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A Multivariate Control Chart for
Autocorrelated Tool Wear Processes

Keith Harris,*" Kostas Triantafyllopoulos,? Eleanor Stillman? and
Thomas McLeay”

Full automation of metal cutting processes has been a long held goal of the manufacturing industry. One key obstacle to
achieving this ambition has been the inability to monitor completely the condition of the cutting tool in real time, as prema-
ture tool breakage and heavy tool wear can result in substantial costs through damage to the machinery and increasing the
risk of non-conforming items that have to be scrapped or reworked. Instead, the condition of the tool has to be indirectly mon-
itored using modern sensor technology that measures the acoustic emission, sound, spindle power and vibration of the tool
during a cut. An online monitoring procedure for such data is proposed. Firstly, the standard deviation is extracted from each
sensor signal to summarise the state of the tool after each cut. Secondly, a multivariate autoregressive state space model is
specified for estimating the joint effects and cross-correlation of the sensor variables in Phase I. Then we apply a distribution-
free monitoring scheme to the model residuals in Phase II, based on binomial type statistics. The proposed methodology is
illustrated using a case study of titanium alloy milling (a machining process used in the manufacture of aircraft landing gears)
from the Advanced Manufacturing Research Centre in Sheffield, UK, and is demonstrated to outperform alternative residual
control charts in this application. © 2016 The Authors Quality and Reliability Engineering International Published by John
Wiley & Sons Ltd.

Keywords: statistical process control (SPC); sensor data; tool condition monitoring; nonparametric control charts; multivariate
autoregressive state space models

1. Introduction

demands of lower cost targets, increased volume and increased process capability. In particular, metal machining remains the

most important of all basic manufacturing processes. This is demonstrated by the fact that in 2015 the UK aerospace industry
alone had a turnover of £29.2bn,' and machining processes are believed to have contributed to at least 30% of the products made
in this trade. Productivity could be substantially improved via the automation of decision-making tasks previously taken, usually very
conservatively, by the operator of the machine. This is now theoretically possible because of the development of modern sensor tech-
nology that enables the automatic collection of data related to the performance of the metal machining process. However, the large
amounts of potentially noisy data generated by such sensors pose substantial challenges for process monitoring and control, and thus,
new statistical algorithms need to be formulated in order to achieve the goal of automation.

In this paper, we focus on one particularly important limitation to machining productivity, tool wear, and develop a statistical pro-
cess control (SPC) technique that could potentially be used to automate the decision as to when to replace the tool. This problem is
challenging for several reasons. Firstly, in order to monitor in detail the condition of the tool, multiple sensors can be employed, so
multivariate methods will be needed. Secondly, the machining process is continuously observed in real time for the duration of each
cut of the metal workpiece, which can yield many thousands or even millions of observations per cut, because of the high-sampling
frequency of the sensors. In our approach, important features correlated with tool wear are extracted from the sensor signals and
are monitored using multivariate control charts. Finally, the extracted multivariate time series of sensor features is non-stationary and
exhibits local variation, which is not attributed to out-of-control behaviour. In order to control such a process, we fit a multivariate
autoregressive state space model to the observed data in Phase |, the period where the tool can be safely assumed to be far from worn
out, and in Phase Il, we apply a novel distribution-free monitoring scheme to the fitted model’s residuals.

There is a global drive towards increased productivity in the advanced manufacturing sector in order to meet the growing
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The remainder of this paper is organised as follows: Section 2 discusses our specific case study of interest, tool condition monitor-
ing for titanium alloy milling. Section 3 explains our monitoring procedure based on fitting a multivariate autoregressive state space
model in Phase | and applying binomial-type nonparametric control charts to the model residuals in Phase Il. Section 4 includes an
estimation of the average run length (ARL) for this chart, obtained via simulation for various mean-shift scenarios. Section 5 illustrates
our methodology using two different types of sensor data from a tool wear experiment. Finally, Section 6 provides some conclusions
and avenues for further research.

2, Case study

Our case study involves tool condition monitoring for metal cutting processes. In manufacturing, it is important to monitor tool wear,
as tool breakages can result in unscheduled machine downtime in a factory, whilst excessive wear can cause poor quality and the

\
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Figure 1. Experimental set-up. Labels correspond to: (1) Mori Seiki NMV8000 milling machine; (2) Sandvik hydraulic collet; (3) an end mill tool; (4) the workpiece: a titanium
alloy plate; (5) a sensor plate containing a triaxial accelerometer, a high frequency single axis accelerometer oriented along the z-axis and an acoustic emission sensor; (6)
Kistler dynamometer plate; (7) thermal camera vision acquisition system; (8) data acquisition box; and (9) laptop.
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scrapping of the finished part for failing to meet specifications, both of which can result in significant financial loss.? Clearly, there is a
trade-off, as changing tools too soon would drive up tooling costs unnecessarily.

The specific machining operation of interest in our case study is ‘milling’ where a metal workpiece is fed past a rotating cylindrical
tool with multiple cutting edges, which are called flutes or teeth.3 In our study, the material of interest is Ti-6Al-4V, a titanium alloy
consisting of roughly 90% titanium, 6% aluminium and 4% vanadium. Titanium alloy milling is of commercial interest as this process is
used to produce high-strength landing gears for aircraft.

Tool wear is typically monitored indirectly by using sensors to measure, continuously, process variables like acoustic emission, sound,
vibration and spindle power that are influenced by the state of the cutting tool. A time series of observations is thus obtained for each
sensor during each cut of the workpiece. Because of the high frequency sampling rate, these time series (or signals) usually have many
thousands or even millions of observations. An illustration of the experimental set-up used in our case study is shown in Figure 1.
Notice that a sensor plate containing accelerometers and an acoustic emission sensor is clamped onto the workpiece being cut whilst
also being connected to a data acquisition box that stores the sensor information. The signals detected by these sensors are then
processed to extract features (the mean, standard deviation, root mean square, skewness and kurtosis) that might be correlated with
tool wear. It is common in the machining literature then to develop decision-making support systems from these extracted features
using machine learning techniques such as neural networks, fuzzy logic and genetic algorithms.* It is possible to measure tool wear
directly by using a microscope to take images of the tool (Figure 2), but this would be impractical in a production setting. Moreover,
automated quantification of tool wear from such an image would also be very challenging.

In our tool wear experiment, we extracted the mean, standard deviation, root mean square, variance, skewness and kurtosis of
each of our eight sensor signals (one acoustic emission sensor, two microphones, a high frequency single axis accelerometer oriented
along the z-axis, a triaxial accelerometer and a spindle power sensor) after each cut. The standard deviation data is shown in Figures 3
and 4. Many factors might be associated with tool condition, but in this study, we focus our attention on the correspondence between

Figure 2. An image from a tool with neligible wear (left hand side) and from a worn out tool (right hand side). The images are on different scales, the left image showing
around 2-3 mm of the flute length and the right image showing about 6 mm.
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Figure 3. The standard deviation over time of the acoustic emission sensor, (a), two microphones, (b) and (c), and the spindle power sensor, (d).
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Figure 4. The standard deviation over time of the triaxial accelerometer signals, (a), (b) and (c), and the high frequency single axis accelerometer, (d).

increased variability in the microphone and accelerometer signals, as measured by their standard deviation and the tool’s deterioration
and eventual failure. This decision was motivated by the particularly strong co-evolution between these sensors’ signal variability and
tool wear; other features did not exhibit such a clear association with tool degradation.

As we see from Figures 3 and 4, there are trends or cycles in the sensor signals’ standard deviation, which is expected and considered
acceptable, as long as they are within a certain range. However, it is not known what the exact threshold is for unacceptable levels of
standard deviation of each sensor, and this needs to be inferred from the data. The data also clearly exhibits local variation, which is
not attributed to out-of-control behaviour. One needs to exclude such behaviour as a worrying sign and to include it in the expected
dynamics of the system. Thus, unlike many applications of SPC, in the case of tool wear, we do not want to detect the process as being
out of control as soon as possible, because we want to maximise tool usage before premature replacement. For example, looking at
the triaxial accelerometer data of Figure 4, we would not want to flag out of control before the 250th cut, because the longer term
deterioration in standard deviation associated with substantial tool wear does not happen until after this point.

Thus far, relatively little work has been done on tool condition monitoring using SPC techniques. This can partially be explained by
the assumptions of independence and stability of the traditional Shewhart control chart being violated for tool wear data and more
sophisticated techniques needing to be developed. Xie et al. > used double exponential smoothing to forecast a univariate tool wear
process and applied a standard three-sigma control chart to the residuals, which was supplemented by an additional line that specified
the maximum tool wear allowed before the tool had to be replaced. Multivariate SPC approaches have received scant attention so far.

3. Monitoring procedure

It is well known that monitoring time series data frequently poses appreciable difficulties, generally requiring modification of standard
procedures in order to accommodate non-stationary behaviour.5® Knoth and Schmid 8 discuss two types of charts for time series data:
modified charts and residual charts. The former chart is suitable for weakly stationary time series in the presence of autocorrelation
(which is responsible for the adjustments needed as compared with independent and identically distributed data). The residual chart is
primarily proposed for data that exhibits structural dynamics, for which the in-control state is difficult to define. Such data are described
in two examples of Jiang et al.’

The data we consider in this paper exhibit clear non-stationarity (see, for example, Figures 3(b), 3(c) and 4(a)-(c)), for which the
residuals can offer a practical guide to specifying deviations from the norm and hence to defining an in-control state. This requires a
two-phase control scheme: in Phase |, a retrospective analysis is conducted to understand the process better, identify an appropriate
model, estimate its parameters and establish control limits for the residuals; in Phase Il, the process is monitored using the fitted model
and the control limits established in Phase I.7° It should be ensured that the chosen model fits the data in Phase | well, so that it
provides a good representation of the process and hence any deviations of the data from it - in Phase Il - will signify deviations from
target in the process. Adopting this approach, we fit an appropriate multivariate time series model to the observed data in Phase | and
then devise a control procedure based on the residuals from this fitted model.

Suppose that observations y;,y,, ..., Yy, are collected over time and that {y;} forms an S-dimensional multivariate time series, so
that y; and y; are serially correlated, for i # j; in other words, {y;} exhibits autocorrelation. The model we choose to fit in Phase | is a
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linear state space model, that is,

y: = Hz; + €, €~ N(0,X), (1)
Z = Fzr—1 + ;tl ct ~ N(ol Q)r (2)

with initial state zy ~ N(myg, Py). It should be noted that the error terms €, and &, are assumed to be individually and mutually inde-
pendent. In Equations (1) and (2), H is the design matrix, F is the transition matrix, X is the observation covariance matrix and Q is
the transition covariance matrix, and they are all of dimensions S x S. The topic of estimation of these components in state space
models has attracted a host of publications, including approximate and simulation-based methods."~'3 In our case, the model param-
eters H,F, ¥, 2, mg and P, were estimated in Phase | by maximum likelihood. Using predictive error decomposition, the log-likelihood
function based on a data frame D, = (y,,...,y,)is

L(H,F, 2, Q2,mq,Py; D) =logp(yi,....¥n | H,F, 2,2, mq, Po)

log [ [ p(y: | D1, H, F, 2,2, mo, Py)

t=1

nS 1< 1 & _
- log 2w — > Z |Q¢| — 5 Z(YT —f)'Q  (y, — fo),
=1

t=1

where f; and Q; are the mean vector and the covariance matrix of y,, given D;_; and H, F, &, €, mq and Py, which are calculated by the
Kalman filter.’? In the previous log-likelihood, f; and Q; are implicitly conditional on H, F, £, 2, my and P,. The maximisation of this log-
likelihood can be performed either by adopting the EM algorithm or by direct maximisation procedures.' '3 In this paper, we adopt
the latter using the dse package in R.'+1

Model (1)-(2) describes the dynamics of the process. It identifies a moving mean, which is what is expected locally (the norm), and
deviations from it signify an out-of-control state. We calculate the residuals, which measure these deviations. A control strategy based
on these residuals is now proposed. It should be noted that we define the residuals at each time point t in Phase Il to be the difference
in the one-step ahead forecasts made at time t — 1 using the state space model fitted in Phase I (i.e. the model hyperparameters are
fixed at the values estimated in Phase I) and the corresponding true value. We thus obtain a time series of residual vectors {e.}, where
e =[en...,esi]Tandt =1,...,N.

Our method differs from Pan and Jarrett’s,'” because we propose a distribution-free monitoring scheme based on binomial type-
statistics to be applied to the set of residuals {e.}, rather than Hotelling’s T2 chart. The justification for using the Hotelling chart is that
e, is approximately independent and identically distributed as a multivariate normal, but as this is not exactly true, a distribution-free
approach is preferred. Our distribution-free approach is similar to the one adopted by Bersimis and Triantafyllopoulos '8 for monitoring
air pollution; an overview of the earlier research into nonparametric monitoring methods can be found in the papers by Chakraborti
et al. 2% and the references therein. As we are primarily concerned about increased variability in the sensor signals, we convert the
vector of residuals e; into binary vectors:

1, ife;>0,
Ujr = o (3)
0, if €t < 0,
wherei=1,...,Sand u; = [uy,...,us]". This construction dichotomises the individual residuals e;, into two classes: one for positive

residuals, which corresponds to increased sensor signal variability and hence increased tool wear, and the other with negative residuals,
which corresponds to lower than expected sensor signal variability and suggests that tool wear has not significantly increased since
the last cut.

For the overall control of the wear, we may use the statistic C(r, t), which represents the number of residuals from time t — r to time
t that are greater than 0. Specifically, C(r, t) is defined as the following cumulative sum:

S t
C(I’, t) = Z Z Uij. (4)

i=1 j=t—r

This statistic is based on the idea that if the process is in-control, the residuals must be randomly distributed above and below zero,
whilst if the process is out of control, which would correspond to the tool becoming worn out, then there would be an extreme number
of positive residuals. This statistic under the null hypothesis that the process is in-control follows a binomial distribution with probability
of success equal to 0.5 and number of trials equal to S(r + 1). For ease of implementation and comparison, we propose to use the
normal approximation to the binomial distribution (because we advocate choosing r to be large enough for the Central Limit Theorem
to apply), and thus, we define the statistic C'(r,t) = (2C(r,t) — S(r + 1))/+/S(r + 1), which follows the standard normal distribution
N(0, 1). Using this statistic, a classical rule is to issue an alarm when the observed value of C'(r, t) is larger than 3.

If desired, our control scheme can be modified by adding a dead band where small positive residuals are also deemed to be of no
concern. The incorporation of a dead band scheme in the control chart is motivated by similar dead band approaches in feedback

© 2016 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2016, 32 2093-2106
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adjustment charts.?’ Whilst Box et al. 2! are using a dead band to trim out adjustments of low value (in particular when there are adjust-
ment costs), our motivation is slightly different. We propose to implement the scheme at the individual residual level, by identifying
those residuals, which exceed some threshold k. In this case, we convert the vector of residuals e; into binary vectors as follows:

1, ifey >k
0, ifey <k

Ujr = (5)
where k > 0. For example, we could choose k = 0.57, where 7 is the estimated standard deviation of the residuals in Phase I. With a
dead band scheme as mentioned earlier, residuals, which are positive but relatively small, will be coded as zeros and will not contribute
to C(r, t); only those residuals that are deemed as ‘significant’ (or having the potential to indicate aberrant process behaviour) enter
C(r, t). As a result, one would expect to issue fewer signals using an appropriate dead band threshold, and this would lead to more
flexible and robust control. For example, the chart can be made suitable for detecting small shifts in the residuals when k is low, or to
focus only on larger shifts when k is larger. Thus, the dead band scheme provides versatility in the sense that it can allow monitoring of
small or large shifts depending on the requirements of the specific application. The value of k should be chosen according to process
specifications and model performance in Phase I.

For the purposes of comparison, we will also apply to the residuals two other standard multivariate control charts, the Hotelling T2
chart and the multivariate exponentially weighted moving average (MEWMA) chart.?223 For the MEWMA chart, a value for the smooth-
ing parameter A has to be chosen. In general, small values of A are used to detect small shifts in the process mean quickly, whilst larger
values of A are used for fast detection of large shifts.?* We chose to set A = 0.2 as a compromise between these two extremes. The
limits for the MEWMA chart were obtained using the spc package in R.?

4. Simulation study

This section investigates the ARL performance of our proposed nonparametric control chart and compares its performance with the
Hotelling 7> and MEWMA charts under the assumption that the residuals are independent and identically distributed as a multivariate
normal in Phase . For the sake of simplicity, we consider only the bivariate case (S = 2).

A Monte Carlo simulation was conducted to obtain the ARL values for each chart for various mean shifts in the residuals. It was
assumed that the process is in the in-control state for 200 observations and that the in-control process mean vector and covariance
matrix were i, = 0 and X = [; therefore, all initial values of the data were generated from the N(0, /) distribution.

For comparison purposes, we considered seven different shifts in the mean vector u, five immediate shifts of various sizes and two
where the mean vector slowly drifts away from its starting position. It should be noted that the covariance matrix remained unchanged
from that assumed in the in-control state. The size of the mean shift is determined by the distance of the out-of-control-mean, p ,, from
the in-control mean p,, and can be measured by the non-centrality parameter D = /(i; — o) S (1, — o). For the immediate
shifts, we considered scenarios where D = 0, 0.5, 1, 2 and 3. We also investigated two other scenarios of more relevance to our practical
examples of Section 5 in which the residuals in Phase Il drift upwards away from zero (see, for example, Figure 13): one where both
components of the mean increased gradually and the size of the shift was 0.5 after 50 observations, and another where only the first
component increased, but more rapidly, resulting in a shift size of 0.5 after 40 observations. 5,000 observations were simulated from the
out-of-control state, i.e., from N(u 1, [). For each scenario, 10 000 data sets were simulated to calculate the ARLs of the three methods.

To aid comparability, the control limits of both the Hotelling and MEWMA charts were tuned so that their in-control ARLs, ARL,, were
very close to 200. Similarly, the length of the window in the nonparametric chart, r + 1, was chosen to be 13, to achieve an in-control
ARL slightly above 200. Because of the discrete nature of the statistic C(r, t), it is impossible to achieve an in-control ARL of exactly 200
for small or moderate r.

The results of the simulation study are shown in Table I. We see that the nonparametric chart has the lowest out-of-control ARL
for two of the six out-of-control scenarios, the immediate shift of size 0.5 and the gradual shift where both components drift off tar-
get. The MEWMA chart performs slightly better than the nonparametric chart when the immediate shift is of size 1 and the gradual

Table I. ARLs of the nonparametric, Hotelling and MEWMA (A = 0.2) charts for
various mean shifts.

e D Nonparametric Hotelling MEWMA (A = 0.2)
(0,0)7 0 236.08 199.09 200.09
(0.4,0.3)7 0.5 26.77 118,57 37.79
(0.6,0.8)" 1 10.15 42.59 9.62
0,2)7 2 11.79 7.16 2.90
(V18,47.2)7 3 4.49 2.19 1.63
(0.008i,0.006/)" 0.5 fori = 50 4347 78.70 51.98
(0.0125i,0)7 0.5fori = 40 48.66 69.97 45.26

Here, n, denotes the out-of-control-mean vector, D is the non-centrality parameter and
i=1,...,5000 is the observation number from the out-of-control state.
ARL, average run length; MEWMA, multivariate exponentially weighted moving average.
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shift where only one of the two components increases. In all four of these scenarios, the Hotelling chart performs poorly. The non-
parametric control chart is clearly outperformed by both the Hotelling and MEWMA charts in the two cases where there is a large
immediate shift (D = 2 and 3). This is unsurprising, as the cumulative nature of the nonparametric statistic C(r, t) limits quick detec-
tion. Indeed, the earliest it can signal out-of-control is after four observations and only when all eight residuals are positive. However,
it should be stressed that the nonparametric chart performs best, or competitively with the MEWMA chart, for the scenarios that most
closely resemble our practical examples where the residuals gradually drift off target or there is a small shift that warns of a bigger one
ahead (Section 5).

5. Application

5.1.  Microphone data

We first apply our methodology to the microphone data (Figure 3 (b) and (c)); we observe that the data is strongly autocorrelated,
which is obvious from the local variation of the data and could be explored formally by plotting the sample autocorrelation functions
(not shown). Indeed, these plots indicate that the data from both microphones are non-stationary time-series, with the level (or time-
windowed mean) gradually growing for about the first 272 cuts, and then there is a sudden shift upwards over the next five cuts, at
which point the data stabilises to an approximately constant (or very slowly increasing) level. For this data set, we consider Phase | to
be up to time t = 200, during which the time series model of Equations (1) and (2) is estimated, and Phase Il is from time t = 201 —425.
The decision to establish the in-control situation as the first 200 cuts was based on the expert opinion of our engineering collaborators,
who deemed that this was an appropriate period over which to consider the tool as still being in good condition.
The state space model (1)-(2) is used with S = 2, for the bivariate observation vectory, = (y1,y2:)" of

Yie ) _ hy1 hi Zit ) T €1t
Yo hy1 hap 2ot €)'
Zie ) _ (fm fi2 (21,r—1 + eF’
2ot fr0 fp Z2,t—1 L )’
where h;; is the jj-th element of H, f;; is the jj-th element of F, z; = (21,6 22¢)7 and the error terms are defined likewise. We fit this model

in Phase |, and we estimate the model components H, F as well as the error covariance matrices ¥ = (0j;), 2 = (w;j) and mg, P, (see
also the discussion in Section 3); later we show the estimated values of h;j, f;;, 0;; and w;j, fori,j = 1,2:

hi; = 0834, hy,=0033, hy; =0010, hy, =0996

i1 =1225 f,=-0243, f;=1.135 F,=-0223
611 = 0020, &1, =—0023, 6;,=0.996,
@11 =0119, @13 =—0093, @, =0.110

Some comments are in order. The eigenvalues of F are 0.998 and 0.832, and those of F are 0.999 and 0.003. Because one eigenvalue
of A and one eigenvalue of F are so close to 1, we conclude that the model is very nearly non-stationary. This is confirmed by the plots
of Figure 3 (panels (b) and (c)) where for Phase | (time points 1-200); we see a relatively local departure from stationarity, in particular
as compared with the variation in Phase Il. The matrix components Aand F pick this up well, and the state space model fitted in Phase
I resembles a multivariate local level model.’® The estimated observation correlation coefficient (in X) is quite close to 0 (—0.163), but

One step ahead predictions (dotted) and actual data (solid)
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3 16 32 48 64 80 96 114 134 154 174 194 214 234 254 274 294 314 334 354 374 394 414 434

0.50
Lo b bend
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3 16 32 48 64 80 96 114 134 154 174 194 214 234 254 274 294 314 334 354 374 394 414 434

Figure 5. The standard deviations over time of microphones 1 and 2 are plotted in the upper and lower panels, respectively. The red dashed lines represent the one-step
ahead forecasts.
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Figure 7. The nonparametric, Hotelling and multivariate exponentially weighted moving average (MEWMA) Phase | control charts for the microphone data.

the state correlation coefficient is —0.813. This implies a strong correlation between the states, whilst given the states the correlation
of the data is low. In our model, most of the correlation dependence of the observations is captured by the dynamic structure of the
state vectors.

The one-step ahead forecasts are shown overlaid on the data in Figure 5, and we see that the model does a good job of capturing
the gradually increasing level of the data in Phase I. The residuals in Phase | are shown in Figure 6, and we see no obvious pattern in
the two plots. The autocorrelation functions of the residuals (not shown) indicate that there is no evidence against the assumption that
the residuals are independently distributed. Figure 7 shows the three control charts in Phase |, our nonparametric chart with r = 12,

- ______________________________________________________________________________________________________|]
© 2016 The Authors Quality and Reliability Engineering International Published by John Wiley & Sons Ltd. Qual. Reliab. Engng. Int. 2016, 32 2093-2106



Quality and

Reliability

Engineering
K.HARRIS ET AL. International
|

Phase Il Residuals

1 1 |

-0.02 0.00 0.02 0.04

Microphone 2 Residuals Microphone 1 Residuals

-0.02 0.00 0.02 0.04

T T T T T T
200 250 300 350 400 450
Cut Number

Figure 8. Time plots of the residuals in Phase Il for the microphone data.
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Figure 9. The nonparametric, Hotelling and multivariate exponentially weighted moving average (MEWMA) Phase Il control charts for the microphone data.

the Hotelling chart and the MEWMA chart with A = 0.2. The Hotelling and MEWMA charts were obtained using the MSQC package
in R.?” The nonparametric chart signals out of control 4 times at the 0.5% significance level. However, all these observations fall just
above the control limit, suggesting that the assumption that there is an equal split of positive and negative residuals over time is not
too badly violated. The Hotelling chart flags one observation as being clearly out of control, whilst the MEWMA chart flags five obser-
vations, although three of those points are just over the limits. This suggests that the model fits the Phase | data well apart from one
or two outliers.

Proceeding now into a discussion of Phase II, we see from Figure 5 that the one-step ahead forecasts of the model fitted in Phase
| are very slow to adapt to the sudden upward shift in the level of both time series at time t = 273, leading to a long run of positive
residuals, the first few of which are very large. This can also be seen from the plots of the residuals in Phase Il shown in Figure 8. The
control charts in Phase Il are shown in Figure 9, whilst the times of the first out-of-control signals for different significance levels are
shown in Table Il. We see that, for this example, the Hotelling chart performs well, first signalling that the process is out of control at the
0.5% significance level at time t = 273, coinciding with the sudden shift in the level of the data. The MEWMA chart arguably performs
even better, as it signals at time t = 257, detecting a smaller upwards shift before the big shift takes place. Our nonparametric chart first
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Table II. Time of first out-of-control signal in Phase I
(microphone data).

Chart Significance  First out-of-control cut
Non-parametric 0.01 235
Hotelling T2 0.01 273

MEWMA (A = 0.2) 0.01 256
Non-parametric 0.005 253
Hotelling T2 0.005 273

MEWMA (A = 0.2) 0.005 257
Non-parametric 0.001 275
Hotelling T2 0.001 274

MEWMA (A = 0.2) 0.001 258

MEWMA, multivariate exponentially weighted moving average.

One step ahead predictions (dotted) and actual data (solid)
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Figure 10. The standard deviations over time of the x-axis, y-axis and z-axis triaxial accelerometer are plotted in the upper, middle and lower panels, respectively. The red
dashed lines represent the one-step ahead forecasts.
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Figure 11. Time plots of the residuals in Phase | for the triaxial accelerometer data.
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signals out of control at the 0.5% significance level at time t = 253, thus providing an even earlier warning of the process becoming
out of control. It is unsurprising that both the Hotelling and MEWMA charts also perform well in this case because both are good at
immediately detecting sudden shifts in the mean vector of a process. However, we will see that both charts perform very poorly in the
case of the triaxial accelerometer data of Figure 4, signalling out of control far too soon.

5.2. Triaxial accelerometer data

We now apply our methodology to the triaxial accelerometer data in Figure 4 (panels (a)-(c)). Once again, we see that the individ-
ual time series are strongly autocorrelated, but here, there is not a sudden shift in the level of these series. Let y; ; denote the x-axis
accelerometer observation, y, . the y-axis accelerometer observation and y;; the z-axis accelerometer observation at time t; we then
form the trivariate observation vectory, = (y1, Y21 ¥3,)"- For the x-axis accelerometer data (1), we see slowly cyclical behaviour for
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Figure 12. The nonparametric, nonparametric with dead band, Hotelling and multivariate exponentially weighted moving average (MEWMA) Phase | control charts for the
triaxial accelerometer data.
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Figure 13. Time plots of the residuals in Phase Il for the triaxial accelerometer data.
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the first 250 or so cuts, at which point the cycle breaks down, and we see persistent growth in the level of the data for the remainder of
the experiment, whilst for the y and z-axis accelerometer data (v, and ys,), we see approximately linear growth for about the first 270
cuts, and then there is a sudden shift in the gradient of the data that persists for the next 140 or more cuts. We again consider Phase |
to be up to time t = 200 and Phase Il to be from time t = 201 — 425. We fit model (1)-(2), with S = 3. The matrices H, F, X, 2 and the
initial state vector mean and covariance matrix mg and P, are estimated by maximum likelihood in Phase | as described in Section 3
and as previously demonstrated for the microphone data in Section 5.1. Here, for space economy, we do not show the values of the
maximum likelihood estimates of these model components.

Like the microphone data, we see from the plot of the one-step ahead forecasts in Figure 10 that the linear state-space model does
a good job of capturing the slowly adapting level of the triaxial accelerometer data in Phase I. Once again, there is no obvious pattern
in the Phase | residuals, as seen by their plot in Figure 11. There is also no evidence against the assumption that the residuals are
independently distributed, because all their sample autocorrelations fall within or very close to within the 95% confidence bounds (not
shown). In this example, we show four control charts in Phase | (Figure 12): our nonparametric chart with r = 12, the Hotelling chart
and the MEWMA chart with A = 0.2 as before, and also the modified nonparametric chart with r = 12 and a dead band of k = 0.57.
These control charts also suggest that the state-space model fits the Phase | data satisfactorily, as neither nonparametric chart signals
that the process is out of control at any point, whilst the Hotelling and MEWMA charts only flag three points combined (out of a total
of 200) as potentially being out-of-control at the 0.5% significance level, all of which fall just outside the control limits.

S Non-Parametric Phase Il Control Chart
2 4
» < i SN
-
2
T °7
E T T T T T T
2 200 250 300 350 400 450
Cut No.
-f_;j Non-Parametric Deadband Phase Il Control Chart
T ©A
o A Y T e
5 o]
e
T o
g ! T T T T T T
2 200 250 300 350 400 450
Cut No.
Hotelling Phase Il Control Chart
g
2
] S
e~ T T T
200 250 300
Cut No.
© MEWMA Phase Il Control Chart
3
5 o
n o]
o
-
o °- T T T T T
= 200 250 300 350 400 450
Cut No.

Figure 14. The nonparametric, nonparametric with dead band, Hotelling and multivariate exponentially weighted moving average (MEWMA) Phase Il control charts for the
triaxial accelerometer data.

Table Ill. Time of first out-of-control signal in Phase Il (triaxial
accelerometer data).

Chart Significance  First out-of-control cut
Non-parametric 0.01 219
Non-parametric deadband 0.01 226
Hotelling T2 0.01 214

MEWMA (A = 0.2) 0.01 210
Non-parametric 0.005 219
Non-parametric deadband 0.005 227
Hotelling T2 0.005 214

MEWMA (A = 0.2) 0.005 210
Non-parametric 0.00025 226
Non-parametric deadband 0.00025 304
Hotelling T2 0.00025 222

MEWMA (A = 0.2) 0.00025 211

MEWMA, multivariate exponentially weighted moving average.
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We will now discuss our Phase Il results. Firstly, we see from Figure 10 that after about time t = 300 the one-step ahead forecasts
start becoming very poor, consistently under-predicting the y-axis accelerometer’s standard deviation by a growing amount, and also
a tendency to under-predict the x and z axes’ standard deviation too. This leads to a clear positive trend in the residuals for the y-axis
from time t = 300 to t = 420, as shown by the plots of the residuals in Phase Il of Figure 13. We also see from Figure 13 that the
variability of the x-axis residuals noticeably increases around time t = 300. The Phase Il control charts are shown in Figure 14, whilst the
times of the first out-of-control signals are presented in Table lll. Here, both the MEWMA and Hotelling charts signal that the process is
out of control at the 0.025% significance level very quickly; the former at time t = 211 and the latter at time t = 222. Thus, both these
charts perform poorly, signalling out of control far too soon, as the process clearly does not become out of control until much later. Our
nonparametric chart performs slightly better, first signalling out of control at the 0.025% significance level at time t = 226, but this also
seems too soon. Arguably, in this case, the modified nonparametric chart with a dead band of k = 0.5 performs the best, as it does
not signal out of control at the 0.025% significance level until time t = 304, by which point the process is clearly deteriorating.

6. Conclusion

In this paper, a method was proposed for indirectly monitoring the condition of a tool using acoustic emission, microphone, vibration
and spindle power sensors. The high-frequency sampling rate of these sensors means that large amounts of data is amassed in the
short space of time it takes to cut a workpiece, particularly acoustic emission data, which is typically sampled at a rate of over one
million observations per second. From these sensor signals, features correlated with tool wear can be extracted and used to monitor
the condition of the tool after each cut of the workpiece. In our case study of milling a titanium alloy, the standard deviation of each
sensor signal was felt to be the most appropriate feature to monitor. The resulting multivariate time series is non-stationary, and it is
thus important to develop a monitoring procedure that can distinguish between local variation in the data that is not attributable to
out-of-control behaviour and longer term changes that are associated with tool wear.

A multivariate linear state space model is fitted in Phase | to describe the expected dynamics (i.e. the norm) of the process when it
is in control. In Phase Il, the differences between the one-step ahead forecasts from the state space model fitted in Phase | and their
corresponding true values are calculated, as these residuals measure the deviations from the norm. A nonparametric control chart for
monitoring these residuals based on binomial type-statistics is proposed and compared with applying standard multivariate charts
(like Hotelling's T? and the MEWMA) to the residuals. Our simulation study demonstrated that the nonparametric chart performs best,
or competitively with the MEWMA chart, for the scenarios that most closely resembled our practical examples where the residuals
gradually drift off target or there is a small shift in the mean that warns of a bigger one ahead.The standard charts for residual monitor-
ing performed well when applied to the microphone data, as there was a sudden shift in the level of this process, but performed very
poorly when applied to the triaxial accelerometer data, signalling out of control far too soon, because the level of the process increases
much more slowly. The proposed nonparametric control chart also performed well on the microphone data, whilst performing much
better on the triaxial accelerometer data than the standard charts when it was modified by adding a dead band of k = 0.57.

An alternative nonparametric approach to the one proposed here would be to develop a control chart based on runs type rules,
which is another possibility that may perform well on the triaxial accelerometer data and is an area of ongoing research. The next
step would be to develop feedback adjustment mechanisms based on the sensor data for taking corrective action to prolong the life
of the tool. For example, if the sound and vibration were too high, we might consider reducing the cutting speed or feed rate of the
machining process. The end goal is to develop a methodological framework to enable machining processes to be fully automated and
efficiently optimised.
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