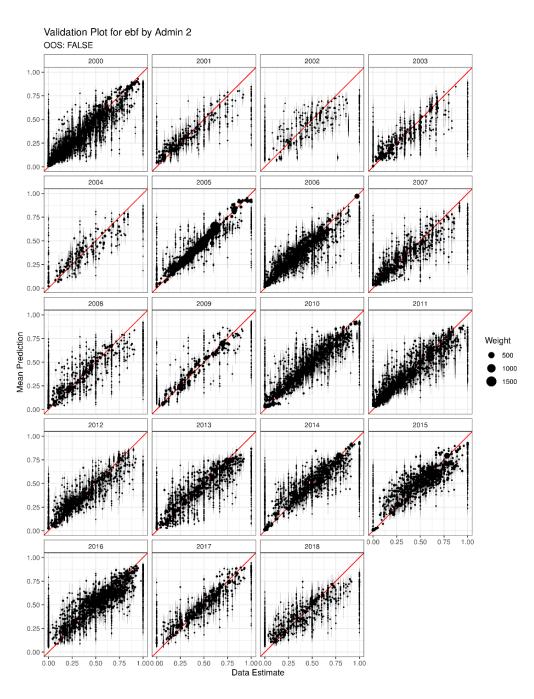
470

After fitting the model five times, the data withheld from each model were matched with predictions from that model, and then these data-prediction pairs were compiled across all five models, resulting in a complete dataset of out-of-sample predictions corresponding to all survey data included in the analysis. EBF prevalence estimates based on single survey clusters are generally quite noisy due to very small sample sizes, and are consequently insufficient as a "gold standard" for evaluating the model predictions⁴. To address this issue, we aggregated both the observed data and the corresponding out-of-sample predictions within countries and within firstand second-administrative units, by calculating a weighted mean of each using the effective sample sizes as the weights. Then, across all data-estimate pairs, we calculated the following measures: the mean error (ME: a measure of bias), the mean absolute error (MAE: measure of total variation in the errors), the correlation, and the root-mean-square error (RMSE: a measure of total variance). In addition, for each data-estimate pair, we constructed 95% prediction intervals from the 2.5th and 97.5th percentiles of 1,000 draws from a binomial distribution corresponding to each of the 1,000 posterior draws of EBF prevalence with p equal to EBF prevalence in a given posterior draw and N equal to the effective sample size for the data point type. We then calculated coverage as the percentage of data-estimate pairs where the data point was contained within this 95% prediction interval. Supplementary Figures 13–15 compare insample EBF data and predictions aggregated to the national and subnational levels, with 95% uncertainty intervals. Supplementary Table 7 provides a summary of in-sample and out-ofsample predictive validity metrics for EBF across national, and first- and second-administrative levels.



Supplementary Figure 13. In-sample comparison of data and estimates, aggregated to the national level and year

475


480

Comparison of in-sample EBF data and predictions aggregated to the national level and year, with 95% uncertainty intervals.

Supplementary Figure 14. In-sample comparison of data and estimates, aggregated to the first administrative level and year

Comparison of in-sample EBF data and predictions aggregated to the first administrative level and year, with 95% uncertainty intervals.

Supplementary Figure 15. In-sample comparison of data and estimates, aggregated to the second administrative level and year

Comparison of in-sample EBF data and predictions aggregated to the second administrative level and year, with 95% uncertainty intervals.

Supplementary Table 7. Validation metrics by level of aggregation

Aggregation level	IS/OOS	ME	RMSE	Correlation	Coverage (%)
National level	IS	-0.0640	1.0942	0.9985	97.6060
	OOS	-0.1730	11.4750	0.9313	91.8937
First administrative	IS	-0.0640	6.1229	0.9639	97.6060
level	OOS	-0.1730	15.4702	0.9056	91.8937
Second	IS	-0.0640	12.0638	0.8831	97.6060
administrative level	OOS	-0.1730	20.1755	0.8116	91.8937

4.4. Post-estimation

The technical descriptions of methods for post-estimation are consistent with those previously used in the geospatial modelling of EBF across Africa².

540

4.4.1. Calibration to Global Burden of Disease 2019

To take advantage of the extensive data-gathering and analysis of GBD 2019¹, which included, in some cases, data sources outside of the scope of our geospatial modelling framework, we preformed post-hoc calibration of our estimates to the GBD estimates.

545

- First, each grid cell in our 5×5 -km grid was assigned to a GBD geography based on the location of the grid-cell centroid. Then, for each country and year, we defined a raking factor that was the ratio of the GBD estimate for this geography and year to the population-weighted posterior mean EBF prevalence in all grid cells within this geography and year. Finally, this raking factor was used to scale each draw of EBF prevalence for each grid cell within the GBD geography and year. Notional time series plots of the post GPD cellbration final estimates (including
- used to scale each draw of EBF prevalence for each grid cell within the GBD geography and year. National time series plots of the post-GBD calibration final estimates (including uncertainty ranges) are presented along with the aggregated input data (classified by survey series, data type, and sample size) in Extended Data Figure 2.
- Point estimates for each 5×5 -km grid cell were calculated as the mean of the scaled draws, and 95% uncertainty intervals were calculated as the 2.5th and 97.5th percentiles of the scaled draws. An example of relative uncertainty in EBF estimates map for 2018 is given in Extended Data Figure 3.

4.4.2. Aggregation to first- and second-level administrative units

In addition to estimates of EBF prevalence on a 5×5 -km grid, we also constructed estimates of EBF prevalence for first- (admin 1) and second-level (admin 2) administrative units. These estimates were derived by calculating population-weighted averages of EBF prevalence of estimates for each grid cell within a given first- or second-level administrative unit. This was carried out for each of the 1,000 posterior draws (after calibration to GBD 2019¹ as described above), and then point estimates and uncertainty intervals were derived from the mean, 2.5th percentile, and 97.5th percentile of these draws, respectively. In cases where an administrative unit did not contain the centroid of any grid cell, the nearest grid cell to it was assigned as its proxy prevalence.

4.4.3. Geographic Inequality

We calculated national-level geographic inequality using the Gini coefficient. The Gini coefficient assesses the magnitude of disparity between the richest and poorest individuals (ref). The Gini coefficient can be calculated directly from the Lorenz curve, which sorts individuals by their income and plots cumulative percentages of individuals against their corresponding fraction of wealth. For the purposes of this study, "wealth" is defined as EBF prevalence in each second administrative unit. The Gini coefficient is then calculated as one minus twice the area under the Lorenz curve. An alternative formulation of the Gini coefficient, which gives the same result, calculates the relative mean absolute difference in wealth, and then observes that the Gini coefficient is half the resulting quantity. If x_i is the wealth of the i^{th} individual (out of n individuals), the Gini coefficient, G, is given as:

$$G = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j|}{2n \sum_{i=1}^{n} x_i}$$

Absolute inequality is calculated as absolute differences between districts with the highest and lowest EBF prevalence in each country:

Absolute inequality =
$$max(prev_{unit}) - min(prev_{unit})$$

Relative inequality is calculated as absolute difference between each unit and country mean relative to the mean:

$$Relative\ inequality = \frac{prev_{unit} - prev_{country}}{prev_{country}}$$

4.4.4. Projections

We compared our estimated rates of improvement in EBF prevalence over the last 18 years with the improvements needed between 2018 and 2025 to meet the WHO GNT by performing a simple projection calculation. We first calculated log-additive annual rates of change at each grid cell (i) by logit-transforming our 18 years of posterior mean prevalence estimates, $prev_{i,yr}^{l}$ and calculating the annual rate of change between each pair of adjacent years starting with 2001:

$$AROC_{i,yr}^{l} = prev_{i,yr}^{l} - prev_{i,yr-1}^{l}.$$

We then calculated a weighted AROC for each grid cell by taking a weighted average across the years, where more recent AROCs are given more weight in the average. We defined the weights to be:

$$w_{yr} = \frac{(yr - 2000)^{\gamma}}{\sum_{2001}^{2018} (yr - 2000)^{\gamma}},$$

where γ may be chosen to give varying amounts of weight across the years. For this set of projections we selected $\gamma = 1$, resulting in a linear weighting scheme that has been tested and vetted for use in projecting the health-related Sustainable Development Goal (SDG)⁶. For any grid cell, we then calculated the weighted AROC to be:

$$AROC_i = \sum_{2001}^{2018} w_{yr} AROC_{i,yr}^l$$

Finally, we calculated the projections by applying the weighted AROC at each grid cell to our mean 2018 mean prevalence estimates:

$$Proj_{i,2025} = logit^{-1}(prev_{i,2018}^l + AROC_{i,j} \times 8).$$

We use the same process to project country-level and admin-level AROCs.

5.0. Supplementary Results

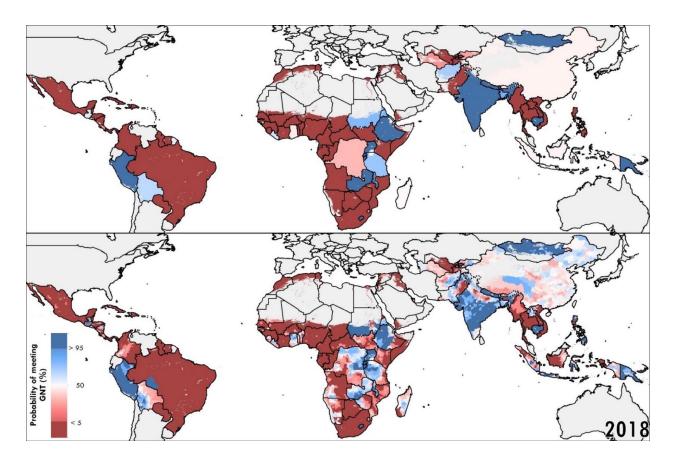
5.1. National differences in rates of change from 2000 to 2018

Supplementary Table 8. Countries with annualized increases and decreases in all districts

(a) Increases

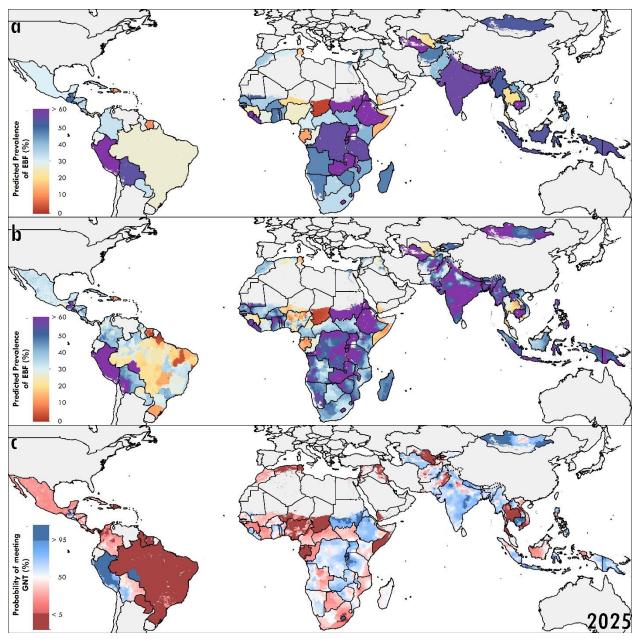
Countries with annualised	Countries with annualised	Countries with annualised
increases in all districts	increases >2.5% in all districts	increases >5% in all districts
(28 LMICs)	(25 LMICs)	(14 LMICs)
Angola, Bangladesh, Belize,	Angola, Bangladesh, Belize,	Angola, Burkina Faso, Côte
Botswana, Burkina Faso,	Botswana, Burkina Faso,	d'Ivoire, Eritrea, Guinea-
Burundi, Cambodia, Côte	Burundi, Cambodia, Côte	Bissau, Kenya, Mauritania,
d'Ivoire, Eritrea, Eswatini,	d'Ivoire, Eritrea, Eswatini,	Myanmar, Namibia, Sierra
Guinea-Bissau, Jamaica, Kenya,	Guinea-Bissau, Kenya,	Leone, South Africa, Sudan,
Lesotho, Liberia, Mauritania,	Lesotho, Liberia, Mauritania,	Turkmenistan, Zimbabwe
Morocco, Myanmar, Namibia,	Morocco, Myanmar, Namibia,	
Nepal, Palestine, São Tomé and	Palestine, São Tomé and	
Príncipe, Sierra Leone, South	Príncipe, Sierra Leone, South	
Africa, Sudan, Timor-Leste,	Africa, Sudan, Turkmenistan,	
Turkmenistan, Zimbabwe	Zimbabwe	

(b) Decreases


(c) Decreases and Increases

(S) E cer cuses	(c) Decreases and mere	as es
Countries with annualised	Countries with annualised	Countries with districts with
decreases in the majority of	decreases in all districts	annualised decreases (≤-2.5%)
districts	(1 LMIC)	and annualised increases (>5%)
(13 LMICs)		(7 LMICs)
Afghanistan, Bolivia, Brazil,	Chad	India, Mozambique, Niger,
Chad, Colombia, Comoros,		Nigeria, Philippines, Somalia,
Dominican Republic,		Thailand
Equatorial Guinea, Haiti,		
Jordan, Madagascar, Pakistan,		
Uzbekistan		

5.2. Achievement of the original WHO GNT (50% EBF) by 2018 and 2025


We mapped probabilities of LMICs meeting the original WHO GNT of ≥50% EBF by 2018 and 2025 (Supplementary Figures 16–18 and Figure 6). By 2018, more than half of LMICs (53.2% (50 of 94)) had low probability (<5%) of having already met the original WHO GNT of ≥50% EBF at a national level, while 27.7% (26 of 94) and 19.1% (18 of 94) of LMICs had low probability of having met this target in all their first-administrative level (e.g., provinces) and second-administrative-level units (e.g., districts), respectively. Overall, 11 LMICs had a high probability (>95%) of having already met the 50% EBF WHO GNT in 2018 at the national level: Burundi, Ethiopia, India, Cambodia, Lesotho, Mongolia, Nepal, Peru, Papua New Guinea, Rwanda and Uganda. Only 2 LMICs (Burundi and Rwanda), however, had a high probability of having met the 50% target in 2018 in all their provinces and districts. Across LMICs, 58.2% (14,286 of 24,556) of districts located in 63 LMICs had a low probability, and 5.7% (1,396 of 24,556) of districts in 25 LMICs had a high probability of having met the 50% EBF prevalence target in 2018. Ten LMICs had district-level units with both high and low probability of having met the 50% target in 2018: Afghanistan, Brazil, Guatemala, Indonesia, India, Laos, Pakistan, the Philippines, Sudan, and Tanzania.

Estimating probability of achieving the original WHO GNT of 50% EBF prevalence, 35.1% (33 of 94), 12.3% (12 of 94), and 8.5% (8 of 94) of LMICs are expected to have a low probability (<5%) of meeting this target by 2025 (the original target year) nationally, and in all of their province- and district-level units, respectively. On the other hand, 10 LMICs had a high probability (>95%) of achieving the 50% target in 2025 at the national level: Burundi, Indonesia, India, Cambodia, Lesotho, Mongolia, Nepal, Rwanda, Sudan. Subnationally, only 3 LMICs (Burundi, Lesotho, Rwanda) have a high probability of meeting the 50% target by 2025 in all provinces, as well as in all districts. Across the 94 LMICs in our analysis, 4.2% (1,042 of 24,556) of districts located in 23 LMICs have a high probability, while 40.2% (9,861 of 24,556) of districts in 42 LMICs have a low probability of meeting the ≥50% target by 2025. Broad inequalities are expected to continue and eight LMICs are expected to have both high and low probabilities of achieving the 50% target by 2025 in their district-level units: Afghanistan, Benin, Brazil, Indonesia, India, Laos, Pakistan, and the Philippines.

Supplementary Figure 16. Probability of meeting the ≥50% WHO GNT for EBF in 2018

a–b, Probability of having met the WHO GNT of at least 50% exclusive breastfeeding prevalence in 2018 at the national level (**a**) and second administrative level (**b**). Dark blue indicates a high probability (>95% posterior probability) and dark red indicates a low probability (<5% posterior probability) of having met the WHO GNT by 2018. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Figure 17. Projected prevalence for exclusive breastfeeding for 2025 and probability of meeting the WHO GNT by 2025

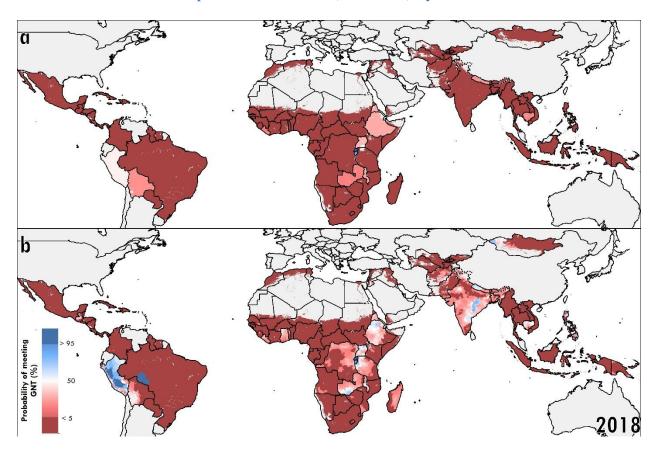
a–b, Projected exclusive breastfeeding prevalence for 2030 at the national (**a**) and second administrative level (**b**). **c**, Probability of meeting the WHO GNT of at least 70% exclusive breastfeeding prevalence by 2030 at the second administrative level. Dark blue indicates a high probability (>95% posterior probability) and dark red indicates a low probability (<5% posterior probability) of meeting the WHO GNT by 2030. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1 × 1-km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Table 9. Countries and administrative units achieving the original WHO GNT of 50% prevalence of EBF with high and low probabilities

(a) High probability (>95% posterior probability) of achieving the original WHO GNT of 50% prevalence of EBF

Region	High proba	ability in mee	ting the	High probabil	lity in meeting	the WHO	
	WHO GNT	Tat National	or in all	GNT at National or in all			
	Administra	tive units by	2018	Administrativ	e units by 202	25	
	National	All Admin	All Admin	National All Admin All Adn			
		1 Units	2 Units		1 Units	2 Units	
Andean South	Peru			Peru			
America							
Eastern sub-	Burundi,	Burundi,	Burundi,	Burundi,	Burundi,	Burundi,	
Saharan Africa	Ethiopia,	Rwanda	Rwanda	Rwanda,	Rwanda	Rwanda	
	Rwanda,						
	Uganda,						
Southern sub-	Lesotho			Lesotho	Lesotho	Lesotho	
Saharan Africa							
North Africa				Sudan			
South Asia	India,			India, Nepal			
	Nepal						
Southeast Asia	Cambodia			Cambodia			
East Asia	Mongolia			Mongolia			
Oceania	Papua			Indonesia			
	New						
	Guinea						

The regions of Western sub-Saharan Africa, Central sub-Saharan Africa, and Central Asia did not have any countries that had a high probability of achieving the original WHO GNT of 50% EBF in 2018 or 2025 at the national level or in all first or all second administrative-level units.


(b) Low probability (<5% posterior probability) of achieving the original WHO GNT of 50% prevalence of EBF

Region	Low probability	v in meeting t	he WHO	Low probab	ility in meetin	g the WHO		
8	GNT at Nationa				ional or in all	8		
	units by 2018			Administrat	Administrative units by 2025			
	National	All Admin	All Admin	National	All Admin	All Admin		
		1 Units	2 Units		1 Units	2 Units		
Central	Belize, Cuba,	Belize,	Belize,	Belize,	Dominican	Dominican		
America and	Dominican	Dominican	Dominican	Dominican	Republic	Republic		
the Caribbean	Republic,	Republic,	Republic,	Republic,				
	Honduras,	Mexico,	Panama	Mexico,				
	Haiti, Jamaica,	Panama		Panama				
	Mexico,							
	Nicaragua,							
	Panama							
Andean South	Colombia,	Trinidad	Trinidad	Colombia,	Trinidad	Trinidad		
America	Trinidad and	and	and	Trinidad	and Tobago	and Tobago		
	Tobago	Tobago	Tobago	and				
				Tobago				
Tropical South	Brazil,	Guyana,	Guyana,	Brazil,	Guyana,	Paraguay,		
America	Guyana,	Paraguay,	Paraguay,	Guyana,	Paraguay,	Suriname		
	Paraguay,	Suriname	Suriname	Paraguay,	Suriname			
	Suriname			Suriname				
Western sub-	Benin, Chad,	Chad, Côte	Chad,	Benin,	Chad	Chad		
Saharan Africa	Côte d'Ivoire,	d'Ivoire,	Niger	Cameroon,				
	Cameroon,	Niger,		Chad,				
	Guinea,			Guinea,				
	Gambia, Mali,			Niger,				
	Niger, Nigeria,			Nigeria				
	Senegal							
Central sub-	Angola,	Comoros,	Comoros,	Comoros,	Comoros,	Comoros,		
Saharan Africa	Central	Equatorial	Equatorial	Equatorial	Gabon,	Gabon		
	African	Guinea,	Guinea,	Guinea,	Somalia,			
	Republic,	Gabon,	Gabon,	Gabon,	Yemen			
	Comoros,	Republic of	Somalia	Republic of				
	Equatorial	the Congo,		the Congo,				
	Guinea,	Somalia,		Somalia,				
	Gabon, Republic of the	Yemen		Yemen				
	1							
	Congo, Somalia,							
	Yemen							
Southern sub-		South		South				
Saharan Africa	Botswana,	Africa		Africa				
Sanaran Airica	South Africa,	Affica		AIIICa		<u> </u>		

North Africa	Algeria,	Algeria,	Algeria,	Algeria,	Tunisia	Tunisia
	Morocco,	Tunisia	Tunisia	Tunisia		
	Tunisia					
Middle East	Iraq, Jordan,	Iraq,	Jordan,	Iraq,		
	Palestine, Syria	Jordan,	Palestine	Jordan,		
		Palestine		Palestine		
Central Asia	Pakistan,	Tajikistan,	Uzbekistan	Pakistan,	Uzbekistan	Uzbekistan
	Tajikistan,	Uzbekistan		Tajikistan,		
	Uzbekistan			Uzbekistan		
Southeast Asia	Laos,	Thailand		Thailand,		
	Myanmar,			Vietnam		
	Thailand,					
	Vietnam					
Oceania	The					
	Philippines					

The regions of East Asia and South Asia did not have any countries that had a low probability of achieving the original WHO GNT of 50% EBF in 2018 or 2025 at the national level or in all first or all second administrative-level units.

5.3. Achievement of the updated WHO GNT (70% EBF) by 2030

Supplementary Figure 18. Probability of meeting the ≥70% WHO GNT for EBF in 2018

a–b, Probability of having met the WHO GNT of at least 70% exclusive breastfeeding prevalence in 2018 at the national level (**a**) and second administrative level (**b**). Dark blue indicates a high probability (>95% posterior probability) and dark red indicates a low probability (<5% posterior probability) of having met the WHO GNT by 2018. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1 × 1-km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Table 10. Countries and administrative units achieving the updated WHO GNT of 70% prevalence of EBF with high and low probabilities

(a) High probability (>95% posterior probability) of achieving the updated WHO GNT of 70% prevalence of EBF

Region	High probability in meeting the WHO GNT at National or in all Administrative units by 2018			High probability in meeting the WHO GNT at National or in all Administrative units by 2030			
	National	All Admin 1 Units	All Admin 2 Units	National	All Admin 1 Units	All Admin 2 Units	
Eastern sub- Saharan Africa	Rwanda	Rwanda					

The regions of Andean South America, Central America and the Caribbean, Tropical South America, Western sub-Saharan Africa, Central sub-Saharan Africa, Southern sub-Saharan Africa, North Africa, Middle East, Central Asia, South Asia, Southeast Asia, East Asia, and Oceania did not have any countries that had a high probability of achieving the updated WHO GNT of 70% in 2018 or 2030 at the national level or in all first or all second administrative-level units.

(b) Low probability (<5% posterior probability) of achieving the updated WHO GNT of 70% prevalence of EBF

Region	Low probability in meeting the WHO GNT at National or in all Administrative units by 2018			Low probability in meeting the WHO GNT at National or in all Administrative units by 2030		
	National	All Admin 1 Units	All Admin 2 Units	National	All Admin 1 Units	All Admin 2 Units
Central America and the Caribbean	Belize, Costa Rica, Cuba, Dominican Republic, Guatemala, Honduras, Haiti, Jamaica, Mexico, Nicaragua, Panama, El Salvador	Belize, Costa Rica, Cuba, Dominican Republic, Honduras, Haiti, Jamaica, Mexico, Nicaragua, Panama, El Salvador	Belize, Costa Rica, Cuba, Dominican Republic, Haiti, Jamaica, Mexico, Nicaragua, Panama	Belize, Cuba, Dominican Republic, Honduras, Haiti, Jamaica, Mexico, Nicaragua, Panama	Belize, Dominica n Republic, Mexico, Panama	Belize, Dominica n Republic
Andean South America	Colombia, Trinidad and Tobago	Colombia, Trinidad and Tobago	Trinidad and Tobago	Colombia, Trinidad and Tobago	Trinidad and Tobago	Trinidad and Tobago
Tropical South America	Brazil, Guyana, Paraguay, Suriname	Guyana, Paraguay, Suriname	Guyana, Paraguay, Suriname	Brazil, Guyana, Paraguay, Suriname	Guyana, Paraguay, Suriname	Guyana, Paraguay, Suriname
Eastern sub- Saharan Africa	Comoros, Kenya, Madagascar, Mozambique, Somalia, South Sudan, Tanzania, Yemen	Comoros, Somalia, South Sudan, Yemen	Comoros, Somalia, Yemen	Comoros, Somalia, Yemen	Comoros, Somalia, Yemen	Comoros
Western sub- Saharan Africa	Benin, Burkina Faso, Côte d'Ivoire, Cameroon, Ghana, Guinea, Gambia, Guinea- Bissau,	Benin, Burkina Faso, Côte d'Ivoire, Cameroon, Guinea, Gambia, Mali, Mauritania, Niger,	Benin, Côte d'Ivoire, Cameroon, Guinea, Gambia, Mali, Niger, Nigeria, Chad	Benin, Côte d'Ivoire, Cameroon, Guinea, Gambia, Niger, Nigeria, Senegal, Chad	Nigeria, Chad	Chad

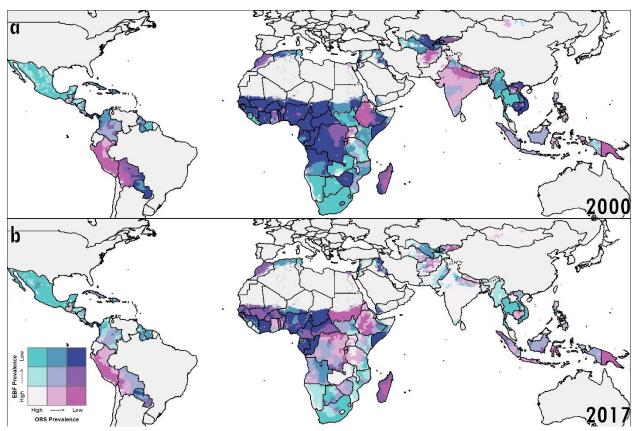
Middle East	Morocco, Sudan, Tunisia	Sudan, Tunisia Iraq,	Sudan, Tunisia	Morocco, Tunisia Iraq, Jordan,	Iraq,	Jordan,
North Africa	Algeria, Egypt,	Algeria, Egypt, Morocco,	Algeria, Egypt, Morocco,	Algeria, Egypt,	Algeria, Morocco, Tunisia	Tunisia
Southern sub- Saharan Africa	Botswana, Eswatini, Lesotho, Namibia, South Africa, Zimbabwe	Botswana, Eswatini, Namibia, South Africa, Zimbabwe	Botswana, Eswatini, Namibia, South Africa	Botswana, South Africa		
Central sub- Saharan Africa	Mauritania, Niger, Nigeria, Senegal, Sierra Leone, Chad, Togo Angola, Central African Republic, Democratic Republic of the Congo, Republic of Congo, Gabon, Equatorial Guinea	Nigeria, Sierra Leone, Chad Central African Republic, Republic of Congo, Gabon, Equatorial Guinea	Central African Republic, Republic of Congo, Gabon, Equatorial Guinea	Central African Republic, Republic of Congo, Gabon, Equatorial Guinea	Gabon	Gabon

Southeast	Laos,	Laos,	Myanmar,	Laos,	Thailand	
Asia	Myanmar,	Myanmar,	Thailand,	Thailand,		
	Thailand,	Thailand,	Vietnam	Vietnam		
	Vietnam	Vietnam				
East Asia	Mongolia			Mongolia		
Oceania	Indonesia,	Timor-Leste	Timor-Leste	Indonesia,		
	The			the		
	Philippines,			Philippines,		
	Papua New			Papua New		
	Guinea,			Guinea		
	Timor-Leste					

All regions had at least one country that had a low probability of achieving the updated WHO GNT of 70% EBF in 2018 or 2030 at the national level or in all first or all second administrative-level units.

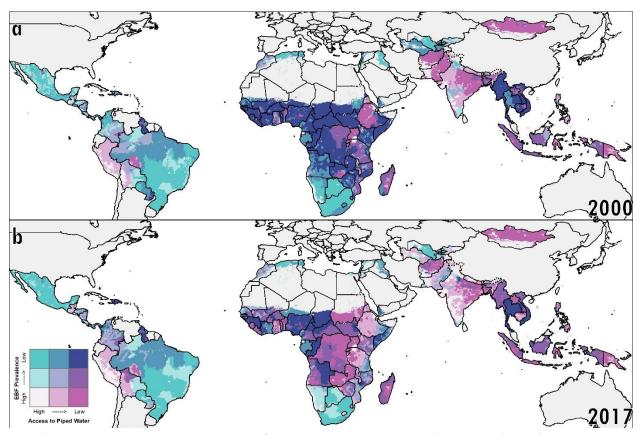
5.4. Global Breastfeeding Scorecard (GBS) Exemplars

Supplementary Table 11. Countries meeting and not meeting GBS^{44} criteria

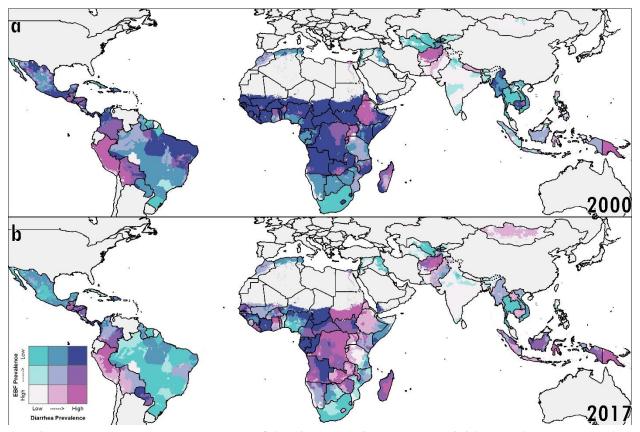

(a) Meeting GBS Criteria

\$4.70 per	Comprehensive	Met minimum	Individual	≥50% births	Implemented
newborn on	Code	recommendations	breastfeeding	in Baby	community
breastfeeding	Legislation	of 14 weeks paid	counselling in	Friendly	programs in all
_	(24 LMICs)	_	_	•	districts
support	(24 LIVIICS)	maternity leave and	all primary	hospitals and	
programs		appropriate	healthcare	maternities	(29 <i>LMICs</i>)
(6 LMICs)		workplace nursing	facilities	(6 LMICs)	
	101	areas (6 LMICs)	(28 LMICs)	G . D:	D1 . D .!!
Guinea-	Afghanistan,	Colombia, Cuba,	Bhutan,	Costa Rica,	Bhutan, Brazil,
Bissau, Haiti,	Bangladesh,	India, Paraguay,	Burkina Faso,	Cuba,	Côte d'Ivoire,
Nepal,	Benin, Bolivia,	Tajikistan, Vietnam	Comoros,	Eswatini,	Cuba, Eritrea,
Rwanda,	Botswana,		Côte d'Ivoire,	Tajikistan,	Eswatini,
Somalia,	Brazil,		El Salvador,	Thailand,	Ethiopia,
Timor-Leste	Dominican		Eritrea,	Turkmenistan	Guatemala,
	Republic,		Gambia,		Guyana,
	Gabon, Gambia,		Ghana,		Honduras,
	Ghana, India,		Indonesia,		Jamaica,
	Madagascar,		Jamaica,		Kyrgyzstan,
	Mozambique,		Lesotho,		Lesotho, Liberia,
	Nepal, Pakistan,		Liberia,		Madagascar,
	Panama, Peru,		Malawi,		Malawi,
	Philippines,		Mexico,		Morocco,
	South Africa,		Morocco,		Mozambique,
	Uganda,		Mozambique,		Nepal, the
	Tanzania,		Namibia,		Philippines,
	Vietnam,		Nepal,		Rwanda, São
	Yemen,		Rwanda, São		Tomé and
	Zimbabwe		Tomé and		Príncipe, Sierra
			Príncipe,		Leone, South
			South Africa,		Africa,
			Suriname,		Suriname,
			Timor-Leste,		Timor-Leste,
			Turkmenistan,		Uganda,
			Uganda,		Vietnam,
			Uzbekistan,		Zambia
			Vietnam,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			Zambia		
			Zumora		

(b) Not meeting GBS Criteria⁴⁴

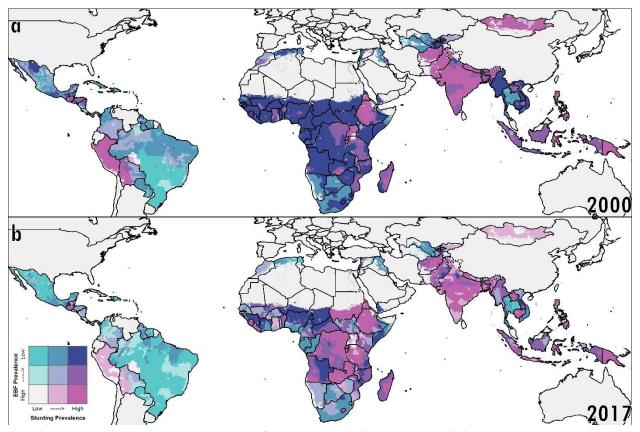

(b) Not meeting GBS Criteria	
<\$1 per newborn on breastfeeding	No legal measures protecting against BMS marketing
support programs	(25 LMICs)
(50 LMICs)	
Algeria, Angola, Belize, Benin,	Angola, Belize, Bhutan, Central African Republic,
Botswana, Brazil, Cameroon,	Chad, Republic of Congo, Equatorial Guinea, Eritrea,
Central African Republic, Chad,	Eswatini, Guinea, Guyana, Haiti, Jamaica, Lesotho,
Colombia, Costa Rica, Côte	Liberia, Mauritania, Morocco, Namibia, São Tomé and
d'Ivoire, Cuba, Democratic	Príncipe, Sierra Leone, Somalia, South Sudan,
Republic of the Congo, Dominican	Suriname, Timor-Leste, Togo
Republic, Egypt, El Salvador,	
Eritrea, Eswatini, Gabon,	
Guatemala, Guinea, India,	
Indonesia, Iraq, Jamaica, Jordan,	
Kenya, Lesotho, Madagascar,	
Mexico, Morocco, Myanmar,	
Nigeria, Pakistan, Panama, Papua	
New Guinea, Paraguay, the	
Philippines, South Africa, Sudan,	
Suriname, Syria, Tajikistan,	
Thailand, Togo, Tunisia,	
Turkmenistan, Uzbekistan, Vietnam	

5.5. Comparison of EBF with respect to other key indicators

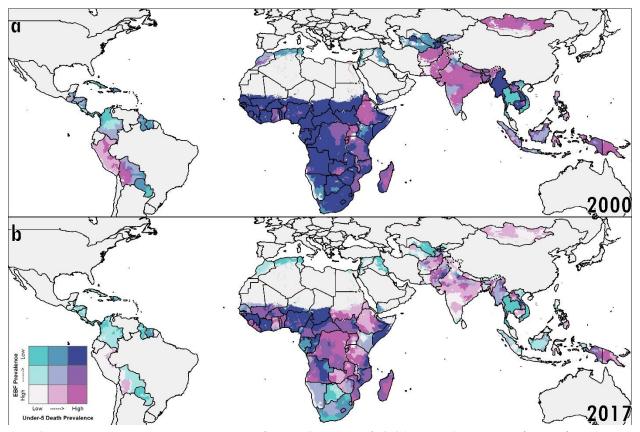


Supplementary Figure 19. Comparison of ORS (oral rehydration solution) prevalence among children under 5 years and EBF prevalence by area

Overlapping population-weighted tertiles of ORS prevalence (in children under 5 years) 45 and EBF prevalence (in children under 6 months) in 2000 and 2017. Cut-offs for the tertiles were 32.5% and 48.2% for the EBF prevalence axis, and 31.7% and 48.3% for the ORS prevalence axis. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1 \times 1-km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis $^{26-31}$.



Supplementary Figure 20. Comparison of access to piped water and EBF prevalence by area Overlapping population-weighted tertiles of access to piped (improved) waster 46 and EBF prevalence (in children under 6 months) in 2000 and 2017. Cut-offs for the tertiles were 32.5% and 48.2% for the EBF prevalence axis, and 31.0% and 64.6% for the access to piped (improved) water axis. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1 \times 1-km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis $^{26-31}$.


Supplementary Figure 21. Comparison of diarrhea prevalence among children under 5 years and EBF prevalence by area

Overlapping population-weighted tertiles of diarrhea prevalence (in children under 5 years)³⁸ and EBF prevalence (in children under 6 months) in 2000 and 2017. Cut-offs for the tertiles were 32.5% and 48.2% for the EBF prevalence axis, and 2.4% and 3.8% for the diarrhea prevalence axis. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Figure 22. Comparison of stunting prevalence among children under 5 years and EBF prevalence by area

Overlapping population-weighted tertiles of stunting prevalence (in children under 5 years)³⁴ and EBF prevalence (in children under 6 months) in 2000 and 2017. Cut-offs for the tertiles were 32.5% and 48.2% for the EBF prevalence axis, and 15.4% and 33.1% for the stunting prevalence axis. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis^{26–31}.

Supplementary Figure 23. Comparison of mortality rate of children under 5 years (U5MR) and EBF prevalence by area

Overlapping population-weighted tertiles of U5MR 37 and EBF prevalence (in children under 6 months) in 2000 and 2017. Cut-offs for the tertiles were 32.5% and 48.2% for the EBF prevalence axis, and 3.2% and 6.1% for the U5MR axis. Maps reflect administrative boundaries, land cover, lakes, and population; grey-colored grid cells had fewer than ten people per 1×1 -km grid cell and were classified as "barren or sparsely vegetated", or were not included in this analysis $^{26-31}$.

Supplementary Table 12. First administrative-level units with the lowest decile of EBF prevalence, as well as either the lowest decile of oral rehydration solution (ORS) coverage, highest prevalence of child diarrheal disease, highest decile of child stunting prevalence, or highest under-5 mortality rates, for year 2017.

		Low ORS	High Diarrheal Disease	High Stunting	High Under-5 Mortality	Low access to piped water
Region	Country	Admin 1 Units	Admin 1 Units	Admin 1 Units	Admin 1 Units	Admin 1 Units
WSSA	Chad	Mayo-Kebbi	Mayo-Kebbi	Mayo-Kebbi	Mayo-Kebbi	
		Ouest,	Ouest,	Ouest,	Ouest,	
		Mayo-Kebbi	Mayo-Kebbi		Mayo-Kebbi	
		Est,	Est,		Est,	
		Logone	Logone		Logone	
		Occidental,	Occidental,		Occidental,	
		Mandoul,	Mandoul,		Mandoul,	
		Tandjilé,	Tandjilé,		Tandjilé,	
		Logone	Logone		Logone	
		Oriental,	Oriental,		Oriental,	
		Hadjer-Lamis,	Hadjer-Lamis,	Hadjer-Lamis,	Hadjer-Lamis,	
		Salamat,	Salamat,		Salamat,	
		Chari-	Chari-		Chari-	
		Baguirmi,	Baguirmi,		Baguirmi,	
		Batha,	Batha,	Batha,	Batha,	
		Moyen-Chari,	Moyen-Chari,		Moyen-Chari,	
		Lac,	Lac,	Lac,	Lac,	
		Barh el	Barh el	Barh el	Barh el	
		Ghazel,	Ghazel,	Ghazel,	Ghazel,	
		Guéra,	Guéra,		Guéra,	
		Borkou,	Borkou,	Borkou,	Borkou,	
		Ennedi Ouest,	Ennedi Ouest,	Ennedi Ouest,	Ennedi Ouest,	
		Kanem,	Kanem,	Kanem,	Kanem,	
		Ennedi Est,		Ennedi Est,		
		Tibesti,	Tibesti,	Tibesti,	Tibesti,	
		Ouaddaï,	Ouaddaï,		Ouaddaï,	
		Sila,	Sila,		Sila,	
		Wadi Fira,	Wadi Fira,	Wadi Fira		
		Ville de	Ville de		Ville de	
		N'Djamena	N'Djamena		N'Djamena	
	Nigeria	Yobe,		Yobe,	Yobe,	
		Bauchi,		Bauchi,	Bauchi,	
		Kebbi		Kebbi,	Kebbi,	
				Katsina,	Katsina,	
				Jigawa,	Jigawa,	
				Kano	Kano,	
					Niger	

	Niger		Zinder, Diffa	Zinder,	
				Dosso	
ESSA	Yemen	Shabwah, Abyan, `Adan, Ma'rib, Lahij, Ta`izz, Al Bayda', Al Dali', Al Hudaydah, Ibb	Al Dali',		
	Somalia			Nugaal, Sool, Galguduud, Mudug, Shabeellaha Dhexe, Bari, Sanaag, Shabeellaha Hoose, Togdheer	
	Comoros				Mwali
CSSA	Gabon	Woleu-Ntem			
SEAS	Thailand				Sakon Nakhon, Roi Et, Bangkok Metropolis, Maha Sarakham, Songkhla, Mwali, Udon Thani, Nakhon Si Thammarat, Surat Thani, Khon Kaen

WSSA=Western sub-Saharan Africa, ESSA=Eastern sub-Saharan Africa, CSSA=Central sub-Saharan Africa, SEAS=Southeast Asia

6.0. Limitations

Data Availability

This work should be assessed in full acknowledgement of the data and methodological limitations. Most importantly, the accuracy of our estimates is critically dependent on the quantity and quality of the underlying data. Availability of relevant data varies both spatially and temporally across LMICs (Supplementary Figures 1–5). For example, temporal data gaps are observed in South Sudan (for the 2000–2002 period) and in Namibia (for the 2008–2012 period), whereas spatial data gaps are seen in Botswana (for the 2003–2007 period) and in South Africa (for the 2013–2018 period). We have constructed a large database of geo-located EBF prevalence data for the purposes of this analysis; nonetheless, important gaps in data coverage, both spatial and temporal, remain (Supplementary Figures 1–5), and these gaps are main sources of uncertainty around our estimates (as seen in Extended Data Figure 3).

More local data are necessary to monitor health outcomes and guide quality improvement efforts and increase certainty of our results. Collecting local data from all communities every year would be an insurmountable task for most countries; this study aids in filling the current knowledge gap by producing estimates for areas without data collection based on learned patterns from well-surveyed areas, using the same estimation methods for all areas for comparable results across communities.

Data Accuracy

In addition, there are several factors related to data quality that should be acknowledged. Data in our analyses were obtained from caregivers of infants at any time point between birth and 6 months of age. Though an infant's EBF status was based on a single time point (the 24 hours preceding the survey interview), which is known to over-estimate EBF practice for the full sixmonth period as infants may be fed other foods and liquids either before or after the survey, this estimation is standard practice^{47–51}. Following the standard approach for estimating EBF based on international guidelines, the proportion of infants who are exclusively breastfed for the full six months is calculated by estimating prevalence of EBF for all children under 6 months of age (though EBF is known to decline with age). Due to the age range (0–5 months-old infants) relevant to the purpose of estimating EBF prevalence, our sample sizes are relatively smaller than previous efforts mapping localised estimates for health conditions, outcomes, and socioeconomic indicators^{34,36–38}, further contributing to the relatively large degree of uncertainty associated with our estimates.

The location information associated with the data compiled for these analyses is subject to some error. In order to protect respondents' confidentiality, most surveys that collect GPS coordinates perform some type of random displacement on those coordinates prior to releasing data for secondary analyses. For example, GPS coordinates for Demographic and Health Surveys (DHS) are displaced by up to 2 km for urban clusters, up to 5 km for most rural clusters, and up to 10 km in a random 1% of rural clusters⁵². Furthermore, data associated with polygons rather than GPS coordinates were resampled so that they could be included in the geostatistical model, but this process essentially assumes that EBF prevalence is constant over the polygon. Research on scalable methods for better integration of polygon data in geostatistical models similar to those used in this analysis is currently ongoing.

Modelling Limitations

With respect to the modelling strategy, the primary limitation is the difficulty in assessing model performance at the grid-cell level. We used cross-validation to assess model performance but due to the substantial impact of sampling error on estimates derived from single survey clusters, it was necessary to aggregate both the data and predictions when assessing error. Additionally, while we have attempted to propagate uncertainty from various sources through the different modelling stages, there are some sources of uncertainty that have not been propagated. In particular, it was not computationally feasible to propagate uncertainty from the sub-models in stacking through the geostatistical model. Similarly, although the WorldPop population raster is also composed of estimates associated with some uncertainty, this uncertainty is difficult to quantify and not currently reported, and so we were unable to propagate this uncertainty into our estimates of EBF prevalence for administrative units that were created using population-weighted averages of grid-cell estimates.

Model fitting was carried out using an integrated nested Laplace approximation to the posterior distribution, as implemented in the R-INLA package⁴². Prediction from fitted models was subsequently carried out using the inla.posterior.sample() function, which generates samples from the approximated posterior of the fitted model. Both model fitting and prediction thus require approximations, and these approximations may introduce error. While it is difficult to assess the impact of these approximations in this particular use case, our validation analysis found that our final model has low bias and good coverage of the 95% prediction intervals which provides some reassurance that the approximation method used—as well as other potential sources of error—are not resulting in appreciable bias or poorly described uncertainty in our reported estimates.

Furthermore, our projection methods are derived from the previous spatiotemporal historical trends and based on the assumption that recent trends will continue; thus, we are not projecting underlying drivers (such as increasing urbanisation or changes in population)^{7,53,54}.

7.0. Supplementary Discussion

Additional barriers to EBF include cultural perceptions and generational feeding practices, which can be highly variable across communities. Mothers who perceive their breast milk to be insufficient or nutritionally inadequate are more likely to discontinue practice of EBF⁵⁵. Infant cues when feeding (such as fussiness and crying) and problems when breastfeeding (such as breast pain or engorgement, or problems latching) are commonly cited barriers to EBF⁵⁵. A common misconception and practice is the discarding of mothers' early breast milk (colostrum), which has important protective properties for infants, as it is perceived to be sour and difficult to digest^{56–58}. This instead is replaced by prelacteal feeding of water, formula, or animal milk, and makes establishing breastfeeding difficult 55,57,58. Some cultural practices involve feeding newborns water, sugar water, tea, honey, butter, animal milk, or porridges before they are fed at the breast, or during their first few months of life^{56,57}. Breastfeeding counselling to increase maternal knowledge on the importance of EBF and provide lactation support can help counteract these barriers^{56,55}. Fathers and grandparents can influence a woman's decision to breastfeed^{56,57,59}, whereas positive encouragement from family and sharing of household responsibilities increases the likelihood mothers will continue breastfeeding for the newborn's first six months^{55,56}.

The subnational maps in this study highlight where further efforts are needed to reduce barriers to breastfeeding so more infants can receive the health benefits of EBF. Furthermore, when combined with maps of other health conditions and interventions, these estimates provide policy makers with quantitative tools for evaluating subnational health disparities and needs and identifying sub-populations that could benefit most from targeted investments. Lessons learned from countries that have made progress towards the WHO GNT could also be adapted and applied in other contexts, where appropriate. The WHO-UNICEF Global Breastfeeding Collective (GBC) provides government leaders with key policy actions to provide a supportive environment to encourage breastfeeding. Further local investigations of the underlying drivers of these subnational inequalities, including on local customs and perceptions of breastfeeding, is important for planning and implementing effective strategies and behaviour change interventions to increase EBF practice.

8.0. Collaborators and Affiliations

LBD EBF Stage II Collaborators

Natalia V Bhattacharjee, ¹ Lauren E Schaeffer, ^{2,3} Dan Lu, ¹ Megan F Schipp, ¹ Alice Lazzar-Atwood, ¹ Katie M Donkers, ¹ Gdiom Gebreheat Abady, ⁴ Prof. Foad Abd-Allah, ⁵ Prof. Ahmed Abdelalim, ⁵ Zeleke Hailemariam Abebo, ⁶ Ayenew Negesse Abejie, ⁷ Akine Eshete Abosetugn, ⁸ Prof. Lucas Guimarães Abreu, ⁹ Michael R M Abrigo, ¹⁰ Eman Abu-Gharbieh, ¹¹ Abdelrahman I Abushouk, ^{12,13} Aishatu L Adamu, ^{14,15} Isaac Akinkunmi Adedeji, ¹⁶ Adeyinka Emmanuel Adegbosin,¹⁷ Victor Adekanmbi,¹⁸ Olatunji O Adetokunboh,^{19,20} Prof. Marcela Agudelo-Botero,²¹ Budi Aji,²² Oluwaseun Oladapo Akinyemi,^{23,24} Alehegn Aderaw Alamneh,²⁵ Fahad Mashhour Alanezi, ²⁶ Turki M Alanzi, ²⁷ James Albright, ¹ Jacqueline Elizabeth Alcalde-Rabanal,²⁸ Biresaw Wassihun Alemu,^{29,30} Robert Kaba Alhassan,³¹ Beriwan Abdulqadir Ali,^{32,33} Saqib Ali, ³⁴ Cyrus Alinia, ³⁵ Vahid Alipour, ^{36,37} Arianna Maever L Amit, ^{38,39} Dickson A Amugsi, ⁴⁰ Etsay Woldu Anbesu, ⁴¹ Prof. Robert Ancuceanu, ⁴² Mina Anjomshoa, ⁴³ Fereshteh Ansari, 44,45 Carl Abelardo T Antonio, 46,47 Davood Anvari, 48,49 Jalal Arabloo, 36 Amit Arora, 50,51 Kurnia Dwi Artanti,⁵² Mulusew A Asemahagn,⁵³ Wondwossen Niguse Asmare,⁵⁴ Maha Moh'd Wahbi Atout,⁵⁵ Prof. Marcel Ausloos,^{56,57} Nefsu Awoke,⁵⁸ Beatriz Paulina Ayala Quintanilla,⁵⁹ Martin Amogre Ayanore,⁶⁰ Yared Asmare Aynalem,⁶¹ Muluken Altaye Ayza,⁶² Zelalem Nigussie Azene,⁶³ Darshan B B,⁶⁴ Ashish D Badiye,⁶⁵ Atif Amin Baig,⁶⁶ Shankar M Bakkannavar,⁶⁷ Prof. Maciej Banach,^{68,69} Palash Chandra Banik,⁷⁰ Prof. Till Winfried Bärnighausen, ^{71,72} Prof. Huda Basaleem, ⁷³ Mohsen Bayati, ⁷⁴ Bayisa Abdissa Baye, ⁷⁵ Prof. Neerai Bedi, ^{76,77} Sefealem Assefa Belay, ⁷⁸ Akshaya Srikanth Bhagavathula, ^{79,80} Dinesh Bhandari, ^{81,82} Prof. Nikha Bhardwaj, ⁸³ Pankaj Bhardwaj, ^{84,85} Prof. Zulfiqar A Bhutta, ^{86,87} Ali Bijani, ⁸⁸ Tsegaye Adane Birhan, ⁸⁹ Binyam Minuye Birihane, ^{90,91} Zebenay Workneh Bitew, ^{92,93} Somayeh Bohlouli,⁹⁴ Mahdi Bohluli,^{95,96} Hunduma Amensisa Bojia,⁹⁷ Archith Boloor,⁹⁸ Oliver J Brady,⁹⁹ Nicola Luigi Bragazzi, ¹⁰⁰ Prof. Andre R Brunoni, ^{101,102} Shyam S Budhathoki, ¹⁰³ Prof. Sharath Burugina Nagaraja, ¹⁰⁴ Zahid A Butt, ^{105,106} Prof. Rosario Cárdenas, ¹⁰⁷ Prof. Joao Mauricio Castaldelli-Maia, ¹⁰⁸ Franz Castro, ¹⁰⁹ Achille Cernigliaro, ¹¹⁰ Jaykaran Charan, ¹¹¹ Pranab Chatterjee, ¹¹² Souranshu Chatterjee, ¹¹³ Vijay Kumar Chattu, ^{114,115} Sarika Chaturvedi, ¹¹⁶ Mohiuddin Ahsanul Kabir Chowdhury, ^{117,118} Dinh-Toi Chu, ¹¹⁹ Michael L Collison, ¹ Aubrey J Cook, Michael A Cork, Rosa A S Couto, Baye Dagnew, Haijiang Dai, Prof. Lalit Dandona, ^{124,1,125} Prof. Rakhi Dandona, ^{124,1,126} Parnaz Daneshpajouhnejad, ^{127,128} Aso Mohammad Darwesh, ¹²⁹ Amira Hamed Darwish, ¹³⁰ Prof. Ahmad Daryani, ¹³¹ Jai K Das, ¹³² Rajat Das Gupta, ^{118,133} Claudio Alberto Dávila-Cervantes, ¹³⁴ Prof. Adrian Charles Davis, ^{135,136} Nicole Davis Weaver, ¹ Edgar Denova-Gutiérrez, ¹³⁷ Kebede Deribe, ^{138,139} Assefa Desalew, ¹⁴⁰ Aniruddha Deshpande,¹⁴¹ Awrajaw Dessie,⁸⁹ Keshab Deuba,^{142,143} Prof. Samath Dhamminda Dharmaratne, ^{144,126,1} Meghnath Dhimal, ¹⁴⁵ Govinda Prasad Dhungana, ¹⁴⁶ Prof. Daniel Diaz, ^{147,148} Alireza Didarloo, 149 Isaac Oluwafemi Dipeolu, 150 Linh Phuong Doan, 151 Bereket Duko, 152,153 Prof. Andre Rodrigues Duraes, ^{154,155} Laura Dwyer-Lindgren, ^{1,126} Lucas Earl, ¹ Prof. Maysaa El Sayed Zaki, ¹⁵⁶ Prof. Maha El Tantawi, ¹⁵⁷ Teshome Bekele Elema, ^{158,159} Prof. Hala Rashad Elhabashy, ¹⁶⁰ Shaimaa I El-Jaafary, ⁵ Pawan Sirwan Faris, ^{161,162} Prof. Andre Faro, ¹⁶³ Prof. Farshad Farzadfar, ¹⁶⁴ Prof. Valery L Feigin, ^{165,1,166} Berhanu Elfu Feleke, ¹⁶⁷ Tomas Y Ferede, ¹⁶⁸ Florian Fischer, ¹⁶⁹ Nataliya A Foigt, ¹⁷⁰ Prof. Morenike Oluwatoyin Folayan, ¹⁷¹ Richard Charles Franklin, ¹⁷² Mohamed M Gad, ^{173,174} Shilpa Gaidhane, ¹⁷⁵ William M Gardner, ¹ Biniyam Sahiledengle Geberemariyam, ¹⁷⁶ Birhan Gebresillassie Gebregiorgis, ⁶¹ Ketema Bizuwork Gebremedhin, ¹⁷⁷ Berhe Gebremichael, ¹⁷⁸ Fariborz Ghaffarpasand, ¹⁷⁹ Prof. Syed Amir

Gilani, ^{180,181} Themba G Ginindza, ¹⁸² Mustefa Glagn, ¹⁸³ Mahaveer Golechha, ¹⁸⁴ Dr Kebebe Bekele Gonfa, ¹⁸⁵ Prof. Bárbara Niegia Garcia Goulart, ¹⁸⁶ Nachiket Gudi, ¹⁸⁷ Davide Guido, ¹⁸⁸ Rashid Abdi Guled, ¹⁸⁹ Prof. Yuming Guo, ^{190,191} Prof. Samer Hamidi, ¹⁹² Demelash Woldeyohannes Handiso, 193 Ahmed I Hasaballah, 194 Amr Hassan, 5 Khezar Hayat, 195,196 Mohamed I Hegazy,⁵ Behnam Heidari,¹⁹⁷ Nathaniel J Henry,¹⁹⁸ Prof. Claudiu Herteliu,^{57,199} Hagos Degefa de Hidru, ²⁰⁰ Hung Chak Ho, ²⁰¹ Chi Linh Hoang, ²⁰² Ramesh Holla, ⁶⁴ Julia Hon, ¹ Prof. Mostafa Hosseini, ^{203,204} Mehdi Hosseinzadeh, ³⁶ Prof. Mowafa Househ, ²⁰⁵ Prof. Mohamed Hsairi, ²⁰⁶ Prof. Guoqing Hu, ²⁰⁷ Tanvir M Huda, ^{208,117} Prof. Bing-Fang Hwang, ²⁰⁹ Segun Emmanuel Ibitoye, ¹⁵⁰ Olayinka Stephen Ilesanmi, ^{210,211} Irena M Ilic, ²¹² Prof. Milena D Ilic, ²¹³ Leeberk Raja Inbaraj, ²¹⁴ Usman Iqbal, ²¹⁵ Seyed Sina Naghibi Irvani, ²¹⁶ M Mofizul Islam, ²¹⁷ Chidozie C D Iwu, ²¹⁸ Chinwe Juliana Iwu, ^{219,20} Prof. Animesh Jain, ²²⁰ Prof. Manthan Dilipkumar Janodia,²²¹ Tahereh Javaheri,²²² Yetunde O John-Akinola,¹⁵⁰ Kimberly B Johnson,¹ Farahnaz Joukar, ^{223,224} Jacek Jerzy Jozwiak, ²²⁵ Ali Kabir, ²²⁶ Leila R Kalankesh, ²²⁷ Rohollah Kalhor, ^{228,229} Ashwin Kamath, ^{64,230} Naser Kamyari, ²³¹ Other Tanuj Kanchan, ²³² Neeti Kapoor, ⁶⁵ Prof. Behzad Karami Matin,²³³ Salah Eddin Karimi,²³⁴ Habtamu Kebebe Kasaye,²³⁵ Getinet Kassahun,²³⁶ Nicholas J Kassebaum, ^{237,1,126} Gbenga A Kayode, ^{238,239} Ali Kazemi Karyani, ²³³ Prof. Peter Njenga Keiyoro,²⁴⁰ Bayew Kelkay,²⁴¹ Nauman Khalid,²⁴² Md Nuruzzaman Khan,²⁴³ Khaled Khatab, ^{244,245} Amir M Khater, ²⁴⁶ Mona M Khater, ²⁴⁷ Prof. Mahalaqua Nazli Khatib, ²⁴⁸ Yun Jin Kim,²⁴⁹ Ruth W Kimokoti,²⁵⁰ Damaris K Kinyoki,^{1,126} Prof. Adnan Kisa,^{251,252} Sezer Kisa,²⁵³ Soewarta Kosen,²⁵⁴ Kewal Krishan,²⁵⁵ Vaman Kulkarni,²²⁰ G Anil Kumar,¹²⁴ Manasi Kumar, ^{256,257} Nithin Kumar, ²²⁰ Pushpendra Kumar, ²⁵⁸ Om P Kurmi, ^{259,260} Dian Kusuma, ^{261,262} Prof. Carlo La Vecchia, ²⁶³ Sheetal D Lad, ²⁶⁴ Faris Hasan Lami, ²⁶⁵ Prof. Iván Landires, ^{266,267} Prof. Van Charles Lansingh, ^{268,269} Savita Lasrado, ²⁷⁰ Paul H Lee, ²⁷¹ Kate E LeGrand, ¹ Ian D Letourneau, ¹ Sonia Lewycka, ^{272,273} Bingyu Li, ²⁷⁴ Ming-Chieh Li, ²⁷⁵ Shanshan Li, ²⁷⁶ Xuefeng Liu,²⁷⁷ Prof. Rakesh Lodha,²⁷⁸ Jaifred Christian F Lopez,^{279,280} Celia Louie,¹ Daiane Borges Machado, ^{281,282} Prof. Venkatesh Maled, ^{283,284} Shokofeh Maleki, ²⁸⁵ Prof. Deborah Carvalho Malta,²⁸⁶ Abdullah A Mamun,²⁸⁷ Navid Manafi,^{288,289} Mohammad Ali Mansournia,²⁰³ Chabila Christopher Mapoma, ²⁹⁰ Laurie B Marczak, ¹ Francisco Rogerlândio Martins-Melo, ²⁹¹ Prof. Man Mohan Mehndiratta, ^{292,293} Fabiola Mejia-Rodriguez, ²⁹⁴ Tefera Chane Mekonnen, ²⁹⁵ Walter Mendoza, ²⁹⁶ Prof. Ritesh G Menezes, ²⁹⁷ Endalkachew Worku Mengesha, ²⁹⁸ Abera M Mersha, ²⁹⁹ Ted R Miller, 300,153 Prof. GK Mini, 301,302 Prof. Erkin M Mirrakhimov, 303,304 Prof. Sanjeev Misra, 305 Masoud Moghadaszadeh, 306,307 Dara K Mohammad, 308,309 Abdollah Mohammadian-Hafshejani, ³¹⁰ Jemal Abdu Mohammed, ³¹¹ Shafiu Mohammed, ^{312,71} Prof. Ali H Mokdad, ^{1,126} Pablo A Montero-Zamora, 313,314 Masoud Moradi, 233 Rahmatollah Moradzadeh, 315 Paula Moraga, 316 Jonathan F Mosser, Seyyed Meysam Mousavi, 317 Prof. Amin Mousavi Khaneghah, ³¹⁸ Sandra B Munro, ¹ Moses K Muriithi, ³¹⁹ Prof. Ghulam Mustafa, ^{320,321} Saravanan Muthupandian, ³²² Ahamarshan Jayaraman Nagarajan, ^{323,324} Gurudatta Naik, ³²⁵ Mukhammad David Naimzada, 326,327 Vinay Nangia, 328 Prof. Bruno Ramos Nascimento, 329,330 Prof. Vinod C Nayak, 67 Rawlance Ndejjo, 331 Duduzile Edith Ndwandwe, 332 Ionut Negoi, 333,334 Georges Nguefack-Tsague, 335 Josephine W Ngunjiri, 336 Cuong Tat Nguyen, 337 Diep Ngoc Nguyen, 151,338 Huong Lan Thi Nguyen,³³⁷ Samuel Negash Nigussie,³³⁹ Tadesse T N Nigussie,³³⁹ Rajan Nikbakhsh,³⁴⁰ Chukwudi A Nnaji,^{219,341} Virginia Nunez-Samudio,^{342,343} Prof. Bogdan Oancea,³⁴⁴ Onome Bright Oghenetega, 345 Andrew T Olagunju, 346,347 Bolajoko Olubukunola Olusanya, 348 Jacob Olusegun Olusanya, 348 Muktar Omer Omer, 349 Prof. Obinna E Onwujekwe, 350 Doris V Ortega-Altamirano, ³⁵¹ Aaron E Osgood-Zimmerman, ¹ Nikita Otstavnov, ³²⁶ Stanislav S Otstavnov, ^{326,352} Prof. Mayowa O Owolabi, ^{353,354} Prof. Mahesh P A, ³⁵⁵ Jagadish Rao Padubidri, ⁶⁴

Adrian Pana, ^{57,356} Anamika Pandey, ³⁵⁷ Seithikurippu R Pandi-Perumal, ³⁵⁸ Helena Ullyartha Pangaribuan, ³⁵⁹ Shradha S Parsekar, ³⁶⁰ Deepak Kumar Pasupula, ³⁶¹ Urvish K Patel, ³⁶² Prof. Ashish Pathak, 363,364 Mona Pathak, 365 Sanjay M Pattanshetty, 187 Prof. George C Patton, 366,367 Kebreab Paulos, ³⁶⁸ Veincent Christian Filipino Pepito, ³⁶⁹ Brandon V Pickering, ¹ Marina Pinheiro, ³⁷⁰ Ellen G Piwoz, ³⁷¹ Khem Narayan Pokhrel, ³⁷² Hadi Pourjafar, ^{373,374} Sergio I Prada, ^{375,376} Dimas Ria Angga Pribadi, ³⁷⁷ Prof. Zahiruddin Quazi Syed, ³⁷⁸ Prof. Mohammad Rabiee, ³⁸⁹ Navid Rabiee, ³⁸⁰ Fakher Rahim, ^{381,382} Shadi Rahimzadeh, ^{383,164} Azizur Rahman, ³⁸⁴ Mohammad Hifz Ur Rahman, 385 Amir Masoud Rahmani, 386,387 Rajesh Kumar Rai, 388,389 Chhabi Lal Ranabhat, ^{390,391} Sowmya J Rao, ³⁹² Prof. Prateek Rastogi, ³⁹³ Priya Rathi, ⁶⁴ David Laith Rawaf,^{394,395} Prof. Salman Rawaf,^{396,397} Reza Rawassizadeh,³⁹⁸ Rahul Rawat,³⁹⁹ Ramu Rawat,⁴⁰⁰ Lemma Demissie Regassa, ¹⁷⁸ Prof. Maria Albertina Santiago Rego, ⁴⁰¹ Robert C Reiner Jr., ^{1,126} Bhageerathy Reshmi, 402,403 Aziz Rezapour, 36 Ana Isabel Ribeiro, 404 Jennifer Rickard, 405,406 Leonardo Roever, 407 Susan Fred Rumisha, 408,409 Godfrey M Rwegerera, 410 Prof. Rajesh Sagar, 411 Prof. S. Mohammad Sajadi, 412,413 Marwa Rashad Salem, 414 Abdallah M Samy, 415 Prof. Milena M Santric-Milicevic, ^{212,416} Sivan Yegnanarayana Iyer Saraswathy, ^{417,418} Abdur Razzaque Sarker, ⁴¹⁹ Benn Sartorius, 420,421,126 Brijesh Sathian, 422,423 Prof. Deepak Saxena, 424,378 Alyssa N Sbarra, 1 Debarka Sengupta,⁴²⁵ Subramanian Senthilkumaran,⁴²⁶ Feng Sha,⁴²⁷ Omid Shafaat,^{428,429} Amira A Shaheen,⁴³⁰ Masood Ali Shaikh,⁴³¹ Prof. Ali S Shalash,⁴³² Mohammed Shannawaz,⁴³³ Prof. Aziz Sheikh, 434,435 Prof. B Suresh Kumar Shetty, 393 Ranjitha S Shetty, 436 Prof. Kenji Shibuya, 437 Wondimeneh Shibabaw Shiferaw, 61 Prof. Jae Il Shin, 438 Prof. Diego Augusto Santos Silva, 439 Prof. Narinder Pal Singh, 440 Pushpendra Singh, 441 Surya Singh, 442 Yitagesu Sintayehu, 443 Valentin Yurievich Skryabin,⁴⁴⁴ Anna Aleksandrovna Skryabina,⁴⁴⁵ Amin Soheili,⁴⁴⁶ Shahin Soltani, ²³³ Muluken Bekele Sorrie, ¹⁸³ Emma Elizabeth Spurlock, ¹ Krista M Steuben, ¹ Agus Sudaryanto, ⁴⁴⁷ Mu'awiyyah Babale Sufiyan, ⁴⁴⁸ Scott J Swartz, ^{449,450} Eyayou Girma Tadesse, ⁴⁵¹ Animut Tagele Tamiru, ²⁴¹ Leili Tapak, ^{231,452} Prof. Md Ismail Tareque, ⁴⁵³ Ingan Ukur Tarigan, ⁴⁵⁴ Getayeneh Antehunegn Tesema, 455 Fisaha Haile Tesfay, 456,457 Abinet Teshome, 451 Zemenu Tadesse Tessema, 458 Prof. Kavumpurathu Raman Thankappan, 459 Rekha Thapar, 220 Prof. Nihal Thomas, 460 Roman Topor-Madry, 461,462 Marcos Roberto Tovani-Palone, 463,464 Eugenio Traini, 465 Bach Xuan Tran, 466 Phuong N Truong, 467 Berhan Tsegaye BT Tsegaye, 236 Irfan Ullah, 468 Chukwuma David Umeokonkwo, ⁴⁶⁹ Prof. Bhaskaran Unnikrishnan, ⁴⁷⁰ Era Upadhyay, ⁴⁷¹ Prof. Benjamin S Chudi Uzochukwu, ⁴⁷² John David VanderHeide, ⁴⁷³ Prof. Francesco S Violante, ^{474,475} Bay Vo, 476 Yohannes Dibaba Wado, 477 Prof. Yasir Waheed, 478 Richard G Wamai, 479,480 Fang Wang, 481 Yafeng Wang, 482 Yuan-Pang Wang, 102 Nuwan Darshana Wickramasinghe, 483 Kirsten E Wiens, 484 Prof. Charles Shey Wiysonge, 219,341 Lauren Woyczynski, Prof. Ai-Min Wu, 485 Chenkai Wu, ^{486,487} Tomohide Yamada, ⁴⁸⁸ Prof. Sanni Yaya, ^{489,490} Alex Yeshaneh, ⁴⁹¹ Yigizie Yeshaw, ⁴⁵⁸ Yordanos Gizachew Yeshitila, ²⁹⁹ Mekdes Tigistu Yilma, ⁴⁹² Prof. Paul Yip, ^{493,494} Naohiro Yonemoto, 495,496 Tewodros Yosef, 339 Prof. Mustafa Z Younis, 497,498 Abdilahi Yousuf Yousuf,³⁴⁹ Prof. Chuanhua Yu,⁴⁸² Yong Yu,⁴⁹⁹ Deniz Yuce,⁵⁰⁰ Prof. Shamsa Zafar,^{501,502} Syed Saoud Zaidi,⁵⁰³ Leila Zaki,⁵⁰⁴ Prof. Josefina Zakzuk,⁵⁰⁵ Maryam Zamanian,³¹⁵ Prof. Heather J Zar, ^{506,507} Prof. Mikhail Sergeevich Zastrozhin, ^{508,509} Anasthasia Zastrozhina, ⁵¹⁰ Desalege Amare Zelellw, ⁵¹¹ Yunquan Zhang, ^{512,513} Zhi-Jiang Zhang, ⁵¹⁴ Xiu-Ju George Zhao, ^{515,481} Prof. Sanjay Zodpey, ⁵¹⁶ Yves Miel H Zuniga, ^{517,518} and Prof. Simon I Hay. ^{1,126}

Affiliations

¹Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; ²Medical Teams International, Seattle, WA, USA; ³Department of Pediatric Newborn Medicine,

Brigham and Women's Hospital, Boston, MA, USA; ⁴Department of Nursing, Adigrat University, Adigrat, Ethiopia; ⁵Department of Neurology, Cairo University, Cairo, Egypt; ⁶Department of Public health, Arba Minch University, Arba Minch, Ethiopia; ⁷Debre Markos University, Debre Markos, Ethiopia; ⁸Department of Public Health, Debre Berhan University, Debre Brehan, Ethiopia; ⁹Department of Pediatric Dentistry, Federal University of Minas Gerais, Belo Horizonte, Brazil; ¹⁰Department of Research, Philippine Institute for Development Studies, Quezon City, Philippines; ¹¹Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates; ¹²Harvard Medical School, Harvard University, Boston, MA, USA; ¹³Department of Medicine, Ain Shams University, Cairo, Egypt; ¹⁴Community Medicine Department, Bayero University Kano, Kano, Nigeria; ¹⁵Infectious Diseases Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; ¹⁶Department of Sociology, Olabisi Onabanjo University, Ago-Iwoye, Nigeria; ¹⁷School of Medicine, Griffith University, Gold coast, OLD, Australia; ¹⁸Population Health Sciences, King's College London, London, England; ¹⁹Centre of Excellence for Epidemiological Modelling and Analysis, Stellenbosch University, Stellenbosch, South Africa; ²⁰Department of Global Health, Stellenbosch University, Cape Town, South Africa; ²¹Center for Policy, Population & Health Research, National Autonomous University of Mexico, Mexico City, Mexico; ²²Faculty of Medicine and Public Health, Jenderal Soedirman University, Purwokerto, Indonesia; ²³Department of Health Policy and Management, University of Ibadan, Ibadan, Nigeria; ²⁴Department of Health Policy and Management, University College Hospital, Ibadan, Ibadan, Nigeria; ²⁵Department of Human Nutrition and Food Sciences, Debre Markos University, Debre Markos, Ethiopia; ²⁶Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; ²⁷Health Information Management and Technology Department, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; ²⁸Center for Health System Research, National Institute of Public Health, Cuernavaca, Mexico; ²⁹College of Medicine and Health Science, Arba Minch University, Arba Minch, Ethiopia; ³⁰Department of Midwifery, Arba Minch University, Injbara, Ethiopia; ³¹Institute of Health Research, University of Health and Allied Sciences, Ho, Ghana; ³²Erbil Technical Health College, Erbil Polytechnic University, Erbil, Iraq; 33School of Pharmacy, Tishk International University, Erbil, Iraq; ³⁴Department of Information Systems, College of Economics and Political Science, Sultan Oaboos University, Muscat, Oman; ³⁵Department of Health Care Management and Economics, Urmia University of Medical Science, Urmia, Iran; ³⁶Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran; ³⁷Health Economics Department, Iran University of Medical Sciences, Tehran, Iran; ³⁸School of Medicine and Public Health, Ateneo De Manila University, Manila, Philippines; ³⁹College of Medicine, University of the Philippines Manila, Manila, Philippines; ⁴⁰Maternal and Child Wellbeing, African Population and Health Research Center, Nairobi, Kenya; ⁴¹Department of Public Health, Samara University, Samara, Ethiopia; ⁴²Pharmacy Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; ⁴³Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; ⁴⁴Research Center for Evidence Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; ⁴⁵Razi Vaccine and Serum Research Institute, Agricultural Research, Education, and Extension Organization (AREEO), Tehran, Iran; ⁴⁶Department of Health Policy and Administration, University of the Philippines Manila, Manila, Philippines; ⁴⁷Department of Applied Social Sciences, Hong Kong Polytechnic University, Hong Kong, China; ⁴⁸Department of Parasitology, Mazandaran University of Medical Sciences, Sari, Iran; ⁴⁹Department of Parasitology, Iranshahr University of Medical Sciences, Iranshahr, Iran; ⁵⁰School of Health Sciences, Western Sydney

University, Campbelltown, NSW, Australia; ⁵¹Disciple of Child and Adolescent Health, University of Sydney, Westmead, NSW, Australia; ⁵²Department of Epidemiology, Airlangga University, Surabaya, Indonesia; ⁵³School of Public Health, Bahir Dar University, Bahir Dar, Ethiopia; ⁵⁴Department of Nursing, Mizan-Tepi University, Mizan Teferi, Ethiopia; ⁵⁵Faculty of Nursing, Philadelphia University, Amman, Jordan; ⁵⁶School of Business, University of Leicester, Leicester, UK; ⁵⁷Department of Statistics and Econometrics, Bucharest University of Economic Studies, Bucharest, Romania; ⁵⁸Department of Nursing, Wolaita Sodo University, Wolaita Sodo, Ethiopia; ⁵⁹The Judith Lumley Centre, La Trobe University, Melbourne, VIC, Australia; ⁶⁰Department of Health Policy Planning and Management, University of Health and Allied Sciences, Ho, Ghana; ⁶¹Department of Nursing, Debre Berhan University, Debre Berhan, Ethiopia; ⁶²Department of Pharmacology and Toxicology, Mekelle University, Mekelle, Ethiopia; ⁶³Department of Reproductive Health, University of Gondar, Gondar, Ethiopia; ⁶⁴Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India: ⁶⁵Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India; ⁶⁶Unit of Biochemistry, Universiti Sultan Zainal Abidin (Sultan Zainal Abidin University), Kuala Terengganu, Malaysia; ⁶⁷Department of Forensic Medicine and Toxicology, Manipal Academy of Higher Education, Manipal, India; ⁶⁸Department of Hypertension, Medical University of Lodz, Lodz, Poland; ⁶⁹Polish Mothers' Memorial Hospital Research Institute, Lodz, Poland; ⁷⁰Department of Non-communicable Diseases, Bangladesh University of Health Sciences, Dhaka, Bangladesh; ⁷¹Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany; ⁷²T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; ⁷³School of Public Health and Community Medicine, Aden College, Aden, Yemen; ⁷⁴Health Human Resources Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; ⁷⁵Department of Public Health, Ambo University, Ambo, Ethiopia; ⁷⁶Department of Community Medicine, Gandhi Medical College Bhopal, Bhopal, India; ⁷⁷Jazan University, Jazan, Saudi Arabia; ⁷⁸Department of Biomedical Science, Bahir Dar University, Bahir Dar, Ethiopia; ⁷⁹Department of Social and Clinical Pharmacy, Charles University, Hradec Kralova, Czech Republic; 80 Institute of Public Health, United Arab Emirates University, Al Ain, United Arab Emirates; 81 School of Public Health, University of Adelaide, Adelaide, SA, Australia; ⁸²Public Health Research Laboratory, Tribhuvan University, Kathmandu, Nepal; ⁸³Department of Anatomy, Government Medical College Pali, Pali, India; 84Department of Community Medicine and Family Medicine, All India Institute of Medical Sciences, Jodhpur, India; 85School of Public Health, All India Institute of Medical Sciences, Jodhpur, India; 86Centre for Global Child Health, University of Toronto, Toronto, ON, Canada; 87Centre of Excellence in Women & Child Health, Aga Khan University, Karachi, Pakistan; 88 Social Determinants of Health Research Center, Babol University of Medical Sciences, Babol, Iran; ⁸⁹Department of Environmental and Occupational Health and Safety, University of Gondar, Gondar, Ethiopia; 90Ethiopian Public Health Institute, Addis Ababa, Ethiopia; ⁹¹Department of Nursing, Debre Tabor University, Debretabor, Ethiopia; ⁹²Nutrition Department, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia; 93St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia; ⁹⁴Department of Veterinary Medicine, Islamic Azad University, Kermanshah, Iran; ⁹⁵Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran; ⁹⁶Department of Research and Innovation, Petanux Research GmBH, Bonn, Germany; 97School of Pharmacy, Haramaya University, Harar, Ethiopia; ⁹⁸Department of Internal Medicine, Manipal Academy of Higher Education, Mangalore, India; ⁹⁹Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical

Medicine, London, UK; ¹⁰⁰University of Genoa, Genoa, Italy; ¹⁰¹Department of Internal Medicine, University of São Paulo, São Paulo, Brazil; ¹⁰²Department of Psychiatry, University of São Paulo, São Paulo, Brazil; ¹⁰³Research Division, Golden Community, Kathmandu, Nepal; ¹⁰⁴Department of Community Medicine, Employee State Insurance Post Graduate Institute of Medical Sciences and Research, Bangalore, India; ¹⁰⁵School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada; ¹⁰⁶Al Shifa School of Public Health, Al Shifa Trust Eye Hospital, Rawalpindi, Pakistan; ¹⁰⁷Department of Health Care, Metropolitan Autonomous University, Mexico City, Mexico; ¹⁰⁸Department of Psychiatry, University of São Paulo, Sao Paulo, Brazil; ¹⁰⁹Gorgas Memorial Institute for Health Studies, Panama City, Panama; ¹¹⁰Regional Epidemiological Observatory Department, Sicilian Regional Health Authority, Palermo, Italy; ¹¹¹Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India; ¹¹²Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; ¹¹³Department of Microbiology & Infection Control, Medanta Medicity, Gurugram, India; ¹¹⁴Department of Medicine, University of Toronto, Toronto, ON, Canada; ¹¹⁵Global Institute of Public Health (GIPH), Thiruvananthapuram, India; ¹¹⁶Research Department, Dr. D. Y. Patil University, Pune, India; ¹¹⁷Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; ¹¹⁸Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA; ¹¹⁹Center for Biomedicine and Community Health, VNU International School, Hanoi, Vietnam; ¹²⁰Department of Chemical Sciences, University of Porto, Porto, Portugal; ¹²¹Department of Human Physiology, University of Gondar, Gondar, Ethiopia; ¹²²Department of Cardiology, Central South University, Changsha, China; ¹²³Department of Mathematics and Statistics, York University, Toronto, ON, Canada; ¹²⁴Public Health Foundation of India, Gurugram, India; ¹²⁵Indian Council of Medical Research, New Delhi, India; ¹²⁶Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA; ¹²⁷Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; ¹²⁸Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran; ¹²⁹Department of Information Technology, University of Human Development, Sulaymaniyah, Iraq; ¹³⁰Department of Pediatrics, Tanta University, Tanta, Egypt; ¹³¹Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran; ¹³²Division of Women and Child Health, Aga Khan University, Karachi, Pakistan; ¹³³James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh; ¹³⁴Department of Population and Development, Latin American Faculty of Social Sciences Mexico, Mexico City, Mexico; ¹³⁵Department of Surgery and Cancer, Imperial College London, London, UK; ¹³⁶Ear Institute, University College London, London, UK; ¹³⁷Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico; ¹³⁸Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, Brighton, UK; ¹³⁹School of Public Health, Addis Ababa University, Addis Ababa, Ethiopia; ¹⁴⁰School of Nursing and Midwifery, Haramaya University, Harar, Ethiopia; ¹⁴¹Department of Epidemiology, Emory University, Atlanta, GA, USA; ¹⁴²National Centre for AIDS and STD Control, Save the Children, Kathmandu, Nepal; ¹⁴³Department of Global Public Health, Karolinska Institute, Stockholm, Sweden; ¹⁴⁴Department of Community Medicine, University of Peradeniya, Peradeniya, Sri Lanka; ¹⁴⁵Health Research Section, Nepal Health Research Council, Kathmandu, Nepal; ¹⁴⁶Department of Microbiology, Far Western University, Mahendranagar, Nepal; ¹⁴⁷Center of Complexity Sciences, National Autonomous University of Mexico, Mexico City, Mexico; 148 Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacán Rosales, Mexico; ¹⁴⁹Department of

Public Health, Urmia University of Medical Science, Urmia, Iran; ¹⁵⁰Department of Health Promotion and Education, University of Ibadan, Ibadan, Nigeria; ¹⁵¹Institute for Global Health Innovations, Duy Tan University, Da Nang, Vietnam; ¹⁵²School of Public Health, Hawassa University, Hawassa, Ethiopia; ¹⁵³School of Public Health, Curtin University, Perth, WA, Australia; ¹⁵⁴School of Medicine, Federal University of Bahia, Salvador, Brazil; ¹⁵⁵Department of Internal Medicine, Escola Bahiana de Medicina e Saúde Pública (Bahiana School of Medicine and Public Health), Salvador, Brazil; ¹⁵⁶Clinical Pathology Department, Mansoura Faculty of Medicine, Mansoura, Egypt; ¹⁵⁷Pediatric Dentistry and Dental Public Health Department, Alexandria University, Alexandria, Egypt; ¹⁵⁸Department of Food Science and Nutrition, Arsi University, Asella, Ethiopia; ¹⁵⁹Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia; ¹⁶⁰Neurophysiology Department, Cairo University, Cairo, Egypt; ¹⁶¹Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy; ¹⁶²Department of Biology, Cihan University-Erbil, Erbil, Iraq; ¹⁶³Department of Psychology, Federal University of Sergipe, São Cristóvão, Brazil; ¹⁶⁴Non-communicable Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran; ¹⁶⁵National Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand; ¹⁶⁶Research Center of Neurology, Moscow, Russia; ¹⁶⁷Department of Epidemiology and Biostatistics, Bahir Dar University, Bahir Dar, Ethiopia; ¹⁶⁸School of Nursing, Hawassa University, Hawassa, Ethiopia; ¹⁶⁹Institute of Gerontological Health Services and Nursing Research, Ravensburg-Weingarten University of Applied Sciences, Weingarten, Germany; ¹⁷⁰Institute of Gerontology, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; ¹⁷¹Department of Child Dental Health, Obafemi Awolowo University, Ile-Ife, Nigeria; ¹⁷²School of Public Health, Medical, and Veterinary Sciences, James Cook University, Douglas, QLD, Australia; ¹⁷³Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH, USA; ¹⁷⁴Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC, USA; ¹⁷⁵Department of Medicine, Datta Meghe Institute of Medical Science, Wardha, India; ¹⁷⁶Department of Public Health, Madda Walabu University, Bale Robe, Ethiopia; ¹⁷⁷Department of Nursing and Midwifery, Addis Ababa University, Addis Ababa, Ethiopia; ¹⁷⁸School of Public Health, Haramaya University, Harar, Ethiopia; ¹⁷⁹Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran; ¹⁸⁰Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan; ¹⁸¹Afro-Asian Institute, Lahore, Pakistan; ¹⁸²Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban, South Africa; ¹⁸³Department of Public Health, Arba Minch University, Arba Minch, Ethiopia; ¹⁸⁴Health Systems and Policy Research, Indian Institute of Public Health Gandhinagar, Gandhinagar, India; ¹⁸⁵Department of Surgery, Madda Walabu University, Bale Robe, Ethiopia; ¹⁸⁶Postgraduate Program in Epidemiology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; ¹⁸⁷Department of Health Policy, Manipal Academy of Higher Education, Manipal, India; ¹⁸⁸UO Neurologia, Salute Pubblica e Disabilità, Fondazione IRCCS Istituto Neurologico Carlo Besta (Neurology, Public Health and Disability Unit, Carlo Besta Neurological Institute), Milan, Italy; ¹⁸⁹College of Medicine and Health Science, Jigjiga University, Jijiga, Ethiopia; ¹⁹⁰Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia; ¹⁹¹Department of Epidemiology, Binzhou Medical University, Yantai City, China; ¹⁹²School of Health and Environmental Studies, Hamdan Bin Mohammed Smart University, Dubai, United Arab Emirates; ¹⁹³Department of Public Health, Wachemo University, Hossana, Ethiopia; ¹⁹⁴Department of Zoology and Entomology, Al Azhar University, Cairo, Egypt; 195 Institute of Pharmaceutical Sciences, University of Veterinary and

Animal Sciences, Lahore, Pakistan; 196Department of Pharmacy Administration and Clinical Pharmacy, Xian Jiaotong University, Xian, China; ¹⁹⁷Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; 198 Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; ¹⁹⁹School of Business, London South Bank University, London, UK; ²⁰⁰Department of Public Health, Adigrat University, Adigrat, Ethiopia; ²⁰¹Department of Urban Planning and Design, University of Hong Kong, Hong Kong, China; ²⁰²Center of Excellence in Behavioral Medicine, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; ²⁰³Department of Epidemiology and Biostatistics, Tehran University of Medical Sciences, Tehran, Iran; ²⁰⁴Pediatric Chronic Kidney Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; ²⁰⁵College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar; ²⁰⁶Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia; ²⁰⁷Department of Epidemiology and Health Statistics, Central South University, Changsha, China; ²⁰⁸School of Public Health, University of Sydney, Sydney, NSW, Australia; ²⁰⁹Department of Occupational Safety and Health, China Medical University, Taichung, Taiwan; ²¹⁰Department of Community Medicine, University of Ibadan, Ibadan, Nigeria; ²¹¹Department of Community Medicine, University College Hospital, Ibadan, Ibadan, Nigeria; ²¹²Faculty of Medicine, University of Belgrade, Belgrade, Serbia; ²¹³Department of Epidemiology, University of Kragujevac, Kragujevac, Serbia; ²¹⁴Division of Community Health and Family Medicine, Bangalore Baptist Hospital, Bangalore, India; ²¹⁵College of Public Health, Taipei Medical University, Taipei, Taiwan; ²¹⁶Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ²¹⁷School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia; ²¹⁸School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa; ²¹⁹South African Medical Research Council, Cape Town, South Africa; ²²⁰Department of Community Medicine, Manipal Academy of Higher Education, Mangalore, India; ²²¹Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India; ²²²Health Informatic Lab, Boston University, Boston, MA, USA; ²²³Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran; ²²⁴Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran; ²²⁵Department of Family Medicine and Public Health, University of Opole, Opole, Poland; ²²⁶Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran; ²²⁷School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran; ²²⁸Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; ²²⁹Health Services Management Department, Qazvin University of Medical Sciences, Qazvin, Iran; ²³⁰Manipal Academy of Higher Education, India; ²³¹Department of Biostatistics, Hamadan University of Medical Sciences, Hamadan, Iran; ²³²Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India; ²³³Research Center for Environmental Determinants of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; ²³⁴Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; ²³⁵School of Nursing and Midwifery, Wollega University, Nekemte, Ethiopia; ²³⁶School of Midwifery, Hawassa University, Hawassa, Ethiopia; ²³⁷Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA; ²³⁸International Research Center of Excellence, Institute of Human Virology Nigeria, Abuja, Nigeria; ²³⁹Julius Centre for Health Sciences and Primary Care, Utrecht University, Utrecht, Netherlands; ²⁴⁰Open, Distance and eLearning Campus, University of Nairobi, Nairobi, Kenya; ²⁴¹Department of Midwifery, University of Gondar, Gondar, Ethiopia; ²⁴²School of Food and Agricultural

Sciences, University of Management and Technology, Lahore, Pakistan; ²⁴³Department of Population Science, Jatiya Kabi Kazi Nazrul Islam University, Mymensingh, Bangladesh; ²⁴⁴Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK; ²⁴⁵College of Arts and Sciences, Ohio University, Zanesville, OH, USA; ²⁴⁶National Hepatology and Tropical Medicine Research Institute, Cairo University, Cairo, Egypt; ²⁴⁷Department of Medical Parasitology, Cairo University, Cairo, Egypt; ²⁴⁸Global Evidence Synthesis Initiative, Datta Meghe Institute of Medical Sciences, Wardha, India; ²⁴⁹School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia; ²⁵⁰Department of Nutrition, Simmons University, Boston, MA, USA; ²⁵¹School of Health Sciences, Kristiania University College, Oslo, Norway; ²⁵²Global Community Health and Behavioral Sciences, Tulane University, New Orleans, LA, USA; ²⁵³Department of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, Norway; ²⁵⁴Independent Consultant, Jakarta, Indonesia; ²⁵⁵Department of Anthropology, Panjab University, Chandigarh, India; ²⁵⁶Department of Psychiatry, University of Nairobi, Nairobi, Kenya; ²⁵⁷Division of Psychology and Language Sciences, University College London, London, UK; ²⁵⁸International Institute for Population Sciences, Mumbai, India; ²⁵⁹Faculty of Health and Life Sciences, Coventry University, Coventry, UK; ²⁶⁰Department of Medicine, McMaster University, Hamilton, ON, Canada; ²⁶¹Imperial College Business School, Imperial College London, London, UK; ²⁶²Faculty of Public Health, University of Indonesia, Depok, Indonesia; ²⁶³Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; ²⁶⁴Department of Pediatrics, Post Graduate Institute of Medical Education and Research, Chandigarh, India; ²⁶⁵Department of Community and Family Medicine, University of Baghdad, Baghdad, Iraq; ²⁶⁶Unit of Genetics and Public Health, Institute of Medical Sciences, Las Tablas, Panama; ²⁶⁷Ministry of Health, Herrera, Panama; ²⁶⁸HelpMeSee, New York, NY, USA; ²⁶⁹Mexican Institute of Ophthalmology, Queretaro, Mexico; ²⁷⁰Department of Otorhinolaryngology, Father Muller Medical College, Mangalore, India; ²⁷¹School of Nursing, Hong Kong Polytechnic University, Hong Kong, China; ²⁷²Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; ²⁷³Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, Hanoi, Vietnam; ²⁷⁴Department of Sociology, Shenzhen University, Shenzhen, China; ²⁷⁵Department of Public Health, China Medical University, Taichung, Taiwan; ²⁷⁶School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; ²⁷⁷Department of Systems, Populations, and Leadership, University of Michigan, Ann Arbor, MI, USA; ²⁷⁸Department of Paediatrics, All India Institute of Medical Sciences, New Delhi, India; ²⁷⁹Department of Nutrition, University of the Philippines Manila, Manila, Philippines; ²⁸⁰ Alliance for Improving Health Outcomes, Inc., Quezon City, Philippines; ²⁸¹Center for Integration of Data and Health Knowledge, Oswald Cruz Foundation (FIOCRUZ), Salvador, Brazil; ²⁸²Centre for Global Mental Health (CGMH), London School of Hygiene & Tropical Medicine, London, England; ²⁸³Department of Forensic Medicine, Shri Dharmasthala Manjunatheshwara University, Dharwad, India; ²⁸⁴Department of Forensic Medicine, Rajiv Gandhi University of Health Sciences, Bangalore, India; ²⁸⁵Clinical Research Development Center, Kermanshah University of Medical Sciences, Kermanshah, Iran; ²⁸⁶Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, Brazil; ²⁸⁷Institute for Social Science Research, The University of Queensland, Indooroopilly, QLD, Australia; ²⁸⁸School of Medicine, Iran University of Medical Sciences, Tehran, Iran: ²⁸⁹School of Medicine, University of Manitoba, Winnipeg, MB, Canada: ²⁹⁰Department of Population Studies, University of Zambia, Lusaka, Zambia; ²⁹¹Campus Caucaia, Federal Institute of Education, Science and Technology of Ceará, Caucaia, Brazil;

²⁹²Neurology Department, Janakpuri Super Specialty Hospital Society, New Delhi, India; ²⁹³Department of Neurology, Govind Ballabh Institute of Medical Education and Research, New Delhi, India; ²⁹⁴Research in Nutrition and Health, National Institute of Public Health, Cuernavaca, Mexico; ²⁹⁵Department of Public Health, Wollo University, Dessie, Ethiopia; ²⁹⁶Peru Country Office, United Nations Population Fund (UNFPA), Lima, Peru; ²⁹⁷Forensic Medicine Division, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; ²⁹⁸Department of Reproductive Health and Population Studies, Bahir Dar University, Bahir Dar, Ethiopia; ²⁹⁹Department of Nursing, Arba Minch University, Arba Minch, Ethiopia; ³⁰⁰Pacific Institute for Research & Evaluation, Calverton, MD, USA; 301 Global Institute of Public Health, Ananthapuri Hospitals and Research Institute, Trivandrum, India; 302 Women's Social and Health Studies Foundation, Trivandrum, India; 303 Internal Medicine Programme, Kyrgyz State Medical Academy, Bishkek, Kyrgyzstan; ³⁰⁴Department of Atherosclerosis and Coronary Heart Disease, National Center of Cardiology and Internal Disease, Bishkek, Kyrgyzstan; ³⁰⁵Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, India; ³⁰⁶Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; 307 Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; ³⁰⁸Department of Forestry, Salahaddin University-Erbil, Erbil, Iraq; ³⁰⁹Department of Medicine-Huddinge, Karolinska Institute, Stockholm, Sweden; ³¹⁰Department of Epidemiology and Biostatistics, Shahrekord University of Medical Sciences, Shahrekord, Iran; ³¹¹Department of Public Health, Samara University, Semera, Ethiopia; ³¹²Health Systems and Policy Research Unit, Ahmadu Bello University, Zaria, Nigeria; ³¹³Department of Public Health Sciences, University of Miami, Miami, FL, USA; 314 Center for Health Systems Research, National Institute of Public Health, Cuernavaca, Mexico; 315 Department of Epidemiology, Arak University of Medical Sciences, Arak, Iran; ³¹⁶Computer, Electrical, and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia; ³¹⁷Management and Leadership in Medical Education Research Center, Kerman University of Medical Sciences, Kerman, Iran; ³¹⁸Department of Food Science, University of Campinas (Unicamp), Campinas, Brazil; ³¹⁹School of Economics, University of Nairobi, Nairobi, Kenya; ³²⁰Department of Pediatric Medicine, The Children's Hospital & The Institute of Child Health, Multan, Pakistan; ³²¹Department of Pediatrics & Pediatric Pulmonology, Institute of Mother & Child Care, Multan, Pakistan; ³²²Department of Microbiology and Immunology, Mekelle University, Mekelle, Ethiopia; ³²³Research and Analytics Department, Initiative for Financing Health and Human Development, Chennai, India; ³²⁴Department of Research and Analytics, Bioinsilico Technologies, Chennai, India; 325 Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; 326Laboratory of Public Health Indicators Analysis and Health Digitalization, Moscow Institute of Physics and Technology, Dolgoprudny, Russia; ³²⁷Experimental Surgery and Oncology Laboratory, Kursk State Medical University, Kursk, Russia; ³²⁸Suraj Eye Institute, Nagpur, India; ³²⁹Department of Clinical Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil; ³³⁰Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, Brazil; ³³¹Disease Control and Environmental Health, Makerere University, Kampala, Uganda; 332Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa; 333 Department of General Surgery, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; ³³⁴Department of General Surgery, Emergency Hospital of Bucharest, Bucharest, Romania; ³³⁵Department of Public Health, University of Yaoundé I, Yaoundé, Cameroon; ³³⁶Department of Biological Sciences, University of Embu, Embu, Kenya; ³³⁷Institute for Global Health Innovations, Duy Tan University, Hanoi, Vietnam;

³³⁸Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam; ³³⁹Department of Public Health, Mizan-Tepi University, Mizan Teferi, Ethiopia; 340Obesity Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ³⁴¹School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa; 342Unit of Microbiology and Public Health, Institute of Medical Sciences, Las Tablas, Panama; ³⁴³Department of Public Health, Ministry of Health, Herrera, Panama; ³⁴⁴Administrative and Economic Sciences Department, University of Bucharest, Bucharest, Romania; 345 Department of Obstetrics and Gynecology, University of Ibadan, Ibadan, Nigeria; 346 Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; 347 Department of Psychiatry, University of Lagos, Lagos, Nigeria; ³⁴⁸Centre for Healthy Start Initiative, Lagos, Nigeria; ³⁴⁹Department of Public Health, Jigjiga University, Jijiga, Ethiopia; ³⁵⁰Department of Pharmacology and Therapeutics, University of Nigeria Nsukka, Enugu, Nigeria; ³⁵¹Health Systems Research Center, National Institute of Public Health, Cuernavaca, Mexico; ³⁵²Department of Project Management, National Research University Higher School of Economics, Moscow, Russia; ³⁵³Department of Medicine, University of Ibadan, Ibadan, Nigeria; ³⁵⁴Department of Medicine, University College Hospital, Ibadan, Ibadan, Nigeria; ³⁵⁵Department of Respiratory Medicine, Jagadguru Sri Shivarathreeswara Academy of Health Education and Research, Mysore, India; 356Department of Health Metrics, Center for Health Outcomes & Evaluation, Bucharest, Romania; 357 Department of Research, Public Health Foundation of India, Gurugram, India; ³⁵⁸Corporate, Somnogen Canada Inc, Toronto, ON, Canada; ³⁵⁹National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia; ³⁶⁰Public Health Evidence South Asia, Manipal Academy of Higher Education, Manipal, India; ³⁶¹Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; ³⁶²Department of Neurology and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ³⁶³Department of Pediatrics, RD Gardi Medical College, Ujjain, India; ³⁶⁴Global Public Health-Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institute, Stockholm, Sweden; ³⁶⁵Research & Development Department, Kalinga Institute of Medical Sciences, Bhubaneswar, India; ³⁶⁶Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia; ³⁶⁷Population Health Theme, Murdoch Childrens Research Institute, Melbourne, VIC, Australia; 368 Department of Midwifery, Wolaita Sodo University, Wolaita Sodo, Ethiopia; ³⁶⁹Center for Research and Innovation, Ateneo De Manila University, Pasig City, Philippines; ³⁷⁰Department of Chemistry, University of Porto, Porto, Portugal; ³⁷¹Global Development Program, Bill & Melinda Gates Foundation, Seattle, WA, USA: 372HIV and Mental Health Department, Integrated Development Foundation Nepal, Kathmandu, Nepal; ³⁷³Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran; ³⁷⁴Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran; ³⁷⁵Centro de Investigaciones Clinicas, Fundación Valle del Lili, (Clinical Research Center, Valle del Lili Foundation), Cali, Colombia; ³⁷⁶Centro PROESA, Universidad ICESI, (PROESA, ICESI University), Cali, Colombia; ³⁷⁷Health Sciences Department, Muhammadiyah University of Surakarta, Sukoharjo, Indonesia: ³⁷⁸Department of Community Medicine, Datta Meghe Institute of Medical Sciences, Wardha, India; ³⁷⁹Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran; ³⁸⁰Department of Chemistry, Sharif University of Technology, Tehran, Iran; ³⁸¹Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences. Ahvaz, Iran; ³⁸²Metabolomics and Genomics Research Center, Tehran University of Medical Sciences, Tehran, Iran; ³⁸³Department of Natural Science, Middlesex University, London, UK;

³⁸⁴Data Mining Research Unit (DaMRA), Charles Sturt University, Wagga Wagga, NSW, Australia; ³⁸⁵Department of Community Medicine, Maharishi Markandeshwar Medical College & Hospital, Solan, India; ³⁸⁶Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, Taiwan; ³⁸⁷Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; ³⁸⁸Society for Health and Demographic Surveillance, Suri, India; ³⁸⁹Department of Economics, University of Göttingen, Göttingen, Germany; ³⁹⁰Research Department, Policy Research Institute, Kathmandu, Nepal; ³⁹¹Health and Public Policy Department, Global Center for Research and Development, Kathmandu, Nepal; ³⁹²Department of Oral Pathology, Srinivas Institute of Dental Sciences, Mangalore, India; ³⁹³Department of Forensic Medicine and Toxicology, Manipal Academy of Higher Education, Mangalore, India; ³⁹⁴WHO Collaborating Centre for Public Health Education and Training, Imperial College London, London, UK; ³⁹⁵University College London Hospitals, London, UK; ³⁹⁶Department of Primary Care and Public Health, Imperial College London, London, UK; 397 Academic Public Health England, Public Health England, London, UK; ³⁹⁸Department of Computer Science, Boston University, Boston, MA, USA; ³⁹⁹Maternal, Newborn, and Child Health Program, Bill & Melinda Gates Foundation, Seattle, WA, USA; 400 Department of Mathematical Demography & Statistics, International Institute for Population Sciences, Mumbai, India; 401 Department of Pediatrics, Federal University of Minas Gerais, Belo Horizonte, Brazil; 402 Department of Health Information Management, Manipal Academy of Higher Education, Manipal, India; 403 Manipal Academy of Higher Education, Manipal, India; 404 Epidemiology Research Unit Institute of Public Health (EPIUnit-ISPUP), University of Porto, Porto, Portugal; ⁴⁰⁵Department of Surgery, University of Minnesota, Minneapolis, MN, USA; 406Department of Surgery, University Teaching Hospital of Kigali, Kigali, Rwanda; 407 Department of Clinical Research, Federal University of Uberlândia, Uberlândia, Brazil; 408 Malaria Atlas Project, University of Oxford, Oxford, UK; ⁴⁰⁹Department of Health Statistics, National Institute for Medical Research, Dar es Salaam, Tanzania; 410 Department of Internal Medicine, University of Botswana, Gaborone, Botswana; 411 Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India; ⁴¹²Department of Phytochemistry, Soran University, Soran, Iraq; ⁴¹³Department of Nutrition, Cihan University-Erbil, Erbil, Iraq; 414 Public Health and Community Medicine Department, Cairo University, Giza, Egypt; 415 Department of Entomology, Ain Shams University, Cairo, Egypt; 416School of Public Health and Health Management, University of Belgrade, Belgrade, Serbia; 417 Department of Community Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, India; 418PSG-FAIMER South Asia Regional Institute, Coimbatore, India; 419 Health Economics Department, Bangladesh Institute of Development Studies (BIDS), Dhaka, Bangladesh; ⁴²⁰Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; 421 Nuffield Department of Medicine, University of Oxford, Oxford, ; ⁴²²Department of Geriatrics and Long Term Care, Hamad Medical Corporation, Doha, Oatar; ⁴²³Faculty of Health & Social Sciences, Bournemouth University, Bournemouth, UK; ⁴²⁴Department of Epidemiology, Indian Institute of Public Health, Gandhinagar, India; ⁴²⁵Department of Computational Biology, Indraprastha Institute of Information Technology, Delhi, India; ⁴²⁶Emergency Department, Manian Medical Centre, Erode, India; ⁴²⁷Center for Biomedical Information Technology, Shenzhen Institutes of Advanced Technology, Shenzhen, China; ⁴²⁸Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA; 429 Department of Radiology and Interventional Neuroradiology, Isfahan University of Medical Sciences, Isfahan, Iran; ⁴³⁰Public Health Division, An-Najah National University, Nablus, Palestine; ⁴³¹Independent Consultant, Karachi, Pakistan; ⁴³²Neurology

Department, Ain Shams University, Cairo, Egypt; ⁴³³Department of Community Medicine, BLDE University, Vijayapur, India; ⁴³⁴Centre for Medical Informatics, University of Edinburgh, Edinburgh, UK; ⁴³⁵Division of General Internal Medicine, Harvard University, Boston, MA, USA; 436 Department of Community Medicine, Manipal Academy of Higher Education, Manipal, India; ⁴³⁷Institute for Population Health, King's College London, London, UK; ⁴³⁸College of Medicine, Yonsei University, Seoul, South Korea; 439 Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil; 440 Faculty of Medicine and Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, India; ⁴⁴¹Department of Humanities and Social Sciences, Indian Institute of Technology, Roorkee, Roorkee, India; ⁴⁴²Division of Environmental Monitoring & Exposure Assessment (Water & Soil), National Institute for Research in Environmental Health, Bhopal, India; 443 Department of Midwifery, Haramaya University, Harar, Ethiopia; 444 Department No.16, Moscow Research and Practical Centre on Addictions, Moscow, Russia; 445Therapeutic Department, Balashiha Central Hospital, Balashikha, Russia; 446 Nursing Care Research Center, Semnan University of Medical Sciences, Semnan, Iran; 447 Department of Nursing, Muhammadiyah University of Surakarta, Surakarta, Indonesia; ⁴⁴⁸Department of Community Medicine, Ahmadu Bello University, Zaria, Nigeria; ⁴⁴⁹School of Medicine, University of California San Francisco, San Francisco, CA, USA; ⁴⁵⁰Joint Medical Program, University of California Berkeley, Berkeley, CA, USA; ⁴⁵¹Department of Biomedical Sciences, Arba Minch University, Arba Minch, Ethiopia; ⁴⁵²Non-communicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; ⁴⁵³Department of Population Science and Human Resource Development, University of Rajshahi, Rajshahi, Bangladesh; ⁴⁵⁴Research and Development Center for Humanities and Health Management, National Institute of Health Research & Development, Jakarta, Indonesia; ⁴⁵⁵Department of Epidemiology and Biostatistsics, University of Gondar, Gondar, Ethiopia; ⁴⁵⁶School of Public Health, Mekelle University, Mekelle, Ethiopia; ⁴⁵⁷Southgate Institute for Health and Society, Flinders University, Adelaide, SA, Australia; ⁴⁵⁸Department of Epidemiology and Biostatistics, University of Gondar, Gondar, Ethiopia; ⁴⁵⁹Department of Public Health and Community Medicine, Central University of Kerala, Kasaragod, India; ⁴⁶⁰Department of Endocrinology, Diabetes and Metabolism, Christian Medical College and Hospital (CMC), Vellore, India; 461 Institute of Public Health, Jagiellonian University Medical College, Kraków, Poland; 462 Agency for Health Technology Assessment and Tariff System, Warsaw, Poland; 463Department of Pathology and Legal Medicine, University of São Paulo, Ribeirão Preto, Brazil; 464 Modestum LTD, London, UK; 465 Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands; 466 Department of Health Economics, Hanoi Medical University, Hanoi, Vietnam; 467 Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands; 468 Department of Allied Health Sciences, Iqra National University, Peshawar, Pakistan; 469 Department of Community Medicine, Alex Ekwueme Federal University Teaching Hospital Abakaliki, Abakaliki, Nigeria; ⁴⁷⁰Kasturba Medical College, Manipal Academy of Higher Education, Mangalore, India; ⁴⁷¹Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India; ⁴⁷²Department of Community Medicine, University of Nigeria Nsukka, Enugu, Nigeria; 473 Insights Program, Bill & Melinda Gates Foundation, Seatte, WA, USA; ⁴⁷⁴Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; ⁴⁷⁵Occupational Health Unit, Sant'Orsola Malpighi Hospital, Bologna, Italy; ⁴⁷⁶Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam; 477 Population Dynamics and Sexual and Reproductive Health, African Population and Health Research Center, Nairobi, Kenya;

⁴⁷⁸Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan; ⁴⁷⁹Cultures, Societies and Global Studies, & Integrated Initiative for Global Health, Northeastern University, Boston, MA, USA; 480School of Public Health, University of Nairobi, Nairobi, Kenya; ⁴⁸¹School of Health Sciences, Wuhan University, Wuhan, China; ⁴⁸²Department of Epidemiology and Biostatistics, Wuhan University, Wuhan, China; ⁴⁸³Department of Community Medicine, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka; ⁴⁸⁴Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA; ⁴⁸⁵Department of Orthopaedics, Wenzhou Medical University, Wenzhou, China; 486Global Health Research Center, Duke Kunshan University, Kunshan, China; ⁴⁸⁷Duke Global Health Institute, Duke University, Durham, NC, USA; ⁴⁸⁸Department of Diabetes and Metabolic Diseases, University of Tokyo, Tokyo, Japan; ⁴⁸⁹School of International Development and Global Studies, University of Ottawa, Ottawa, ON, Canada; ⁴⁹⁰The George Institute for Global Health, University of Oxford, Oxford, UK; ⁴⁹¹Department of Midwifery, Wolkite University, Wolkite, Ethiopia; ⁴⁹²Department of Public Health, Wollega University, Nekemte, Ethiopia; ⁴⁹³Centre for Suicide Research and Prevention, University of Hong Kong, Hong Kong, China; ⁴⁹⁴Department of Social Work and Social Administration, University of Hong Kong, Hong Kong, China; ⁴⁹⁵Department of Neuropsychopharmacology, National Center of Neurology and Psychiatry, Kodaira, Japan; ⁴⁹⁶Department of Public Health, Juntendo University, Tokyo, Japan; ⁴⁹⁷Department of Health Policy and Management, Jackson State University, Jackson, MS, USA; ⁴⁹⁸School of Medicine, Tsinghua University, Beijing, China; ⁴⁹⁹School of Public Health and Management, Hubei University of Medicine, Shiyan, China; ⁵⁰⁰Cancer Institute, Hacettepe University, Ankara, Turkey; ⁵⁰¹Department of Obstetrics and Gynaecology, Fazaia Medical College, Islamabad, Pakistan; ⁵⁰²Department of Obstetrics and Gynaecology, Air University, Islamabad, Pakistan; ⁵⁰³Department of Pharmaceutics, Dow University of Health Sciences, Karachi, Pakistan; ⁵⁰⁴Department of Parasitology and Entomology, Tarbiat Modares University, Tehran, Iran; ⁵⁰⁵Institute for Immunological Research, University of Cartagena, Cartagena, Colombia; ⁵⁰⁶Department of Paediatrics & Child Health, University of Cape Town, Cape Town, South Africa; 507Unit on Child & Adolescent Health, Medical Research Council South Africa, Cape Town, South Africa; 508Laboratory of Genetics and Genomics, Moscow Research and Practical Centre on Addictions, Moscow, Russia; ⁵⁰⁹Addictology Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia; ⁵¹⁰Pediatrics Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia; 511 Department of Pediatrics and Child Health Nursing, Bahir Dar University, Bahir Dar, Ethiopia; 512School of Public Health, Wuhan University of Science and Technology, Wuhan, China; 513 Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; ⁵¹⁴School of Medicine, Wuhan University, Wuhan, China; ⁵¹⁵School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 516 Indian Institute of Public Health, Public Health Foundation of India, Gurugram, India; 517Health Technology Assessment Unit, Department of Health Philippines, Manila, Philippines; ⁵¹⁸#MentalHealthPH, Inc., Quezon City, Philippines.

9.0. Author Contributions

Providing data or critical feedback on data sources

Natalia V Bhattacharjee, Dan Lu, Megan F Schipp, Gdiom Gebreheat Abady, Akine Eshete Abosetugn, Michael R M Abrigo, Isaac Akinkunmi Adedeji, Victor Adekanmbi, Olatunji O Adetokunboh, Budi Aji, Fahad Mashhour Alanezi, Turki M Alanzi, Jacqueline Elizabeth Alcalde-Rabanal, Beriwan Abdulgadir Ali, Sagib Ali, Mina Anjomshoa, Fereshteh Ansari, Davood Anvari, Jalal Arabloo, Amit Arora, Kurnia Dwi Artanti, Mulusew A Asemahagn, Wondwossen Niguse Asmare, Maha Moh'd Wahbi Atout, Marcel Ausloos, Nefsu Awoke, Beatriz Paulina Ayala Quintanilla, Yared Asmare Aynalem, Muluken Altaye Ayza, Maciej Banach, Palash Chandra Banik, Till Winfried Bärnighausen, Sefealem Assefa Belay, Akshaya Srikanth Bhagavathula, Binyam Minuye Birihane, Zebenay Workneh Bitew, Somayeh Bohlouli, Mahdi Bohluli, Archith Boloor, Nicola Luigi Bragazzi, Shyam S Budhathoki, Sharath Burugina Nagaraja, Joao Mauricio Castaldelli-Maia, Franz Castro, Vijay Kumar Chattu, Dinh-Toi Chu, Rosa A S Couto, Lalit Dandona, Rakhi Dandona, Aso Mohammad Darwesh, Amira Hamed Darwish, Ahmad Daryani, Rajat Das Gupta, Awrajaw Dessie, Samath Dhamminda Dharmaratne, Meghnath Dhimal, Govinda Prasad Dhungana, Linh Phuong Doan, Lucas Earl, Maysaa El Sayed Zaki, Teshome Bekele Elema, Andre Faro, Farshad Farzadfar, Berhanu Elfu Feleke, Richard Charles Franklin, Mohamed M Gad, Shilpa Gaidhane, William M Gardner, Birhan Gebresillassie Gebregiorgis, Ketema Bizuwork Gebremedhin, Themba G Ginindza, Mahaveer Golechha, Dr Kebebe Bekele Gonfa, Bárbara Niegia Garcia Goulart, Yuming Guo, Ahmed I Hasaballah, Mohamed I Hegazy, Behnam Heidari, Claudiu Herteliu, Hung Chak Ho, Chi Linh Hoang, Julia Hon, Mehdi Hosseinzadeh, Mowafa Househ, Mohamed Hsairi, Guoqing Hu, Segun Emmanuel Ibitoye, Usman Iqbal, Seyed Sina Naghibi Irvani, Chidozie C D Iwu, Animesh Jain, Tahereh Javaheri, Yetunde O John-Akinola, Kimberly B Johnson, Farahnaz Joukar, Jacek Jerzy Jozwiak, Ashwin Kamath, Naser Kamyari, Salah Eddin Karimi, Nicholas J Kassebaum, Gbenga A Kayode, Nauman Khalid, Md Nuruzzaman Khan, Khaled Khatab, Amir M Khater, Mona M Khater, Mahalaqua Nazli Khatib, Damaris K Kinyoki, Adnan Kisa, Sezer Kisa, Soewarta Kosen, Kewal Krishan, G Anil Kumar, Pushpendra Kumar, Dian Kusuma, Van Charles Lansingh, Savita Lasrado, Shanshan Li, Xuefeng Liu, Jaifred Christian F Lopez, Daiane Borges Machado, Deborah Carvalho Malta, Navid Manafi, Francisco Rogerlândio Martins-Melo, Man Mohan Mehndiratta, Walter Mendoza, Endalkachew Worku Mengesha, Erkin M Mirrakhimov, Masoud Moghadaszadeh, Abdollah Mohammadian-Hafshejani, Jemal Abdu Mohammed, Shafiu Mohammed, Ali H Mokdad, Pablo A Montero-Zamora, Masoud Moradi, Seyyed Meysam Mousavi, Ahamarshan Jayaraman Nagarajan, Bruno Ramos Nascimento, Ionut Negoi, Georges Nguefack-Tsague, Josephine W Ngunjiri, Cuong Tat Nguyen, Huong Lan Thi Nguyen, Samuel Negash Nigussie, Chukwudi A Nnaji, Bogdan Oancea, Onome Bright Oghenetega, Andrew T Olagunju, Bolajoko Olubukunola Olusanya, Jacob Olusegun Olusanya, Obinna E Onwujekwe, Mayowa O Owolabi, Mahesh P A, Jagadish Rao Padubidri, Adrian Pana, Anamika Pandey, Urvish K Patel, Ashish Pathak, Sanjay M Pattanshetty, Kebreab Paulos, Veincent Christian Filipino Pepito, Brandon V Pickering, Marina Pinheiro, Hadi Pourjafar, Sergio I Prada, Dimas Ria Angga Pribadi, Zahiruddin Quazi Syed, Fakher Rahim, Azizur Rahman, Mohammad Hifz Ur Rahman, Amir Masoud Rahmani, Chhabi Lal Ranabhat, Sowmya J Rao, Priya Rathi, David Laith Rawaf, Salman Rawaf, Reza Rawassizadeh, Ramu Rawat, Lemma Demissie Regassa, Robert C Reiner Jr., Bhageerathy Reshmi, Leonardo Roever, Rajesh Sagar, S. Mohammad Sajadi, Abdallah M Samy, Milena M Santric-Milicevic, Sivan Yegnanarayana Iyer Saraswathy,

Abdur Razzaque Sarker, Benn Sartorius, Brijesh Sathian, Deepak Saxena, Debarka Sengupta, Feng Sha, Masood Ali Shaikh, Mohammed Shannawaz, B Suresh Kumar Shetty, Wondimeneh Shibabaw Shiferaw, Jae Il Shin, Valentin Yurievich Skryabin, Anna Aleksandrovna Skryabina, Amin Soheili, Emma Elizabeth Spurlock, Agus Sudaryanto, Scott J Swartz, Animut Tagele Tamiru, Marcos Roberto Tovani-Palone, Bach Xuan Tran, Phuong N Truong, Berhan Tsegaye BT Tsegaye, Irfan Ullah, Bhaskaran Unnikrishnan, Era Upadhyay, John David VanderHeide, Bay Vo, Yasir Waheed, Yafeng Wang, Charles Shey Wiysonge, Sanni Yaya, Alex Yeshaneh, Yordanos Gizachew Yeshitila, Naohiro Yonemoto, Mustafa Z Younis, Abdilahi Yousuf Yousuf, Chuanhua Yu, Syed Saoud Zaidi, Josefina Zakzuk, Mikhail Sergeevich Zastrozhin, Desalege Amare Zelellw, Zhi-Jiang Zhang, Yves Miel H Zuniga, and Simon I Hay

Developing methods or computational machinery

Natalia V Bhattacharjee, Saqib Ali, Nefsu Awoke, Yared Asmare Aynalem, Palash Chandra Banik, Somayeh Bohlouli, Mahdi Bohluli, Michael L Collison, Aso Mohammad Darwesh, Ahmad Daryani, Aniruddha Deshpande, Meghnath Dhimal, Maysaa El Sayed Zaki, William M Gardner, Yuming Guo, Nathaniel J Henry, Mowafa Househ, Tahereh Javaheri, Leila R Kalankesh, Amir M Khater, Adnan Kisa, Sezer Kisa, Shanshan Li, Masoud Moghadaszadeh, Shafiu Mohammed, Ali H Mokdad, Saravanan Muthupandian, Josephine W Ngunjiri, Aaron E Osgood-Zimmerman, Chhabi Lal Ranabhat, Ramu Rawat, Robert C Reiner Jr., Abdallah M Samy, Abdur Razzaque Sarker, Deepak Saxena, Alyssa N Sbarra, Emma Elizabeth Spurlock, Krista M Steuben, Scott J Swartz, Animut Tagele Tamiru, John David VanderHeide, Kirsten E Wiens, Desalege Amare Zelellw, and Simon I Hay

Providing critical feedback on methods or results

Natalia V Bhattacharjee, Lauren E Schaeffer, Alice Lazzar-Atwood, Gdiom Gebreheat Abady, Foad Abd-Allah, Ahmed Abdelalim, Ayenew Negesse Abejie, Akine Eshete Abosetugn, Lucas Guimarães Abreu, Michael R M Abrigo, Eman Abu-Gharbieh, Abdelrahman I Abushouk, Isaac Akinkunmi Adedeji, Adevinka Emmanuel Adegbosin, Victor Adekanmbi, Olatunji O Adetokunboh, Marcela Agudelo-Botero, Budi Aji, Oluwaseun Oladapo Akinyemi, Alehegn Aderaw Alamneh, Fahad Mashhour Alanezi, Turki M Alanzi, Jacqueline Elizabeth Alcalde-Rabanal, Biresaw Wassihun Alemu, Robert Kaba Alhassan, Beriwan Abdulgadir Ali, Saqib Ali, Cyrus Alinia, Vahid Alipour, Arianna Maever L Amit, Dickson A Amugsi, Etsay Woldu Anbesu, Robert Ancuceanu, Fereshteh Ansari, Carl Abelardo T Antonio, Davood Anvari, Jalal Arabloo, Amit Arora, Kurnia Dwi Artanti, Mulusew A Asemahagn, Wondwossen Niguse Asmare, Maha Moh'd Wahbi Atout, Marcel Ausloos, Nefsu Awoke, Beatriz Paulina Ayala Quintanilla, Martin Amogre Ayanore, Muluken Altaye Ayza, Zelalem Nigussie Azene, Darshan B B, Ashish D Badiye, Maciej Banach, Palash Chandra Banik, Till Winfried Bärnighausen, Bayisa Abdissa Baye, Sefealem Assefa Belay, Akshaya Srikanth Bhagavathula, Dinesh Bhandari, Nikha Bhardwaj, Pankaj Bhardwaj, Zulfiqar A Bhutta, Ali Bijani, Tsegaye Adane Birhan, Binyam Minuye Birihane, Zebenay Workneh Bitew, Somayeh Bohlouli, Mahdi Bohluli, Hunduma Amensisa Bojia, Archith Boloor, Oliver J Brady, Nicola Luigi Bragazzi, Andre R Brunoni, Shyam S Budhathoki, Sharath Burugina Nagaraja, Zahid A Butt, Rosario Cárdenas, Joao Mauricio Castaldelli-Maia, Franz Castro, Achille Cernigliaro, Jaykaran Charan, Pranab Chatterjee, Souranshu Chatterjee, Vijay Kumar Chattu, Sarika Chaturvedi, Mohiuddin Ahsanul Kabir Chowdhury, Dinh-Toi Chu, Michael A Cork, Baye Dagnew, Haijiang Dai, Lalit Dandona, Rakhi Dandona, Parnaz Daneshpajouhnejad, Aso Mohammad Darwesh, Amira Hamed Darwish,

Ahmad Daryani, Jai K Das, Rajat Das Gupta, Kebede Deribe, Assefa Desalew, Awrajaw Dessie, Keshab Deuba, Meghnath Dhimal, Govinda Prasad Dhungana, Daniel Diaz, Alireza Didarloo, Isaac Oluwafemi Dipeolu, Linh Phuong Doan, Bereket Duko, Laura Dwyer-Lindgren, Maysaa El Sayed Zaki, Teshome Bekele Elema, Hala Rashad Elhabashy, Pawan Sirwan Faris, Andre Faro, Farshad Farzadfar, Valery L Feigin, Berhanu Elfu Feleke, Florian Fischer, Nataliya A Foigt, Morenike Oluwatoyin Folayan, Richard Charles Franklin, Mohamed M Gad, Shilpa Gaidhane, William M Gardner, Birhan Gebresillassie Gebregiorgis, Ketema Bizuwork Gebremedhin, Berhe Gebremichael, Fariborz Ghaffarpasand, Syed Amir Gilani, Themba G Ginindza, Mustefa Glagn, Mahaveer Golechha, Dr Kebebe Bekele Gonfa, Bárbara Niegia Garcia Goulart, Nachiket Gudi, Davide Guido, Rashid Abdi Guled, Yuming Guo, Ahmed I Hasaballah, Behnam Heidari, Nathaniel J Henry, Claudiu Herteliu, Hagos Degefa de Hidru, Hung Chak Ho, Chi Linh Hoang, Ramesh Holla, Mehdi Hosseinzadeh, Mowafa Househ, Tanvir M Huda, Bing-Fang Hwang, Segun Emmanuel Ibitoye, Olayinka Stephen Ilesanmi, Irena M Ilic, Milena D Ilic, Leeberk Raja Inbaraj, Usman Iqbal, Seyed Sina Naghibi Irvani, M Mofizul Islam, Chidozie C D Iwu, Chinwe Juliana Iwu, Animesh Jain, Manthan Dilipkumar Janodia, Tahereh Javaheri, Yetunde O John-Akinola, Farahnaz Joukar, Jacek Jerzy Jozwiak, Ali Kabir, Leila R Kalankesh, Rohollah Kalhor, Ashwin Kamath, Naser Kamyari, Tanuj Kanchan, Neeti Kapoor, Behzad Karami Matin, Salah Eddin Karimi, Habtamu Kebebe Kasaye, Getinet Kassahun, Nicholas J Kassebaum, Gbenga A Kayode, Ali Kazemi Karyani, Peter Njenga Keiyoro, Bayew Kelkay, Nauman Khalid, Md Nuruzzaman Khan, Khaled Khatab, Amir M Khater, Mona M Khater, Mahalaqua Nazli Khatib, Yun Jin Kim, Ruth W Kimokoti, Damaris K Kinyoki, Adnan Kisa, Sezer Kisa, Kewal Krishan, Vaman Kulkarni, G Anil Kumar, Manasi Kumar, Nithin Kumar, Pushpendra Kumar, Om P Kurmi, Dian Kusuma, Carlo La Vecchia, Sheetal D Lad, Faris Hasan Lami, Savita Lasrado, Kate E LeGrand, Sonia Lewycka, Bingyu Li, Ming-Chieh Li, Shanshan Li, Xuefeng Liu, Rakesh Lodha, Jaifred Christian F Lopez, Daiane Borges Machado, Venkatesh Maled, Abdullah A Mamun, Navid Manafi, Mohammad Ali Mansournia, Laurie B Marczak, Francisco Rogerlândio Martins-Melo, Fabiola Mejia-Rodriguez, Tefera Chane Mekonnen, Walter Mendoza, Ritesh G Menezes, Endalkachew Worku Mengesha, Abera M Mersha, Ted R Miller, Erkin M Mirrakhimov, Sanjeev Misra, Masoud Moghadaszadeh, Dara K Mohammad, Abdollah Mohammadian-Hafshejani, Jemal Abdu Mohammed, Shafiu Mohammed, Ali H Mokdad, Pablo A Montero-Zamora, Rahmatollah Moradzadeh, Jonathan F Mosser, Amin Mousavi Khaneghah, Sandra B Munro, Moses K Muriithi, Ghulam Mustafa, Saravanan Muthupandian, Ahamarshan Jayaraman Nagarajan, Gurudatta Naik, Mukhammad David Naimzada, Vinay Nangia, Bruno Ramos Nascimento, Rawlance Ndejjo, Duduzile Edith Ndwandwe, Ionut Negoi, Georges Nguefack-Tsague, Josephine W Ngunjiri, Cuong Tat Nguyen, Diep Ngoc Nguyen, Huong Lan Thi Nguyen, Samuel Negash Nigussie, Tadesse T N Nigussie, Rajan Nikbakhsh, Chukwudi A Nnaji, Bogdan Oancea, Onome Bright Oghenetega, Andrew T Olagunju, Bolajoko Olubukunola Olusanya, Jacob Olusegun Olusanya, Muktar Omer Omer, Obinna E Onwujekwe, Doris V Ortega-Altamirano, Aaron E Osgood-Zimmerman, Nikita Otstavnov, Stanislav S Otstavnov, Mayowa O Owolabi, Mahesh P A, Jagadish Rao Padubidri, Adrian Pana, Anamika Pandey, Seithikurippu R Pandi-Perumal, Helena Ullyartha Pangaribuan, Shradha S Parsekar, Deepak Kumar Pasupula, Urvish K Patel, Ashish Pathak, Mona Pathak, Sanjay M Pattanshetty, Kebreab Paulos, Veincent Christian Filipino Pepito, Ellen G Piwoz, Khem Narayan Pokhrel, Hadi Pourjafar, Sergio I Prada, Zahiruddin Quazi Syed, Mohammad Rabiee, Navid Rabiee, Fakher Rahim, Shadi Rahimzadeh, Azizur Rahman, Mohammad Hifz Ur Rahman, Amir Masoud Rahmani, Rajesh Kumar Rai, Chhabi Lal Ranabhat, Sowmya J Rao,

Prateek Rastogi, Priya Rathi, David Laith Rawaf, Salman Rawaf, Reza Rawassizadeh, Rahul Rawat, Ramu Rawat, Lemma Demissie Regassa, Maria Albertina Santiago Rego, Robert C Reiner Jr., Bhageerathy Reshmi, Aziz Rezapour, Ana Isabel Ribeiro, Jennifer Rickard, Leonardo Roever, Godfrey M Rwegerera, Rajesh Sagar, S. Mohammad Sajadi, Marwa Rashad Salem, Abdallah M Samy, Milena M Santric-Milicevic, Sivan Yegnanarayana Iyer Saraswathy, Abdur Razzaque Sarker, Benn Sartorius, Brijesh Sathian, Alyssa N Sbarra, Debarka Sengupta, Subramanian Senthilkumaran, Omid Shafaat, Amira A Shaheen, Masood Ali Shaikh, Ali S Shalash, Mohammed Shannawaz, Aziz Sheikh, Ranjitha S Shetty, Kenji Shibuya, Wondimeneh Shibabaw Shiferaw, Jae Il Shin, Diego Augusto Santos Silva, Narinder Pal Singh, Yitagesu Sintayehu, Valentin Yurievich Skryabin, Anna Aleksandrovna Skryabina, Shahin Soltani, Muluken Bekele Sorrie, Emma Elizabeth Spurlock, Agus Sudaryanto, Mu'awiyyah Babale Sufiyan, Eyayou Girma Tadesse, Animut Tagele Tamiru, Md Ismail Tareque, Ingan Ukur Tarigan, Getayeneh Antehunegn Tesema, Abinet Teshome, Zemenu Tadesse Tessema, Kavumpurathu Raman Thankappan, Rekha Thapar, Nihal Thomas, Roman Topor-Madry, Marcos Roberto Tovani-Palone, Eugenio Traini, Bach Xuan Tran, Phuong N Truong, Berhan Tsegaye BT Tsegaye, Irfan Ullah, Chukwuma David Umeokonkwo, Bhaskaran Unnikrishnan, Era Upadhyay, Francesco S Violante, Bay Vo, Yohannes Dibaba Wado, Yasir Waheed, Richard G Wamai, Yafeng Wang, Yuan-Pang Wang, Nuwan Darshana Wickramasinghe, Kirsten E Wiens, Charles Shey Wiysonge, Ai-Min Wu, Chenkai Wu, Tomohide Yamada, Alex Yeshaneh, Yordanos Gizachew Yeshitila, Mekdes Tigistu Yilma, Paul Yip, Naohiro Yonemoto, Tewodros Yosef, Mustafa Z Younis, Abdilahi Yousuf Yousuf, Chuanhua Yu, Yong Yu, Deniz Yuce, Shamsa Zafar, Leila Zaki, Maryam Zamanian, Mikhail Sergeevich Zastrozhin, Anasthasia Zastrozhina, Desalege Amare Zelellw, Yunquan Zhang, Zhi-Jiang Zhang, Sanjay Zodpey, Yves Miel H Zuniga, and Simon I Hay

Drafting the work or revising is critically for important intellectual content

Natalia V Bhattacharjee, Lauren E Schaeffer, Megan F Schipp, Katie M Donkers, Gdiom Gebreheat Abady, Foad Abd-Allah, Ahmed Abdelalim, Zeleke Hailemariam Abebo, Ayenew Negesse Abejie, Lucas Guimarães Abreu, Eman Abu-Gharbieh, Abdelrahman I Abushouk, Aishatu L Adamu, Isaac Akinkunmi Adedeji, Victor Adekanmbi, Olatunji O Adetokunboh, Marcela Agudelo-Botero, Budi Aji, Oluwaseun Oladapo Akinyemi, Jacqueline Elizabeth Alcalde-Rabanal, Robert Kaba Alhassan, Cyrus Alinia, Dickson A Amugsi, Robert Ancuceanu, Mina Anjomshoa, Carl Abelardo T Antonio, Jalal Arabloo, Amit Arora, Marcel Ausloos, Nefsu Awoke, Martin Amogre Ayanore, Darshan B B, Atif Amin Baig, Shankar M Bakkannavar, Maciej Banach, Till Winfried Bärnighausen, Huda Basaleem, Mohsen Bayati, Neeraj Bedi, Akshaya Srikanth Bhagavathula, Dinesh Bhandari, Oliver J Brady, Nicola Luigi Bragazzi, Andre R Brunoni, Shyam S Budhathoki, Sharath Burugina Nagaraja, Joao Mauricio Castaldelli-Maia, Franz Castro, Achille Cernigliaro, Pranab Chatterjee, Vijay Kumar Chattu, Sarika Chaturvedi, Dinh-Toi Chu, Baye Dagnew, Ahmad Daryani, Rajat Das Gupta, Claudio Alberto Dávila-Cervantes, Nicole Davis Weaver, Edgar Denova-Gutiérrez, Kebede Deribe, Samath Dhamminda Dharmaratne, Meghnath Dhimal, Govinda Prasad Dhungana, Daniel Diaz, Alireza Didarloo, Isaac Oluwafemi Dipeolu, Linh Phuong Doan, Andre Rodrigues Duraes, Laura Dwyer-Lindgren, Maysaa El Sayed Zaki, Maha El Tantawi, Shaimaa I El-Jaafary, Andre Faro, Berhanu Elfu Feleke, Tomas Y Ferede, Florian Fischer, Nataliya A Foigt, Morenike Oluwatoyin Folayan, Mohamed M Gad, Shilpa Gaidhane, Biniyam Sahiledengle Geberemariyam, Berhe Gebremichael, Themba G Ginindza, Mustefa Glagn, Bárbara Niegia Garcia Goulart, Nachiket

Gudi, Yuming Guo, Samer Hamidi, Demelash Woldeyohannes Handiso, Ahmed I Hasaballah, Amr Hassan, Khezar Hayat, Claudiu Herteliu, Hagos Degefa de Hidru, Chi Linh Hoang, Ramesh Holla, Mostafa Hosseini, Mehdi Hosseinzadeh, Mowafa Househ, Guoqing Hu, Segun Emmanuel Ibitoye, Olayinka Stephen Ilesanmi, Irena M Ilic, Milena D Ilic, Usman Iqbal, Seyed Sina Naghibi Irvani, M Mofizul Islam, Chidozie C D Iwu, Chinwe Juliana Iwu, Animesh Jain, Manthan Dilipkumar Janodia, Yetunde O John-Akinola, Kimberly B Johnson, Jacek Jerzy Jozwiak, Ali Kabir, Habtamu Kebebe Kasaye, Getinet Kassahun, Nicholas J Kassebaum, Gbenga A Kayode, Bayew Kelkay, Md Nuruzzaman Khan, Khaled Khatab, Mona M Khater, Mahalaqua Nazli Khatib, Yun Jin Kim, Adnan Kisa, Sezer Kisa, Kewal Krishan, Vaman Kulkarni, Manasi Kumar, Om P Kurmi, Dian Kusuma, Carlo La Vecchia, Iván Landires, Savita Lasrado, Paul H Lee, Kate E LeGrand, Shanshan Li, Jaifred Christian F Lopez, Daiane Borges Machado, Venkatesh Maled, Shokofeh Maleki, Abdullah A Mamun, Navid Manafi, Mohammad Ali Mansournia, Chabila Christopher Mapoma, Laurie B Marczak, Francisco Rogerlândio Martins-Melo, Tefera Chane Mekonnen, Ted R Miller, GK Mini, Masoud Moghadaszadeh, Dara K Mohammad, Jemal Abdu Mohammed, Shafiu Mohammed, Ali H Mokdad, Pablo A Montero-Zamora, Paula Moraga, Jonathan F Mosser, Seyyed Meysam Mousavi, Amin Mousavi Khaneghah, Ghulam Mustafa, Ahamarshan Jayaraman Nagarajan, Mukhammad David Naimzada, Vinay Nangia, Bruno Ramos Nascimento, Vinod C Nayak, Ionut Negoi, Georges Nguefack-Tsague, Josephine W Ngunjiri, Cuong Tat Nguyen, Huong Lan Thi Nguyen, Samuel Negash Nigussie, Tadesse T N Nigussie, Rajan Nikbakhsh, Virginia Nunez-Samudio, Onome Bright Oghenetega, Andrew T Olagunju, Bolajoko Olubukunola Olusanya, Jacob Olusegun Olusanya, Muktar Omer Omer, Obinna E Onwujekwe, Doris V Ortega-Altamirano, Nikita Otstavnov, Stanislav S Otstavnov, Mayowa O Owolabi, Mahesh P A, Jagadish Rao Padubidri, Adrian Pana, Seithikurippu R Pandi-Perumal, Mona Pathak, George C Patton, Veincent Christian Filipino Pepito, Khem Narayan Pokhrel, Sergio I Prada, Zahiruddin Quazi Syed, Fakher Rahim, Azizur Rahman, Mohammad Hifz Ur Rahman, Amir Masoud Rahmani, Chhabi Lal Ranabhat, Sowmya J Rao, Priya Rathi, David Laith Rawaf, Salman Rawaf, Reza Rawassizadeh, Lemma Demissie Regassa, Robert C Reiner Jr., Bhageerathy Reshmi, Ana Isabel Ribeiro, Jennifer Rickard, Leonardo Roever, Susan Fred Rumisha, Godfrey M Rwegerera, Rajesh Sagar, Marwa Rashad Salem, Abdallah M Samy, Milena M Santric-Milicevic, Deepak Saxena, Masood Ali Shaikh, Mohammed Shannawaz, Diego Augusto Santos Silva, Pushpendra Singh, Surya Singh, Yitagesu Sintayehu, Muluken Bekele Sorrie, Mu'awiyyah Babale Sufiyan, Eyayou Girma Tadesse, Animut Tagele Tamiru, Leili Tapak, Fisaha Haile Tesfay, Nihal Thomas, Marcos Roberto Tovani-Palone, Bach Xuan Tran, Berhan Tsegaye BT Tsegaye, Irfan Ullah, Chukwuma David Umeokonkwo, Bhaskaran Unnikrishnan, Era Upadhyay, Benjamin S Chudi Uzochukwu, Francesco S Violante, Bay Vo, Yasir Waheed, Richard G Wamai, Fang Wang, Yuan-Pang Wang, Nuwan Darshana Wickramasinghe, Kirsten E Wiens, Charles Shey Wiysonge, Ai-Min Wu, Sanni Yaya, Alex Yeshaneh, Yigizie Yeshaw, Yordanos Gizachew Yeshitila, Mekdes Tigistu Yilma, Naohiro Yonemoto, Deniz Yuce, Maryam Zamanian, Heather J Zar, Mikhail Sergeevich Zastrozhin, Anasthasia Zastrozhina, Xiu-Ju George Zhao, and Simon I Hay

Managing the overall research enterprise

Aubrey J Cook, Lalit Dandona, Deborah Carvalho Malta, Ali H Mokdad, George C Patton, Robert C Reiner Jr., Benn Sartorius, Roman Topor-Madry, and Simon I Hay.

10.0. Supplementary References

- 1. Murray, C. J. L. *et al.* Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. *The Lancet* **396**, 1223–1249 (2020).
- 2. Bhattacharjee, N. V. *et al.* Mapping exclusive breastfeeding in Africa between 2000 and 2017. *Nature Medicine* **25**, 1205–1212 (2019).
- 3. Wiegand, H. Kish, L.: Survey Sampling. John Wiley & Sons, Inc., New York, London 1965, IX + 643 S., 31 Abb., 56 Tab., Preis 83 s. *Biometrische Zeitschrift* **10**, 88–89 (1968).
- 4. Golding, N. *et al.* Mapping under-5 and neonatal mortality in Africa, 2000-15: a baseline analysis for the Sustainable Development Goals. *The Lancet* **390**, 2171–2182 (2017).
- 5. Fullman, N. *et al.* Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. *The Lancet* **391**, 2236–2271 (2018).
- 6. Lozano, R. *et al.* Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. *The Lancet* **392**, 2091–2138 (2018).
- 7. Development Initiatives. 2018 Global Nutrition Report: Shining a light to spur action on nutrition. https://globalnutritionreport.org/reports/global-nutrition-report-2018/ (2018).
- 8. UNICEF. Exclusive breastfeeding (<6 months) dataset. *Infant and young child feeding (IYCF) data* https://data.unicef.org/resources/dataset/infant-young-child-feeding/.
- 9. Perez-Escamilla, R. Update on the breastfeeding situation in Africa. *Nutrition Research* **13**, 597–609 (1993).
- 10. Shirima, R., Greiner, T., Kylberg, E. & Gebre-Medhin, M. Exclusive breast-feeding is rarely practised in rural and urban Morogoro, Tanzania. *Public Health Nutrition* **4**, 147–154 (2001).
- 11. Shirima, R., Gebre-Medhin, M. & Greiner, T. Information and socioeconomic factors associated with early breastfeeding practices in rural and urban Morogoro, Tanzania. *Acta Paediatrica* **90**, 936–942 (2001).
- 12. Victora, C. G. *et al.* Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. *The Lancet* **387**, 475–490 (2016).
- 13. Cernadas, J. M. C., Noceda, G., Barrera, L., Martinez, A. M. & Garsd, A. Maternal and Perinatal Factors Influencing the Duration of Exclusive Breastfeeding During the First 6 Months of Life. *J Hum Lact* **19**, 136–144 (2003).
- Coutinho, S. B., de Lira, P. I. C., de Carvalho Lima, M. & Ashworth, A. Comparison of the effect of two systems for the promotion of exclusive breastfeeding. *The Lancet* 366, 1094– 1100 (2005).
- 15. Lartey, A. Maternal and child nutrition in Sub-Saharan Africa: challenges and interventions. *Proceedings of the Nutrition Society* **67**, 105–108 (2008).
- 16. Wray, J. D. Maternal Nutrition, Breast-Feeding and Infant Survival. in *Nutrition and Human Reproduction* (ed. Mosley, W. H.) 197–229 (Springer US, 1978). doi:10.1007/978-1-4684-0790-7_12.

- 17. Hossain, M., Islam, A., Kamarul, T. & Hossain, G. Exclusive breastfeeding practice during first six months of an infant's life in Bangladesh: a country based cross-sectional study. *BMC Pediatrics* **18**, 93 (2018).
- 18. ODPHP. Maternal, Infant, and Child Health | Healthy People 2020. https://www.healthypeople.gov/2020/topics-objectives/topic/maternal-infant-and-child-health.
- 19. HHS, Office of the Surgeon General. Breastfeeding Reports And Publications. *HHS.gov* https://www.hhs.gov/surgeongeneral/reports-and-publications/breastfeeding/index.html (2019).
- 20. Biks, G. A., Tariku, A. & Tessema, G. A. Effects of antenatal care and institutional delivery on exclusive breastfeeding practice in northwest Ethiopia: a nested case—control study. *Int Breastfeed J* **10**, (2015).
- 21. Doherty, T. *et al.* Effectiveness of the WHO/UNICEF guidelines on infant feeding for HIV-positive women: results from a prospective cohort study in South Africa. *AIDS* **21**, 1791 (2007).
- 22. Thairu, L. N., Pelto, G. H., Rollins, N. C., Bland, R. M. & Ntshangase, N. Sociocultural influences on infant feeding decisions among HIV-infected women in rural Kwa-Zulu Natal, South Africa. *Maternal & Child Nutrition* 1, 2–10 (2005).
- 23. Bland, R. M. *et al.* Intervention to promote exclusive breast-feeding for the first 6 months of life in a high HIV prevalence area. *AIDS* **22**, 883 (2008).
- 24. Bland, R. M., Rollins, N. C., Coutsoudis, A. & Coovadia, H. M. Breastfeeding practices in an area of high HIV prevalence in rural South Africa. *Acta Paediatrica* **91**, 704–711 (2002).
- 25. Faraway, J. J. Chapter 4: Problems with the predictors. in *Linear Models with R* (CRC Press, 2004).
- 26. WorldPop. WorldPop dataset. http://www.worldpop.org.uk/data/get_data/.
- 27. Tatem, A. J. WorldPop, open data for spatial demography. *Scientific Data* **4**, 170004 (2017).
- 28. Global Administrative Areas (GADM). GADM Database of Global Administrative Areas. http://www.gadm.org (2018).
- 29. Land Processes Distributed Active Archive Center. Combined MODIS 5.1. MCD12Q1 / LP DAAC :: NASA Land Data Products and Services.
- 30. World Wildlife Fund. Global Lakes and Wetlands Database, Level 3. https://www.worldwildlife.org/pages/global-lakes-and-wetlands-database (2004).
- 31. Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. *Journal of Hydrology* **296**, 1–22 (2004).
- 32. Breiman, L. Stacked regressions. *Mach Learn* **24**, 49–64 (1996).
- 33. Bhatt, S. *et al.* Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization. *Journal of The Royal Society Interface* **14**, 1–10 (2017).
- 34. Kinyoki, D. K. *et al.* Mapping child growth failure across low- and middle-income countries. *Nature* **577**, 231–234 (2020).
- 35. Kinyoki, D. K. *et al.* Mapping local patterns of childhood overweight and wasting in low-and middle-income countries between 2000 and 2017. *Nature Medicine* **26**, 750–759 (2020).
- 36. Graetz, N. *et al.* Mapping disparities in education across low- and middle-income countries. *Nature* **577**, 235–238 (2020).
- 37. Burstein, R. *et al.* Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. *Nature* **574**, 353–358 (2019).

- 38. Reiner, Jr., R. C. *et al.* Mapping geographical inequalities in childhood diarrhoeal morbidity and mortality in low-income and middle-income countries, 2000–17: analysis for the Global Burden of Disease Study 2017. *The Lancet* **395**, 1779–1801 (2020).
- 39. Bhutta, Z. A. *et al.* Interventions to address deaths from childhood pneumonia and diarrhoea equitably: what works and at what cost? *Lancet* **381**, 1417–1429 (2013).
- 40. Murray, C. J. *et al.* GBD 2010: design, definitions, and metrics. *The Lancet* **380**, 2063–2066 (2012).
- 41. Stein, M. L. *Interpolation of spatial data: some theory for kriging.* (Springer, 1999).
- 42. Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). *J Roy Stat Soc B* **71**, 319–392 (2009).
- 43. Lindgren, F., Rue, H. & Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **73**, 423–498 (2011).
- 44. WHO & UNICEF. Global Breastfeeding Collective Scorecard Data. *Tableau Software* https://public.tableau.com/profile/gbc2364#!/vizhome/Tables2/Dashboard1?publish=yes (2018).
- 45. Wiens, K. E. *et al.* Mapping geographical inequalities in oral rehydration therapy coverage in low-income and middle-income countries, 2000–17. *The Lancet Global Health* **8**, e1038–e1060 (2020).
- 46. Deshpande, A. *et al.* Mapping geographical inequalities in access to drinking water and sanitation facilities in low-income and middle-income countries, 2000–17. *The Lancet Global Health* **8**, e1162–e1185 (2020).
- 47. Pullum, T. W. Exclusive breastfeeding: aligning the indicator with the goal. *Glob Health Sci Pract* **2**, 355–356 (2014).
- 48. Piwoz, E. G. *et al.* Potential for Misclassification of Infants' Usual Feeding Practices using 24-Hour Dietary Assessment Methods. *J Nutr* **125**, 57–65 (1995).
- 49. Aarts, C. *et al.* How exclusive is exclusive breastfeeding? A comparison of data since birth with current status data. *Int J Epidemiol* **29**, 1041–1046 (2000).
- 50. Gibson, R., Charrondiere, U. & Bell, W. Measurement errors in dietary assessment using self-reported 24-hour recalls in low-income countries and strategies for their prevention. *Advances in Nutrition* **8**, 980–991 (2017).
- 51. Bauchner, H., Leventhal, J. M. & Shapiro, E. D. Studies of breast-feeding and infections. How good is the evidence? *JAMA* **256**, 887–892 (1986).
- 52. Burgert, C. R., Colston, J., Roy, T. & Zachary, B. *Geographic displacement procedure and georeferenced data release policy for the Demographic and Health Surveys*. https://www.dhsprogram.com/publications/publication-SAR7-Spatial-Analysis-Reports.cfm (2013).
- 53. Perez-Escamilla, R. Breastfeeding in Africa and the Latin American and Caribbean Region: the Potential Role of Urbanization. *J Trop Pediatr* **40**, 137–143 (1994).
- 54. Lugina, H. I. Breastfeeding commitments and challenges in Africa. *African Journal of Midwifery and Women's Health* **5**, 4–4 (2011).
- 55. Kavle, J., LaCroix, E., Dau, H. & Engmann, C. Addressing barriers to exclusive breast-feeding in low- and middle-income countries: a systematic review and programmatic implications. *Public Health Nutrition* **20**, 3120–3134 (2017).

- 56. UNICEF. From the First Hour of Life: Making the case for improved infant and young child feeding everywhere. https://www.unicef.org/publications/index_93027.html (2016).
- 57. UNICEF. A successful start in life: Improving breastfeeding in West and Central Africa. https://www.unicef.org/health/files/wcaro_improving_breastfeeding_en.pdf (2010).
- 58. Rollins, N. C. *et al.* Why invest, and what it will take to improve breastfeeding practices? *The Lancet* **387**, 491–504 (2016).
- 59. Sinha, B. *et al.* Interventions to improve breastfeeding outcomes: a systematic review and meta-analysis. *Acta Paediatrica* **104**, 114–134 (2015).