

Prevalence and functional implications of Soleus and Tibialis anterior activation strategies during cycling.

JONGERIUS, Nils <http://orcid.org/0000-0001-6886-7290>, WAINWRIGHT, Barney <http://orcid.org/0000-0003-0390-3216>, WHEAT, Jonathan <http://orcid.org/0000-0002-1107-6452> and BISSAS, Athanassios <http://orcid.org/0000-0002-7858-9623>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/28812/

This document is the Accepted Version [AM]

Citation:

JONGERIUS, Nils, WAINWRIGHT, Barney, WHEAT, Jonathan and BISSAS, Athanassios (2021). Prevalence and functional implications of Soleus and Tibialis anterior activation strategies during cycling. Journal of Sports Sciences. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

1 Prevalence and functional implications of Soleus and

2 **Tibialis Anterior activation strategies during cycling**

- 3 Nils Jongerius^{1*}; Barney Wainwright¹; Jonathan Wheat²; Athanassios Bissas^{3,4}
- ¹ Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- ⁵ ²College of Health, Wellbeing and Life Sciences, Sheffield Hallam University, Sheffield, United
- 6 Kingdom
- 7 ³ School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
- 8 ⁴ Athletics Biomechanics, Leeds, United Kingdom
- 9 * Current affiliation: European School of Physiotherapy, Amsterdam University of Applied
- 10 Sciences, Amsterdam, The Netherlands

11 Corresponding author

- 12 Nils Jongerius
- 13 nils@espamsterdam.com
- 14 +31623140357
- 15
- 16 Word count: 3859

1 Abstract

2 Key areas of sport science research investigate the functional role of muscle activations within 3 human movement. Even within relatively constrained movements like cycling, significant 4 variability is observed in muscle activation strategies. Particular attention has been given to 5 bi-articular muscles, despite Soleus and Tibialis Anterior muscles presenting a potentially 6 functionally relevant split between monomodal and bimodal activation strategies. The current 7 study (N=54) investigated the prevalence and functional implications of these different 8 strategies and identified, in addition to monomodal [Soleus: N=24, Tibialis Anterior: N=7] and 9 bimodal [Soleus: N=12, Tibialis Anterior: N=31] strategies, a third group switching between 10 strategies [Soleus: N=16, Tibialis Anterior: N=13]. The combined Soleus group showed 11 significantly higher Index of Force Effectiveness, lower negative work and lower radial forces 12 than the bimodal group. Furthermore, bimodal Soleus strategies produced a period of 13 significantly greater plantar flexion during the upstroke. No differences were found between 14 Tibialis Anterior groups. These data show an identifiable group of cyclists utilising a 15 combination of monomodal and bimodal strategies potentially benefiting mechanical 16 effectiveness. Awareness of such functional implications can aid researchers and practitioners 17 when interpreting cycling biomechanics data or intervention responses. Further research 18 should investigate the factors that mediate transitions between activation strategies within the 19 combined groups.

Keywords: Pedalling, ankle, electromyography, joint kinematics, mechanical effectiveness,
 muscle

1 Introduction

Understanding the functional role of muscle activations within human movement has received major attention in the fields of biomechanics and motor control for decades.^{1,2,3} Complicated by an apparent redundancy and degeneracy in the musculoskeletal system, previous research has clearly established how multiple muscle activation strategies can produce a similar endeffector trajectory.^{4,5,6} Such a redundancy has also been highlighted in cycling movements, suggested to explain how high inter-individual variability in muscle activity data can coexist with limited variability in the corresponding pedal forces.⁷

9 The relevance of a search for a stereotypical or 'optimal' muscle activation pattern is questionable due to the identified importance of movement variability for performance.^{5,6,8} 10 11 However, an understanding of the functional implications of inter-individual differences in 12 muscle activation strategies remains important, as it can facilitate the interpretation of individual specific responses frequently seen in intervention studies.^{9,10,11,12} Within the cycling 13 movement, studies of muscle activity during cycling have predominantly focussed on 14 15 understanding the role of bi-articular muscles as they have shown significant inter-individual variability across experienced cyclists.^{2,7,13,14,15} These findings align with the key role of bi-16 17 articular muscles in providing a solution to the conflicting kinematic and kinetic demands at 18 certain points of the pedal cycle.¹ Managing these conflicting demands could explain the 19 higher inter-individual variability in the activation patterns of bi-articular muscles, as inter-20 individual differences in anthropometric characteristics or bike geometry could affect the 21 kinematic demands and therefore the required bi-articular muscle activity.¹

22 More consistent findings and lower inter-individual variability are found in the literature for the activity of mono-articular muscles.^{2,7,13,14} The primary role of mono-articular muscles during 23 24 pedalling is generally regarded to be the production of joint power.¹ Given the constrained and 25 cyclical nature of pedalling it is reasonable to assume that the requirements to produce 26 propelling forces are relatively consistent across cyclists and therefore mono-articular muscles 27 produce activation strategies with lower inter-individual variability than bi-articular muscles. 28 Indeed, lower inter-individual variability has been reported for Gluteus Maximus (GMax), Vastus Lateralis (VL) and Vastus Medialis^{2,7,13}, covering key mono-articular hip and knee 29 30 extensors involved in pedalling. However, in comparison, the Soleus (Sol) and Tibialis Anterior (TA) muscles have shown relatively high variability^{2,7}. More specifically, Hug et al.⁷ reported 31 32 how the Sol shows low variability when comparing the downstroke between cyclists - when its 33 main activity burst occurs - but shows much higher variability during the upstroke. The more 34 distal position of the ankle joint could be influential on this higher variability in comparison to 35 the hip and knee crossing musculature as the more proximal hip and knee joint positions might 36 impact on the activity requirement of these distal joints. A role for controlling the ankle joint for effective orientation of the pedal forces to the crank could induce higher variability in its
activation and a relationship may exist between their activation and mechanical effectiveness
of the force application.

In an earlier qualitative observation, Ryan & Gregor² reported a clear distinction between some 4 5 cyclists producing a single Sol activity burst (monomodal) compared to other cyclists 6 presenting with two activity bursts per pedal revolution (bimodal) - providing further evidence 7 for relatively high inter-individual variability in Sol activity. Individuals producing a bimodal Sol 8 strategy showed a similar activation burst as seen in the monomodal strategy, but with an 9 additional burst just after bottom dead centre (BDC). A similar distinct difference was observed 10 within the TA data; all cyclists presented a major activity burst during the second half of the 11 upstroke, but an additional activation was seen just before BDC in only some individuals. Ryan 12 & Gregor² were unable to expand on the functional implications of these differences in 13 activation strategies of Sol and TA muscles as they did not have access to corresponding 14 kinetic and kinematic data. Despite later studies showing similar inter-individual variability in these muscles' activity patterns, and Hug et al.¹⁵ identifying the Soleus as a key muscle 15 16 differentiating activation patterns between cyclists, none have presented the kinematic or kinetic output parameters associated with different activation strategies.^{7,13, 15} In addition, more 17 18 data on the prevalence of these activation strategies in a relatively large cycling cohort are 19 needed to better evaluate the potential of any functional implications for the pedalling 20 movement during cycling.

21 Previous research has shown that different Sol and TA activation strategies can be used by 22 cyclists to execute the required movement. Data on the prevalence of these strategies remains 23 limited and to the authors' knowledge no research so far has explored the functional 24 implications of adopting a monomodal or bimodal activation strategy for the Sol and TA 25 muscles. Better understanding the prevalence of different activation strategies and their 26 association with different kinematic and kinetic patterns could provide unique information on 27 the role of these muscles in a cycling movement. By identifying which muscle activation 28 strategy is adopted by cyclists and expressing these relative to their corresponding kinematic 29 and kinetic output parameters, this study aims to identify the prevalence and functional 30 implications of different activation strategies for the Sol and TA muscles in cycling.

31 Materials and Methods

32 Experimental design

Data from 54 cyclists (age: 37.3 ± 10.9 years, stature: 1.80 ± 0.06 m, mass: 77.4 ± 8.5 kg) were recruited from local cycling clubs and included in this study after providing written

1 informed consent. This study was approved by the Research Ethics committee at Leeds 2 Beckett University. Saddle and handlebar position of the participant's bike were recorded in a 3 2D coordinate system with the bottom bracket as the origin. A customised Wattbike ergometer 4 (Wattbike Ltd, Nottingham, UK) was adjusted to reflect these coordinates. The saddle and 5 pedals were transferred from the personal bike to the ergometer, crank length and saddle 6 angle were also copied to mirror the participants' training position as closely as possible. The 7 resulting testing positions reflected a range of bike setups typically seen in competitive cycling. 8 Following a standardised 13-minute warm-up (100-125 Watts at a self-selected cadence with 9 3 x 30 second bouts at 80-90% of perceived maximal effort), participants underwent a self-10 paced 20-minute maximal effort. The power output and cadence achieved during this 20-11 minute test was used as the target power for later measurements to ensure biomechanical 12 data was captured at a similar relative intensity across the tested cohort.

13 On a second testing day, separated by at least 48 hours from the maximal test, participants 14 were positioned on the ergometer in their trained position and a comprehensive dataset on 15 their cycling biomechanics was collected. Following the same 13-minute warm-up, participants 16 cycled for three minutes while receiving live feedback on cadence and power on a visual 17 display. In the first minute intensity increased gradually towards the target power and cadence 18 determined during their maximal effort, which was then maintained (mean \pm SD: 95 \pm 7 rpm & 19 276 ± 35 W) for the remainder of the trial. The second minute allowed for stabilising of pace 20 and movement pattern, followed by a 60-second data capture in the final minute of cycling. 21 The data collection consisted of the synchronised capture of muscle activation, kinematics 22 and pedal force data.

23 Data capture

Pedal reaction forces were recorded in two-dimensions (tangential [Ft] and radial [Fr] to the
crank, combined to produce total force [Ftot]) at 500 Hz using a Powerforce system (Radlabor,
Freiburg, Germany) as described by Stapelfeldt et al.¹⁶. Pedal force data were filtered using a
zero-lag 4th order low-pass Butterworth filter at a 20 Hz cut-off frequency in agreement with
the manufacturer's recommendations.

Full body kinematic data were captured at 250 Hz using a 12-camera optoelectronic setup (Oqus 7+, Qualisys, Gothenburg, Sweden), of which the lower body data will be evaluated here. Twenty-three markers were placed to capture 3D kinematics of the leg of interest, of which 15 were used for dynamic tracking including two clusters of 4 markers for thigh and shank. These data were first filtered using a zero-lag 4th order low-pass Butterworth filter, with cut-off frequency determined independently for each marker coordinate trajectory using residual analysis.¹⁷ Filtered marker data was imported into Visual 3D V6.0 (C-Motion, Germantown, USA) for further kinematic analysis. Joint angles were described as a relative angle with all angles set to 0° at the anatomical reference position and positive angles representing the level of (dorsal) flexion. Each revolution was resampled to 360 data points, to allow for an average revolution to be calculated that reflected the 60-second cycling effort. In addition to time-series data showing the progression of ankle joint angle and velocity throughout the crank revolution, discrete parameters of mean angle and range of motion (RoM) were extracted for hip and knee joints.

8 Bipolar surface EMG electrodes with an inter-electrode distance of 10 mm (Trigno wireless 9 sensors, Delsys, Natick, USA) were used to capture muscle activity of the right leg's GMax, 10 Rectus Femoris (RF), VL, Semitendinosus (ST), Gastrocnemius Lateralis (GL), Sol and TA at 11 2000 Hz with a bandpass filter of 20-450 Hz. To check the quality of the output EMG signal, 12 samples of raw data and corresponding frequency spectra from participants of all groups were 13 inspected to confirm that dominant frequencies were within the expected ranges. Electrode 14 placement to optimize signal quality was based on expert judgement and guidelines by De 15 Luca et al.¹⁸. The portion of the muscle belly palpable at the skin surface was identified, then 16 prepared through dry shaving and cleaning with alcohol before attachment to reduce electrical 17 impedance.

18 Raw EMG data were corrected to ensure its average was set to zero, rectified and processed 19 with a moving average (25 ms window with 12.5 ms overlap as recommended by Hug & 20 Dorel¹⁹). Finally, data were normalised to their maximal activation. A custom written MATLAB 21 R2017b (The Mathworks Inc, Natick, USA) script indicated when normalised activity levels 22 exceeded 20% of their maximum, previously recommended as an appropriate threshold for 23 determining activation onset.¹⁹ Using this threshold as a guide, graphical inspection 24 determined when a second activation could be identified and to confirm exceeding of the 25 threshold value was not merely due to noise in the data.

26 Using pedal force data, negative crank work was calculated to describe the amount of energy 27 per crank revolution that resists propulsive motion. For the evaluation of radial forces, a quantity of the mean absolute F_r was calculated by taking the average of the rectified signal. 28 29 This was used as a quantification of the absolute magnitude of the radial forces during a 30 revolution. To allow comparisons of the data across tests at different power output and 31 cadences, pedal force data were normalised. The negative work was expressed as a ratio to 32 the net work done and pedal force profiles were normalised to their mean Ft value. The Index 33 of Force Effectiveness (IFE) was calculated from the force data and crank angle (CA) 34 displacement as the ratio between the area under the Ft-CA curve and the area under the Ftor-35 CA curve.²⁰

1 **Definition of groups**

2 All participants were divided in groups twice; once using Sol activity and once using TA activity 3 as a grouping variable. This resulted in two independent variables which were used for further 4 analysis. Identifying the activation strategy used by the Sol and TA muscles required graphical 5 inspection of the data for each participant individually. These graphical inspections revealed 6 monomodal and bimodal strategies, but also showed some cyclists who switched between a 7 monomodal and bimodal strategy during the 60 seconds of data capture (Figure 1). As a result, 8 a third group was identified (the 'combined' group) and could be characterised as having >15% 9 of their revolutions presenting a different activation strategy than their predominant one. This 10 distinction was made for both Sol and TA and resulted in the groups as seen in Table 1. For 11 two participants' Sol and three participants' TA the EMG electrode became detached from the 12 skin during data collection. Their data were eliminated from group comparisons. When 13 grouped by Sol strategy, the monomodal group was significantly younger than the Sol bimodal 14 group (Table 1). Other descriptive characteristics were comparable across all Sol and TA 15 groups.

- 16 [FIGURE 1 HERE]
- 17 [TABLE 1 HERE]

18 Statistical analysis

19 Differences between groups were tested for statistical significance ($\alpha = 0.05$) using one-way 20 analysis of variance (ANOVA). When appropriate, post-hoc testing with a Bonferroni 21 correction was used to identify the pairs that differed significantly. Statistical tests for discrete parameters were performed using SPSS 25 (IBM, Armonk, USA). To compare time series of 22 23 ankle joint angle and velocity, statistical parametric mapping (SPM) was used with ANOVA 24 tests as described by Pataky²¹ using spm1d version M.0.4.5. in MATLAB R2017b (The 25 Mathworks Inc, Natick, USA). When SPM curves were created, no post-hoc testing was 26 performed and only the main effect reported as the software developers have commented on 27 the risk for invalid results when performing post-hoc calculations in SPM.²²

28 **Results**

29 Qualitative observation of the mean EMG revolution data for monomodal, bimodal and 30 combined Sol groups confirmed the differences in muscle activation (Figure 2A). GMax, RF, 31 VL, ST and GL presented with similar activation parameters across the three groups and all 32 TA strategies were represented in each of the Sol groups (Table 2). SPM analysis revealed 33 significant ankle angle differences across the Sol activation strategy groups in the range of 34 266-334° of crank angle (p = 0.023; Figure 2B). The ankle appeared more plantar flexed during the upstroke for those cyclists who exhibited a secondary Sol activity burst (bimodal and combined groups). The ankle angular velocity data also showed significant differences between the different Sol activation groups between 222-279° of crank angle (p < 0.001; Figure 2C). Knee or hip joints showed no significant kinematic differences when tested for mean angle ($F_{2,49} = 0.16 \& 0.55$, p = 0.853 & 0.518 and $\eta_p^2 = 0.06 \& 0.02$ respectively) or range of movement ($F_{2,49} = 0.31 \& 0.44$, p = 0.738 & 0.646 and $\eta_p^2 = 0.01 \& 0.02$ respectively) across the different Sol groups.

- 8 Likewise, the TA presented with monomodal, bimodal and combined activation strategies 9 across the tested cohort (Figure 2D). In line with the Sol groups, similar activation 10 characteristics were observed for the other leg muscles recorded and all Sol activation 11 strategies were represented in each of the TA groups (Table 2). However, in contrast to the 12 Sol activation strategies, no differences exceeding statistical thresholds were observed in the 13 SPM analyses comparing activation strategies for ankle angle and ankle angular velocity 14 (Figure 2E & 2F). No significant differences were found for knee and hip mean angle ($F_{2.48}$ = 0.44 & 1.40, p = 0.650 & 0.257 and $\eta_p^2 = 0.02$ & 0.06 respectively) or range of movement (F_{2,48} 15 = 0.97 & 0.94, p = 0.388 & 0.398 and η_p^2 = 0.04 & 0.04 respectively) between the TA groups. 16
- 17 [TABLE 2 HERE]
- 18 [FIGURE 2 HERE]

19 The pedal force data corresponding to the cyclists grouped by Sol activation strategy showed 20 differences in the tangential and radial force profiles (Figure 3). Across parameters of IFE, net 21 negative work and absolute radial forces, the combined Sol group showed significantly 22 different values than the bimodal group but not significantly different compared to the 23 monomodal group (Table 3). When grouped by TA strategy, IFE scores, normalised negative 24 work and mean absolute radial forces did not differ significantly between the monomodal, 25 bimodal and combined groups, indicating similar pedal force profiles across the groups (Table 26 3).

- 27 [TABLE 3 HERE]
- 28 [FIGURE 3 HERE]

29 **Discussion**

30 The data of 54 cyclists collected in this study revealed that for both the Sol and TA muscle,

31 the activation strategies adopted by cyclists cannot be fully described by a single and discrete

- 32 activation strategy. Whilst the majority of the cyclists presented a clear and consistent strategy
- throughout the 60-seconds of data capture (either monomodal or bimodal), an ability to switch

between these two strategies was observed in 16 and 13 of the cyclists for Sol and TA, respectively. The current study was the first to reveal such a switch between activation strategies within a single cycling effort. It shows that despite the monomodal and bimodal strategies presenting a distinct activation pattern, the categorisation of cyclists requires data on individual revolutions as cyclists can be, but are not necessarily, fixed within a single activation strategy.

7 Functional implications

8 An evaluation of the functional implications of monomodal, bimodal and combined strategies 9 for Sol and TA muscles showed no kinematic and kinetic output parameters were affected 10 when cyclists were grouped based on TA activation. In contrast, grouping based on Sol 11 activation strategy showed an association with significantly different ankle kinematics and 12 suggested that those cyclists capable of combining a bimodal with a monomodal strategy were 13 also capable of producing, on average, a more mechanically effective pedal cycle than those 14 adopting only a bimodal strategy. These data clearly show that multiple strategies have the 15 capability to successfully complete a cycling movement. As such, they support existing literature^{7,13,15} to call into question the approach of searching for optimal, stereotypical muscle 16 17 activation patterns during human movements. Furthermore, they lend further support to the 18 notion that, even in relatively simple, constrained movements like pedalling, flexibility and adaptability are key hallmarks of an effective neuromuscular system.^{23,24,25} 19

20 The current research was the first to highlight a different neural strategy by identifying a group 21 of cyclists capable of adopting both the monomodal and bimodal Soleus activation strategies 22 and actively switching between these strategies within the same cycling exercise. 23 Interestingly, this combined group was associated with higher IFE scores, lower normalised 24 negative work and lower normalised mean absolute radial force readings, all significantly 25 different to those produced by the bimodal group. Based on the wider research in the field of movement variability,^{5,6,8} it could be speculated that the combined group's flexibility in 26 27 selecting different movement solutions to the task demands meant they could easily move 28 from one strategy to another to maintain mechanical effectiveness. This would mean they 29 were able to adjust the muscular coordination strategy according to the demands of the 30 individual pedal revolution, adopting a secondary Sol burst when necessary to maintain high 31 mechanical effectiveness. It is not possible to confirm this hypothesis though, as determining 32 a causal relationship between muscle activity and kinetic and kinematic parameters for 33 individual pedal revolutions was beyond the scope of this study. However, further research is 34 suggested to investigate intra-individual differences in, and factors that affect the transition 35 between, muscle activation strategies during pedalling.

1 In contrast to the significantly different kinematic and kinetic parameters between Sol strategy 2 groups, no such associations were found when participants were grouped by TA strategy. 3 Previous research has suggested that the TA works in co-activation with the Sol to stabilise 4 the ankle joint,² which could explain the lack of impact of variations in TA activation on ankle 5 kinematics. However, data from the current study show, at least at a group level, that 6 overlaying activation timings of bimodal Sol and TA strategies suggest they are better 7 described as alternating rather than co-activating (Figure 2A & 2D). The functional role of this 8 muscle should be explored further, either using experimental data from the combined group 9 or through computer modelling studies, by investigating acute intra-individual kinetic and 10 kinematic responses when cyclists switch in TA activation strategy during a cycling exercise.

11 The determinants of a monomodal or bimodal activation strategy for mono-articular ankle 12 muscles remain unknown. Previous research exploring the association between muscle 13 activation and kinematic or kinetic output parameters investigated neuromuscular responses to mechanical demands at an inter-individual level.^{1,2,7,26} The current dataset has revealed an 14 15 intra-individual variability in activation strategy. This suggests that even when factors like 16 inertial characteristics and body geometry are constant, some but not all cyclists switch 17 between activation strategies within a cycling effort. While groups presented no significant 18 differences in the cadence and power maintained during the cycling effort, the inter-individual 19 variability seen in these parameters - especially cadence - needs to be acknowledged and 20 considered as a potential influencing factor. Previous research has shown clear effects of 21 cadence and power output on muscle activation^{19,27,28} and pedal force parameters^{29,30,31}. 22 Further work investigating the intra-individual variability in muscle activation strategy and 23 corresponding kinematic and kinetic output could provide more insight into the factors 24 influencing the emergence of, and transition between muscle activation strategies.

25 Methodological considerations

Any EMG measurement has its inherent issues of signal fidelity and processing. As with all EMG experiments the key extrinsic factors, once a modern high-quality acquisition system incorporating pre-amplifiers, differential amplifier and optimal bandwidths has been employed for the recordings, still affecting the signals are electrochemical noise, electrode placement (including cross-talk) and motion artifacts. As due diligence was performed in the current study to control/diminish the above factors, the authors are confident about the physiological origin of the EMG signals.

A limitation of the current research that must be considered when discussing the outcomes
 relates to the participant recruitment. The classification of Sol and TA activation strategy was
 applied retrospectively, as their prevalence was not previously known. Therefore, groups

1 could not be matched for cycling performance, bike setup, participant demographics and other 2 potentially confounding variables, resulting in unequal group sizes. In particular for TA strategy 3 comparisons the limited group size adopting a combined strategy (N=7) could have had 4 insufficient statistical power to identify group differences. However, it is this retrospective 5 classification that resulted in the novel finding that a number of cyclists are able to utilize both 6 monomodal and bimodal activation strategies within a single cycling exercise, creating 7 combined SOL and TA groups in this study. Inherently linked to the novelty of this finding is 8 that there is currently a lack of precedent on an appropriate ratio of strategies used to classify 9 a cyclist as combined.

10 The current study creates a starting point for discussion on when the combined use of muscle 11 activation strategies becomes functionally relevant and important for cycling performance. 12 Cyclists presenting a single activation strategy (either purely monomodal or purely bimodal) 13 might be capable of transitioning between strategies but did not experience suitable conditions 14 that would trigger a transition, given the task constraints of the current experiment. Therefore, 15 the actual functional implications of intra-individual variability are potentially greater than 16 shown here. These methodological considerations clearly show a need and opportunity for 17 future research to identify any factors that underpin the selection of a specific activation 18 strategy.

19 Conclusion

20 This research has discovered that some cyclists can switch between formally considered 21 'fixed' Sol activation patterns. In those participants there seems to be a higher level of 22 mechanical effectiveness. Greater plantar flexion was observed in the upstroke of cyclists 23 presenting a bimodal Sol strategy. These findings have implications for understanding the 24 important components of effective pedalling and performance. At present, the robustness of 25 the combined activation patterns across intensities or with fatigue are unknown and the 26 parameters that determine strategy selection also warrant further investigation. In this respect, 27 the current study is offering a starting point by identifying a subgroup that switches between 28 muscle activation strategies. Further research is needed to better understand interactions 29 between strategies used across muscles, their impact on metabolic parameters and to identify 30 factors associated with the strategy transitions. Where this study revealed functional 31 implications of different activation strategies at a group level, research evaluating different 32 activation strategies using intra-individual comparisons can continue this investigation into the 33 dynamics of the neuromuscular system and further the practical application of this knowledge. 34 Such studies can provide guidance on the performance impact of activation strategies and 35 report on potential opportunities to train cyclists in transitioning between activation strategies.

1 Acknowledgements

- 2 The authors would like to thank Josh Walker for supporting data collection and all cyclists
- 3 offering their time to volunteer for this research. All authors declare that they have no conflicts
- 4 of interest.

1 Literature

- Van Ingen Schenau G, Boots P, De Groot G, Snackers R, Van Woensel W. The
 constrained control of force and position in multi-joint movements. Neuroscience
 1992;46(1):197-207.
- Ryan MM, Gregor RJ. EMG profiles of lower extremity muscles during cycling at
 constant workload and cadence. Journal of Electromyography and Kinesiology
 1992;2(2):69-80.
- Neptune R, Herzog W. Adaptation of muscle coordination to altered task mechanics
 during steady-state cycling. Journal of Biomechanics 2000;33(2):165-172.
- Van Bolhuis BM, Gielen CCAM. A comparison of models explaining muscle activation
 patterns for isometric contractions. Biological cybernetics 1999;81(3):249-261.
- Horan SA, Evans K, Kavanagh JJ. Movement variability in the golf swing of male and
 female skilled golfers. Medicine and Science in Sports and Exercise 2011;43(8):1474 1483.
- Langdown BL, Bridge M, Li F-X. Movement variability in the golf swing. Sports
 Biomechanics 2012;11(2):273-287.
- Hug F, Drouet JM, Champoux Y, Couturier A, Dorel S. Interindividual variability of
 electromyographic patterns and pedal force profiles in trained cyclists. European
 journal of applied physiology, 2008;104(4):667-678.
- 8. Bartlett R, Wheat J, Robins M. Is movement variability important for sports
 biomechanists? Sports Biomechanics 2007;6(2):224-243.
- Bini RR, Hume PA, Kilding AE. Saddle height effects on pedal forces, joint mechanical
 work and kinematics of cyclists and triathletes. European journal of sport science.
 2014;14(1):44-52.
- 25 10. Peveler WW, Green JM. Effects of saddle height on economy and anaerobic power in
 well-trained cyclists. The Journal of Strength & Conditioning Research.
 27 2011;25(3):629-33.
- 11. Ferrer-Roca V, Bescós R, Roig A, Galilea P, Valero O, García-López J. Acute effects
 of small changes in bicycle saddle height on gross efficiency and lower limb
 kinematics. The Journal of Strength & Conditioning Research. 2014;28(3):784-91.
- 31 12. Sanderson DJ, Black A. The effect of prolonged cycling on pedal forces. Journal of
 32 sports sciences. 2003;21(3):191-9.
- 13. Hug F, Turpin NA, Guével A, Dorel S. Is interindividual variability of EMG patterns in
 trained cyclists related to different muscle synergies? Journal of Applied Physiology
 2010;108(6):1727-1736.

- 14. Dorel S, Couturier A, Hug F. Intra-session repeatability of lower limb muscles activation
 pattern during pedaling. Journal of Electromyography and Kinesiology 2008;18(5):857 865.
- 4 15. Hug F, Vogel C, Tucker K, Dorel S, Deschamps T, Le Carpentier É, Lacourpaille L.
 5 Individuals have unique muscle activation signatures as revealed during gait and
 6 pedaling. Journal of Applied Physiology. 2019;127(4):1165-74.
- 16. Stapelfeldt B, Mornieux G, Oberheim R, Belli A, Gollhofer A. Development and
 evaluation of a new bicycle instrument for measurements of pedal forces and power
 output in cycling. International journal of sports medicine. 2007;28(04):326-32.
- 17. Winter DA. Biomechanics and motor control of human movement. John Wiley & Sons;
 2009.
- 18. De Luca CJ. The use of surface electromyography in biomechanics. Journal of applied
 biomechanics. 1997 May 1;13(2):135-63.
- 14 19. Hug F, Dorel S. Electromyographic analysis of pedaling: a review. Journal of
 15 Electromyography and Kinesiology 2009;19(2):182-198
- 20. Coyle E, Feltner ME, Kautz S, Hamilton M, Montain S, Baylor A, Abraham L, Petrek
 G. Physiological and biomechanical factors associated with elite endurance cycling
 performance. Medicine & Science in Sports & Exercise 1991;23:93-107.
- Pataky TC. Generalized n-dimensional biomechanical field analysis using statistical
 parametric mapping. Journal of Biomechanics 2010;43(10):1976-1982.
- 21 22. Pataky TC. ANOVA post hoc analysis 2019.
 22 http://www.spm1d.org/doc/PostHoc/anova.html?highlight=post%20hoc Accessed
 23 April 26, 2019.
- 23. Davids K, Glazier P, Araujo D, Bartlett R. Movement systems as dynamical systems.
 Sports medicine 2003;33(4):245-60.
- 24. Chapman AR, Vicenzino B, Blanch P, Knox JJ, Hodges PW. Leg muscle recruitment
 in highly trained cyclists. Journal of sports sciences. 2006 Feb 1;24(2):115-24.
- 25. Blake OM, Champoux Y, Wakeling JM. Muscle coordination patterns for efficient
 cycling. Medicine and science in sports and exercise. 2012 May;44(5):926-38.
- 26. Raasch CC, Zajac FE. Locomotor strategy for pedaling: muscle groups and
 biomechanical functions. Journal of neurophysiology. 1999;82(2):515-25.
- 27. Dorel S, Guilhem G, Couturier A, Hug F. Adjustment of muscle coordination during an
 all-out sprint cycling task. Medicine and science in sports and exercise.
 2012;44(11):2154-64.
- 28. Holliday W, Theo R, Fisher J, Swart J. Cycling: Joint kinematics and muscle activity
 during differing intensities. Sports biomechanics. 2019 Sep 2:1-5.

- 1 29. Sanderson DJ. The influence of cadence and power output on the biomechanics of 2 force application during steady-rate cycling in competitive and recreational cyclists. 3 Journal of sports sciences. 1991 Jun 1;9(2):191-203. 4 30. Rossato M, Bini RR, Carpes FP, Diefenthaeler F, Moro AR. Cadence and workload 5 effects on pedaling technique of well-trained cyclists. International Journal of Sports Medicine. 2008 Jan 9;29(9):746-52. 6 7 31. Bini R, Hume P, Croft JL, Kilding A. Pedal force effectiveness in Cycling: a review of 8 constraints and training effects. Journal of Science and Cycling. 2013;2(1):11-24.
- 9

1 Tables

2 Table 1: Soleus and Tibialis Anterior groups by activation strategy. Descriptive data reported as mean ± SD.

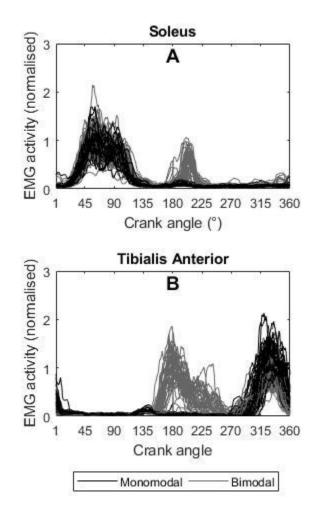
Muscle	Soleus			Tibialis Anterior				
Activation	Mono-	Bi-	Com-	Main	Mono-	Bi-	Com-	Main
strategy	modal	modal	bined	effects	modal	modal	bined	effects
Ν	24	12	16		7	31	13	
Age	33.9	43.2	38.8	$F_{2,49} = 3.30$	33.6	38.1	37.7	$F_{2,48} = 0.52$
(years)	± 10.9	± 9.6 ^a	± 10.4	p = 0.045	± 11.5	± 10.8	± 9.7	p = 0.600
				$\eta_{\rho}{}^2=0.12$				$\eta_p^2 = 0.02$
Stature	1.80	1.78	1.79	$F_{2,49} = 0.60$	1.80	1.80	1.80	$F_{2,48} = 0.02$
(m)	± 5.6	± 6.5	± 6.9	p = 0.552	± 0.09	± 0.05	± 0.07	p = 0.984
				$\eta_p{}^2=0.02$				$\eta_p^2 < 0.01$
Mass	77.9	78.6	76.1	$F_{2,49} = 0.32$	77.2	78.0	76.7	$F_{2,48} = 0.12$
(kg)	± 6.8	± 10.0	± 10.3	p = 0.730	± 6.4	± 8.9	± 9.5	p = 0.886
				$\eta_p^2 = 0.01$				$\eta_{\rho}^{2} = 0.01$
Cadence	94.4 ±	98.2 ±	92.6 ±	$F_{2,49} = 2.20$	89.1 ±	95.9 ±	95.1 ±	$F_{2,48} = 2.78$
(RPM)	7.3	6.4	6.8	p = 0.122	9.8	6.8	5.1	p = 0.072
				$\eta_{\rho}^2 = 0.08$				$\eta_{p}^{2} = 0.10$
Power	281 ±	270 ±	277 ±	$F_{2,49} = 0.33$	285 ± 53	274 ± 34	282 ± 34	$F_{2,48} = 0.36$
(Watts)	38	22	45	p = 0.719				p = 0.701
				$\eta_P^2 = 0.01$				$\eta_p^2 = 0.01$

Table 2: Subdivision of participants in the Soleus and Tibialis Anterior groups by
antagonist strategy.

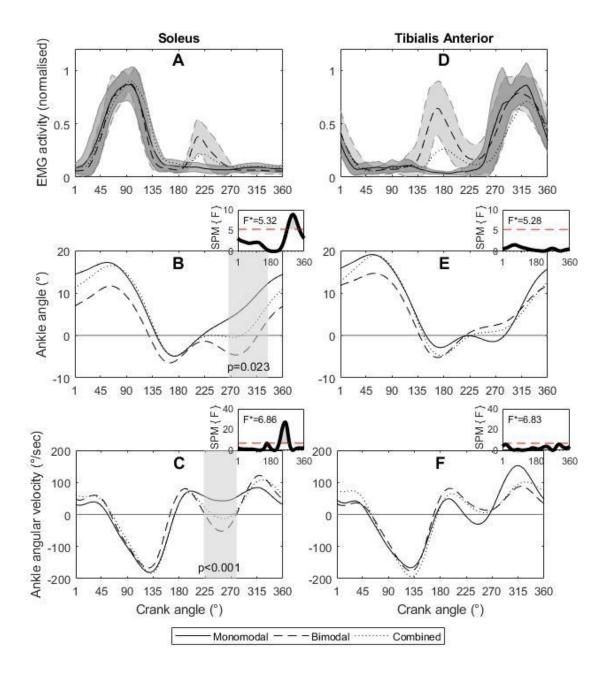
		Tibialis Anterior					
		Monomodal	Bimodal	Combined	Missing		
	Monomodal	3	15	5	1		
Soleus	Bimodal	2	8	1	1		
	Combined	2	7	6	1		
So	Missing	0	1	1			

^a = significant different from monomodal group (T_{34} = 2.50, p = 0.047, d_s = 0.88)

Table 3: Mechanical effectiveness parameters specified when grouped by Soleus and when grouped by Tibialis Anterior activation strategy. Descriptive data reported as mean \pm SD.

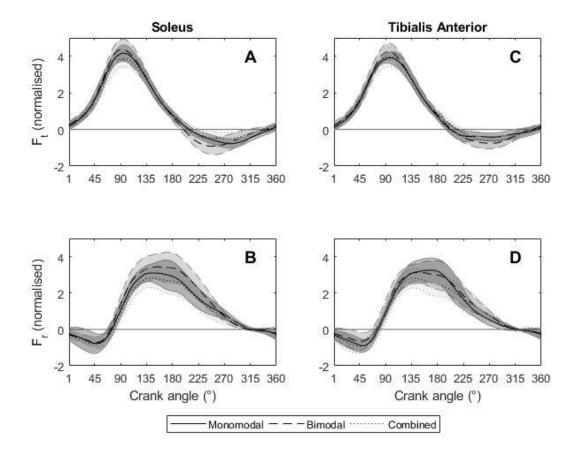

Muscle	Strategy	IFE	Normalised negative	Mean absolute	
		(%)	work	normalised radial	
			(normalised)	forces	
				(normalised)	
Soleus	Monomodal	47.4 ± 6.2	0.19 ± 0.08	1.35 ± 0.21	
	Bimodal	44.6 ± 8.2	0.22 ± 0.14	1.49 ± 0.29	
	Combined	52.2 ± 7.4^{a}	0.13 ± 0.08^{b}	1.23 ± 0.28°	
	Main effect	$F_{2,49} = 4.47, p = 0.016,$	$F_{2,49} = 3.57, p = 0.036,$	$F_{2,49} = 3.49, p = 0.038,$	
So		$\eta_{p}^{2} = 0.15$	$\eta_P{}^2=0.13$	$\eta_{\rho^2}=0.13$	
Tibialis Anterior	Monomodal	49.8 ± 7.4	0.13 ± 0.06	1.32 ± 0.23	
	Bimodal	47.2 ± 7.1	0.19 ± 0.10	1.37 ± 0.26	
	Combined	51.2 ± 8.0	0.16 ± 0.11	1.25 ± 0.28	
	Main effect	$F_{2,48} = 1.48, p = 0.239,$	$F_{2,48} = 1.42, p = 0.253,$	$F_{2,48} = 0.91, p = 0.411,$	
Tic		$\eta_{\rho}^2 = 0.06$	$\eta_{P}^{2}=0.06$	$\eta_{\rm P}^2=0.04$	

^a = significant different from bimodal group (T_{26} = 2.56, p = 0.019, d_s = 0.98)


 $^{\rm b}$ = significant different from bimodal group (T_{26} = 2.25, p = 0.042, d_s = 0.86)

 $^{\rm c}$ = significant different from bimodal group (T_{26} = 2.33, p = 0.033, d_s = 0.89)

1 Figures


- 3 Figure 1: Revolution based Soleus (A) and Tibialis Anterior (B) data for typical participants
- 4 from the combined groups. Black and gray lines representing monomodal and bimodal traces,
- 5 respectively.

2

1

Figure 2: EMG and ankle kinematic when grouped by Soleus (left) or Tibialis Anterior (right) activation strategy. Shaded band curves show SD values for the muscle activity plots, those for the combined groups are omitted for better clarity. Kinematic curves show SPM results with shaded areas presenting areas where curves were significantly different. Insets with SPM{F} curves show corresponding statistical results with df = 2,49 for Soleus and df = 2,48 for Tibialis Anterior comparisons. SD bars are omitted for kinematic data for better clarity of the SPM results.

- 2 Figure 3: Normalised tangential (F_t) and radial (F_r) pedal force data grouped by Soleus (left)
- 3 and by Tibialis Anterior activation strategy (right). Shaded bars presenting group SD values.