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Abstract 

Measurements of human body size and shape are an important source of information 
for a range of scientific fields and applications; however, practitioners still rely on 
traditional tools and methods which limit the kinds of measurements that can be 
taken. Recent literature has suggested that 3D imaging technology is a more 
sophisticated tool that could enable the comprehensive characterisation of human 
body shape. The aim of this programme of doctoral study was to determine whether 
shape anthropometrics can complement existing techniques in the assessment of 
human morphology. 

A novel analytical procedure was developed using geometric morphometrics and 
statistical shape analysis methods to extract numeric parameters from 3D imaging 
data, which describe scale-invariant characteristics of human torso shape. Though 
errors in anatomical landmark identification and participant scanning posture can 
affect the acquisition of shape anthropometrics, the developed methods were found 
to have high test-retest reliability, suitable for use within subsequent investigations. 

A series of investigations were conducted to determine whether shape measures 
provide additional information which is not captured by existing anthropometric 
techniques. The findings of these investigations suggest that body shape measures 
show a complex dependence on body size. Though certain shape features demonstrate 
a degree of allometric scaling and change with increases in body size, there are 
significant proportions of shape variation which cannot be explained by existing 
anthropometrics. These non-allometric variations in body shape have been shown to 
improve the estimation of subcutaneous abdominal adiposity in a small cohort of 
participants, and have demonstrated the potential for misclassification of individuals 
using existing indices, such as BMI and WHR. This programme of research provides a 
more detailed understanding of human morphological variation, which could inform 
the development of improved tools for characterising how body shape relates to its 
underlying mass distribution. 
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Chapter 1 - Introduction 

1.1 Introduction 

This thesis documents a three-year programme of doctoral study investigating the use 

of statistical shape analysis for assessing human morphology, improving current 

understanding regarding differences between measures of size and shape of the 

human body. This chapter outlines the motivation for this research by reviewing the 

history of human measurement, existing anthropometric techniques and geometric 

morphometrics. The aims, objectives and thesis structure are given at the end of this 

chapter. 

1.2 Motivation for the research 

For centuries, civilisations have been fascinated with the human body and 

measurement of its dimensions, believing that an individual's physical health can be 

determined through subjective descriptions of their body shape (1–3). Hippocrates 

(460-370 B.C.) suggested that an individual's general constitution and susceptibility to 

certain diseases, could be categorised based on their physical build: "habitus 

phthisicus" - wasting of the lungs (pulmonary tuberculosis), and habitus apoplecticus - 

apoplexy (stroke) (3,4). This practice of describing body shape and its relation to 

physical health is still in use today with the use of somatotyping, which suggests that 

human body shape can vary along 3 dimensions: endomorphy (relative fatness), 

mesomorphy (relative musculo-skeletal fatness) and ectomorphy (relative linearity) 

(5–7). The short technical manual Anthropometria, published in the 17th century by 

naturalist Johann Sigismund Elsholtz, was the earliest recorded investigation of the 

human body for scientific and medical purposes (1,4). Elsholtz's work established a 

quantitative approach for acquiring body measurements, describing variations and 

changes in human form and their relationships with certain diseases (4,8). 

Anthropometry, derived from the Greek: anthropos (human) and metron/metrein 

(measure/to measure), was then the formal term given to the technique of collecting 

human measurements and is defined as: ‘‘The scientific study of the measurements 

and proportions of the human body" (9). During the 18th century the "season of 

measurers" began, with the development of new measurement instruments, as well as 

the application of mathematics and statistics to advance the field of anthropometry 

(1). It was at this time that there was a distinct move away from subjective 
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descriptions of human form towards the development of specialist equipment and 

techniques to quantitatively measure the body. Today, anthropometric techniques are 

used in several applications, including: health monitoring (10), epidemiological studies 

(11,12), apparel sizing (13,14) and predicting sporting performance (15–17). However, 

though the field of anthropometry has seen major developments since its origins, the 

tools which are predominantly used in practice to measure the human body are the 

same as those used by Richter in 1890 (14,18). Traditional anthropometric techniques 

rely on the use of tape measures and callipers to acquire body lengths, breadths and 

girths, with combinations of these used to create proxies of weight status and body 

shape, such as the body-mass-index (BMI) and the waist-hip ratio (WHR). These 

approaches for assessing the human body are prone to error and limited by their 

relative simplicity, as they do not capture the complex variations in shape and mass 

distribution (4,19–21). It is increasingly recognised that existing anthropometrics, such 

as body lengths, girths and diameters, are one-dimensional, and can only express 

shape information when adjusted for other measures such as body height (21). More 

sophisticated, scale-invariant measures are required to identify the subtle curvatures 

and contours which are present on the three-dimensional (3D) topographical 

landscape of human body shape that existing measures fail to capture (2,22,23).  

Recently there have been significant advances in the development and manufacture of 

3D imaging systems capable of capturing detailed and accurate external dimensions of 

the human body, in a more timely and non-invasive manner than manual measures 

(20,24,25). Studies have investigated the use of more complex anthropometrics using 

data captured by these devices, such as volume and surface area, which have been 

shown to distinguish differences in body size and shape unattainable using simple 

anthropometrics (17,26,27). However, the majority of anthropometric studies use a 

specific definition of shape, based on the ratios and relative proportions of one-

dimensional anthropometrics, such as waist girth and stature, to create proxies of 

shape. This approach to assessing body shape based on combinations of size measures 

discards the geometric information captured by 3D imaging systems and is a common 

misconception within the literature (28). Whilst 3D imaging technology is well 

established, the methods and metrics used to analyse human shape information is not. 

Therefore, there is a need to investigate more sophisticated methods of analysis to 

enable comprehensive characterisation of human body shape (2,19).  
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Morphology is a branch of biology which studies the form of living organisms and the 

relationships between their external and internal structures (9). Geometric 

morphometrics (GM) is an established method within the fields of anthropology and 

evolutionary biology to analyse variations in shape and its covariation with other 

variables (29). These methods have emerged from established shape theory (30) and a 

conceptual understanding of mathematical shape, defined by Kendall as: "the 

geometrical information that is left when the differences which can be attributed to 

translations, rotations, and dilations have been quotiented out from an object" 

(31)(p82). GM provides a framework for the statistical analysis of shape information, 

which quantifies the variation of anatomical landmark coordinates, curves and 

surfaces present between biological structures, whilst retaining the geometric form of 

organisms throughout the analysis (29). These methods have been used to analyse 

shape in a wide range of biological and anthropological studies (32,33) and has 

recently been applied to assess variations in human hip and lumbar spine shape (34). 

However, few investigations have explored how geometric methods of shape analysis 

can complement existing anthropometric techniques in the assessment of external 

human form. 

1.3 Aims and objectives 

The aim of this programme of research was to determine whether shape 

anthropometrics can complement existing anthropometric techniques in the 

assessment of human morphology. The objectives were to: 

• Review published literature regarding existing anthropometric techniques and 

quantitative methods for analysing the shape of biological organisms.  

• Develop analytical procedures for extracting scale-invariant features of human 

body shape from 3D imaging data. 

• Determine the test-retest reliability of developed methods for acquiring measures 

of body shape and the effect of identified sources of measurement error. 

• Critically evaluate the degree of allometric scaling between measures of body size 

and shape, as well as identifying non-allometric variations in torso shape which 

cannot be explained by existing anthropometric techniques. 

• Determine if body shape measurement can complement anthropometric 

techniques currently used in population-based studies and obesity assessment. 
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1.4 Thesis structure 

This programme of doctoral study will be presented as a traditional thesis, comprising 

seven further chapters. These chapters are structured as follows: 

• Chapter Two provides a critical review of the literature relevant to the programme 

of doctoral study. The literature review examines the applications of human body 

measurement, traditional and digital anthropometric techniques, and quantitative 

methods of statistical shape analysis.  

• Chapter Three details the development of analytical procedures, enabling the 

implementation of geometric morphometric methods for analysing human torso 

shape to be used throughout this programme of research. 

• Chapter Four evaluates the test-retest reliability of developed analytical 

procedures and the effects of potential sources of measurement error when 

assessing verification artefacts and human participants. 

• Chapter Five details a preliminary investigation with a small cohort of participants, 

examining whether shape measures can complement traditional anthropometric 

techniques in the estimation of subcutaneous abdominal adiposity. 

• Chapter Six characterises a large population-based cohort to establish a database 

of body shape information and determine the degree of allometric scaling between 

measures of torso size and shape. 

• Chapter Seven demonstrates the application of body shape measurement within 

obesity classification and how it can complement existing anthropometric 

techniques. 

• Chapter Eight discusses the main findings of this programme of doctoral study, 

followed by practical applications, limitations, potential areas for further research 

and an overall conclusion of the research programme.  
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Chapter 2 - Literature review  

2.1 Introduction 

This chapter reviews the relevant literature in two main sections:  

• Review of existing anthropometric techniques.  

• Review of quantitative methods for analysing shape. 

2.2 Review of anthropometric techniques 

Throughout history an individual's body size and shape has been used as a direct 

indicator of their physical health characteristics (1). Since the 19th century, systematic 

body measurements and records have gained importance and have been employed 

extensively in several fields, principally healthcare and apparel sizing. For example, 

military organizations previously used height measurement as the basic procedure to 

determine whether young men were suitable for military service (1,2). In addition, 

large-scale anthropometric surveys have been conducted to facilitate mass production 

of clothing and equipment for military personnel as early as the American Civil War 

(35,36). Throughout the 19th and 20th centuries measures of height and weight, 

followed later by girths and skinfolds, have gained importance as tools within clinical 

practice as measures of public health, due largely to the work of Adolphe Quetelet (37) 

in the 1830's (38) and 1870's (39). Since then, medical practitioners have measured the 

outside of the human body to assess various aspects of an individual's health, guide 

their treatment and evaluate the prevalence of disease within the population (10). 

Large-scale anthropometric surveys have been fundamental to epidemiological studies 

of the distribution and determinants of health-related states or events in specified 

populations during the last century (10,12). More recently, the application of 

anthropometric techniques within sport, known as kinanthropometry, has become 

vital to understanding how body dimensions can enable athletes to meet the demands 

of their sport (40–45).  

Before proceeding further, it is essential that differences in terminology are clarified. 

First, anthropometry - as mentioned in Section 1.2 - refers to the scientific procedures 

and processes of acquiring surface anatomical measurements of the human body 

(height, weight, lengths and girths) by means of specialist equipment (callipers and 

tape measures) (41). Nutritional status is an individual's health condition as it is 
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influenced by the intake and utilisation of nutrients, with optimal nutritional status in 

theory being attained by consuming sufficient, but not excessive sources of energy, 

nutrients and other food components (46). Poor nutritional status can refer to both 

undernutrition (low intake) and excessive intake (inadequate expenditure) of food 

energy. Body composition, refers to the composition of different molecular-level 

components within the human body, primarily: water, fat, proteins and minerals. 

However, body composition is most commonly assessed at the tissue-level in terms of 

the amounts and distributions of adipose, skeletal and muscle tissues, or more broadly 

into fat mass (FM) and fat-free mass (FFM), according to the two-component model 

(47–49). Though anthropometrics are commonly utilised as proxies of nutritional 

status (e.g. BMI), and as indirect methods of assessing body composition, they can only 

directly provide information relating to the external dimensions of the human body. 

Body composition can vary along several axes, including the ratios of fat to lean tissue, 

and organs to muscle tissue, as well as the distribution of adiposity between central 

and peripheral depots. However, though these traits manifest themselves outwardly as 

variations in body build and shape, the relationship between external body measures 

and body composition are considered controversial (47). With these definitions in 

mind, this literature review and programme of work focuses primarily on 

anthropometric methods for measuring the external dimensions of the human body 

and their use in different applications. Currently, there are two types of 

anthropometric techniques used to obtain human body measures: traditional 

anthropometry, using manual measurement tools; and digital anthropometry, using 3D 

imaging devices. 

2.2.1 Traditional anthropometry 

Manual anthropometrics are currently the dominant method used by practitioners to 

assess variations in human size and shape within the population, as well as performing 

initial health screening of individuals and population-level diagnostics of disease risk 

and obesity prevalence (49–51). Since Richter first used callipers in 1890, a standard 

set of instruments, including tape measures, callipers and weight scales, have been 

used to obtain manual anthropometrics (14,18). The continued popularity of manual 

anthropometrics is due primarily to the ease of use of these low-cost, portable tools 

and remain the standard which new anthropometric devices are evaluated against 
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(52). During the last century, approximately 2,000 different anthropometric variables 

have been used by different professional groups to define the size and shape of the 

human body within various applications (35). As a result, a degree of confusion and 

lack of standardisation has emerged within the field of anthropometry (53). This has 

further complicated the choice of measurements practitioners and researchers should 

take during anthropometric assessments, and made the comparison of measurements 

over time more difficult. In general, traditional anthropometrics can be divided into 

five broad categories: basic measures, girths, lengths, breadths and skinfolds, which 

are then commonly combined to calculate derived indices and somatotypes (51,53).  

Basic measures  

Basic measures include stature and body mass, collected using a stadiometer and a 

standard set of weighing scales, respectively. Stature measurement enables tracking of 

overall growth and calculation of height normalised indices. Measures of stature 

should be taken in the morning, since the human body tends to decrease in height 

during the day, typically with losses of approximately 1% over the course of the day 

(54). An additional technique used to account for these losses, the stretched stature 

method, is the preferred technique for acquiring measures of stature (53) (Figure 2.1).  

 

Figure 2.1. Stretched stature measurement method (53). 

Changes in an adult's body mass correspond primarily to changes in their levels of 

body water, fat and/or lean tissue, whilst in children changes in body mass mostly 

relate to their overall growth. Body mass is an important tool for understanding the 

development of children and adolescents, and is recognised as an important indicator 

of proper development (55,56). Obesity in children has become a widespread problem, 

and there have been calls for improved measures that are able to differentiate 
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between normal physiological and pathological development in children (56). 

However, simply measuring body mass without other measures of body size can be 

misleading, since body mass is highly correlated with stature (49). To overcome this, 

medical practitioners typically combine measures of stature and body mass to 

calculate an individual's body-mass-index (BMI), providing a proxy of nutritional status 

(2,49,50). BMI has been found to be a reasonable measure of general adiposity and is 

calculated as body mass divided by stature squared (kg/m2) (57). In addition to its 

simplicity, another benefit of BMI is considerable amounts of reference data and 

literature regarding its relationships with levels of body fatness, risk of cardiovascular 

disease (CVD), morbidity, and mortality in adults (58). Thus, the primary use of BMI is 

to classify individuals within the population into groups based on their risk of suffering 

from obesity related diseases (59). Obesity is defined according to BMI and is stratified 

into categories according to the World Health Organization (WHO) (60,61). The current 

WHO recommended guidelines for obesity classification according to BMI are given in 

Table 2.1. 

Table 2.1. WHO recommended BMI cut-off points for overweight and obesity (61). 

 

 

 

 

However, the use of BMI in isolation, especially in atypical populations, should be 

performed with caution since it is now widely acknowledged that BMI is unable to 

distinguish between fat and lean tissue, or provide information regarding the 

distribution of mass around the body (2). It has been shown that obesity, when 

defined using only BMI, is a heterogeneous condition whereby people with the same 

BMI can have distinct cardiovascular and metabolic risk profiles (12,62). In fact, 

susceptibility to adverse metabolic and cardiovascular diseases has been shown to not 

be purely determined by total fat mass, but rather depends on factors including the 

ratio of fat-lean tissue (63), and the distribution of adipose tissue between central and 

peripheral deports (12,64). The limitations of BMI are highlighted when assessing 

certain populations, for example: relatively muscular individuals such as athletes are 

often categorised as being overweight or obese; individuals with high body fat and low 

Category Body Mass Index (BMI) 

Underweight < 18.5 
Normal Weight 18.5 - 24.9 
Overweight 25.0 - 29.9 
Obesity: Class I 30.0 - 34.9 
Obesity: Class II 35.0 - 39.9 
Obesity: Class III > 40.0 
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lean mass are classed within the normal weight range; while individuals with certain 

medical conditions, such as sarcopenia or edema, where distributions of mass may be 

altered significantly, are hard to distinguish (49).  

In addition to these between-individual differences in fat and lean mass distribution 

that are unidentified by BMI, body shape and its underlying composition are further 

influenced by sex, ethnicity and age-associated factors. First, previous studies have 

shown that there are underlying sexual dimorphisms in adipose tissue biology and 

deposition, related to reproductive function, as well as genetic and hormonal factors, 

which cause differences in external body size and shape between males and females 

(65,66). These differences between male and female body shape are further 

complicated by the effect of age. A previous study (67) observed that though male 

body shape remains consistent within different BMI classifications between early 

adulthood and old age, females change from more of an hourglass shape (low waist 

girth relative to hip and bust girths) in early adulthood, to having greater abdominal fat 

deposition and central obesity as they become older regardless of their BMI, causing 

sexual dimorphisms in body shape to largely disappear in older adults. The lack of such 

age-associated shape changes in men implies that hormonal correlates of female 

reproductive biology, such as concentrations of androgens and estrogen, changes how 

fat mass is deposited with increased age in females (68).  

Finally, several components of body composition that are expressed as body shape, 

such as fat-lean mass ratio and fat distribution, as well as associated cardio-metabolic 

risk have been found to vary significantly across ethnic groups at a given BMI value 

(63,69). For example, African Americans exhibit low levels of visceral fat compared to 

Europeans, while South Asians have higher total body fat content for a given BMI and 

greater amounts of visceral fat. In addition, differences in birth weight between ethnic 

groups has been shown to lead to reduced amounts of muscle mass and organ size in 

later life, causing individuals from certain ethnic groups to have a reduced metabolic 

capacity to maintain metabolic homeostasis at a given body mass (63,69).  

Girths 

Body girths (circumferences) are the distance measured around the outside of a body 

segment and should be obtained using steel tape measures to eliminate stretching 

(53). The tape should be aligned perpendicular to the length of the measured body 
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segment and held tight enough to prevent gaps between the tape and the skin, but not 

so tight as to cause skin indentation (51). Body girths, particularly waist girth, have 

been found to be more closely related to increased morbidity risk than BMI, with the 

Endocrine Society suggesting that waist girth is the key anthropometric variable for 

establishing metabolic risk in the general population (2,70,71). Waist girth is most 

commonly used in clinical assessments, due to its ease of capture and relationship with 

visceral adiposity volume (50). In addition, practitioners often calculate ratios of 

different body girths and size measures to create proxies of central adiposity and 

abdominal shape, such as the waist-hip (WHR), waist-chest (WCR), waist-height (WHt) 

or waist-by-height0.5 (WHT.5R) ratios (2,50,72–75). Recent studies by Nevill et al. have 

suggested that scaling waist girth for differences in body size provide improved 

measures of central adiposity and cardio-metabolic risk assessment at the population 

level (72,76).  In addition to its relationship with adiposity, waist girth also has been 

shown to be significantly correlated with absolute measures of lean mass (77), with 

variations in lean mass often overlooked. For example, birth weight has been shown to 

be lower in neonates in Asian, African and Central/South American populations due to 

substantially reduced organ and muscle mass, indicative of reduced metabolic 

capacity. These disparities in lean mass and organ size remain in later life, with 

individuals of different ethnicity displaying differences in metabolic capacity and health 

risk (69). The WHO has stated that combining BMI with a measure of abdominal 

obesity can provide improved anthropometric tools to establish prevalence of 

metabolic risk in the general population and treat patients with obesity-associated 

metabolic conditions (12,61). The current WHO recommended guidelines for 

establishing metabolic risk according to WC and WHR are given in Table 2.2. 

Table 2.2. WHO cut-off points for WC and WHR and associated risk of metabolic complications (61). 

Anthropometric Index 
Cut-off Points 

Risk of Metabolic Complications 
Male Female 

Waist Circumference (WC) 
> 94 cm > 80 cm Increased 

> 102 cm > 88 cm Substantially Increased 
Waist-Hip Ratio (WHR) ≥ 0.90 ≥ 0.85 Substantially Increased 

 

Though the majority of previous research focuses on measures of the torso, girth 

measures of other parts of the body also provide important information about disease 

risk. For example, previous studies have shown that larger thigh and hip girths are 

associated with improved glucose tolerance (78). Increased WHR can result from 
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increased waist girth, decreased hip circumference or both, with smaller hip 

circumference reflecting either decreased lower body fat or muscle mass. Using 

computed tomography (CT) measurements of human thigh segments has shown that 

after adjustment for abdominal subcutaneous and visceral fat, as well as inter-

muscular thigh fat, larger subcutaneous fat area was significantly associated with more 

favourable glucose and lipid levels. Changes in thigh girth were found to be equally 

dependent on quantities of fat and muscle in men, whereas in women the fat 

component was the main contributor to changes in thigh girth (78,79). Girth measures 

are often used to classify individuals as exhibiting characteristics of either one of two 

body shapes, associated with their level of disease risk (50,80):  

o Android - apple shape or upper-body obesity, increased risk of metabolic 

dysfunction and obesity-related conditions.  

o Gynoid - pear shape or lower-body obesity, regarded as protective, with both hip 

and thigh circumferences inversely related to type 2 diabetes risks.  

Though anthropometric indices of central obesity are easy to implement clinically, they 

remain relatively crude indices of body shape and adipose tissue distribution (2,49,81). 

It has been suggested that waist circumference is only a valid measure of abdominal 

fat mass and disease risk for individuals with BMI < 35, while for individuals with BMI > 

35 this measure adds little to the determination of risk (82). Other potential issues 

with classifying an individual's central obesity level and abdominal shape using waist 

girth or WHR are that of inter-rater reliability and differences in protocol for where to 

take girth measurements (50). The reliability of girth and other manual measures can 

vary significantly depending on the amount of training undertaken by a practitioner, 

their level of certification and level of obesity of the participant (15). Also, even with a 

highly certified practitioner, there are 14 varying descriptions of how to take a waist 

girth measurement, in 3 separate reference manuals (83). Therefore, assessment of 

central obesity and abdominal shape using girth measurements and their ratios should 

be performed with caution. 

Large numbers of defined body girths are commonly acquired from participants to aid 

in the design of well-fitting apparel (Figure 2.2). International standards have since 

been established for the designation of clothing sizing and standard methods of 

garment measurement, such as ISO 8559:1-3 (84–86) and ISO 18890:2018 (87).  
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Figure 2.2. Commonly used body girth measures and locations (35,88). 

Lengths 

Lengths are the distance measured between two ends of a line segment along the 

longest dimension of an object. Body segment lengths provide measures of body 

proportionality and are obtained using tape measures, large sliding callipers, 

segmometers or anthropometers with a foot plate and can be acquired using both 

derived and direct measures (53). Derived lengths are acquired by first measuring 

projected heights - vertical distances from the floor to marked anatomical landmarks - 

and then subtracting the lengths of individual segments. Direct lengths of body 

segments are measured between manually palpated and marked landmarks using a 

sliding calliper or a segmometer. Previous studies have found that errors are more 

common when using projected lengths, so direct measures are recommended (89). 

Breadths 

Bone breadths are used to estimate body frame size, with distributions or summations 

of bone breadth values used to categorise individuals as having small, medium, or 

large frames, or to calculate indexes of frame size (90). Classifying a person as having a 
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Upper-chest girth 

Elbow girth 

Mid-neck girth 
Neck base girth 

Chest/bust girth 

Under-bust girth 
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Knee girth 

Calf girth 
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small, medium, or large frame is intended to adjust for supposed skeletal mass and 

size in describing body composition, or adjusting for ideal body weight (90). The most 

commonly used breadths measures are the biepicondylar humerus (elbow) and 

biepicondylar femur (knee) breadths, measured using a small sliding calliper (53). The 

underlying soft tissue must be compressed so that the correct bone breadth is 

measured (51). 

Skinfolds 

Skinfold thickness measurement is a manual anthropometric technique for assessing 

subcutaneous adiposity at a given location on the body and for estimating body 

composition from the sum of several skinfold sites (Figure 2.3) (53,91). Skinfold 

thickness describes the amount of subcutaneous adipose tissue present within a lifted 

fold of skin measured using specialised callipers. Subcutaneous adiposity is a 

metabolically active tissue, which stores fat and releases it in response to a variety of 

nervous and hormonal stimuli, as well as acting as an insulator to maintain body 

temperature and provide padding (4). Studies often use the sum-of-skinfold thickness 

taken from around the waist (supraspinale, abdominal and iliac crest) as a measure of 

central subcutaneous adiposity to assess the efficacy of new anthropometric indices to 

be used in clinical practice (76). Though the primary compartment for fat storage in 

the body is the subcutaneous adipose tissue depot, with prolonged weight gain over 

time, excess fat is then distributed to other compartments of the body, including intra-

abdominal depots which include visceral adipose tissue (12). Subcutaneous skinfold 

thickness have previously been found to be significantly correlated with total amounts 

of adipose tissue (r = ~0.7 (92)), with certain parts of the body storing greater amounts 

of subcutaneous fat than others, depending on sex, age and overall fatness level (4). 

Relationships between the different fat compartments has since been used to derive 

between 150-200 different regression equations for predicting total percentage body 

fat from skinfold values. However, due to errors in measurement, it is recommended 

that raw skinfold measures, or sums of skinfolds, are used to assess and monitor 

changes in adiposity levels (93). The ease of access to subcutaneous fat makes skinfold 

thickness a reasonable indirect measure of assessing subcutaneous fat across the body 

and providing estimates of total body fat. However, though subcutaneous fat accounts 

for over 80% of total body fat mass (4,12), there are complex inter-individual 
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differences in body fat distribution resulting from variations in the expandability of 

subcutaneous adipose tissue to store surplus energy when required (12,94). This 

failure of subcutaneous fat in some individuals to expand sufficiently is thought to lead 

to higher lipid and ectopic fat deposition in other organs (skeletal muscle, the liver and 

visceral adipose tissue), which have been found to be a critical factor in the 

development of insulin resistance. Abdominal visceral adiposity in association with 

excess ectopic fat deposition has been shown to be significantly associated with 

cardiac and metabolic abnormalities, independently of the amount of total or 

subcutaneous fat accumulation. However, variations in these internal adiposity depots 

cannot be identified by skinfold measurement techniques. Although adverse effects of 

excessive abdominal adiposity have often been linked to visceral adipose tissue, the 

role of abdominal subcutaneous adiposity in the regulation of metabolic health has 

been overlooked until recently. Adverse metabolic effects, like insulin resistance or 

dyslipidemia dependent on abdominal adiposity, are likely to result from both 

dysfunctional abdominal subcutaneous and visceral adipose tissue accumulation 

(12,95). 

 

Figure 2.3. Skinfold thickness measurement locations according to ISAK guidelines, anterior view (left) 
and posterior view (right) (53). 

There are several potential sources of error when taking skinfold thickness measures. 

These include questionable accuracy due to skin and adipose tissue being measured 

together in a compressed state without considering their individual compressibility 

(96). Most skinfold calipers have an upper measurement limit of 45 - 55 mm, 
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restricting their use to individuals who are moderately overweight or less (49). Also, 

there are considerable variations in protocol for taking skinfolds, both in the duration 

of compression during measurement and the location of skinfolds sites around the 

body, depending on the guidelines being followed. This issue is exacerbated as skin has 

varying levels of thickness and compressibility at different locations around the body, 

which again are dependent on age, sex and levels of tissue hydration (4).  

Somatotype  

The somatotype approach, originally proposed by Sheldon, was based on subjective 

descriptions of college students photographs and theorised to be linked to personality 

traits (97,98). Though Sheldon's physical taxonomy is still in use, the idea that body 

type is an indicator of temperament or potential has subsequently been disputed, in 

addition to strong criticism of using thousands of photographs of naked undergraduate 

students, obtained without their explicit consent (99). Methods of somatotyping were 

later modified by anthropologists Heath and Carter to provide a quantification of the 

shape and composition of the human body (6,51,100). The purpose of somatotype is 

to reduce a large number of body measures or visual observations to a simple three 

number rating based on components of characteristics (Endomorphy-Mesomorphy-

Ectomorphy) providing a general description of body shape and physique, which is 

independent of size, age, and sex (5). The Heath-Carter method of somatotyping 

remains the most commonly used (6) and can be obtained in one of three ways:  

• Anthropometric method - 10 manual measurements are used to calculate the 

anthropometric somatotype and estimate the criterion somatotype. 

• Photoscopic method - ratings are made from a standardised photograph of an 

individual. 

• Anthropometric plus photoscopic method - combines anthropometry and ratings 

from a photograph and is considered the criterion method. 

The photoscopic somatotype can only be rated objectively by those who have had 

their validity and reliability established against those of an experienced practitioner. 

However, it is generally accepted that the anthropometric method provides a 

reasonable estimate of the photoscopic procedure, with equations using 

anthropometric inputs validated against subjective visual ratings (101). The procedure 

of somatotyping has attracted criticism because it oversimplifies the complex nature of 
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human body shape, losing details of physique within the tri-axial physique rating 

(6,102). In addition, somatotype categories are determined by a qualitative description 

of the individual somatotype in terms of the dominant component or components, 

which relies on a subjective rating and is open to interpretation (101). Finally, 

somatotyping lacks discriminatory power since large changes in manual skinfold and 

girth measurements are required to cause a change in a individuals somatotype rating, 

meaning it is not sensitive to small changes in physique (40).  

ISAK accreditation and guidelines  

Body measures acquired using manual methods are only ever as accurate or reliable as 

the practitioner who obtains them (18). Differences are typically observed between 

repeated measures taken independently by one observer (intra-observer) and 

between measures performed by multiple anthropometrists (inter-observer) (18,103). 

Previous studies have identified intra-observer error of over 30 mm in thigh girth taken 

from the same participants (104). Observer error of anthropometrists tasked with 

collecting body measures is the most troublesome source of error within 

anthropometry, leading to imprecision in locating anatomical landmarks (105,106), as 

well as subject positioning and instrument application (14). These issues are 

exacerbated when measuring atypical body types (107). These issues with accuracy 

and reliability have led to the establishment of industry standards, guidelines and 

accreditation for performing manual body measurement.  

Kinanthropometry is the scientific discipline investigating relationships between 

anthropometrics and performance parameters, such as movement, biomechanics and 

physiology (16,108). The International Working Group in Kinanthropometry (IWGK) 

was founded in 1978, with their focus being the promotion and development of 

kinanthropometry research (53), later becoming the International Society for the 

Advancement of Kinanthropometry (ISAK). ISAK accreditation provide protocols for 

field assessments of body size and shape, as well as the types of equipment and 

techniques to be used when acquiring traditional anthropometrics (51,53). ISAK also 

administers training courses for practitioners to meet a minimum degree of accuracy 

and repeatability in their measurements, according to the technical error of 

measurement (TEM) (109). According to ISAK guidelines, manual anthropometrics are 

recorded while participants adopt fixed, standardized postures (35), based on the work 
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of authors, such as Kroemer and Kroemer to standardise anthropometric methods 

(110). The primary measuring posture is referred to as the “anatomical position”, in 

which the participant’s body is placed in a defined, straight, upright posture, with the 

body segments at 180o, 0o, or 90o to each other (111). Anatomical landmarks are sites 

on the body that serve as endpoints for the defined anthropometric variables, 

specifically located on a bony prominence or other physically definable point on the 

human body (35,53). These bony landmarks are manually palpated and marked on the 

skin by a trained anthropometrist to identify anchor points for measuring tools and to 

ensure that measures are taken as consistently and accurately as possible (14,35). ISAK 

accreditation is based around two general anthropometric profiles, the restricted and 

full. Measures collected in both the restricted and full ISAK manual anthropometric 

profiles are detailed in Appendix 1. 

2.2.2 Digital anthropometry 

Recent developments in digital devices, capable of acquiring external 3D geometries, 

have resulted in an emergent field known as digital anthropometry - utilising 3D 

imaging technology to acquire anthropometrics. Methods to evaluate the human body 

as a 3D object were first proposed by Lovesey, using a light sectioning technique (112). 

In 1989 these methods were developed into the first automated, non-contact 3D 

imaging device, known as the Loughborough Anthropometric Shadow Scanner (LASS) 

(113). Since the end of the 20th century, there have been significant advances in the 

development of 3D imaging systems beyond these early shadow-based techniques 

(18,114,115). Modern 3D imaging systems, acquire point cloud data that explicitly 

captures surface topography. These can provide detailed and accurate external 

dimensions and shape characteristics of the human body, such as curvature and partial 

volumes (24,27). Surface features can be used to characterise individuals according to 

their shape as well as their size, to a higher degree of precision and complexity than 

existing manual methods (19,116).  

The recent technological development of 3D imaging systems used for anthropometric 

applications has largely been driven by the apparel industry, to enable surveys and 

improved personalised fitting of garments for all body types (117–119). However, this 

has placed a growing demand on product development teams to reconsider their 

approach to prototyping and sizing apparel (118). Significant, related changes are also 
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being made in the fashion retail environment, including innovations in virtual fitting to 

enable consumers to optimise the fit of their clothing when shopping online. Recent 

growths in ecommerce, combined with the inclusion of depth sensing 3D imaging 

technology within modern smartphones has facilitated the development of phone-

based 3D scanning apps that provide virtual try-on and garment sizing 

recommendations (120). One of the major areas of discussion at the recent 

3DBODY.TECH conference and expo (121) was to enable the mapping of simple 2D 

images - such as front and side body profiles that online customers take of themselves 

using their smartphone - to large 3D scan databases using machine learning techniques 

to enable the estimation of an individual’s 3D body shape information and prediction 

of optimal fit characteristics for their clothing. As a result, it is expected that in future, 

more and more organizations will be moving towards establishing 3D digital human 

databases of their target population and using them directly to solve design problems 

(35). However, such advances also need to relate to existing manufacturing practices 

and the entrenched methods of practitioners used in clothing product development 

and garment fitting, otherwise these exciting new techniques for developing products 

might not be fully exploited. New methods of categorising the body in terms of its 

shape should allow recognition of the restrictions of proportional theories in pattern 

construction, affording promising opportunities for advancing the practices of sizing 

and fitting in clothing product development.  

3D imaging has also been used in a wide range of other anthropometric applications, 

due to the detailed body shape information these devices produce, including: 

kinanthropometry (15,25,43), epidemiology (19,122) and clinical practice (10,123). 3D 

imaging has been used to assess large cohorts of participants in population-based 

epidemiological and anthropometric surveys, due to its ability to rapidly acquire large 

numbers of body measures (11,13). In addition, 3D imaging creates a digital image of 

an individual's external geometry, which can be stored and reanalysed enabling 

longitudinal changes in their shape to be monitored over time, in response to changes 

in diet or exercise interventions (10). It has also been suggested that 3D imaging of the 

external surface of the body for anthropometric applications can have a major impact 

on medical research and clinical practice; since a 3D image contains all aspects of an 

individual's shape, not just their size, which could surpass existing indices, such as the 

BMI or WHR (2,21).  
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Types of imaging techniques 

Several imaging techniques can be used to create full body geometries, with a range of 

commercial 3D imaging systems currently available (18,115), each varying in 

underlying technologies, cost, functionality and accuracy - as presented in Table 2.3. 

Most imaging techniques utilise some form of projected light to acquire body shape 

data (laser line, infrared), with the exception of millimetre wave systems which analyse 

patterns of reflected non-ionising electromagnetic radiation, as well as radiation 

emitted naturally by human skin to assess body shape. Millimetre waves pass through 

most clothing, but not human skin, meaning the shape of an individual's body can be 

evaluated without needing to remove their clothes. This provides an ideal alternative 

to x-ray scanners for airport security, though the risks of thermal effects associated 

with millimetre waves are unknown (124).  

It is apparent from Table 2.3 that different forms of 3D imaging systems currently 

utilised for body measurement have advantages and disadvantages, which must be 

accounted for when performing digital anthropometric assessments. For the purposes 

of this programme of research it is posited that more sophisticated body shape 

measures could be used to identify subtle variations in human morphology which 

exiting manual anthropometrics cannot detect. However, to ensure that these features 

are not masked by a system’s variability, it is essential that the amount of 

measurement method error is minimal. Whilst it is acknowledged that the high cost of 

imaging systems with increased levels of accuracy may not be accessible to all 

researchers and clinical practitioners, potentially limiting the uptake of any findings 

using these systems, the accuracy of findings must remain of paramount importance. 
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Table 2.3. Overview of different techniques and commercially available 3D imaging systems used for body measurement. 

Imaging technique Brands/Models System type Cost (USD$) Accuracy Scan duration Remarks 

Laser line 
Cyberware WBX 

Vitrionics Vitus Smart 
- ~37,000 - 240,000 

< 2 mm 
27 points/cm3 

~10 - 15 secs 
High accuracy and often used in large-
scale anthropometric surveys, but high 
cost and long scan duration (125,126). 

Millimetre wave Intellifit 
Active 
Passive 

~100,000 - 
200,000 

± 6 mm ~2 - 5 secs 
Scan without needing to remove 
clothing, but high cost and currently 
unknown physical health risks (124,127). 

Stereo 
photogrammetry 

Cranfield Vectra 
3dMDbody e.g. Flex8 

Passive 
Hybrid 

~190,000 
0.2 mm 

< 0.2 mm 
~2 - 8 msecs 
~1.5 msecs 

High accuracy and short scan duration, 
but high cost and small capture volume 
(128,129). 

Structured light 
Artec Eva/Spider 

TC2 KX-16 
SizeStream 

Blue light 
Infrared 
Infrared 

~10,000 - 20,000 
0.1/0.05 mm 

1 mm 
1 mm 

161/8 fps 
3 secs 
6 secs 

High accuracy and frame rate, and 
relatively lower cost, but long overall 
scan duration increasing the potential 
risk of movement artifacts in data, such 
as breathing cycle, as well as blinking of 
the eyes, caused by flashing of Artec 
scanners (130–132). 

Depth sensor 
Microsoft Kinect V2 

Intel Realsense D435 
Time of flight (ToF) 

Stereoscopic 
~200/per device 
(~1000/system) 

< 6.5 mm 
> 6.5 mm 

< 10 secs (single camera)/ 
~0.8 secs (multi camera) 

Low cost and potentially short scan 
duration, but relatively low accuracy 
(133–136). 



21 
 

Anthropometric standards 

Typically in applications that use 3D imaging, such as ergonomic design and healthcare, 

the point cloud data acquired by 3D imaging systems has been used to extract 1D body 

measurements, comparable to those obtained using traditional anthropometric 

methods (21). As discussed, there are an increasing number of different technologies 

that underlie commercially available 3D imaging systems, as well as a wide range of 

proprietary and bespoke software applications to process and extract body dimensions 

from the acquired data. In addition, though 3D imaging presents several advantages 

over manual methods, such as time to acquire measures and the information 

provided, there are a greater number of complex processing steps required to produce 

usable anthropometric data, which can contribute to measurement errors (18). As a 

result, there can be considerable differences in body measures acquired from different 

imaging systems, caused by variations in the locations of anatomical landmarks and 

scanning postures (137). These considerations have led to the establishment of 

international standards to ensure the reliability and validity of anthropometric data.  

ISO 7250-1:2017 

Based on the work of authors to standardise methods of measuring human 

participants, such as Kroemer and Kroemer (110), international standards of human 

measurement for technological design have also been established (138). ISO 7250-

1:2017 provides a description of manual measurements and standardised 

measurement postures, which can be used as a basis for comparing population groups 

and for the creation of anthropometric databases in accordance with ISO 15535 (139). 

The ISO 7250-1:2017 document is intended to serve as a guide for ergonomists on how 

to define population groups, take anthropometric measurements and apply this 

knowledge to the geometric design of the places where people work and live (138).  

ISO 20685-1:2018 

ISO 20685-1:2018 (140) defines standardised data collection protocols and acceptable 

reliability standards for 3D imaging systems used to perform human body 

measurement. These standards are intended to ensure comparability of body 

measurements obtained using manual and digital methods, specified in ISO 7250 (138) 

and enables the data collected in digital anthropometric studies to be included in 

international anthropometric databases, as described in ISO 15535 (139). ISO 20685-
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1:2018 defines the coordinate axis system which should be adopted when conducting 

anthropometric assessment using 3D imaging with respect to a standing or sitting 

human (Figure 2.4). According to ISO 20685-1:2018 (140), X refers to the anterior-

posterior direction (sagittal axis), Y refers to the side-to-side direction (transverse axis) 

and Z refers to the superior-inferior direction (longitudinal axis). ISO 20685-1:2018 

suggests that researchers should establish their own origin for this axis system, 

convenient to their research, while keeping the direction of the axes as indicated and 

reporting the origin in any publications. ISO 20685-1:2018 also details the maximum 

acceptable error between scan-derived and manual body measures (Table 2.4). 

 

Figure 2.4. XYZ coordinate system for measuring the human body using a 3D imaging system, in both a 
standing and sitting position (140). 

 

Table 2.4. Maximum allowable error between manual and 3D scan-derived body measurements (140). 

Measurement type Max. error (mm) 

Segment lengths (e.g. buttock-popliteal length) 5 
Body heights (e.g. shoulder height) 4 
Large circumferences (e.g. chest circumference) 9 
Small circumferences (e.g. neck circumference) 4 
Body breadths (e.g. biacromial breadth) 4 
Body depths (e.g. chest depth) 5 
Head dimensions without hair  1 
Head dimensions with hair 2 
Hand dimensions 1 
Foot dimensions 2 

Several previous studies have investigated whether human body measures acquired 

using 3D imaging are comparable to those obtained using traditional manual 

techniques, to assess the validity and reliability of measures obtained using digital 

anthropometry (15,55,70,141–143). Body length and height measures have been 

found to be comparable between manual and 3D scan-based techniques, with high 

levels of repeatability (15,55). Bullas et al. (15) demonstrated that scan-derived 
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measures of thigh length were within 2 % of manual measures and had TEM < 1.5 %, 

suggesting that they were comparable to manual measures and repeatable. Similarly, 

Kuehnapfel et al. (55) demonstrated good concordance between manual and scan 

measures of arm and thigh lengths, as well as good to excellent reliability for scan-

derived length measures. However, it was observed that length measures of obese 

individuals had lower concordance with manual measures and reduced reliability, 

which was suggested to have been caused by errors in the automatic landmark 

identification algorithms caused by higher levels of body fat (55). Previous studies have 

demonstrated that 3D imaging systems systematically overestimate girth measures of 

body segments, but have higher levels of reliability compared to manual measures 

(15,70,125,144). It has been suggested that these differences in girth measures 

between manual and digital anthropometry are attributable to soft tissue compression 

and the tape measure not following all the external contours of the segment during 

manual measurement procedures, which would be captured during 3D imaging 

(15,141). Also, the agreement and reliability of upper arm and upper thigh girths 

measures were reduced for obese participants, due to postural variations and 

increased amounts of body fat in these regions preventing automatic landmarking 

algorithms correctly identifying the armpit and crotch landmark points (143). 

Anatomical landmark identification 

The ability of a body measurement system to produce consistent measurements is 

dependent on its ability to accurately and reliably identify the locations of anatomical 

landmarks and is one of the most important procedures within digital anthropometry 

(18,105). Landmarks are used to define body dimensions and ensure anatomical 

correspondence between 3D imaging data of different participants and repeated scans 

of an individual. Also, measurements derived from reliable landmarks can be used for 

statistical analysis, reconstructing variation in human body shape and creating 

homologous models (105,145). Consequently, wrongly identifying landmarks can have 

significant effects on the derived data used to define body dimensions and perform 

body shape analysis. Several methods have been used to locate anatomical landmarks 

in previous investigations. The key stages involved in obtaining 3D coordinates of 

anatomical landmarks are: 1) determining landmark locations on the surface of the 

body; 2) obtaining 3D coordinates of landmarks from the 3D imaging data; 3) labelling 
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of landmarks to extract body measures and align individual scans. According to Kouchi 

et al. (145) these stages in landmark identification can be performed either: entirely 

manually by an operator; entirely automatically by body measurement software; or by 

using a combination of manual and automatic techniques (Table 2.5). 

Table 2.5. Different methods to obtain landmark coordinates in digital anthropometry (145). 

Decision of landmark location Detection of marker location Labelling 

Manual 
Manual Manual 

Automatic Automatic 

Automatic Automatic Automatic 

 
Manual landmark identification 

Several anatomical landmarks used in traditional anthropometrics to define body 

dimensions, as defined in ISO 7250 (138), cannot easily be determined from the 

surface shape of the body and must be determined manually by an anthropometrist. 

Manual palpation and marking of anatomical landmarks prior to scanning is a time-

consuming, invasive process that requires training to enable landmarks to be identified 

accurately and reliably (51,53) (Figure 2.5a). Manual identification of landmark 

locations can be further complicated when assessing individuals with higher levels of 

body fat that obscure bony landmarks (146) and individuals who are in wheelchairs 

preventing access to required landmarks (147). In addition, even with training it has 

been shown that there can be significant intra-observer and inter-observer errors in 

manual landmarking, which can contribute to errors in derived body measurements 

and 3D scan processing (105). These manually palpated landmarks, marked either as 

coloured points or as raised objects stuck to the skin, can then be identified and 

labelled from the acquired 3D scan data, either through manual digitisation by an 

operator, or automatically by the imaging system's software (Figure 2.5b).  

 

Figure 2.5. a) Manual palpation and landmarking (53); b) Manually placed raised landmarks that can be 
manually digitised or identified automatically by scanning software (18). 

a) b) 
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Automatic landmark identification 

Alternatively, anatomical landmark locations can be identified automatically within 3D 

scan images based on either geometrical features present on the surface of the human 

body, such as: umbilic points - where two principal curvatures coincide, minimal saddle 

points and ridges (24,148,149). Alternatively, a template mapping approach can be 

employed, which uses information from existing 3D anthropometric databases (150). 

Different 3D imaging systems use accompanying proprietary body measurement 

software, which automatically locates landmarks and calculates large numbers of 

linear body dimensions, such as lengths and girths, from the acquired 3D imaging data. 

For example, Human Solutions provides dedicated Anthroscan ScanWorX software 

(151) for scan processing, automatic anatomical landmark identification and body 

measure extraction (Figure 2.6). However, though automatic landmarking saves time 

compared to manual palpation, the landmark locations identified using software may 

not always match those identified by an anthropometrist. This has been shown to 

significantly affect comparability between manual and scan-derived body measures, 

with overall concordance correlation coefficient (OCCC) values as low as 0.1 observed 

for upper arm and thigh length measures (55).  

 

Figure 2.6. Anthroscan ScanWorX software (151) a) Automatic anatomical landmark identification and b) 
body measurement extraction. 

Scanning posture 

Posture adopted by participants during 3D imaging can have significant effects on the 

reliability and accuracy of extracted body dimensions and can also emerge from 

principal components analysis of body shape (18,145,152). The postures used for 

b) a) 
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measurements in traditional anthropometry are not suitable for 3D body scanning, due 

to the occlusion of large areas of the body, particularly in the armpit and crotch 

regions. Instead, it is recommended that participants stand with their arms abducted 

and legs 30 cm apart, enabling the 3D imaging device to view all surfaces of the limbs 

and torso (140). ISO 20685 recommends two standing postures for 3D scanning: 1) 

basic standing posture - same as posture for taking manual measures (Figure 2.7a); 2) 

posture with arms and legs abducted for extracting scan-derived body measures, such 

as breadths and girths (Figure 2.7b). Kouchi et al. (145) observed that even this 

relatively small change in posture can alter some body measurements when compared 

to those acquired using standard anthropometric tools. However, as discussed 

previously, there are several 3D imaging systems currently available, which employ 

different technologies and methods for acquiring scan data. As a result, the optimal 

scanning posture for participants may vary between different systems and should be 

adapted for each study being conducted (18). Once the optimal position for a 

particular scanning system has been determined it should be strictly adhered to by all 

participants in the study to minimise measurement error and ensure reliability (153). 

In response, studies have investigated the use of positioning aids to reduce the effect 

of postural variability during scanning and increase the precision of measures (154). 

 

Figure 2.7. Standing imaging postures recommended in ISO 20685 (140). a) Posture for taking height and 
manual measurements; b) Posture for acquiring scan-derived body measures (e.g. girths).  

 

 

a) b) 
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Complex anthropometrics 

Due to the rapid and repeatable quantification of human body dimensions possible 

when using digital anthropometry, previous studies have been able to collect imaging 

data from large cohorts of participants. For example, certain studies have collected full 

body imaging data from over 10,000 participants from specific populations (2,19,70), 

while a study by Jurca et al. (119) collected 3D images of feet from over one million 

individuals. These large-scale anthropometric surveys are vital as they allow 

researchers to consider measurements of individuals with a wide range of body 

characteristics. In particular, the significance of anthropometrics is recognised within 

the global apparel industry, with researchers continually tracking changes in 

consumers’ dimensions through population-based anthropometric surveys, such as 

SizeUSA, SizeUK (13), and recently ShapeGB (155). 3D imaging data collected in these 

surveys have contributed to the ergonomic design of cars, aircraft, workplaces and 

military equipment (13,14,36), as well as enabling garment manufacturers to revise 

their sizing systems for mass produced, ready-to-wear (RTW) clothing for consumers 

(156–158).  

The measures typically derived from 3D scan images to describe body shape have been 

combinations of simple lengths and girths, adopted from the context of clothes sizing 

(118) and commonly used indices, such as the WHR (2,70). Recent studies by Loffler-

Wirth et al. (19) and Pluess et al. (122) are the most sophisticated of these, 

demonstrating the use of machine learning techniques to evaluate large numbers of 

1D human body measurements and establish clusters of individuals exhibiting similar 

traits. These studies demonstrate that large cohorts of participants can be stratified 

into distinct body-types based on a higher number of independent parameters. 

Similarly, a study by Olds et al. (100) attempted to progress the somatotyping 

approach by using scan-derived body measures, combined with k-means cluster 

analysis to determine different body shapes. Though this technique was able to find 

distinct body shape clusters for both men and women, the scan-derived measures 

were still combinations of size measurements obtainable with manual methods, 

meaning that these clusters would have been similar to those found using traditional 

methods of somatotyping. These studies all use a specific definition of body shape, 

which is based on the ratios and relative proportions of 1D anthropometrics, such as 
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waist girth and stature. It has been suggested that this approach does not utilise the 

full potential of 3D imaging and discards the shape information captured by these 

systems (152). As a result, a number of studies have investigated the use of complex 

anthropometrics captured using digital anthropometry - area, volume and curvature. 

Area and volume 

Body surface area is related to several physiological processes, including water 

turnover and metabolic rate (10), and is commonly measured in healthcare to improve 

skin transplants for burn injuries, calculating drug dosages and the treatment of 

obesity (159,160). 3D imaging enables the surface area of the entire body, or of 

individual limbs and body parts to be captured from a single scan (161). Previous 

studies have also investigated combining measures of surface area captured using 3D 

imaging with existing measures such as BMI to create novel body shape indices, such 

as the health index (HI) (162) and the surface-based body shape index (SBSI) (163). In 

addition, measures of cross-sectional area have been used in kinanthropometric 

assessments of cyclists (164) and rowers (17) to capture variations in the dimensions of 

body segments that would not be identified using traditional size measures alone.  

Calculation of whole body and segmental volume has been used within 

kinanthropometry (42,108,165) and health (166,167) applications. It has been 

suggested that volume, measured using 3D imaging, can provide improved predictions 

of sporting performance than traditional size measures (26,168) and could 

complement body composition assessment modalities, such as ultrasound and DEXA 

(93). The body volume index (BVI) has been proposed as a novel 3D scan-based 

measure within healthcare and the estimation of body composition (27). It has been 

suggested that comparisons of part-volumes of human body segments, in particular 

the abdominal volume, can be an effective method of assessing body fat distribution, 

providing an indicator for obesity-related diseases that could replace BMI (Figure 2.8). 

However, though the measurement of body volume has been shown to have relatively 

good precision and high correlation with MRI-based measurements of whole-body 

adiposity, whether by using 3D imaging or air displacement plethysmography (ADP), 

does demonstrate a significant volume-dependent bias (48). Since these methods only 

measure the volume or density of the body, they cannot be used for regional body 
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composition measurements of fat or lean mass, limiting them to gross body 

composition estimation. 

 
Figure 2.8. Comparisons of two individuals with the same BMI but different weight distribution, 

measured by body volume (27). 

Though measures of area, both cross-sectional and surface area, and volume have 

been shown to provide additional information compared to traditional 

anthropometrics (25,26), they still represent measures of absolute scale rather than 

shape. Area is a general term that expresses the size of a 2D surface, while surface 

area measures the amount of exposed surface present on any given 3D solid object (9). 

Volume is the quantity of 3D space enclosed by a closed surface, comprising measures 

of length, width and height (9). In contrast, shape is defined as the external form, 

contours, or outline of an object (9) and is invariant to the effects of scale. This means 

that two individuals could have the same surface area or volume, but exhibit 

differences in their external shape features, meaning these measures would miss 

subtle variations in curvatures and contours present on the external human surface.  

Curvature 

Humans intuitively perceive differences in body shape between individuals by 

identifying scale-invariant external features, such as surface curvature, body 

proportions and lateral contours (169). Recent studies by Douros (24) and Lu et al. 

(169) have analysed external human body shape using measures of surface curvature 

derived from 3D scan data to identify differences between individuals and predict body 

fat percentage, respectively. Douros' PhD thesis developed methods of extracting the 

differential geometry properties of the human body surface from 3D point cloud data 

in order to calculate its surface curvature features (Figure 2.9a). It was suggested that 

these features could then be used to interpret the topology of human body, enabling 
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classification of individuals according to their shape, rather than their size, as seen in 

current anthropometric practice (24). Similarly, Lu et al. (169) proposed using 

measures of curvature, described as a second-order shape descriptor, as a way of 

modelling different body shapes and predicting body fat percentage (Figure 2.9b). 

These studies stated that further research was needed to associate configurations of 

these external features with distinct phenotypes, at various body sizes in order to 

establish reliable associations between human shape and body composition.  

 

Figure 2.9. Body surface curvature. a) Gaussian curvature calculated across a human torso surface (24); 
b) 2D intensity image of surface curvature extracted from 3D body scan data (169). 

Statistical approaches to assessing body shape 

It has been shown that directly processing 3D imaging data, rather than deriving 

traditional anthropometrics, can provide more detailed information about the human 

body. Further developments within digital anthropometrics has seen the application of 

novel statistical approaches to analyse large databases of 3D body scan data and 

identify significant features of human shape variation (21,152). The most popular 

method has been principal components analysis (PCA) (170). PCA is a mathematical 

procedure for dimensionality reduction, which transforms a large number of possibly 

correlated variables into a smaller number of uncorrelated variables called principal 

components (171). This technique is ideal for capturing complex variations in body 

shape from highly detailed 3D meshes, which can then be used to describe subtle 

nuances in human form (Figure 2.10). PCA has been used in a number of applications, 

including: human body modelling (170,172) body composition assessment (23), 

categorisation of female lower body shapes for clothing sizing (173), development of 

improved bra shape and sizing systems (174) and statistical shape modelling of 

craniofacial shape (175). However, the use of PCA has been criticised, due to its 

assumption of Gaussian distribution of the underlying data and the resulting features 

a) b) 



31 
 

not being visually intuitive, with independent components analysis (ICA) proposed as a 

potential alternative (21,170). Also, though previous studies have often standardised 

the scan data into a common format, using template mesh registration or voxel 

representation (21,23), they have not removed elements of body size from the 

underlying data, causing the resulting PCs to be dominated by variations in body size, 

not shape. Other proposed alternatives to PCA include Gaussian Process Morphable 

Models (GPMMs) (176) and self-organising map (SOM) machine learning (19). Both of 

these methods have been suggested as outperforming PCA-based statistical shape 

models, but may be beyond the scope of this current programme of research. 

 
Figure 2.10. First eight principal components of torso shape variation identified from a cohort of 650 

female participants (170). 

2.2.3 Summary 

Manual anthropometrics remain the most common method of acquiring body 

dimensions for practitioners in several fields, due to the use of low cost, accessible 

equipment and established industry standards and guidelines. However, researchers 

and practitioners are critical of manual anthropometrics due to their time-consuming 

procedures and susceptibility to human error, limiting its suitability for assessing large 

populations. Manual techniques are also limited to extracting one-dimensional 

measures of body size, such as lengths, breadths and girths. Though these measures 

are easy to capture they suffer from the limitation that neither the reference points 

nor the path of the measures strictly follow the curvatures and contours present on 

the surface of the human body, which has implications for apparel design and 

identifying mass distributions in healthcare. Though individual size measures can be 

combined to create proxies of weight status, relative measures of abdominal shape or 

descriptions of overall body shape, they do not capture the complex 3D variations in 

human form. There have been rapid technological developments in 3D imaging 
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systems which capture external dimensions of the human body with varying cost and 

accuracy. 3D imaging can rapidly and reliably acquire traditional anthropometrics with 

minimal physical contact between the researcher and the participant. The data 

provided by 3D imaging can also be used to extract more complex anthropometrics, 

such as volume and surface area, as well as directly evaluate the differential geometric 

properties of the body surface and identify features of body shape variation through 

statistical analysis. However, there are several potential sources of measurement 

error, such as scan accuracy, anatomical landmark identification, as well as postural 

and movement artefacts that must be considered when acquiring body measures using 

digital anthropometric methods. It has been suggested that current approaches used 

to assess body shape in practice do not capture all of the available geometric 

information that comprise the complex landscape of human body shape. More 

sophisticated, scale-invariant measures of shape, which have greater associations with 

accumulations and distributions of mass, could surpass existing anthropometrics.  

 

2.3 Review of quantitative methods for analysing shape 

Biologists and naturalists have been fascinated with the diversity of life on earth for 

centuries, leading to several attempts to explain how and why these differences have 

occurred (177). The analysis of shape is the process of understanding and describing 

the diverse morphological variability of a population of geometric objects and 

individuals, as well as its causes and is fundamental within biological research (32). 

However, until recently the study of external form has been mostly descriptive, using 

simple common terms to classify the shape of objects or organisms (28,178). Only 

since the mid-20th century has the study of form become a quantitative discipline, 

most commonly known as morphometrics (33). This was made possible when the 

quantitative description of shape was combined with newly developed statistical 

techniques, such as the correlation coefficient and PCA, which enabled the description 

of patterns of shape variation within and among groups of biological organisms (32). 

2.3.1 Morphometrics 

Morphometrics is the study of shape variation and its covariation with other variables 

(29). The field of study is concerned with methods for the description and statistical 

analysis of shape variation within and among samples of organisms, as well as the 
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analysis of shape change as a result of growth, experimental treatment or evolution 

(179). Though morphometric methods can be used to describe the form of any object, 

it is primarily used in fields such as biology and anthropology to describe the form of 

organisms (180). Similarly to anthropometry, the field of morphometrics has seen a 

recent shift from traditional to more modern methods. For much of the 20th century 

morphometric analyses were performed using either univariate or multivariate 

statistics with sets of measured variables, such as lengths, widths and distances 

between bony landmarks to describe patterns of shape variation within and among 

groups (32,33,179,180). The applications of these traditional methods were typically 

concerned with allometry, the study of size-related changes of morphological traits 

(179,181). The results of these analyses could then be expressed either numerically or 

graphically as linear combinations of the measured variables. However, while these 

methods were useful their primary disadvantage was that the geometric relationships 

among variables were not preserved in the measurements taken of organisms. As a 

result, measures taken from two individuals of different shape could produce identical 

results, since the data did not account for where measures were taken relative to each 

other. Figure 2.11 shows an example where size variables cannot sufficiently describe 

the shape of two specimens. 

 

Figure 2.11. Example of traditional morphometric analysis limitations when comparing length and width 
measures taken from two fish of different shape. adapted from (180). 

 

Also, no single method could be decided upon to scale organisms to a common size 

(32). This was significant, since different methods of scaling would lead to different 

results in the subsequent shape analysis. Finally, since geometric information was not 

preserved among the measured variables it was not possible to create graphical 

representations depicting differences or changes in shape following the analysis 

(179,182).  
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2.3.2 Geometric Morphometrics 

The inherent issues in the data being collected and the methods being used previously 

led to the development of an established framework for the statistical analysis of 

shape, known as geometric morphometrics (GM) (32,33). These methods quantify 

biological shape variation using the coordinates of anatomical landmarks after the 

effects of non-shape variation - location, rotation and scale - have been 

mathematically held constant, otherwise known as the Procrustes paradigm (33). 

These methods have emerged as a result of developments in statistical shape theory 

(30), as well as a conceptual understanding of mathematical shape, defined by Kendall 

as: "Geometric information that is left when differences attributed to translations, 

rotations, and dilations have been quotiented out from an object" (31) (p82). This 

development represented a significant shift within the field of morphometrics, 

involving changes in both the types of data that were collected to quantify shape - 

landmarks, curves and surfaces - and the methods used to analyse biological shape 

variation (33). The process of superimposing landmark configurations and obtaining 

shape variables is achieved using a Generalised Procrustes Analysis (GPA), consisting of 

a series of procedures (183,184). Figure 2.12 provides a simplified demonstration of 

the Procrustes superimposition procedure between two skulls, by Baab et al. (185). 

First, configurations of landmark coordinates are obtained to describe each specimen, 

recording the relative positions of meaningful anatomical landmarks (Figure 2.12a), 

which must be equal for all specimens within a sample. The geometric centres 

(centroids) of these configurations are calculated (Figure 2.12b) and then translated to 

the origin (Figure 2.12c), superimposing the configurations of landmarks into a 

common coordinate system. Both landmark configurations are then scaled to unit 

centroid size, defined as the square root of the sum of squared distances of landmark 

points from the centroid (Figure 2.12d). Finally, both configurations are optimally 

rotated to minimize the squared differences between corresponding landmarks (Figure 

2.12e).  
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Figure 2.12. Procrustes superimposition procedure. a) Identify anatomical landmark coordinates; b) 
Calculate centroid; c) Translation of configuration centroids to origin; d) Scaling landmark configurations 

to unit centroid size; e) Minimise rotational differences between landmark configurations (185).  

 

Following superimposition, these "Procrustes shape coordinates" describe the location 

of each specimen within a high-dimensional space - Kendall's shape space - which 

represents all possible variations of organisms described by a given number of 

landmarks points (30,31,186). This constructed shape space is a complex, multi-

dimensional analogue of curved surfaces, the dimensionality of which is calculated as 

2k - 4 (for 2D configurations), or 3k - 7 (for 3D configurations), where k is the number 

of landmarks, and are therefore difficult to visualize for all but the simplest landmark 

configurations. For example, variations of 2D triangle landmark configurations can be 

viewed as points on the surface of a sphere (Figure 2.13). The distances between 

individual specimens within this shape space represent their differences in shape, with 

most analyses quantifying the multi-dimensional deviations from the sample mean at 

the pole (187). Multi-dimensional ordination methods, such as PCA, or canonical 
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variates analysis (CVA) are most commonly used to analyse the identified shape 

variations within the sample (180,185). 

 

Figure 2.13. Kendall's shape space, showing all possible variations in triangle shape from the mean (181). 

 

Semi-landmarks 

A typical GM analysis uses biologically homologous landmark points between all 

specimens. However, a limitation of landmark-based GM methods is that the external 

shape of many biological structures cannot be sufficiently captured using traditional 

landmarks, such as smooth outlines or surfaces. Important shape variations may also 

be located in the regions between biologically meaningful landmarks. Therefore, the 

sliding semi-landmark method was developed, which is an extension of standard 

Procrustes superimposition, whereby a number of points are digitised along an outline 

and optimally positioned to enable the analysis of 2D or 3D outline curves and surfaces 

(188,189). Semi-landmarks are used to represent homologous curves and surfaces by 

sets of points, establishing a geometric homology between corresponding semi-

landmarks across the sample (Figure 2.14a). The requirement for homology must guide 

any landmark and semi-landmark measurement protocol. Points that are well defined 

by the local anatomy in all directions should be treated as traditional landmarks, such 

as the red points shown in Figure 2.14b. Semi-landmark points can then be positioned 

between these more traditional landmarks along clearly observable curves, such as 

ridges (Figure 2.14b). The number of semi-landmarks required depends on the 

complexity of the curve or surface and the spatial scale of shape variation that is of 

interest (189). This new form of GM analysis has been used to analyse shape in several 

studies where the forms under investigation cannot be sufficiently quantified using 
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only traditional landmarks, including: orthodontics (190,191), human hip and lumbar 

spine morphology Pavlova (34) and recently analyses of human body shape (192). 

  

Figure 2.14. Landmarks and semi-landmarks positioned on the surface of 3D computed tomography (CT) 
scans of a) a human skull and b) a human tooth (189). 

2.3.3 Outline-based analysis  

 The biggest disadvantage of landmark-based GM methods is that certain organisms 

have an insufficient number of anatomical landmarks available to capture their 

morphology, such as bird feathers (193) and taxonomic analysis of fish (194). An 

alternative to GM landmark-based analyses is to use outline-based methods, which 

extracts a finite set of numerical features from the outline boundary of an object 

(180,195). There is substantial psychological evidence to suggest that humans 

intuitively perceive shape differences between objects and individuals by identifying 

scale-invariant features, such as curves and lateral contours, present on the outside of 

a body (169,196). Several studies have investigated different methods to characterise 

the shape of boundary curves (195,197–199), the most common relying on the use of 

Fourier descriptors, first described by Cosgriff (200). This approach consists of a series 

of analytical steps (Figure 2.15). First, points are digitised along an outline boundary 

and a mathematical function 𝜃(𝑙) is defined, which measures the angular direction of 

the curve as a function of arc length (195) (Figure 2.15a and 2.15b). After 

normalisation this periodic function is expanded in a Fourier series, with the 

coefficients calculated from a fast-Fourier transform used to describe the shape 

features of the original curve as a sequence of complex numbers representing 

amplitude and phase angle (Figure 2.15c and 2.15d). Though these Fourier descriptors 

obtained using outline-based methods differ from landmark-based analyses, they are 

also scale-invariant and can therefore be used to evaluate shape according to Kendall's 

mathematical definition. Higher order Fourier coefficients have been shown to 

b) a) 
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represent direction changes of the curve over very small arc lengths and can be 

removed whilst preserving the overall shape of the original curve and reducing the 

noise present within the signal (195).  

 

Figure 2.15. Fourier descriptor analysis and reconstruction of the boundary outline curve of a binary 
image. a) binary image of a printed numeral of the number 4, b) polygonal boundary description of 

binary image, c) first ten pairs of harmonic amplitude and phase angle of boundary, d) reconstructed 
boundary from the first ten Fourier descriptors (195). 

 

A limitation of outline-based approaches is that they are unable to capture shape 

changes in locations which aren't along the boundary of an object when analysing 2D 

image data, and are difficult to implement when analysing 3D objects without the use 

of 3D imaging devices (180). However, recent developments in 3D imaging devices and 

their increased availability has provided new types of data which can be used to 

perform in-depth 3D shape analyses of organisms (33). In addition, a recent 

development within GM has been the combination of landmark-based and outline-

based analyses into a single method, which uses the advantages and addresses the 
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limitations of both methods (180). This method proposes the use of sliding semi-

landmarks positioned between meaningful anatomical landmarks along the outline 

boundaries of objects, as well as using the coordinates of traditional landmarks on the 

object surface. However, currently there is no established methodology when using 

these proposed combined methods, requiring further study. 

2.3.4 Allometry 

The term allometry is defined as the dependence of shape on size and tends to be one 

of the dominant factors of morphological variation and can be studied effectively using 

GM (181). The most common method for studying allometry in GM is the multivariate 

regression of shape on a measure of size, such as centroid size or log-transformed 

centroid size (181,201). According to statistical shape theory, measures of size and 

shape are logically separate, so multivariate regression analysis is therefore able to 

test whether there is a statistical association between them and characterise the 

expected change in shape per unit of increase in the measured size variable. The 

calculated regression model partitions the total variation of each dependent variable 

into a component of variation that is predicted by the independent variable(s) and a 

residual component of variation for which the regression cannot account (Figure 2.16). 

In the context of allometric analyses, the dependent variables are measures of shape, 

which can be represented as Procrustes coordinates, Fourier descriptors of outline 

curves, or features of shape variation resulting from multivariate analysis, such as 

principal components analysis.  

 

Figure 2.16. Allometric analysis in geometric morphometrics. a) Allometric regression of shape on size; 
b) Size-correction (181). 

The predicted and residual components of shape variation can be expressed as a 

percentage of the total variation, which is a useful and intuitive way to quantify the 
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relative importance of allometry for the shape variation within a dataset. Several 

studies of allometry have used this approach in different contexts and often found that 

allometry accounts for small to moderate proportions of the total shape variation 

(201,202). This procedure of partitioning predicted and residual shape variation is also 

referred to as size correction and is an important application of allometry (181,203). 

Though the Procrustes superimposition procedures conducted at the start of any GM 

analysis extracts shape information from the raw data, the shape data may still contain 

a component of size-related shape variation due to the effects of allometry. The 

multivariate regression offers a logical and straightforward approach to identify and 

possibly remove this allometric component of shape variation (Figure 2.16). The 

residual component encompasses the non-allometric shape variation and is 

uncorrelated with the size measure used as the independent variable in the regression. 

In addition, if a linear relationship between the size and shape variables can be 

assumed, the expected value of the residual (non-allometric) variation will be the same 

for individuals of any size within the sample. However, when performing allometric 

analysis using multivariate regressions of shape on size, estimates of allometry can be 

unstable if the sample only includes a limited range of sizes. If only a small range of 

body sizes are considered only a short section of the allometric trend is being 

evaluated by the data, which could result in the proportion of shape variation that 

allometry does account for being underestimated (181). Therefore, when performing 

allometric analyses of a particular population researchers should always to try to 

include the extremes of the body size distribution, the smallest and largest specimens, 

to enable stable estimates of allometry.  

2.3.5 Summary 

Geometric morphometrics is an established framework for the statistical analysis of 

biological shape based on the coordinates of biologically homologous landmarks, 

which has emerged as a result of developments in statistical shape theory and a 

conceptual understanding of mathematical shape. Alternative methods also exist, 

based on the quantification of boundary outline curves of organisms through Fourier 

analysis, with variations in shape then able to be compared using multivariate 

analyses. Relationships between the size and shape of organisms can also be evaluated 

through allometry and size correction, to isolate the variations in shape which cannot 
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be explained by traditional measures of size. However, few investigations have 

explored how of shape analysis methods can complement existing anthropometric 

techniques in the assessment of external human morphology. 

 

2.4 Chapter summary 

This literature review suggests that measures of human body size and shape are an 

important source of information for several applications. Traditionally, practitioners 

and researchers acquire body measures using low cost, manual measurement tools, 

such as tape measures and callipers, which provide measures of body size, including 

lengths and girths, as well as derived indices, such as the BMI and WHR. However, 

though manual measures are easy to acquire, they are prone to human error and are 

unable to capture complex 3D variations in human body shape.  

Since the end of the 20th century, there have been significant advances in 3D imaging 

devices which capture detailed and accurate external dimensions of the human body 

and have the potential for use within health applications. However, previous studies 

which have employed 3D imaging systems to capture external human geometries have 

only assessed body shape based on the ratios and relative proportions of simple 

anthropometrics. This reduces the rich, complex data acquired by 3D imaging devices 

to simple 1D measures, which do not fully utilise the capabilities of this technology. As 

such it would appear that further research into more sophisticated shape 

anthropometrics which capture additional information that cannot be explained by 

existing anthropometrics is warranted. However, there are several potential sources of 

measurement error, such as scan accuracy, anatomical landmark identification, as well 

as postural and movement artefacts caused by the participant that must be considered 

when performing digital anthropometry.  

Geometric morphometrics is an established set of methods within the fields of 

anthropology and evolutionary biology to analyse morphological variation and 

allometry between the size and shape of organisms. Though these methods have been 

used extensively to analyse biological shape, few studies have investigated how 

geometric morphometrics can be used to analyse the external form of the human body 

from an anthropometric perspective.  
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Chapter 3 - Methodology for 3D imaging data collection and post-processing 

3.1 Introduction 

More sophisticated measures of body shape, obtained using 3D imaging technology, 

could provide additional information regarding variations in human morphology, which 

cannot be captured by existing anthropometric techniques (2,114,152). The literature 

review highlighted an established set of methods, known as geometric morphometrics 

(33,182), which have the potential to be used for analysing variations in human body 

shape. These methods typically use Procrustes superimposition methods to align 

configurations of anatomical landmarks on the surface of skeletal structures to 

quantify shape variations of biological organisms. However, due to the lack of 

homologous landmarks present on the external human form few studies have utilised 

geometric morphometric methods to analyse human body shape (34,192). Alternative 

outline-based methods have been proposed in order to identify scale-invariant shape 

features (195,197–199). These methods often rely on the use of Fourier descriptors to 

describe curves and contours present on the surface of smooth bodies (200). Though 

3D imaging and geometric morphometrics present several advantages over traditional 

anthropometric techniques, both require several complex processing steps to obtain 

shape measures, which can also contribute to measurement error (18). This chapter 

details the development of data acquisition and post-processing procedures, based on 

modifications of geometric morphometrics, to enable the measurement of human 

body shape for use throughout this programme of research. This procedure will consist 

of the following stages: 

1. Define body segment region of interest. 

2. Acquire 3D imaging data. 

3. Digitise anatomical landmarks.  

4. Align 3D imaging data. 

5. Segment 3D imaging data. 

6. Scale 3D imaging data to uniform size. 

7. Dimensionality reduction  

8. Shape feature detection. 
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3.2 Data acquisition 

3.2.1 Participants 

Through convenience sampling, 43 male participants (age 33 ± 12 years, stature 179.8 

± 7.2 cm, mass 82.9 ± 16.2 kg), volunteered to participate in this investigation. Before 

testing all participants completed an initial screening form and provided written 

informed consent. Participants were required to be over the age of 18 years and able 

to stand unaided during manual and 3D scan measurement procedures. All procedures 

and documents were approved by the Sheffield Hallam University Research Ethics 

Committee, reference number ER5855905 (Appendix 2). 3D imaging data acquired 

from this sample of participants was used to develop methods used throughout this 

programme of research. Further analysis of this participant sample is conducted in 

Chapter Five.  

3.2.2 Define body segment region of interest  

Rationale  

The analytical procedure developed for this programme of research is only concerned 

with the torso segment. It has been suggested that the torso is the region of the body 

that has the greatest potential for differences in size and shape between participants, 

due to considerable variations in the types and amounts of tissue present within the 

abdomen (204,205), and therefore a new technique for assessing human morphology 

would be more sensitive to changes in this segment. However, as discussed in Chapter 

Two, variations in body composition and subsequent external body shape in other 

parts of the body provide information about different disease risks; such as larger 

amounts of subcutaneous thigh fat being independently associated with more 

favourable glucose and lipid levels after accounting for abdominal fat depots (79). 

Though it is accepted that only assessing the torso segment is a limitation of the 

developed procedure, this programme of research represents an initial exploration of 

geometric morphometric techniques for assessing human morphology and future work 

will aim to extend these techniques to enable assessment of the rest of the body.  

Previous studies evaluating the human torso have used different configurations of 

anatomical landmarks to define the boundaries of the torso segment (144,205,206). A 

modified version of the lower trunk segment proposed by Wicke (205) was used to 
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define the limits of the torso for this investigation, as the area encompassed between 

the xiphoid process and the anterior superior iliac spine (ASIS) landmarks (Figure 3.1). 

The xiphoid process was chosen as the superior boundary of the torso as it has high 

palpation repeatability compared to other upper body bony landmarks, even among 

newly accredited anthropometrists (106). In addition, the xiphoid process represents a 

homologous landmark that is consistent between different participants, as opposed to 

the nipples which can vary greatly in their location due the sex and total body fat mass 

of participants. Finally, using the xiphoid process as the superior boundary of the torso 

reduces potential complications in scan segmentation caused by occlusion at the axilla 

(armpit), discussed further in Section 3.3.3. Similarly, the ASIS landmarks were used as 

the inferior boundary of the torso segment due to their relative ease of palpation and 

to reduce issues with scan segmentation due to occlusion at the perineum (crotch), 

which can be caused by variations in participant posture and adiposity.  

 

 

Figure 3.1. Modification of trunk segment boundaries defined by Wicke (205); red crosses show the 
location of the xiphoid process and ASIS landmarks used to define the superior and inferior boundaries 

of the torso segment, respectively,  dashed lines show the planes created by these landmarks. 
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Anatomical landmarking  

To define the torso segment as outlined above and to facilitate the creation of a local 

coordinate system during post-processing, four anatomical landmarks were marked on 

the surface of each participant: 

• Xiphoid process - the most inferior aspect of the sternum (207) (p.104). 

• Iliospinale (left and right) - the tip of the anterior superior iliac spine (53) (p.36).  

• 9th Thoracic vertebra - the spinous process of the vertebra level with the xiphoid 

process on the posterior torso aspect. 

These anatomical locations were manually palpated and identified by a level one ISAK 

kinanthropometrist (the author) and marked with a cross on the skin using a fine-

tipped surgical marker (e.g. Viscot 1451) (Figure 3.2). These marks assisted in the 

identification and digitisation of the anatomical landmarks in the acquired 3D images. 

All manual palpation was conducted by the same level one ISAK anthropometrist to 

ensure a consistent approach. 

 
Figure 3.2. Marked anatomical landmarks on a human participant; anterior torso aspect (left) and 

posterior torso aspect (right). 

3.2.3 Acquire 3D imaging data  

3dMDbody5 imaging system 

3D imaging data of the torso segment was captured using a 3dMDbody5 (3Q 

Technologies Inc., Atlanta, GA) surface imaging system. Previous studies have 

demonstrated that the 3dMDbody5 imaging system is capable of providing reliable and 

valid measures of human torso morphology, which can be used to assess clinical 

outcomes in studies of bony and soft tissue pathologies, such as scoliosis, obesity and 
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edema (208). The 3dMDbody5 system produces 3D geometries using stereo 

photogrammetry, with multiple synchronized cameras acquiring images of an 

individual taken from different viewpoints. 3dMDbody5 is a hybrid stereo 

photogrammetry system, which uses natural landmarks on the surface of the target 

object, as well as deformation of a projected light pattern to enable triangulation and 

image processing to create 3D representations of a bodies external geometry 

(115,131). The additional landmark points provided by hybrid systems makes the 

procedure of matching and alignment both quicker and easier, resulting in higher 

accuracy (point-point distance < 0.2 mm) and very short scan duration (~1.5 ms) (128). 

The 3dMDbody5 system used in this programme of research consisted of five 

synchronised modular units, each containing three machine vision cameras, which 

were arranged around a square 258 × 258 cm aluminium Bosch (Bosch Rexroth AG) 

strut frame (Figure 3.3a).  

System calibration 

The 3dMDbody5 system uses a single computer (64 Bit Windows 7 Professional 4 Core 

CPU @ 3.6GHz 8GB RAM) to drive the imaging system, with calibration and data 

collection procedures performed by proprietary 3dMD acquisition software. The 

calibration procedure followed 3dMD guidelines using a calibration plate and was 

conducted at the start of each testing session. Each camera unit was manually aligned 

to the centre point of a calibration plate (Figure 3.3b) positioned in the centre of the 

imaging system. Once aligned, a series of images were captured of the calibration 

board in five rotated positions using the 3dMDbody5 acquisition software, with each 

individual camera unit obtaining two images of the calibration board. The 3dMDbody5 

acquisition software then automatically calibrated the system. This process took ~3-5 

minutes and created a calibrated cylindrical capture volume of 0.089 m3; 0.56 m in 

height, with a radius of 0.23 m (Figure 3.3c).  
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Figure 3.3. a) 3dMDbody5 system; b) 3dMD calibration board; c) plan view of 3dMDbody5 imaging 
system layout and calibrated volume. 

 

3D imaging protocol 

For torso scanning, participants were asked to adopt a modified version of the 

standing anatomical pose defined by ISO 20685-1:2018 (140), with their arms 

abducted from the torso by approximately 35o and their legs apart (Figure 3.4). Correct 

adoption of this posture was verified by visual inspection. This posture ensured that 

participants' arms were well separated from their torso segment, reducing the risk of 

occlusion within the acquired 3D image, whilst enabling participants to maintain a 

relaxed position during the imaging process. Variations in posture could affect the test-

retest reliability of the analytical procedures presented in this chapter and will be 

considered further in Chapter 4. 

a) b) 

c) 
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Figure 3.4. Scanning pose for torso segment scanning adapted from ISO 20685 (140). 

To minimise postural sway all participants were asked to visually focus on markers 

mounted on the wall of the scanning area, since it has been shown that focusing gaze 

on a stationary target during standing reduces postural sway (209). The typical human 

breathing cycle has been shown to cause significant changes to the shape and size of 

the lower torso, due to movements of the diaphragm (126). For this reason it was 

important to control breathing during the scanning process, ensuring that scans were 

always taken during the same part of the breathing cycle to improve repeatability of 

torso shape measures. Participants were asked to hold their breath at end-tidal 

expiration throughout the short duration of the 3D scan process (~1.5 ms); ensuring 

participants were in a repeatable and relaxed state. 

3.3 3D imaging data post-processing 

Following data acquisition, several key post-processing steps were required to remove 

the effects of non-shape variation - location, rotation and scale - from the acquired 

imaging data using modified Procrustes superimposition procedures. This enabled 

variations in human body shape to be analysed, according to mathematical shape (31).  

3.3.1 Digitise anatomical landmarks  

Initially, a manual digitisation procedure was used to identify the locations of the 

marked anatomical landmarks within the acquired 3D imaging data. Manual 

digitisation was implemented, rather than automatic landmark identification or 3D 

feature identification algorithms, since although the xiphoid process and ASIS 
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landmarks can be identified reliably when palpated, they cannot be determined from 

the surface shape of the body alone. Also, since initial investigations would only be 

analysing relatively small cohorts of participants (n < 100) a manual process was 

deemed acceptable, with the digitisation of landmarks taking approximately 1 minute 

per participant. A single researcher digitised the xiphoid process, ASIS and 9th thoracic 

vertebra bony landmarks within each 3D scan image using KinAnthroScan - custom 

software created in-house - by clicking directly on each manually marked landmark 

location. Figure 3.5 shows a typical digitised human torso segment, with blue circular 

markers generated during digitisation to confirm their registration on the surface of 

the 3D geometry. Once completed, KinAnthroScan returned a set of 3D coordinates for 

these marked anatomical landmarks, to be used in subsequent post-processing stages. 

 

Figure 3.5. Digitised torso scan image in KinAnthroScan; anterior aspect (left) and posterior aspect 
(right). 

3.3.2 Align 3D imaging data 

Typically, geometric morphometric analyses use the centroid of landmark 

configurations to remove variations in location between individual organisms (210). 

However, since differences in human morphology are caused by variations in the types 

and amounts of tissue present within the torso region, the centroid of the acquired 

surface 3D imaging data points would not represent a homologous skeletal landmark 

between individuals. As a result, centering torso 3D geometries based on the location 

of the centroid would in fact reduce the morphological variations caused by tissue 

distributions within the torso segment, which are the features of interest in this 

programme of study. Therefore, a local co-ordinate system, based on the location of 
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the digitised homologous bony anatomical landmarks, was created to remove non-

essential differences in location and orientation between participants. 

 

 

Figure 3.6. The location of landmarks used to create a local coordinate system within the torso segment. 

 

Figure 3.6 demonstrates how the locations of the digitised landmarks were used to 

create a local coordinate system located at the anatomical centre of each torso scan, 

according to the convention defined in ISO 20685-1:2018 (140). The centre of the torso 

was defined as the midpoint between the xiphoid process and the 9th thoracic 

vertebra. The vector from the xiphoid process to the 9th thoracic vertebra was defined 

as the sagittal (x) axis. The vector from the left to right anterior superior iliac spine 

(ASIS) was defined as the transverse (y) axis. The cross product of these two vectors 

defined the longitudinal (z) axis. Finally, the transverse axis was redefined as the cross 

product of the longitudinal and sagittal axis to ensure that all axes in the coordinate 

system were orthogonal. This local anatomical axis system is in accordance with the 

coordinate axis system recommended in ISO 20685-1:2018 and enabled the 3D 

geometry of each participant to be aligned to the global coordinate system. This was 

the first stage in the Procrustes superimposition procedure, minimising differences in 

location and orientation between participants within the sample.  
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3.3.3 Segment 3D imaging data 

Each acquired 3D image was segmented to include only the coordinate data points 

relating to the region of interest. This procedure required two segmentation planes to 

be defined at the inferior and superior torso segment boundaries (Figure 3.7). The 

inferior segmentation plane was required to pass through the digitised ASIS landmarks 

while being planar to the x-y plane. Similarly, the superior segmentation plane was 

required to pass through the digitised xiphoid process and thoracic vertebra landmarks 

while being planar to the x-y plane. Following alignment, the longitudinal axis of each 

3D image was assumed to be at the origin of the global coordinate system and 

orientated parallel to the vertical axis. As a result, the coordinate points between the 

two defined segmentation planes could be assumed to contain the coordinate points 

relating to the torso segment (Figure 3.7).  

 

 

Figure 3.7. Segmentation of a captured scan to include only the coordinate points relating to the torso 
region of interest (shown in red) between the superior and inferior segment boundaries. 
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3.3.4 Scale 3D imaging data to uniform size  

The final stage in the Procrustes superimposition procedure was to remove the effects 

of scale. The most commonly used size measure in geometric morphometrics is 

centroid size, defined as the square root of the sum of squared distances of landmark 

points to their centroid (33). To ensure that all individuals within a sample are scaled 

to uniform centroid size, they must all have the same number of landmark points. 

However, since each torso point cloud will consist of a different number of raw 

coordinate points, all torso segments needed to be resampled. For this, 21 separate 2 

mm thick bands of 3D coordinate points were extracted from each torso segment 

point cloud, at 5% intervals along their length. Figure 3.8 illustrates this process for a 

typical torso segment point cloud, with all of the extracted 2 mm thick bands of 3D 

data points shown. The height of each data slice was set at 2 mm to ensure that the 

external shape features of the torso segments were preserved, while allowing for any 

potential gaps in the 3D point cloud. This was based on a previous study by Clarkson et 

al. (144), which determined that data point slices of 2 mm thickness extracted from 

low accuracy Kinect depth sensor data sufficiently captured the external features of a 

torso segment. The increased accuracy of the 3dMDbody5 system imaging data should 

therefore ensure all torso shape features were suitably captured using this same 

method.  

 

Figure 3.8. Extraction of 2 mm thick slices of coordinate data points at 5% intervals along the torso 
segment between the inferior and superior segment boundaries. 

The inferior-superior z component of all raw data points within each extracted slice 

were then disregarded, considering the planar dimensions of all data points only in the 

2 mm 

2 mm 
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x-y plane. Cubic smoothing splines were then calculated for each data slice extracted 

from the torso segment (211), to represent the underlying curvature present on the 

external surface of each 3D image and smooth random variations in the raw data 

(Figure 3.9). 

 

Figure 3.9. Extracted data point slice with a fitted cubic smoothing spline. 

 

Figure 3.10. Resampled point slice with calculated distances from each coordinate to the centroid.  
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The calculated smoothing splines of each data slice were then resampled, with a 

uniform number of equally spaced coordinate points positioned along the length of 

the outline curve (Figure 3.10). It was determined through experimentation that 70 

uniformly spaced coordinate points were required to adequately describe the features 

present around the torso shape outline and perform subsequent Fourier 

decomposition procedures. The centroid size of all extracted data point slices along the 

length of the torso was calculated and summed to give the total centroid size for the 

entire torso (Figure 3.10). All extracted torso shape profiles were then scaled by a 

single scale factor, so that the sum of distances from each point to its centroid for all 

profiles along the torso segment was equal for all participants within the sample.  

Finally, the torso segment of each participant within the sample was scaled to uniform 

height, removing the effect of torso length from the analysis. For this, a uniform 

distance along the inferior-superior z axis was fixed between each extracted shape 

profile along the length of the torso segment for all participants (Figure 3.11). Since 

shape profiles were extracted at proportional distances along each torso segment, 

they could be assumed to represent the same aspect of the torso for all participants 

regardless of their torso length. Figure 3.11 shows the meshed torso segments of two 

individuals, which initially differed in both size and shape, but have been scaled to the 

same size using the above procedure. According to the mathematical definition of 

shape and the Procrustes paradigm, any measured differences between these 

individuals can now be considered differences purely in shape. 

 

Figure 3.11. Torso shapes of two individuals with the effects of non-shape variation - location, rotation 
and scale - removed. 
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3.3.5 Dimensionality reduction 

As discussed in Chapter Two, classical implementations of geometric morphometrics 

methods obtain shape variables by superimposing biologically meaningful, 

homologous bony landmark configurations using a process known as Generalised 

Procrustes Analysis (GPA) (183,184). However, a disadvantage of these traditional 

landmark-based geometric morphometric methods is that certain organisms provide 

insufficient numbers of homologous anatomical landmarks to describe their external 

shape. This is particularly apparent when assessing human morphology, which has 

almost no visible bony anatomical landmarks that are homologous between 

individuals, but is instead made up of smooth contours and surfaces. In response to 

this, sliding semi-landmark methods have been developed, whereby a number of 

points are digitised along an outline and optimally positioned to enable the analysis of 

2D or 3D outline curves and surfaces (171,172).  

Initial experiments were conducted to explore the use of semi-landmark based 

analyses for assessing human torso shape. The first iteration utilised the uniformly 

spaced points around each of the torso outline curves extracted during the scaling 

operation in Section 3.3.4 as semi-landmarks. The second iteration extracted data 

point slices from the torso segment based on the three cardinal planes (sagittal, frontal 

and transverse) (212), in an attempt to reduce the dimensionality of data describing 

external torso shape. In each of these iterations, a generalised Procrustes analysis 

(GPA) (184) using the sliding semi-landmark method (189,213) was carried out to 

obtain sets of shape variables for each of the extracted outline curves for each 

participant. The landmark configurations of all outlines were superimposed into a 

common coordinate system to create a mean shape for the sample. This was achieved 

by translating the centroid of each outline to the origin and then scaling each outline 

to unit centroid size. The positions of semi-landmarks for each outline were optimally 

aligned with the corresponding semi-landmarks on the mean shape according to the 

minimum Procrustes distance criterion (213). This procedure included: calculating the 

vector tangent to the mean shape outline at each of its semi-landmark points, as well 

as the vector perpendicular to this tangent passing through each of the semi-landmark 

points. This was followed by repositioning the corresponding semi-landmark on each 

outline in the sample at the intersection point between the perpendicular vector and 
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the outline curve. Finally, the individual shape variables were found by calculating the 

Euclidean distance from the centroid to each of the semi-landmark points around each 

profile outline. Though these semi-landmarks were found to be able describe the 

external shape of the extracted torso outline profiles, it was evident that there were 

no homologous bony structures for them to be placed relative to. This meant that their 

placement around the boundaries of the outline curves could only be considered as 

arbitrary. It has been stated in previous geometric morphometric studies that 

homology must guide the placement of any landmark or semi-landmark protocol, since 

it is the differences in these landmark locations that describe variations in shape within 

the sample (33). As a result, it was decided that a semi-landmark based analysis was 

not the optimal solution for assessing external human shape.  

Following these initial semi-landmark based analyses, an alternative outline-based 

method was investigated using Fourier coefficients extracted from the cubic 

smoothing splines obtained for each scaled shape profile extracted in Section 3.3.4 to 

evaluate human torso shape. These methods were based on a previous study by Zahn 

and Roskies (195). Fourier coefficients were obtained using the following steps: 

• The Cartesian coordinate points of each torso shape profile calculated in Section 

3.3.4 were converted to a polar coordinate system (Figure 3.12a).  

• The polar coordinates within each profile were then plotted as a continuous signal 

waveform (Figure 3.12b).  

• The signal data was then inputted to the fast-Fourier transform (FFT) algorithm in 

MATLAB (version 9.2, Mathworks, USA) to extract the spatial frequency 

components within each outline curve (Figure 3.12c). The FFT computes the 

discrete Fourier transform (DFT) of an input signal by decomposing its sequence of 

values into components of different frequencies, thereby converting the signal 

from its original domain (either time or space) to a representation in the frequency 

domain (214).  
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a) 

 
b) 

 
c) 

  
Figure 3.12. Extraction of Fourier descriptors from torso outlines. a) Polar coordinates of a typical torso 

shape outline; b) Polar coordinates of the torso shape outline plotted as a signal waveform, red dots 
showing the corresponding start and end points on the polar diagram; c) Representation of the torso 

shape outline in the frequency domain. 
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Figure 3.12c illustrates how the majority of the frequency content within a typical 

torso outline appears to be contained within the first few Fourier coefficients. The DFT 

is commonly used within digital signal processing as a method of data compression. 

The selection of the required number of coefficients is task-dependent and relies on 

the geometrical complexity of the measured signal waveform (215). However, previous 

studies suggest that Fourier coefficients of high frequencies are assumed to represent 

unnoticeable, low amplitude noise within the input signal waveform, which can be 

removed without affecting the shape of the original curve (195). An iterative 

procedure was conducted to determine the lowest number of Fourier coefficients that 

were required to reconstruct the original torso outline curves extracted from torso 3D 

imaging data. The root mean square error (RMSE) was calculated between the original 

and the reconstructed outline curves along the length of the torso to quantify the 

information loss caused by using different numbers of Fourier coefficients. Figure 3.13 

shows how the RMSE for all outlines along the length of the torso converges 

asymptotically to zero as the number of Fourier coefficients used in reconstruction is 

increased.  

 

Figure 3.13. Average root mean square error (RMSE) between the original and reconstructed torso 
outlines for all extracted shape profiles along the length of the torso segment for all participants. 
Vertical dotted line shows the initial cut-off point for the number of Fourier coefficients used to 

reconstruct the original curve, though has been shown to depend on the complexity of the input curve.  

Initially, 7 Fourier coefficients was chosen as a sufficient number of coefficients to 

reconstruct the original curves, since it is past the elbow of the RMSE curve and has 

almost converged to zero, shown as a dotted line in Figure 3.13. However, upon visual 
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inspection when only 7 Fourier coefficients were used to reconstruct the original torso 

outline curve this resulted in shape details being lost (Figure 3.14). In comparison, 

when the number of Fourier coefficients used to reconstruct the original curve was 

increased to 10, it was possible to recreate all of the features of each original torso 

shape outline, without any loss of shape information (Figure 3.14). This is due to the 

reduced standard deviation in RMSE values for reconstructed outlines when using a 

greater number of Fourier coefficients. This procedure reduced the total number of 

variables representing each participant to 210 complex Fourier coefficients, which 

describe the external shape features of the 21 torso outlines extracted from the 3D 

imaging data. Thus any potential redundancy in the variables required to describe the 

external shape of the human torso is reduced.  

 
   

Figure 3.14. Visual comparison between an original torso outline curve (black markers) and 
reconstructed torso outline curves using 7 Fourier coefficients (blue) and 10 Fourier coefficients (red). 

 
3.3.6 Shape feature detection 

The obtained Fourier coefficients, which efficiently describe an individual's external 

torso shape, can be utilised to analyse variations in body shape within a sample of 

participants using multivariate analyses, such as principal components analysis (PCA). 

PCA reduces the dimensionality of a dataset, consisting of a large number of 

interrelated variables, while retaining as much of the variation present within the data 

as possible (171), and has been used previously to capture variations in body shape 

from 3D imaging data (23,170,172). PCA transforms an original dataset into a new set 



60 
 

of variables, principal components (PCs), which are uncorrelated and ordered so that 

the first few retain the majority of the variation present within the original variables. 

After the variation in the original variables has been described in terms of the PCs, the 

orthogonal projections of each individual relative to these new axes are determined. 

These principal component scores represent the distance of each individual from the 

sample mean in the directions of the identified PCs. As described, each PC represents 

progressively less variance, with many higher order PCs representing such small 

proportions of the total variance it can be assumed that they do not represent 

biologically meaningful information. A common method for determining how many 

PCs to omit from subsequent analysis is based on an established criterion of the 

amount of total variance within the sample that needs to be explained (e.g. 95%), or to 

only interpret those components that represent more than a certain amount of 

variance (e.g. 1%) (210). Previous studies by Ruto et al. (170) and Ng et al. (23) have 

demonstrated that body shape variations are subtle, requiring a greater number of 

principal components to describe them fully. Consequently, it was decided that for this 

programme of research only PCs that accounted for more than 1% of the total variance 

would be included in subsequent analysis. 

PCA was thus conducted to investigate its potential for detecting independent features 

of torso shape variation within the extracted Fourier coefficients of the participant 

sample. This produced 9 PCs that captured over 90% of the total variation within the 

sample, with each PC representing at least 1% of total variance. These PCs were 

transformed back into the original data space and reconstructed as meshed surfaces to 

visualise the variations in torso shape they represent (Figure 3.15). Figure 3.15a shows 

the average torso shape calculated from all participants in the sample and the 

corresponding radar diagram representing the average scores for each of the first 5 

PCs. Figure 3.15b shows the normalised maximum and minimum deviations from the 

average torso shape geometry along each of the first 5 PCs. Blue and red regions 

represent areas that protrude less, or more from the average torso, respectively. 

These 9 PCs create a feature vector which describes the torso shape characteristics of 

an individual, and will be the manner in which human shape is characterised 

throughout this programme of research. These PCs are analysed further in Chapter 

Five, to determine whether shape anthropometrics can complement manual 

anthropometric techniques currently used in practice. 
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 a) 

 

 

b) 
PC1 (34.6%) 

  
PC2 (26.4%) 

  
PC3 (9.8%) 

  
PC4 (6.8%) 

  
PC5 (5.9%) 

   

Figure 3.15. Extracted torso shape features; (a) Average torso shape; (b) Maximum and minimum 
deviations from the sample mean along the first 5 principal components and their explained variance. 
Blue and red regions represent areas that protrude less, or more than the average torso, respectively. 
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3.4 Chapter summary 

This chapter detailed the development of methods to be used throughout this 

programme of research. This included procedures for locating anatomical landmarks 

that define the body segment of interest and acquiring 3D imaging data of the human 

torso. In addition, data post-processing algorithms were developed to implement 

geometric morphometric methods of analysis and extract numeric parameters that 

describe the external shape features of the human torso.  

The locations of manually palpated anatomical landmarks were used to define the 

torso segment region of interest for this research. The locations of these anatomical 

landmarks were then used to create a local coordinate system at the centre of each 3D 

image, enabling subsequent alignment and segmentation. As identified in Chapter 

Two, a potential limitation of using a manual approach for locating anatomical 

landmarks is human error, both in the researcher palpating the landmarks and 

participant postural variations. The effect of these potential sources of error and the 

test-retest reliability of the procedures developed in this chapter will be evaluated 

further in Chapter Four. In addition, manual palpation and digitisation of landmarks 

used in the current iteration of the procedure would be feasible for characterising 

variations within small participant samples, but may not be suitable when assessing 

larger cohorts. Therefore an area of potential further work could be the automation of 

methods to enable more efficient data processing. 

Procedures were also developed to remove variations in scale, location and orientation 

from acquired 3D imaging data, enabling the analysis of scale-invariant morphological 

features according to geometric morphometrics and shape theory. A quick and 

effective method for segmenting acquired 3D imaging data was also developed. 

However, this current implementation would not be suitable for analysing multiple 

body segments or the shape of the human body as a whole. This is a limitation of the 

current procedure and represents an area of potential further work. In addition, a 

procedure for characterising human torso shape as complex Fourier coefficients was 

developed. Though this method appears suitable for describing a typical human torso 

segment, other body segments, such as hands or feet, may not be able to be described 

sufficiently using this technique and would require further consideration.  
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The developed procedure to be used throughout the subsequent investigations in this 

programme of research can be summarised in a sequence of analytical steps (Figure 

3.16). 

a) b) c) 

   
d) e) f) 

   
  

Figure 3.16. Analytical procedure for extracting shape features from torso 3D imaging data; a) Acquire 
and digitise 3D geometry of an individual; b) Segment, scale and rotate torso segment; c) Extract 

transverse data slice profiles; d) Obtain signal waveform from profiles; e) Extract frequency content 
from signals; f) Detect shape principal components from Fourier coefficients. 
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Chapter 4 - Test-retest reliability and observer error for shape anthropometrics 

4.1 Introduction 

Previous studies have evaluated the accuracy and precision of 3D imaging devices 

compared to manual measurements (165,216), as well as the repeatability of scan-

derived measures and landmark locations (137,217). As a result of these studies, 

international standards have been established which specify the required accuracy of 

3D imaging systems used in anthropometry (140). However, it has been suggested that 

the primary sources of measurement error within anthropometric data collection are 

identification of anatomical landmarks and variability of participant posture (18,105), 

which are associated with human error - observers and participants. Anatomical 

landmarks are detectable skeletal points that identify the location of measurement 

sites used to define body segments and ensure anatomical correspondence between 

individuals (18,53). In addition, landmark locations are used for performing statistical 

analysis, reconstructing variations in human body shape and creating homologous 

models (105,172,218), as detailed in Chapter Three. Previous studies have shown that 

even with training there can be significant intra and inter-observer errors in landmark 

identification, which can contribute to errors in derived body measurements and 3D 

imaging data processing (55,105,106). The methods developed in this programme of 

research rely on manual palpation and digitisation of anatomical landmarks to define 

the torso segment and create local anatomical coordinate systems for each 

participant. Consequently, variability when identifying anatomical landmarks within 3D 

imaging data could significantly affect shape anthropometrics.  

Variability of participant posture during 3D imaging can also have significant effects on 

the reliability and accuracy of extracted body dimensions and body shape analysis 

(18,145,152,219). Postures used for 3D imaging require participants to stand with their 

arms abducted, enabling the imaging device to view the lateral torso aspect, to aid in 

3D model segmentation (140,166). However, it has been found that individuals cannot 

keep their upper limbs in identical positions for repeated imaging trials (219) and is a 

common source of random error in studies with human participants (107). Though 

posture variation is typically considered a factor caused by the participant, it is also 

related to the observer, since posture can be controlled if adequate instructions are 

provided during data collection (105). Variations in posture can influence the creation 
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of local anatomical coordinate systems and the angle of segmentation planes, leading 

to errors during scan data post-processing. Previous investigations have suggested that 

postural variations can be captured by individual PCs (152,172). If this is the case, it 

may be possible to isolate and remove the effects of postural variations from acquired 

3D imaging data, improving the precision of extracted size and shape anthropometrics. 

It is acknowledged that there are other potential sources of error which could affect 

the test-retest reliability of body measurement, such as circadian variations (54), 

hydration level (220) and breathing cycle (17,144). However, procedures can be put in 

place to mitigate the effects of these additional sources of error -  collecting measures 

at a similar time of day and asking participants to hold their breath at end-tidal 

expiration - and therefore such errors are not the focus of this investigation. The aim 

of this investigation was to determine the effect of measurement error and the 

reliability of developed methods for assessing torso shape to be used throughout this 

programme of research. The objectives were to:  

• Examine the effects of principal sources of observer error when measuring body 

shape, whilst limiting external factors. 

• Determine the test-retest reliability of developed methods for performing human 

torso shape measurement. 

• Determine whether postural variations are captured by individual principal 

components, without affecting other components of body shape.  

4.2 Methods 

4.2.1 Assessment of observer error 

Before evaluating the test-retest reliability of developed methods using human 

participants, a series of experiments were conducted using 3D images of a 

representative, non-deformable torso mannequin (Figure 4.1a). The torso mannequin, 

the same used in a previous study by Chiu et al. (221), was used to assess the effects of 

identified sources of measurement error - landmark location and posture - whilst 

limiting external factors typically associated with human measurement (e.g. hair and 

involuntary movement), which could affect the analytical procedure. During scanning 

the torso mannequin was placed on a raised platform to ensure it was positioned 

within the vertical centre of the calibrated volume of the 3dMDBody5 imaging system. 
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a)             b)  

Figure 4.1. a) Non-deformable torso mannequin; b) Simulated errors in landmark locations on the 
surface of the torso mannequin and the subsequent effects on the vectors used to create the local 

coordinate system, shown as dashed lines 

The tests conducted with the torso mannequin were as follows: 1) Repeated measures 

- six 3D scan images of the torso mannequin in a standard orientation within the 

capture volume were captured using the 3dMDbody5 system. This enabled an initial 

assessment of the repeatability of the developed analytical procedure when measuring 

a non-deformable object under standard conditions. 2) Posture/orientation - 3D 

images were collected of the torso mannequin after being manually rotated within the 

calibrated volume about the sagittal and transverse axes by approximately 30o, 

simulating side-side and forward-backward variations from the standard posture, 

respectively. This enabled the effectiveness of the scan alignment procedure (Section 

3.3.2), to be assessed. 3) Landmark location - a single 3D image of the torso 

mannequin captured in the standard orientation was repeatedly digitised, with the 

coordinates of landmark points moved from their true position on the surface of the 

torso mannequin by 5, 10, 15 and 20 mm - typical intra-observer landmarking errors as 

found by Kouchi et al. (105). Figure 4.1b shows the direction of these simulated errors 

in landmark location and the subsequent effect on the local anatomical coordinate 

system within the torso segment. A single researcher manually digitised the locations 

of landmark points on the surface of the torso mannequin for all collected 3D scan 

images within KinAnthroScan, as detailed in Section 3.3.1. The root mean square error 

(RMSE) of the extracted outline curves was calculated to quantify the amount of 

measurement error in each experimental condition (Table 4.1). The RMSE for repeated 
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measures of the torso mannequin in the standard orientation was close to zero, 

suggesting that the analytical procedure was repeatable when measuring a non-

deformable object under identical conditions. The RMSE for measures of the torso 

mannequin when manually adjusted into extreme orientations was also close to zero, 

suggesting that the scan alignment procedures, described in Section 3.3.2, were not 

affected by changes in orientation of a non-deformable body within the scan volume. 

However, the RMSE of shape measures for the torso mannequin increased with 

increasing movements of landmarks from their correct location.  

Table 4.1. RMSE of shape measures for the torso mannequin in different conditions. 

Experimental condition RMSE (mean(SD)) 

Repeat measures  5.551e-04(7.021e-05) 

Changes in torso orientation        7.568e-04(1.450e-04) 
Changes in landmark location:     5 mm 0.002(0.001) 

10 mm 0.004(0.002) 
15 mm 0.007(0.003) 
20 mm 0.009(0.003) 

4.2.2 Participants 

Through convenience sampling, 29 recreationally active male volunteers participated 

in this study to determine the intra and inter-session reliability of human torso shape 

measurement (Table 4.2). All participants were required to be over the age of 18 years 

and able to stand unaided, as all data were collected while standing and provide 

written informed consent. During data collection participants were asked to wear non-

compressive, form fitting shorts. Upon arrival, each participant's standing stature and 

body mass were acquired using a Leicester height stadiometer (Marsden, UK) and 

digital weight scales (Conair, UK), respectively. All procedures were approved by 

Sheffield Hallam University Research Ethics Committee, reference 

number ER10868123 (Appendix 3). 

Table 4.2. Summary characteristics of participants. 

Descriptive Mean ± SD Min. Max. 95% CI 

Age (years) 37 ± 14 21 78 [32, 42] 
Stature (cm) 177.5 ± 6.9 163.4 192.9 [175.0, 180.0] 
Mass (kg) 85.7 ± 18.4 65.9 152.1 [79.0, 92.4] 
BMI (kg/m2) 27.1 ± 4.9 20.9 43.3 [25.3, 28.9] 

SD, Standard deviation; 95% CI, 95% Confidence Interval; LB, Lower bound; UB, Upper bound 

4.2.3 Research protocol 

Each participant attended two separate 30 minute data collection sessions, at 

approximately the same time on consecutive days. During each data collection session 
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three 3D scan images of the participant were collected using the 3dMDbody5 imaging 

system. Thus, a total of six 3D images were acquired for each participant in the study. 

The locations of the anatomical landmarks, defined in Section 3.2.1, were manually 

palpated by a level one ISAK anthropometrist (the author) and marked with a cross on 

the skin using a fine-tipped surgical marker (e.g. Viscot 1451), to ensure correct 

identification of landmarks in the 3D images. The same level one ISAK anthropometrist 

performed this procedure across all participants. For torso imaging, participants were 

asked to hold their breath at end-tidal expiration and adopt the scanning pose, 

described in Section 3.2.3, throughout the short scanning duration. The configuration 

and calibration procedure of the 3dMDbody5 hybrid stereo photogrammetry surface 

imaging system was performed according to manufacturer's guidelines at the start of 

each data collection session, using the procedures described in Section 3.2.3. 

4.2.4 3D imaging data post-processing 

All 3D images of human participants were digitised by a single researcher within 

KinAnthroScan (the author), as detailed in Section 3.3.1. Mean intra-observer 

digitisation errors were 0.72, 0.78, 0.84 and 0.79 mm for the ASIS right, ASIS left, 

xiphoid process and posterior landmarks, respectively. Digitisation error was 

quantified as the Euclidean distance between the coordinates of digitised landmark 

locations made by the same researcher for each landmark, similar to Kouchi et al. 

(105). Mean digitisation error for each landmark was calculated from three repeated 

digitisations of all 29 participants' 3D imaging data. Following digitisation of all 

collected 3D images, the remaining stages of the developed methods were performed: 

segmenting 3D imaging data; alignment and scaling of torso scan data; extraction of 

shape profiles; and extraction of Fourier coefficients describing torso shape.  

4.2.5 Statistical analysis 

Test-retest reliability of torso shape measurement 

Both the intra and inter-session reliability of extracted torso shape Fourier coefficients 

were assessed by calculating the intra-class correlation coefficient (ICC) (222,223), 

using a two-way mixed-effects model with single measures accuracy (ICC (A,1)) and a 

two-way mixed-effects model with the mean of multiple measures accuracy (ICC (A,k)), 

respectively. ICC is an established method of assessing clinical reliability, enabling the 

results from this study to be compared to previously published values (222), as well as 
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determining the likely acceptance of the procedures presented in this programme of 

research. The procedure for calculating ICC had to be modified to account for the 

nature of the measures used in this study. Typically, reliability of body measures are 

assessed using scalar outcome measures, such as girth or volume. However, the 

measures obtained using methods developed in Chapter Three represent human torso 

shape as 210 complex Fourier coefficients, which describe the frequency content 

within extracted outline curves from 3D imaging data. As a result, to study the 

reliability of torso shape measures obtained using this procedure requires all of this 

complex shape information to be evaluated. Smith et al. (224) developed a method for 

assessing variance of shapes, which enable the reliability of multivariate measures to 

be evaluated. The classical formulation for calculating the variance of a set of scalar 

observations, 𝑋 =  {𝑥𝑖}𝑖−1
𝑁 , is expressed as, 

𝜎2 = 𝑉𝐴𝑅(𝑋) =  
1

𝑁
∑ 𝑑(𝑥𝑖, 𝜇𝑋)2𝑁

𝑖=1                         Equation 4.1 

Where, 𝑑(𝑥𝑖, 𝜇𝑋) =  |𝑥𝑖 − 𝜇𝑋|, is a metric quantifying the distance between any two 

values and 𝜇𝑋 is the sample mean. Similarly, for a set of shapes, 𝑆 =  {𝑠𝑖}𝑖−1
𝑁 , the 

variance is, 

𝜎𝑠
2 = 𝑉𝐴𝑅(𝑆) =  

1

𝑁
∑ 𝑑(𝑠𝑖, 𝜇𝑆)2𝑁

𝑖=1                         Equation 4.2 

Where the mean shape is defined as the average across all shapes in a sample, 

𝜇𝑆 =  
1

𝑁
∑ 𝑠𝑖

𝑁
𝑖=1                                            Equation 4.3 

The shape distance, d, in equation 4.2 is a metric function that quantifies the 

difference between any two shapes as a scalar value, 𝑑(𝑎, 𝑏) =  ‖𝑎 − 𝑏‖1. This shape 

distance provides a mapping from the multi-dimensional shape space to a scalar, non-

negative distance, representing total absolute shape difference. This provides the 

same functionality as distance used in the classical variance formulation (Equation 4.1) 

and can be used in subsequent calculations of ICC for multivariate shape. According to 

this methodology, shape can described by any type of continuous variable, of any 

dimension, which has been suggested as being suitable for assessing 3D imaging data 

(224). For this investigation, shape distance was quantified as the sum of differences in 

polar coordinates between sampled points of corresponding torso outline curves 

extracted from 3D imaging data of participants torso segments (Figure 4.2).  
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Figure 4.2. Examples of measured differences in polar coordinates between two corresponding torso 

outline curves, obtained from repeated measures of a single participant. 

To evaluate test-retest reliability using ICC with multiple scores from the same rater, a 

two-way mixed-effects model is the most appropriate, as it is not reasonable to 

generalise the results of one rater to a larger population of raters (222) and repeated 

measures cannot be regarded as randomised samples (223). In addition, absolute 

agreement should always be chosen for test-retest reliability studies (223). The 

reliability of repeat measures within each session represents a context where a single 

measure would be performed, thus requiring single measure accuracy. In contrast, the 

reliability of shape measures between data collections on consecutive days is a context 

where measures would be averaged for each participant, thus requiring accuracy 

based on the mean of multiple measures. As a result, the within-session reliability of 

torso shape measures was calculated using a two-way mixed-effects model with single 

measures accuracy (ICC (A,1)), while the between-session reliability was calculated 

using a two-way mixed-effects model with the mean of multiple measures accuracy 

(ICC (A,k)). ICC values were calculated using the same approach for both: differences 

between individual data slices along the length of the torso segment; and for all slices 

along the torso as a whole.  

A limitation of ICC is that it only provides a relative measure of reliability which offers 

little assistance in interpreting changes between repeat tests (225). The minimum 

detectable change (MDC) is an absolute measure of reliability, which accounts for 

various sources of variability in defining a confidence interval in units of the measure 

being assessed (225,226). The MDC was used to determine how much of a change in 
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polar coordinates would represent a true change in torso shape between repeated 

measures, not due to random error in the measurement. MDC was assessed based on 

the shape distance, d, between repeat measures of participants in each data collection 

session. This was performed using the ICC and standard deviation (σ) values from each 

session to calculate the standard error of measurement (SEM) and MDC, as follows:  

SEM = 𝜎 √(1 − 𝐼𝐶𝐶)                                   Equation 4.4 

MDC = 1.96 SEM √2                                    Equation 4.5 

Assessing principal components of postural variation  

Using the results of the PCA presented in Section 3.3.6, the Fourier coefficient data 

obtained from participants in this investigation were transformed into 9 PCs to 

determine whether postural variations are captured as individual components, without 

affecting other aspects of body shape. Histograms and Q-Q plots were visually 

inspected and a Shapiro-Wilks test was conducted to assess the normality of all shape 

PCs. One-way repeated measures MANOVA analyses were conducted to evaluate 

whether there were significant differences between repeat measures of individuals 

and whether posture variations were captured by individual PCs. One-way repeated 

measures MANOVA assesses differences in multiple dependent variables over time or 

between treatments, where participants have been measured at all time points (227). 

Separate analyses were performed to assess the variance of each shape PC, both 

within each data collection session and between the averages of both sessions. The 

within-participant standard deviation, Sw, otherwise known as the standard error of 

measurement, was calculated as the root mean square error term from the MANOVA, 

to assess variations in the PC scores between repeat measures of participants. 

Statistical analyses were performed within SPSS (IBM SPSS Statistics 24.0).  

4.3 Results 

4.3.1 Test-retest reliability of shape measures - ICC 

Estimated ICCs for measures of the whole torso were 0.917 and 0.927 for sessions 1 

and 2, respectively. This suggests high test-retest reliability of the developed analytical 

procedure for repeat measures within a data collection session. ICCs of shape 

measures for individual slices along the length of the torso segment ranged between 

0.884-0.972 and 0.898-0.966 for sessions 1 and 2, respectively. The lowest ICCs were 
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observed for slices within the inferior region of the torso segment, suggesting higher 

reliability of shape measures for slices within the superior torso region (Table 4.3). 

Distances between measured outline curves demonstrated a MDC of 17.635 and 

15.524, for sessions 1 and 2, respectively.  

Table 4.3. ICCs for torso shape measurements within each data collection session, assessing the torso as 
a whole and for individual slices along the length of the torso segment. 

 ICC(A,1) F df1 df2 Sig. 95% CI [LB, UB] 

Session 1       
Whole Torso 0.917 33.977 28 57.968 > 0.001 [0.854, 0.957] 

Slice 1 0.901 27.706 28 57.266 > 0.001 [0.827, 0.948] 
Slice 2 0.895 26.060 28 57.219 > 0.001 [0.817, 0.945] 
Slice 3 0.889 24.675 28 57.365 > 0.001 [0.808, 0.942] 
Slice 4 0.886 23.841 28 57.466 > 0.001 [0.802, 0.940] 
Slice 5 0.884 23.529 28 57.455 > 0.001 [0.799, 0.939] 
Slice 6 0.894 25.913 28 57.628 > 0.001 [0.815, 0.945] 
Slice 7 0.906 29.565 28 57.805 > 0.001 [0.835, 0.951] 
Slice 8 0.913 32.489 28 57.953 > 0.001 [0.848, 0.955] 
Slice 9 0.920 35.486 28 57.992 > 0.001 [0.858, 0.958] 
Slice 10 0.920 35.944 28 57.903 > 0.001 [0.859, 0.959] 
Slice 11 0.931 42.492 28 57.418 > 0.001 [0.878, 0.965] 
Slice 12 0.938 48.177 28 56.376 > 0.001 [0.890, 0.968] 
Slice 13 0.937 47.648 28 55.366 > 0.001 [0.887, 0.968] 
Slice 14 0.940 51.028 28 53.071 > 0.001 [0.892, 0.969] 
Slice 15 0.943 53.470 28 53.484 > 0.001 [0.897, 0.971] 
Slice 16 0.953 64.797 28 55.242 > 0.001 [0.915, 0.976] 
Slice 17 0.960 74.518 28 56.711 > 0.001 [0.927, 0.979] 
Slice 18 0.967 89.892 28 57.811 > 0.001 [0.940, 0.983] 
Slice 19 0.970 99.181 28 57.879 > 0.001 [0.946, 0.985] 
Slice 20 0.972 105.748 28 57.443 > 0.001 [0.948, 0.986] 
Slice 21 0.972 110.351 28 56.131 > 0.001 [0.950, 0.986] 

Session 2       
Whole Torso 0.927 40.863 28 54.664 > 0.001 [0.869, 0.962] 

Slice 1 0.916 34.112 28 57.933 > 0.001 [0.853, 0.957] 
Slice 2 0.911 31.908 28 57.940 > 0.001 [0.844, 0.954] 
Slice 3 0.902 28.920 28 57.968 > 0.001 [0.830, 0.949] 
Slice 4 0.898 27.386 28 57.999 > 0.001 [0.822, 0.947] 
Slice 5 0.900 27.899 28 57.999 > 0.001 [0.825, 0.948] 
Slice 6 0.907 30.326 28 57.968 > 0.001 [0.837, 0.951] 
Slice 7 0.908 30.852 28 57.982 > 0.001 [0.839, 0.952] 
Slice 8 0.911 31.725 28 57.977 > 0.001 [0.843, 0.954] 
Slice 9 0.914 33.041 28 57.907 > 0.001 [0.848, 0.955] 
Slice 10 0.925 39.027 28 57.423 > 0.001 [0.868, 0.962] 
Slice 11 0.933 44.123 28 56.732 > 0.001 [0.881, 0.966] 
Slice 12 0.935 46.152 28 55.982 > 0.001 [0.885, 0.967] 
Slice 13 0.938 49.106 28 54.190 > 0.001 [0.889, 0.968] 
Slice 14 0.946 57.190 28 51.263 > 0.001 [0.901, 0.972] 
Slice 15 0.956 71.115 28 49.872 > 0.001 [0.919, 0.978] 
Slice 16 0.964 85.978 28 52.265 > 0.001 [0.933, 0.982] 
Slice 17 0.966 91.265 28 55.129 > 0.001 [0.939, 0.983] 
Slice 18 0.969 95.595 28 57.569 > 0.001 [0.943, 0.984] 
Slice 19 0.965 82.579 28 57.995 > 0.001 [0.936, 0.982] 
Slice 20 0.965 84.395 28 57.994 > 0.001 [0.937, 0.982] 
Slice 21 0.966 85.593 28 57.967 > 0.001 [0.938, 0.982] 

CI, confidence interval; ICC, intraclass correlation coefficient; LB, Lower bound; UB, Upper bound. 
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The ICC for shape measures of the whole torso was 0.905, suggesting high test-retest 

reliability of human torso shape measures on consecutive days. ICCs of shape 

measures for individual slices along the length of the torso segment ranged between 

0.845-0.967. Similarly, estimated ICCs were lower in the inferior torso region 

compared to the superior region between sessions (Table 4.4).  

Table 4.4. ICCs for torso shape measurements between repeat data collection sessions, assessing the 
torso as a whole and for individual slices along the length of the torso segment. 

 ICC(A,k) F df1 df2 p 95% CI 

Whole Torso 0.905 11.205 28 26.095 > 0.001 [0.795, 0.956] 

Slice 1 0.863 7.608 28 27.471 > 0.001 [0.708, 0.935] 
Slice 2 0.862 7.546 28 27.822 > 0.001 [0.708, 0.935] 
Slice 3 0.855 7.117 28 28.079 > 0.001 [0.692, 0.931] 
Slice 4 0.845 6.726 28 27.729 > 0.001 [0.672, 0.927] 
Slice 5 0.851 7.140 28 26.340 > 0.001 [0.682, 0.930] 
Slice 6 0.865 7.975 28 24.986 > 0.001 [0.706, 0.937] 
Slice 7 0.883 9.322 28 23.760 > 0.001 [0.742, 0.946] 
Slice 8 0.897 10.730 28 23.056 > 0.001 [0.771, 0.953] 
Slice 9 0.907 11.845 28 22.767 > 0.001 [0.791, 0.957] 
Slice 10 0.911 12.334 28 23.718 > 0.001 [0.804, 0.959] 
Slice 11 0.918 13.247 28 24.387 > 0.001 [0.820, 0.962] 
Slice 12 0.924 14.337 28 24.222 > 0.001 [0.833, 0.965] 
Slice 13 0.925 14.397 28 24.445 > 0.001 [0.834, 0.965] 
Slice 14 0.928 15.021 28 25.193 > 0.001 [0.844, 0.967] 
Slice 15 0.944 19.483 28 24.605 > 0.001 [0.878, 0.974] 
Slice 16 0.955 24.198 28 24.724 > 0.001 [0.902, 0.979] 
Slice 17 0.966 30.454 28 27.291 > 0.001 [0.926, 0.984] 
Slice 18 0.967 30.900 28 28.577 > 0.001 [0.930, 0.984] 
Slice 19 0.967 29.883 28 28.975 > 0.001 [0.930, 0.984] 
Slice 20 0.967 29.899 28 28.842 > 0.001 [0.930, 0.984] 
Slice 21 0.966 29.060 28 28.901 > 0.001 [0.928, 0.984] 

CI, confidence interval; ICC, intraclass correlation coefficient; LB, Lower bound; UB, Upper bound. 

 

4.3.2 Assessing components of postural variation - MANOVA  

Figure 4.3 shows the within-participants standard deviation (sw) values of all identified 

torso shape PCs, both within each data collection session and between the average 

measures of both sessions. Within-participant variation was similar between repeat 

measures in both data collection sessions, while greater within-participant variations 

were observed for measures between data collection sessions. Figure 4.3 also shows 

that though PC1 exhibited the highest sw, sources of measurement error caused 

variations in all identified torso shape PCs.  
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Figure 4.3. Within-participant standard deviation (sw) values for all identified torso shape principal 
components, both within each data collection session and between sessions. 

 

The multivariate test statistics for each of the one-way repeated measures MANOVA 

analyses are shown in Table 4.5. Using Wilks' statistic, it was found that observed 

differences in the identified torso shape PCs were not statistically significant (p > 0.05), 

either between repeat measures within each data collection session, or between the 

average shape PCs of both sessions.  

Table 4.5. Results of one-way repeated measures MANOVA, for repeated shape measures within each 
data collection session and between the averages of both sessions. 

 Wilks' Lambda (Λ) F Hypothesis df. Error df. Sig. 

Session 1 0.669 1.187 18 96 0.287 
Session 2 0.676 1.153 18 96 0.316 
Between sessions 0.682 1.037 9 20 0.446 

Figure 4.4 demonstrates differences in torso shape PCs caused by variations in posture 

between two repeat measures of an individual within a single data collection session. 

Small differences caused by changes in posture between repeat measures can be seen 

on the anterior torso aspect (Figure 4.4a), while more obvious differences can be seen 

on the posterior aspect (Figure 4.4b). Figure 4.4c shows the corresponding radar 

diagram, demonstrating the changes in each of the first 9 shape PCs between the two 

measurements. Shape PC1 captures the largest differences between measures, 

however, there are also changes observed in all identified torso shape PCs as a result 

of postural variations. 



75 
 

a)  
i)                       Measure 1 ii)                     Measure 2 

  
b)  
i)                       ii)                       

  
c)  

 
  

Figure 4.4. Comparison of torso shape PC's from two repeat measures of participant #25 within data 
collection session 1. a) front profile i) measure 1, ii) measure 2, b) side profile, i) measure 1, ii) measure 
2, c) Radar diagram comparing shape principal components from measure 1 (blue) and measure 2 (red). 
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4.4 Discussion 

Shape measurement methods, detailed in Chapter Three, rely on manually identifying 

the location of anatomical landmarks and acquiring 3D images of participants in a 

specified posture. Both landmark identification and participant posture have been 

shown to be the primary sources of measurement error in anthropometric data 

collection (18,105,219). The aim of this investigation was to determine the effect of 

these sources of measurement error and the reliability of developed methods for 

assessing human torso shape to be used throughout this programme of research. 

Initial experiments with a non-deformable torso mannequin demonstrated that shape 

measures produce consistent results when performed under identical experimental 

conditions. In this controlled scenario, where the only potential source of error 

between repeat measures was intra-observer digitisation error (<1 mm), the same 

results were achieved. Similarly, when the orientation of the non-deformable torso 

mannequin was altered within the scan volume, the analytical procedure also 

produced almost identical results. This suggests that if landmarks are identified 

correctly on a non-deformable body the same results are obtained. However, it was 

found that landmarking errors, typical of manual techniques (105), cause inaccuracies 

in scan alignment and subsequent shape measures, illustrating the importance of 

minimsing landmarking errors when evaluating human participants. Requiring 

investigators to be at least ISAK level 1 accredited anthropometrists can help ensure 

reliable manual identification of anatomical landmarks.  

Myer (228) suggested that in situations where the true value of a given variable is not 

known, or when there is no widely accepted gold standard measurement system, 

researchers should seek to evaluate the reliability of measures. Since methods 

developed in Chapter Three produce novel measures of shape, which have not 

previously been used to evaluate the human body from an anthropometric 

perspective, the test-retest reliability of torso shape measures was evaluated. Previous 

studies have suggested that measurement systems with an ICC > 0.7 (229) are 

acceptable for use within clinical environments (230). In this investigation, measures of 

torso shape were found to have an average intra-session ICC of 0.922 and an inter-

session ICC of 0.905. This suggests high test-retest reliability of torso shape measures, 

both within and between sessions, and would likely be accepted by practitioners. The 
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estimated reliability of measures taken during the second session (0.927) was slightly 

higher compared to those taken in the first session (0.917), though this difference was 

within the 95% confidence interval for each session. This suggests that there was not a 

significant change in measurement reliability associated with systematic bias due to 

learning effects, as has been observed in previous investigations (107).  

ICC values were found to be lower for data slices within the inferior torso segment 

region compared to slices within the superior torso region. This is likely due to the 

centre of the local coordinate system being defined by the xiphoid process and the 

thoracic vertebra at the superior torso boundary, improving alignment of the torso 

segment in this region. Previous studies have shown that the xiphoid and vertebra 

landmarks are palpated more reliably than the ASIS landmarks (105,106), due to 

greater accumulations of adipose tissue in the lower torso region, causing difficulties in 

landmark palpation and marking (204,205). Also, because of greater amounts of 

adipose tissue typically being located in the inferior torso region, postural changes 

would likely lead to greater deformation and changes in lower torso shape compared 

to the superior torso. Shape measure reliability was shown to reduce between data 

collections compared to within sessions. This is most likely due to postural changes 

being compounded by errors in palpated landmark locations, as well as other external 

factors, such as hydration level (220), which may also have affected torso shape. Thus, 

it is important that external sources of measurement error are controlled as much as 

possible to ensure test-retest reliability of shape measurement. 

The MDC was calculated to determine the smallest true differences in shape that can 

be detected using the developed method (226). The results of this study suggest that 

shape measures demonstrated an average MDC of 16.580 for overall differences 

between polar coordinates of torso outline curves. For comparison, the average 

measured shape difference between individuals in this study was 306.428. Though this 

MDC value cannot be interpreted as easily as scalar measures, such as girth or volume, 

this study suggests that a change greater than this value would represent a true 

change in an individual's torso shape, which is not attributable to measurement error. 

Further longitudinal studies are required to determine the amount of shape change 

that could be produced by an exercise or dietary intervention and whether the 

developed method could monitor those changes over time effectively.  
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It has previously been suggested that postural variation effects are captured by 

individual PCs and can be removed from acquired 3D imaging data during post-

processing (152,172). Between repeat measures in each data collection session in this 

study, the locations of landmarks on each participant's torso surface were not moved. 

This means that the only potential sources of random measurement error within each 

data collection session were: digitisation of landmarks, shown to have almost no effect 

on shape; and variations in posture. The results of this investigation show that 

although shape PC1 demonstrated the largest within-participant differences, each of 

the other identified shape principal components were also affected by postural 

variations. This suggests that random variations in posture between repeat measures 

affect all identified shape PCs, rather than being isolated to a single component as 

previously suggested. The cause of these changes in all shape PCs is likely because the 

human torso is deformable. Consequently, when a participant alters their posture the 

soft tissues within their torso will deform, causing changes to multiple aspects of body 

shape, rather than along a single component. Instead it must be assumed that all 

shape PCs obtained using this method will include elements of postural variation, 

which must therefore be controlled as much as possible during data collection. 

However, this investigation has shown that though shape PCs change due to posture 

variations, the differences between repeat measures, either within or between 

sessions, are not statistically significant and would not affect statistical inferences 

made about participants in a cross-sectional study.  

4.4.1 Limitations 

This study has limitations that require consideration. Throughout this investigation, 

care was taken to limit the influence of postural sway upon the reliability of shape 

anthropometrics. Though the ICC results suggest that this was successful, some 

participants were able to adopt the defined scanning pose more reliably than others. 

This was due to either the effectiveness of instructions provided to participants, 

suggested as being a factor affecting reliability (105), or simply the inability of 

individuals to keep their upper limbs in identical positions for repeated scanning trials 

without the aid of a positioning device (219). Consequently, future studies should 

consider the use of postural aids (154) to reduce the effects of postural variability 

during scanning and increase the precision of shape measures. In addition, this 
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investigation only evaluated the reliability of shape measures performed on the torso 

segment. It is unknown whether the reliability of measures demonstrated within this 

investigation would be achieved when measuring other body segments, or the human 

body as a whole. Further research would be required to confirm this. Finally, the 

participant cohort analysed in this investigation only captured a narrow selection of 

body shapes and sizes that exist in the wider population. Further study is required to 

assess larger participant samples to determine whether the findings of this 

investigation are representative of the wider population, across a more extensive 

range of body types.  

 

4.5 Conclusion 

The results of this investigation suggest that although sources of random 

measurement error, such as landmark location and posture, do affect shape 

anthropometrics, the methods developed in Chapter Three have high test-retest 

reliability suitable for use within clinical applications. Future investigations should 

evaluate the use of shape anthropometrics in longitudinal studies to determine 

whether shape measures can successfully track changes in health and body 

composition following exercise or dietary interventions. 
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Chapter 5 - Complementing traditional anthropometrics with shape anthropometrics  

5.1 Introduction 

Traditional manual anthropometrics are used extensively in medical practice and 

epidemiological studies to provide proxies for nutritional status within the population 

and derive indicators of health risk. In addition, individual variations in body 

composition, such as ratios of fat to lean tissue and distributions of adipose tissue 

between central and peripheral depots, manifest outwardly as variations in physique 

('body build') and shape (3,69,95). As a result, indices such as the body mass index 

(BMI), waist girth and the waist-hip ratio (WHR) are used to assess these variations in 

external human body dimensions to assess physical health (2,21,55). Of these, BMI is 

most commonly used in current practice to determine the healthy weight range for 

individuals based on their height. However, BMI fails to distinguish between quantities 

of muscle and body fat, which are of different density, and therefore is prone to 

misclassifying muscular individuals as being overweight or obese (231,232). Size 

measures, such as sagittal diameter, waist girth or waist girth divided by stature0.5 

(WHT.5R) have been found to demonstrate improved correlations with quantities of 

abdominal visceral fat and greater associations with metabolic disease risks compared 

to BMI (50,72). Relative measures, such as the WHR, provide information about the 

size of the abdomen relative to the rest of the body, so has been used as a proxy of 

torso shape and central obesity, defined as excess fat around the abdominal region 

(50). However, these relatively simple approaches to assessing human morphology 

only utilise a small number of manual anthropometrics, which are prone to human 

error and limited by their simplicity, as they do not fully describe the complex three-

dimensional (3D) variations in human body shape (4,19–21).  

Skinfold thickness measures are another manual anthropometric technique which 

have been shown to be an accurate approach for measuring subcutaneous fat at a 

given location and measuring total subcutaneous fat from the sum of several skinfold 

sites (91). Studies often use the sum-of-skinfold thicknesses taken from around the 

waist as a measure of central subcutaneous adiposity to assess the efficacy of 

anthropometrics used in clinical practice (76). Predictive equations have previously 

been developed based on combinations of anthropometrics and approximate 

interrelationships among subcutaneous fat, visceral fat and whole body density. 
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Recent studies have also investigated the use of 3D imaging to predict body fat 

distribution (23,233,234). However, biological variations such as age, sex and body 

type (235) make estimations of visceral fat using anthropometric techniques difficult 

(73).  

This chapter details a preliminary exploration into the use of developed methods for 

assessing variations in human torso shape within a small sample of participants. The 

aim of this study was to investigate whether shape anthropometrics can complement 

manual anthropometric techniques in the assessment of human morphology and the 

estimation of subcutaneous central adiposity. The objectives were to:  

• Demonstrate the application of developed methods for extracting scale-invariant 

features of human body shape from 3D imaging data. 

• Compare traditional manual anthropometrics and shape anthropometrics 

extracted from 3D imaging when assessing variations in human morphology. 

• Determine whether shape anthropometrics can complement manual 

anthropometric techniques in estimating sum-of-skinfold thickness around the 

waist of human participants.  

5.2 Methods 

5.2.1 Participants 

3D imaging data and manual body measures of 43 male participants (age 33 ± 12 years, 

height 179.8 ± 7.2 cm, weight 82.9 ± 16.2 kg), described in Chapter Three were 

analysed in this investigation. All participant data, procedures and documents were 

approved by the Sheffield Hallam University Research Ethics Committee, reference 

number ER5855905, as detailed in Section 3.2.1.  

5.2.2 Experimental protocol  

Bony landmark palpation 

The locations of bony anatomical landmarks required for manual anthropometric 

procedures (53) were manually palpated and marked by an accredited level 1 

anthropometrist (the author). Landmarks required for data post-processing were 

marked with a cross on the skin using a fine-tipped surgical marker (e.g. Viscot 1451), 
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to ensure correct identification of landmarks in the acquired 3D images, as detailed in 

Section 3.2.2.  

Manual measurement 

Upon arrival each participant was asked to remove clothing on their upper body, 

wearing only a pair of form fitting, non-compressive lycra shorts throughout the 

duration of the data collection. All manual measures were obtained according to ISO 

7250-1:2017 anthropometric standards (138) and standard ISAK procedures by an 

accredited level 1anthropometrist (the author) to minimise human error in 

measurement (53). Manual anthropometrics collected from participants included: 

stature, body mass, waist and hip girth. Anthropometrics of weight status were 

calculated as follows: BMI = mass/stature2; WHR = waist girth/hip girth; WHT.5R = 

waist girth/stature0.5. Three skinfold sites in close proximity to the measured waist 

girth were used as the measure of subcutaneous central adiposity, similar to a recent 

study by Nevill et al. (76). The three skinfold sites, shown in Figure 2.3, and their 

definitions were: 1) the iliac crest: a near-horizontal fold superior to the iliac crest; 2) 

supraspinale: an oblique fold at approximately 45o at the intersection of a line from 

the anterior superior iliac spine (ASIS) to the anterior axillary fold and a line from the 

iliac crest; 3) abdominal: a vertical fold 5 cm lateral to the navel. The stature and mass 

of each participant was measured using a Leicester height stadiometer (Marsden, UK) 

and digital weight scales (Conair, UK). All girth and skinfold measures were acquired 

using a basic anthropometric tape measure (Lufkin Executive Thinline 2m, W606PM) 

and Harpenden skinfold caliper (Baty International, UK), respectively. The summary 

characteristics of the participant's manual measures are presented in Table 5.1.  

Table 5.1. Summary characteristics of participant manual measurements. 

Descriptive Mean ± SD Min. Max. 95% CI [LB, UB] 
Age (years) 33 ± 12 18 62 [29, 36] 
Stature (cm) 179.8 ± 7.2 165.4 193.5 [177.2, 181.6] 
Mass (kg) 82.9 ± 16.2 50.9 139.4 [78.1, 87.7] 
Waist Girth (cm) 86.1 ± 10.19 67.3 116.6 [83.0, 89.1] 
Hip Girth (cm) 100.4 ± 7.3 82.4 120.4 [98.2, 102.5] 
BMI (kg.m-2) 25.7 ± 4.2 17.9 38.3 [24.4, 26.9] 
Waist-hip-ratio (WHR) 0.86 ± 0.07 0.75 1.04 [0.83, 0.88] 
Waist by height0.5 (WHT.5R) 0.64 ± 0.08 0.52 0.84 [0.62, 0.67] 
Iliac crest skinfold thickness (mm) 17.4 ± 9.4 3.9 42.0 [14.6, 20.2] 
Supraspinale skinfold thickness (mm) 11.7 ± 6.6 3.6 29.6 [9.7, 13.7] 
Abdominal skinfold thickness (mm) 22.9 ± 11.6 4.3 44.4 [19.4, 26.3] 
Sum-of-skinfold thickness (mm) 52.0 ± 26.3 11.8 101.6 [44.1, 59.8] 

SD = Standard deviation; 95% CI = 95% Confidence Interval; LB = Lower bound; UB = Upper bound 
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3D imaging 

3D imaging data of all participants was captured using the 3dMDbody5 surface imaging 

system. For torso scanning, participants were asked to hold their breath at end-tidal 

expiration and adopt the scanning pose, described in Section 3.2.3, throughout the 

short scanning duration. The configuration and calibration procedure of the 

3dMDbody5 hybrid stereo photogrammetry surface imaging system was performed 

according to manufacturer's guidelines at the start of each data collection session, 

using the procedures described in Section 3.2.3.  

5.2.3 3D imaging data post-processing 

All 3D images of participants were digitised by a single researcher (the author) within 

KinAnthroScan, as detailed in Section 3.3.1. Following digitisation of all collected 3D 

images, the remaining stages of the analytical procedure detailed in Chapter Three 

were carried out: segmentation of 3D imaging data to remove coordinate points not 

related to the torso; alignment and scaling of torso segment geometry; extraction of 

shape profiles along the length of the segment; extraction of Fourier coefficients 

describing external torso shape; and principal components analysis to detect 

independent features of torso shape exhibiting the most variation within the sample.  

5.2.4 Statistical analysis 

To ensure the selection of suitable statistical analysis procedures the parametric 

nature of all variables were first explored within SPSS (IBM SPSS Statistics 24.0). 

Histograms and Q-Q plots were visually inspected and a Shapiro-Wilks test was 

conducted to assess the normality of all variables. All body size measures, skinfold 

measures and derived indices were converted into standardised z-scores, ensuring that 

they were comparable by providing a common scale in units of standard deviations 

from the mean value of each measure of the cohort. Pearson correlation coefficients 

were calculated to explore associations between manual anthropometrics, derived 

indices and identified body shape PCs. P values <0.05 were considered statistically 

significant.  

Linear regression analyses were conducted to investigate the strength of associations 

between surface anthropometrics and skinfolds taken from the waist region of the 

torso segment; both individual skinfolds and the sum of all skinfolds. Three different 
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types of regression models were created: 1) Size-only models, separate regression 

models for each anthropometric index (BMI, WHR, waist girth and WHT.5R) and a 

combination of manual size measures (height, mass, waist and hip girth) were used as 

input variables; 2) Shape-only model, a stepwise regression model which used the first 

9 torso shape principal components as input variables to determine which contribute 

to the estimation of skinfold thickness; 3) Combined models, which included size 

measures, derived indices and torso shape PCs as input variables. Each multiple 

regression model was assessed for multicollinearity between input variables using 

variance inflation factor (VIF) and tolerance (1/VIF) collinearity statistics, as well as for 

independence of errors using the Durbin-Watson test statistic. If the largest VIF value 

was greater than 10 for any given regression model then there was cause for concern 

(236), while tolerance values below 0.2 could indicate potential issues in the model 

associated with multicollinearity (237). Similarly, for any two observations the residual 

terms should be uncorrelated or independent. Therefore, if the Durbin Watson value 

differed significantly from 2 this would suggest dependence of errors between input 

variables in the model (227). If any of the calculated regression models demonstrated 

concerning levels of collinearity or dependence of errors it could be assumed that this 

model was biased and unreliable in the estimation of skinfold thickness. Statistical 

analyses were performed using SPSS software (version 24.0, IBM, USA). 

5.3 Results 

5.3.1 Torso shape features within cohort 

As described in Section 3.3.6, PCA produced 9 components that captured over 90% of 

the total body shape variation for participants within the sample. Figure 3.15 in Section 

3.3.6 visualises the reconstructed meshed surfaces of the average torso within the 

sample, as well as the deviations in torso shape from the average along each of the 

first 5 PCs.  

5.3.2 Correlations between size and shape measures 

Pearson correlations between size measures, derived indices and shape PCs are 

presented in Table 5.2. Waist girth measures were strongly correlated with hip girth, 

body mass and derived indices, BMI, WHR and WHT.5R. Hip girth was also strongly 

correlated with mass, BMI and WHT.5R, though only had weak correlation with WHR. 

Stature had moderate correlations with body mass and hip girth, but only weak 
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correlations with all other body size and shape measures, suggesting that central 

adiposity changes independently of body height. PC2 of shape was strongly correlated 

with waist girth, WHR and WHT.5R, and was also significantly correlated with BMI and 

other size measures. PC1, PC4, PC5 and PC6 had significant correlations with certain 

size measures and derived indices, while the remaining shape PCs were not 

significantly correlated with size measures. Due to the nature of PCA all extracted 

shape features were independent of each other and so were uncorrelated. Waist girth 

and WHT.5R had the strongest correlations with individual skinfold thickness measures 

and the sum-of-skinfold thickness, with several other size and shape measures also 

significantly correlated with both individual and sum-of-skinfold thickness measures. 

The strength of correlations between size and shape measures with individual skinfold 

thicknesses did fluctuate, with different measures being either more strongly 

associated with the supraspinale or iliac crest skinfold depending on the location 

around the waist where the size or shape measure was taken. 

5.3.3 Regression analysis 

Table 5.3 shows the results of linear regression analyses, evaluating the strength of 

associations between sum-of-skinfold measures taken from the torso segment and 

each of the commonly used derived indices identified in this study (BMI, WHR, waist 

girth and WHT.5R). All derived indices significantly improved the prediction of skinfold 

thickness. WHR had the weakest association, explaining 30.6 % of the variance in sum-

of-skinfold thickness (R2 = 0.306, F(1,35) = 15.434, p<0.01), followed by BMI which 

explained 33.5% of variance (R2 = 0.335, F(1,35) = 17.605, p<0.01). Waist girth (R2 = 

0.522, F(1,35) = 38.270, p<0.01) and WHT.5R (R2 = 0. 522, F(1,35) = 38.258, p<0.01) had 

the strongest associations, both explaining 52.2% of the variance in sum-of-skinfold 

thickness measures. Table 5.4 shows the results of the multiple regression analyses for 

the size-only, the shape-only model and the combined models. The size-only model, 

which included all manual body size measures, explained 68.9% of the variance in sum-

of-skinfold thickness (R2 = 0.689, F(1,32) = 17.690, p<0.01). However, the collinearity 

statistics suggest that there are serious concerns with this regression model. The 

tolerance values for mass and hip girth were both below 0.2 and the VIF values for 

these measures were 17.281 and 11.484, respectively, suggesting high levels of 

multicollinearity between individual size measures. In addition, the Durbin-Watson 
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statistic for this model was 2.387, suggesting that the residual error terms of adjacent 

observations within the sample were correlated when size measures were combined 

as input variables, which raise concerns about this regression model. Using stepwise 

regression for the shape-only model, it was shown that PC2, PC4, PC1 and PC3, in 

order of their strength of association, contributed significantly to the regression 

model, explaining 74.2% of the variance in skinfold thickness (R2 = 0.742, F(1,32) = 

22.96, p<0.01). The Durbin Watson test statistic for this model was close to 2 

suggesting independence of errors, while all VIF values for this model were below 10 

and all tolerance statistics are above 0.2, suggesting that there was no collinearity 

between shape PCs. The results of the combined regression models show that 

integrating shape principal components with commonly used derived indices improved 

the estimation of skinfold thickness, with the WHT.5R and shape model explaining 

76.5% of the variance in skinfold thickness. The Durbin Watson test statistic for all 

models was close to 2 suggesting independence of errors for all combined models. All 

VIF values for all models were below 10 and all tolerance statistics are above 0.2 

suggesting that there was not concerning levels of collinearity within the data. 

Table 5.5 shows the results of linear regression analyses, evaluating the strength of 

associations between the individual skinfolds (abdominal, supraspinale and iliac crest) 

taken from around the torso segment and each of the commonly used derived indices 

identified in this study (BMI, WHR, waist girth and WHT.5R). All derived indices 

significantly improved the prediction of the individual skinfolds. However it was 

observed that the strength of association varied between the derived indices and the 

different skinfolds. For example, all derived indices had the strongest association with 

the supraspinale skinfold, while they had the weakest association with the abdominal 

skinfold. Table 5.6 shows the results of the multiple regression analyses for the size-

only, the shape-only model and the combined models in the estimation of the 

individual skinfolds. Similarly the different regression models were able to explain 

varying amounts of variance in the individual skinfolds. The size-only model, which 

included all manual body size measures, explained 61.3, 71.0 and 61.7% of the 

variance in the abdominal, supraspinale and iliac crest skinfolds, respectively. 

However, as with the sum-of-skinfolds model, the collinearity statistics suggest that 

there are serious concerns with these regression models, with high levels of 

multicollinearity between individual size measures.  
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Table 5.2. Pearson correlation coefficients between skinfolds, size measures, anthropometric indices and shape PCs. 

 

 

 

 

 

 

 

 

(*P < 0.05; BMI, Body mass index; WHR, waist-hip ratio; sum-of-skinfolds = Iliac crest + supraspinale + abdominal skinfolds. 

 

Table 5.3. Linear regression models showing associations between derived indices and sum-of-skinfold thickness. 

Model R2 Regression Equation Standardised β F(1,35) Sig. 
BMI 0.335 SSF = 0.033 + 0.555*BMI 0.578 17.605 <0.001 
WHR 0.306 SSF = -0.005 + 0.525*WHR 0.553 15.434 <0.001 
Waist Girth 0.522 SSF = 0.019 + 0.695*Waist 0.723 38.270 <0.001 
WHT.5R 0.522 SSF = 0.02 + 0.694*WHT.5R 0.723 38.258 <0.001 

SSF: sum-of-skinfolds 

 
 

 

 

 Size measures Derived Indices Shape principal components 
 

Stature Mass 
Waist 
girth 

Hip 
girth 

BMI WHR 
WHT.

5R 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Sum-of-
skinfolds 

0.02 0.51* 0.72* 0.58* 0.58* 0.55* 0.72* -0.30 0.55* -0.27 -0.5* 0.046 -0.21 -0.12 0.11 0.14 

Abdominal 0.04 0.43* 0.65* 0.51* 0.49* 0.51* 0.65* -0.27 0.51* -0.23 -0.49* 0.01 -0.31 -0.12 0.11 0.17 
Supraspinale -0.1 0.51* 0.74* 0.57* 0.63* 0.57* 0.76* -0.25 0.62* -0.29 -0.48* 0.09 -0.16 -0.1 0.12 0.01 
Iliac crest 0.08 0.54* 0.71* 0.60* 0.58* 0.52* 0.70* -0.34* 0.48* -0.27 -0.46* 0.05 -0.11 -0.11 0.1 0.18 
Stature  0.47* 0.12 0.46* 0.054 -0.26 -0.06 0.11 -0.26 -0.17 -0.31 -0.002 0.27 0.25 0.09 0.18 
Mass   0.83* 0.95* 0.90* 0.34* 0.75* -0.23 0.48* -0.19 -0.15 0.28 0.40* -0.01 0.21 0.18 

Waist girth     0.79* 0.89* 0.78* 0.98* -0.32* 0.76* -0.25 -0.14 0.05 0.08 -0.01 0.24 0.09 
Hip girth      0.87* 0.23 0.70* -0.26 0.41* -0.14 -0.30 0.37* 0.27* 0.08 0.19 0.11 
BMI       0.52* 0.89* -0.32 0.67* -0.14 -0.03 0.33* 0.27 -0.01 0.23 0.11 
WHR       0.84* -0.24 0.77* -0.24 0.063 -0.28 -0.14 -0.31 0.19 0.03 

WHT.5R        -0.34* 0.81* -0.22 -0.09 0.05 0.03 -0.19 0.23 0.06 
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Table 5.4. Multiple linear models showing associations between sum-of-skinfold thickness and 1) size measures; 2) shape PCs; 3) derived indices and shape PCs. 

        Collinearity Statistics 
Model R2 Regression Equation DW Predictor Standardised β t Sig. Tolerance VIF 

Size Measures      0.689 
SSF = 0.023 + (0.082*Stature) 

+ (-1.578*Mass) + 
(1.067*Waist) + (1.210*Hip) 

2.387 

Stature 0.084 0.625 0.536 0.534 1.874 

Mass -1.640 -3.999 <0.001 0.058 17.281 

Waist 1.110 5.125 <0.001 0.207 4.820 

Hip 1.242 3.716 0.001 0.087 11.484 

Shape PCs 0.742 
SSF = 0.001 + (0.415*PC2) +  
(-0.787*PC4) + (-0.241*PC1)  

+ (-0.402*PC3) 
2.094 

PC2 0.523 5.814 <0.001 0.998 1.002 
PC4 -0.526 -5.823 <0.001 0.991 1.009 
PC1 -0.350 -3.866 0.001 0.987 1.014 
PC3 -0.319 -3.530 0.001 0.991 1.009 

BMI & Shape 0.748 
SSF = 0.005 + (0.120*BMI) + 

(0.350*PC2) + (-0.778*PC4) + 
(-0.213*PC1) + (-0.376*PC3) 

2.164 

BMI 0.125 0.918 0.366 0.437 2.290 
PC2 0.441 3.475 0.002 0.504 1.984 
PC4 -0.520 -5.729 <0.001 0.986 1.014 
PC1 -0.310 -3.083 0.004 0.803 1.245 
PC3 -0.298 -3.198 0.003 0.934 1.071 

WHR & Shape 0.743 
SSF = -0.001 + (0.073*WHR) + 
(0.368*PC2) + (-0.793*PC4) + 
(-0.228*PC1) + (-0.377*PC3) 

1.993 

WHR 0.077 0.461 0.648 0.294 3.396 

PC2 0.464 2.966 0.006 0.338 2.960 

PC4 -0.530 -5.768 <0.001 0.981 1.020 

PC1 -0.331 -3.318 0.002 0.830 1.205 

PC3 -0.299 -2.963 0.006 0.813 1.230 

Waist girth & Shape  0.758 
SSF = 0.003 + (0.250*Waist) + 
(0.262*PC2) + (-0.726*PC4) + 
(-0.182*PC1) + (-0.311*PC3) 

2.010 

Waist 0.260 1.457 0.155 0.246 4.067 

PC2 0.331 2.082 0.046 0.309 3.233 

PC4 -0.485 -5.214 <0.001 0.902 1.109 

PC1 -0.265 -2.492 0.018 0.690 1.448 

PC3 -0.247 -2.431 0.021 0.757 1.321 

WHT.5R & Shape 0.765 
SSF = 0.002 + (0.341*WHT.5R) 
+ (0.192*PC2) + (-0.731*PC4) 
+ (-0.158*PC1) + (-0.291*PC3) 

2.006 

WHT.5R 0.355 1.745 0.091 0.183 5.450 

PC2 0.242 1.324 0.195 0.227 4.412 

PC4 -0.488 -5.416 <0.001 0.934 1.070 

PC1 -0.229 -2.047 0.049 0.607 1.646 

PC3 -0.231 -2.283 0.029 0.743 1.345 

SSF = sum-of-skinfolds; VIF: variance inflation factor; DW: Durbin-Watson  
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Table 5.5. Linear models showing associations between derived indices and individual skinfold thickness measures. 

 

 

 

 

 

 

 

 

 

Ab: Abdominal; Sup: Supraspinale; Ilia: Iliac crest. 

Table 5.6. Multiple linear models showing associations between individual skinfold thickness and 1) size measures; 2) shape PCs; 3) derived indices & shape PCs. 

        Collinearity Statistics 
Model R2 Regression Equation DW Predictor Standardised β t Sig. Tolerance VIF 

Size Measures      

0.613 
Ab = -223.79 + (0.26*Stature) 
+ (-1.25*Mass) + (1.26*Waist) 

+ (1.96*Hip) 
2.28 

Stature 0.166 1.10 0.279 0.53 1.87 

Mass -1.815 -3.97 <0.001 0.06 17.28 

Waist 1.150 4.76 <0.001 0.21 4.82 

Hip 1.269 3.41 0.002 0.09 11.48 

0.710 
Sup = -83.90 + (-0.10*Stature) 
+ (-0.55*Mass) + (0.62*Waist) 

+ (1.06*Hip) 
2.21 

Stature -0.109 -0.840 0.407 0.53 1.87 

Mass -1.410 -3.561 0.001 0.06 17.28 

Waist 0.988 4.725 <0.001 0.21 4.82 

Hip 1.198 3.712 <0.001 0.09 11.48 

0.617 
Ilia = -154.62 + (0.14*Stature) 
+ (-0.77*Mass) + (0.89*Waist) 

+ (1.35*Hip) 
2.62 

Stature 0.110 0.733 0.469 0.53 1.87 

Mass -1.367 -3.006 0.005 0.06 17.28 

Waist 0.998 4.155 <0.001 0.21 4.82 

Hip 1.072 2.891 0.007 0.09 11.48 
          

Skinfold Model R2 Regression Equation Standardised β F(1,35) Sig. 

Abdominal 

BMI 0.236 Ab = -9.35 + 1.26*BMI 0.486 10.8 0.002 
WHR 0.264 Ab = -51.6 + 86.9*WHR 0.513 12.5 0.001 
Waist Girth 0.420 Ab = -37.853 + 0.708*Waist 0.648 25.3 <0.001 
WHT.5R 0.417 Ab = -38.0 + 95.0*WHT.5R 0.645 25.0 <0.001 

Supraspinale 

BMI 0.401 Sup = -12.285 + 0.941*BMI 0.633 23.4 <0.001 
WHR 0.326 Sup = -35.5 + 55.1*WHR 0.571 16.9 <0.001 
Waist Girth 0.542 Sup = -27.677 + 0.459*Waist 0.736 41.4 <0.001 
WHT.5R 0.575 Sup = -29.1 + 63.7*WHT.5R 0.758 47.3 <0.001 

Iliac crest 

BMI 0.332 Ilia = -13.62 + 1.22*BMI 0.576 17.4 <0.001 
WHR 0.266 Ilia = -43.3 + 70.9*WHR 0.516 12.7 0.001 
Waist Girth 0.501 Ilia = -36.483 + 0.628*Waist 0.708 35.2 <0.001 
WHT.5R 0.484 Ilia = -35.8 + 83.1*WHT.5R 0.696 32.8 <0.001 
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Shape PCs 

0.641 
Ab = 22.90 + (4.44*PC2) +  

(-8.86*PC4) + (-2.47*PC1) +  
(-4.03*PC3) 

2.25 

PC2 0.483 4.56 <0.001 0.998 1.01 

PC4 -0.511 -4.81 <0.001 0.991 1.01 

PC1 -0.310 -2.91 0.007 0.987 1.01 

PC3 -0.276 -2.60 0.014 0.991 1.01 

0.776 
Sup = 11.72 + (3.09*PC2) +  
(-4.98*PC4) + (-1.36*PC1) +  

(-2.76*PC3) 
1.92 

PC2 0.590 7.05 <0.001 0.998 1.01 

PC4 -0.503 -5.99 <0.001 0.991 1.01 

PC1 -0.298 -3.54 0.001 0.987 1.01 

PC3 -0.331 -3.94 <0.001 0.991 1.01 

0.660 
Ilia = 17.38 + (3.39*PC2) +  

(-6.87*PC4) + (-2.51*PC1) +  
(-3.79*PC3) 

2.30 

PC2 0.455 4.41 <0.001 0.998 1.01 

PC4 -0.488 -4.71 <0.001 0.991 1.01 

PC1 -0.388 -3.73 <0.001 0.987 1.01 

PC3 -0.319 -3.08 0.004 0.991 1.01 

BMI & Shape 

0.641 
Ab = 21.76 + (0.04*BMI) + 
(4.33*PC2) + (-8.85*PC4) +  
(-2.43*PC1) + (-3.99*PC3) 

2.25 

BMI 0.017 0.105 0.917 0.437 2.29 

PC2 0.472 3.116 0.004 0.504 1.98 

PC4 -0.510 -4.711 <0.001 0.986 1.01 

PC1 -0.305 -2.540 0.016 0.803 1.25 

PC3 -0.273 -2.457 0.020 0.934 1.07 

0.791 
Sup = 4.739 + (0.273*BMI) + 
(2.461*PC2) + (-4.892*PC4) + 
(-1.089*PC1) + (-2.506*PC3) 

 BMI 0.184 1.480 0.149 0.437 2.29 

 PC2 0.470 4.063 <0.001 0.504 1.98 

1.95 PC4 -0.495 -5.985 <0.001 0.986 1.01 

 PC1 -0.239 -2.614 0.014 0.803 1.25 

 PC3 -0.301 -3.543 0.001 0.934 1.07 

0.677 
Ilia = 6.602 + (0.422*BMI) + 

(2.418*PC2) + (-6.742*PC4) + 
(-2.100*PC1) + (-3.399*PC3) 

2.45 

BMI 0.199 1.290 0.207 0.437 2.29 

PC2 0.324 2.255 0.031 0.504 1.98 

PC4 -0.479 -4.659 <0.001 0.986 1.01 

PC1 -0.324 -2.847 0.008 0.803 1.25 

PC3 -0.287 -2.714 0.011 0.934 1.07 
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WHR & Shape 

0.645 
Ab = 6.82 + (18.72*WHR) + 
(3.67*PC2) + (-8.96*PC4) +  
(-2.26*PC1) + (-3.62*PC3) 

2.13 

WHR 0.111 0.561 0.579 0.294 3.40 

PC2 0.399 2.168 0.038 0.338 2.96 

PC4 -0.517 -4.786 <0.001 0.981 1.02 

PC1 -0.284 -2.417 0.022 0.830 1.20 

PC3 -0.248 -2.089 0.045 0.813 1.23 

0.776 
Sup = 12.52 + (-0.93* WHR) + 

(3.13*PC2) + (-4.97*PC4) +  
(-1.37*PC1) + (-2.78*PC3) 

1.93 

WHR -0.010 -0.062 0.951 0.294 3.40 

PC2 0.598 4.089 <0.001 0.338 2.96 

PC4 -0.503 -5.865 <0.001 0.981 1.02 

PC1 -0.300 -3.220 0.003 0.830 1.20 

PC3 -0.334 -3.541 0.001 0.813 1.23 

0.662 
Ilia = 7.01 + (12.08* WHR) + 
(2.89*PC2) + (-6.94*PC4) +  
(-2.38*PC1) + (-3.52*PC3) 

2.22 

WHR 0.088 0.457 0.651 0.294 3.40 

PC2 0.388 2.160 0.039 0.338 2.96 

PC4 -0.493 -4.678 <0.001 0.981 1.02 

PC1 -0.367 -3.200 0.003 0.830 1.20 

PC3 -0.297 -2.564 0.015 0.813 1.23 

Waist girth & Shape  

0.649 
Ab = 6.02 + (0.20*Waist) + 
(3.22*PC2) + (-8.37*PC4) +  
(-2.01*PC1) + (-3.31*PC3) 

2.17 

Waist 0.180 0.837 0.409 0.246 4.07 

PC2 0.350 1.831 0.077 0.309 3.23 

PC4 -0.483 -4.311 <0.001 0.902 1.11 

PC1 -0.252 -1.065 0.058 0.690 1.45 

PC3 -0.226 -1.852 0.074 0.757 1.32 

0.784 
Sup = 2.40 + (0.11* Waist) + 
(2.42*PC2) + (-4.71*PC4) +  
(-1.10*PC1) + (-2.36*PC3) 

1.88 

Waist 0.174 1.032 0.310 0.246 4.07 

PC2 0.461 3.072 0.004 0.309 3.23 

PC4 -0.476 -5.414 <0.001 0.902 1.11 

PC1 -0.241 -2.398 0.023 0.690 1.45 

PC3 -0.283 -2.948 0.006 0.757 1.32 

0.696 
Ilia = -11.84 + (0.34* Waist) + 

(1.28*PC2) + (-6.03*PC4) +  
(-1.70*PC1) + (-2.53*PC3) 

2.34 

Waist 0.383 1.917 0.065 0.246 4.07 

PC2 0.171 0.961 0.344 0.309 3.23 

PC4 -0.428 -4.105 <0.001 0.902 1.11 

PC1 -0.262 -2.202 0.035 0.690 1.45 

PC3 -0.213 -1.873 0.070 0.757 1.32 
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WHT.5R & Shape 

0.652 
Ab = 0.22 + (35.29* WHT.5R) 
+ (2.70*PC2) + (-8.42*PC4) +  

(-1.82*PC1) + (-3.16*PC3) 
2.16 

WHT.5R 0.240 0.969 0.340 0.183 5.45 

PC2 0.293 1.319 0.197 0.227 4.41 

PC4 -0.486 -4.430 <0.001 0.934 1.07 

PC1 -0.229 -1.681 0.103 0.607 1.65 

PC3 -0.217 -1.763 0.088 0.743 1.35 

0.798 

Sup = -6.88 +  
(28.95* WHT.5R) + (1.66*PC2) 

+ (-4.62*PC4) +  
(-0.82*PC1) + (-2.05*PC3) 

 WHT.5R 0.345 1.831 0.077 0.183 5.45 

 PC2 0.317 1.873 0.071 0.227 4.41 

1.84 PC4 -0.467 -5.594 <0.001 0.934 1.07 

 PC1 -0.180 -1.743 0.091 0.607 1.65 

 PC3 -0.246 -2.624 0.013 0.743 1.35 

0.698 

Ilia = -17.61 + (54.45* 
WHT.5R)+(0.70*PC2) +  

(-6.20*PC4) + (-1.51*PC1)  
+ (-2.45*PC3) 

 WHT.5R 0.456 1.976 0.057 0.183 5.45 

 PC2 0.094 0.455 0.652 0.227 4.41 

2.36 PC4 -0.440 -4.309 <0.001 0.934 1.07 

 PC1 -0.233 -1.835 0.076 0.607 1.65 

 PC3 -0.206 -1.802 0.081 0.743 1.35 

Ab: Abdominal; Sup: Supraspinale; Ilia: Iliac crest; VIF: variance inflation factor; DW: Durbin-Watson  
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Using stepwise regression for the shape-only model, it was shown that PC2, PC4, PC1 

and PC3, in order of their strength of association, contributed significantly to the 

regression model, explaining 64.1, 77.6 and 66.0% of the variance in the abdominal, 

supraspinale and iliac crest skinfold, respectively. The results of the different combined 

regression models show that integrating shape principal components with commonly 

used derived indices also improved the estimation of the individual skinfolds, though 

the strength of association varied with the different skinfolds. For example, the 

WHT.5R and shape model explained 65.2, 79.8 and 69.8% of the variance in the 

abdominal, supraspinale and iliac crest skinfold, respectively. This suggests that 

measures of size and shape used in combination can explain fat distribution in 

different areas of the torso with greater accuracy.  

5.4 Discussion 

It has been suggested that more sophisticated shape indexes, measured using 3D 

imaging, can surpass manual measures in epidemiology and clinical practice for 

classifying and health monitoring of individuals (2). The aim of this study was to 

investigate whether shape anthropometrics can complement existing anthropometric 

techniques in the assessment of variations in human morphology and the estimation 

of subcutaneous central adiposity.  

Shape features identified in this study characterise deviations in torso shape that exist 

within the participant cohort and are invariant to the effects of scale, location and 

orientation. The information used to characterise individuals in this investigation 

differs from that used in previous studies by Loffler-Wirth et al. (19) and Pleuss et al. 

(122). In these studies, large numbers of simple measures, such as lengths and girths 

and their ratios, were extracted from 3D imaging data and normalised with respect to 

height. Machine learning processes were then used to find clusters of participants 

based on these simple measures. However, though these previous approaches to body 

measurement (19,122) have identified clusters of individuals within large cohorts, the 

primary differences between clusters have typically been variations in the lengths and 

girths of body segments. In contrast, the approach used in this investigation has been 

shown to identify differences in scale-invariant shape features that are not captured 

using traditional anthropometric techniques. There have been recent studies which 

have also used principal components analysis (PCA) to detect variations in torso 3D 
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imaging data similar to this investigation, such as Ruto et al. (170) and Ng et al. (23). 

However, the imaging data in both these investigations were not scaled to uniform 

size. As a result some variations observed within these studies were related to 

differences in overall body height and size, as well as variations in scale-invariant body 

shape. Though the size of the participant cohorts used in previous studies were larger 

than in this investigation, the PCA procedure identified the same number of 

components to describe 95% of the variation present within the cohort. This suggests 

that shape information inherent within 3D imaging data includes subtle variations 

requiring a greater number of principal components to describe them fully, as opposed 

to size measures which can be described in a smaller number of components (122). 

Though it is currently unknown what all of the shape PCs identified in this investigation 

represent in terms of physical health, they could be used to reveal variations in 

internal fat distributions which cannot be captured by existing anthropometrics, as has 

been suggested by Ng et al. (23). This investigation has demonstrated an effective 

method of capturing and quantifying additional information about human morphology. 

If it can be shown that the additional information contained within shape 

anthropometrics is related to health risk factors, they could provide more effective 

tools for assessing human morphological variations within a population.  

External body shape is determined by its skeletal structure and the distributions of fat 

and muscle mass along its length (3,238). It has previously been found that the 

distribution of body fat, especially visceral fat accumulation in the abdominal region, 

represent the most significant metabolic consequences (12,233,238). However, the 

ability of current anthropometric approaches, such as BMI, to determine body fat mass 

has been questioned repeatedly in previous studies (238,239). Though the BMI was 

not originally developed for use specifically as an index of fatness, it has been utilised 

for this purpose because it is a readily obtained metric (238). However, accumulations 

of visceral fat do not correlate with total body mass and are therefore not detectable 

using BMI (235). Measures such as waist girth and WHT.5R, which utilise measures of 

body size, have been found to demonstrate improved correlations with quantities of 

abdominal adiposity and therefore are used as surrogates of central obesity (76). 

Regression analyses were conducted to investigate whether torso shape PCs identified 

in this investigation contain additional information that can complement these existing 

anthropometric techniques in the estimation of subcutaneous central adiposity. In this 
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study it has been shown that shape PCs explained 74.2 % of the variance in sum-of-

skinfold thickness, compared to 52.2 % explained by existing derived indices, waist 

girth and WHT.5R. However, when waist girth and WHT.5R were combined with torso 

shape PCs they were able to explain 75.8 % and 76.5 % of the variance in sum-of-

skinfold thickness, respectively. These results agree with those of Nevill et al. (76), 

which found that WHT.5R was the most sensitive of existing derived indices to changes 

in abdominal adiposity, however, the addition of scale-invariant measures of body 

shape can improve this prediction still further. These results are promising for a study 

conducted on a small cohort. However, the issue of sample size and the number of 

predictor variables when performing regression analyses is an important consideration 

to ensure a reliable regression model is obtained, due to the estimate of R being 

dependent on these factors as well as the size of the effect. Several different rules for 

this have been proposed, the most common of which being the need for 10 

observations for each predictor included in the model (227). In addition, Miles and 

Shevlin (240) propose that in order to find a large effect with a high level of power, a 

sample size of 50 is required to include 5 predictor variables. In this study, the 

participant sample size was 43 and 5 predictor variables were used in the combined 

size and shape regression models, suggesting that the reliability of the developed 

regression models could be questioned and is a limitation of this study. Though the 

addition of greater numbers of predictor variables will always improve the accuracy of 

a regression model, the torso shape features extracted using developed analytical 

procedures are independent and describe different aspects of human form. This is 

contrary to individual manual measures of body size (stature, mass, waist and hip 

girth), which have been shown to exhibit high levels of collinearity, preventing them 

being from combined in the same regression model without causing bias in the 

estimation of model coefficients. For this reason, indices, such as BMI, WHR and 

WHT.5R, are often used as a way to combine measures of body size to create proxies 

of body shape, reducing the complexity of human morphology to a single value. 

However, this investigation has shown that distinct features of body shape can be 

measured directly, providing additional information that can be used to complement 

existing derived techniques in the estimation of central adiposity.  

It is acknowledged that anthropometric proxies of adiposity, such as waist girth, 

WHT.5R and measures of shape, will only be able to reliably capture variations in 
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subcutaneous adiposity. This is due partly because subcutaneous adiposity accounts 

for the large majority of total body fat mass (>80%), and because it sits just below the 

skin layer on the surface of the body and therefore is closely associated with superficial 

topography (73,241). Though the focus of much body composition measurement and 

health research has been on the detection of visceral adiposity, the role of 

subcutaneous adiposity and its contribution to insulin resistance has often been 

overlooked until recently. Adverse metabolic effects, such as insulin resistance or 

dyslipidemia dependent on abdominal adiposity, are likely to result from both 

dysfunctional abdominal subcutaneous and visceral adipose tissue accumulation. Since 

abdominal subcutaneous adiposity has much greater mass than visceral adiposity it 

has the potential to contribute to insulin resistance through the release of free-fatty 

acids (95). As a result, the additional information provided by shape measures has the 

potential to play a major role in both epidemiological studies of risk of the metabolic 

syndrome. Shape may be able to identify morphological features that relate to 

variations in subcutaneous adipose tissue quantities in different regions of the body 

that are associated to cardio-metabolic health risks; both in the torso, as well as low 

amounts of subcutaneous thigh fat which has been shown to be an independent risk 

factor for unfavourable glucose and lipid levels (79). Further study is required to 

establish these relationships, as well as the effects on shape measurement caused by 

underlying health issues, such as edema, which could obscure relationships between 

body shape and its composition.  

5.4.1 Limitations 

This study has several limitations that require consideration. First, due to the 

exploratory nature of this investigation only a small sample of participants was 

considered, which only captured a narrow selection of body shapes and sizes, and may 

have affected the reliability of results obtained from both the PCA and multiple linear 

regressions used in this study. Therefore, further study is required to assess a larger 

sample of individuals, exhibiting a more extensive range of body size and shape, to 

determine whether the findings of this investigation are representative of the wider 

population. In addition, this study only considered relationships between external 

body measures and quantities of central subcutaneous adiposity. However, as outlined 

in Chapter Two, the susceptibility of individuals to obesity-related metabolic 
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complications is not necessarily caused by overall fat mass, but depends on the 

distribution of body fat and the ability of subcutaneous adipose tissue to expand, 

preventing the deposition of fat in other organs (12). This concept of adipose tissue 

expandability varies considerably between individuals and has been suggested as being 

an explanation of the distinct metabolic risk profiles exhibited within the population. 

Consequently, though shape features identified in this study are related to quantities 

of subcutaneous fat, the lack of medical assessments, such as MRI scans of visceral 

adipose tissue volume or oral glucose tolerance tests (OGTT), prevent relationships 

between body shape and cardio-metabolic risk factors to be investigated.  

5.5 Conclusion 

This investigation has demonstrated the application of developed methods for 

extracting scale-invariant features from 3D imaging data, which characterise an 

individual's body shape. This characterisation of shape has been shown to contain 

information that is absent from measures used in current anthropometric practice. In 

addition, these identified shape features can complement traditional anthropometrics 

when explaining variations in quantities of subcutaneous abdominal adiposity. Further 

investigation is warranted to apply the developed methods to characterise a large 

cohort of several thousand participants and identify patterns of variation across a 

wider range of body shapes. In addition, future studies should investigate relationships 

that exist between body shape, distributions of body fat and associated health risks, 

such as diabetes and cardiovascular disease. 
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Chapter 6 - Allometry of human morphology within a large population-based cohort  

6.1 Introduction 

The results of Chapter Five demonstrated that scale-invariant features of body shape 

extracted from 3D imaging data can identify variations in human morphology that 

cannot be captured using traditional anthropometric techniques. In addition, these 

shape anthropometrics were shown to complement traditional anthropometrics when 

explaining variations in quantities of subcutaneous abdominal adiposity, measured 

using skinfold callipers. However, a limitation of this study was the size of the 

participant cohort that only captured a narrow selection of body shapes and sizes and 

is therefore not representative of the diverse body types that exist in the wider 

population. Previous literature has suggested that methods of 3D body classification 

require several thousand participants in order to be robust (19) and that estimates of 

allometry between size and shape are weak if a sample only includes a limited range of 

body sizes (181). Previous studies have used 3D imaging to assess variations in external 

dimensions of the human body and categorise distinguishable clusters of individuals 

into body types within large cohorts (19,122). However, these studies have used a 

specific definition of shape, based on the ratios and relative proportions of 1D size 

measures, such as lengths and girths. Though large numbers of size measures can be 

rapidly obtained, this approach discards the shape information captured by 3D imaging 

systems which describe human morphology.  

As outlined in Chapter Two, allometry investigates the dependence of a body's shape 

on its size and is commonly used in anthropology and evolutionary biology to assess 

morphological variations within species (181,201,242). Allometric scaling suggests that 

when body size is altered its shape must also change in a compensatory fashion to 

preserve function and is generally considered the null hypothesis in studies of 

allometry (202). Though many studies have found that allometry is a dominant factor 

contributing to morphological variation within species (201,242), there are aspects of 

shape variation resulting from other environmental and ecological factors which 

cannot be explained by changes in size (181,202,203). Geometric morphometrics and 

size-correction can be used to partition shape variation of biological organisms into an 

allometric component, which is explained by variations in size, and a non-allometric 

component, which cannot be explained by changes in size (181). This chapter details 
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an investigation of allometry between measures of torso size and shape within a large 

population-based cohort. The aim of this study was to determine whether shape 

anthropometrics provide additional information regarding variations in human 

morphology that cannot be captured by existing anthropometric techniques. The 

objectives were to:  

• Characterise the size and shape of individuals within a large cohort. 

• Critically compare information provided by measures of size and shape regarding 

variations in human morphology. 

• Determine the degree of allometric scaling and inter-dependence between 

measures of torso size and shape. 

• Perform size-correction to identify non-allometric variations in torso shape which 

cannot be explained by existing anthropometric techniques.  

6.2 Methods 

6.2.1 Participants 

Body size measures and 3D imaging data of participants analysed in this study were 

provided by the Leipzig Research Center for Civilization Diseases (LIFE). LIFE-Adult is a 

population-based cohort study, which collected extensive phenotype data of over 

10,000 individuals from the city of Leipzig, Germany, with full details found in a 

publication by Loeffler et al. (11). LIFE-Adult covers a main age range between 40-79 

years of age, with deep phenotyping in participants above the age of 60, and only a 

subset of participants aged between 18-39 years. During recruitment citizens were 

sent an invitation letter containing an information leaflet about the study, a response 

form and a postage-paid return envelope. Interested persons were scheduled for an 

appointment at the LIFE study centre and received a lump sum of 20 EUR per visit to 

cover their travel expenses. Basic characteristics of the LIFE-Adult participants are 

shown in Table 6.1. As a prerequisite to enrolment, written informed consent was 

obtained from all participants. The study was approved by the institutional ethics 

board of the Medical Faculty of the University of Leipzig and the responsible data 

protection officer. A formal agreement to access the LIFE-Adult cohort was approved 

by the LIFE Consortium and the Medical Faculty of the University of Leipzig (Appendix 

4). All procedures and documents for this study were approved by the Sheffield Hallam 

University Research Ethics Committee, reference number ER13534279 (Appendix 4).  
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Table 6.1. Basic characteristics of participants in LIFE-Adult cohort. 
 
 
 

 

 
 

SD, Standard deviation. 

6.2.2 Data acquisition  

3D images of participants within the LIFE-Adult cohort were acquired by researchers at 

Leipzig University using a commercial Vitus Smart XXL 3D laser scanner (Human 

Solutions GmbH, Germany), with 3 mm vertical and 1 mm horizontal resolution at 27 

measurement points per square centimetre of the body surface. 3D imaging was 

carried out in accordance with ISO 20685-1:2018 standards (140). Participants were 

asked to undress down to underwear and stockings and to remove any hair accessories 

and jewellery. Longer hair was required to be hidden under a tight-fitting bathing cap 

in a way not substantially changing the shape of the head. The 7th neck vertebra had 

to be exposed and ears had to be uncovered. Participants were advised to stand with 

feet shoulder-width apart with thighs not touching below the crotch, if possible, and 

weight distributed equally on both feet. Participants were asked to assume an upright 

and relaxed posture, standing as naturally as possible with arms slightly spread and 

elbows bent. They were asked to make fists, thumbs outside and pointing forward, 

with their eyes kept open during scanning, but not following the laser beam. 140 body 

size measures (lengths, girths, angles and aggregated measures) were automatically 

extracted from each acquired 3D image using Anthroscan ScanWorX 2.9.9b software 

(Human Solutions GmbH, Germany). Extracted body measures were based on the 

location of anatomical landmarks determined by proprietary automatic landmark 

identification algorithms within the Anthroscan ScanWorX software.  

6.2.3 Pre-processing of extracted size measures 

140 direct and indirect size measurements were provided alongside the 3D images of 

each participant. Direct measures include: length measures of body segments and 

distance measures between anatomical landmarks; girth measures of body segments 

and aggregated body characteristics: body mass index (BMI), waist-hip ratio (WHR), 

waist-height ratio (WHtR). Indirect quantities refer to those given relative to 

Descriptive 

Male Female 

Mean ± SD Min.  Max. Mean ± SD Min.  Max. 

n 4,578   5,086   
Age (years) 58 ± 13 18 81 57 ± 12 19 80 
Stature (cm) 176.1 ± 7.3 150.5 206.5 164.0 ± 7.0 141.6 188.4 
Mass (kg) 86.0 ± 14.5 49.6 174.7 72.1 ± 14.3 40.0 182.8 
BMI (kg/m2) 27.6 ± 4.2 16.5 50.2 27.0 ± 5.3 16.2  55.6 
WHR 0.99 ± 0.07 0.74 1.21 0.87 ± 0.07 0.65 1.16 
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predefined reference lines or planes, which are not part of the 3D image, such as 

distance to vertical. Body size measures were extracted automatically from the 3D 

images using proprietary algorithms within the Anthroscan ScanWorX software, in 

accordance with ISO 20685-1:2018 (140). Automatic methods enable large numbers of 

body measures to be rapidly extracted from 3D imaging data; however, they do not 

always correspond directly with measures acquired using manual techniques. Previous 

studies conducted by researchers at Leipzig University have shown that these 

automatically extracted body measures demonstrate good agreement with manual 

body measures (overall concordance correlation coefficient (OCCC) > 0.77) (55).  

Removal of participants with missing measurements 

Not all size measures could be estimated for all participants in the cohort, due to 

errors in the automatic landmark identification algorithms within the ScanWorX 

software. As a result, of the original 9,664 participants in the raw data matrix, 455 

participants that were missing body size measures were removed from the analysis. It 

was decided that participants missing excessive volumes of size measures would 

negatively impact the allometric analysis. The resulting data matrix consisted of 34 

body size measures (Table 6.2) for 9,209 participants (4,405 male, 4,804 female).  

Normalisation of body size measures 

When performing multivariate analyses with variables measured on different scales, 

such as clustering, PCA and multiple regression, variables are often standardised to aid 

interpretation (243). To facilitate comparisons between individuals of differing heights, 

measures of each participant were normalised by dividing all extracted torso size 

measures of each participant by their height as performed in Loeffler-Wirth et al. (19). 

Finally, these height normalised torso size measures were converted into z-scores, 

providing a common scale in units of standard deviations to enable subsequent stages 

of analysis. However, it has previously been shown that body proportions, such as 

segment lengths and girths, increase disproportionally with increased body height 

(244). Thus, to understand how each extracted body size measure would truly be 

expected to change with increased height, linear models were created using ordinary 

least squares regression to estimate the scaling exponent power, 𝛽𝑖, in the allometric 

models: 

𝐵𝑜𝑑𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖 =  𝛼𝑖𝐻𝛽𝑖                                Equation 6.1  
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Where 𝑖 represents measure 𝑖, 𝛼 is a constant, and H represents height in metres. 

These models were log-transformed: 

ln(𝐵𝑜𝑑𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖) = ln (𝛼𝑖𝐻
𝛽𝑖)                          Equation 6.2 

By applying logarithms, Equation 6.2 becomes: 

ln(𝐵𝑜𝑑𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖) = ln(𝛼𝑖) +  𝛽𝑖ln (𝐻)                   Equation 6.3 

If 𝑦𝑖 = ln(𝐵𝑜𝑑𝑦 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖) , 𝑥 = ln (𝐻) and an error term is added, the linear model 

becomes: 

𝑦 = ln(𝛼𝑖) +  𝛽𝑖𝑥 + 𝜀𝑖                                    Equation 6.4 

The estimated body size measure powers (reported as mean ± SE) are shown in Table 

6.2. 

Table 6.2. Estimated coefficients of linear models for allometric height normalisation for participants in 
LIFE-Adult cohort. 

 Males (n = 4,405) Females (n = 4,804) 
Size Measure ln(𝛼) 𝛽 ln(𝛼) 𝛽 

Weight 3.52 ± 0.03 1.64 ± 0.05 3.75 ± 0.03 1.04 ± 0.06 
Waist girth 4.62 ± 0.03 -0.01 ± 0.04 4.47 ± 0.03 -0.48 ± 0.05 
Belly circ.  4.56 ± 0.02 0.12 ± 0.04 4.61 ± 0.02 -0.09 ± 0.04 
Bust chest girth 4.54 ± 0.02 0.25 ± 0.03 4.71 ± 0.02 -0.17 ± 0.04 
Buttock girth 4.4 ± 0.01 0.42 ± 0.03 4.62 ± 0.02 0.10 ± 0.03 
High hip girth 4.54 ± 0.02 0.15 ± 0.04 4.62 ± 0.02 -0.06 ± 0.04 
High waist girth 4.6 ± 0.02 0.01 ± 0.04 4.7 ± 0.02 -0.46 ± 0.05 
Hip girth 4.41 ± 0.01 0.43 ± 0.03 4.61 ± 0.02 0.15 ± 0.03 
Middle hip 4.51 ± 0.02 0.21 ± 0.04 4.72 ± 0.02 -0.17 ± 0.04 
Torso width waist 3.85 ± 0.03 -0.03 ± 0.06 3.93 ± 0.03 -0.36 ± 0.06 
Under bust circ. 4.52 ± 0.02 0.2 ± 0.03 4.61 ± 0.02 -0.26 ± 0.04 
Waistband  4.44 ± 0.02 0.26 ± 0.04 4.55 ± 0.02 0.00 ± 0.04 
Distance neck - hip 3.6 ± 0.01 0.93 ± 0.01 3.55 ± 0.01 0.99 ± 0.01 
Side upper torso left 2.58 ± 0.02 1.11 ± 0.04 2.55 ± 0.02 1.18 ± 0.04 
Side upper torso right 2.57 ± 0.02 1.10 ± 0.04 2.48 ± 0.02 1.28 ± 0.04 
Cross shoulder 3.77 ± 0.01 0.26 ± 0.02 3.85 ± 0.01 -0.02 ± 0.03 
Across front width  3.69 ± 0.02 0.17 ± 0.04 3.79 ± 0.02 -0.14 ± 0.04 
Width armpits 3.71 ± 0.02 0.25 ± 0.04 3.89 ± 0.02 -0.17 ± 0.05 
Across back width 3.54 ± 0.02 0.36 ± 0.03 3.56 ± 0.02 0.18 ± 0.04 
Neck - waist  3.34 ± 0.01 0.78 ± 0.02 3.38 ± 0.01 0.67 ± 0.02 
Neck left - waist back  3.45 ± 0.01 0.76 ± 0.02 3.48 ± 0.01 0.63 ± 0.02 
Neck right - waist back 3.45 ± 0.01 0.74 ± 0.02 3.48 ± 0.01 0.61 ± 0.02 
Across back width 2.82 ± 0.03 0.82 ± 0.05 2.75 ± 0.02 0.99 ± 0.05 
Waist - high hip back 0.55 ± 0.05 2.21 ± 0.1 -0.65 ± 0.09 4.36 ± 0.17 
Waist - buttock 2.36 ± 0.02 1.13 ± 0.03 2.18 ± 0.02 1.50 ± 0.04 
Waistband - buttock 2.15 ± 0.05 0.58 ± 0.08 2.48 ± 0.02 0.50 ± 0.05 
Crotch length 4.14 ± 0.01 0.58 ± 0.02 4.13 ± 0.01 0.45 ± 0.03 
Crotch length front 3.51 ± 0.02 0.51 ± 0.03 3.42 ± 0.02 0.39 ± 0.03 
Crotch length rear 3.39 ± 0.01 0.64 ± 0.02 3.45 ± 0.01 0.51 ± 0.02 
Waist - buttock (L) 2.37 ± 0.02 1.12 ± 0.03 2.15 ± 0.02 1.53 ± 0.04 
Waist - buttock (R) 2.36 ± 0.02 1.13 ± 0.03 2.15 ± 0.02 1.55 ± 0.04 
Waistband-buttock (L) 1.66 ± 0.06 0.99 ± 0.11 2.33 ± 0.03 0.67 ± 0.06 
Waistband-buttock (R) 1.66 ± 0.06 1.00 ± 0.11 2.32 ± 0.03 0.69 ± 0.06 
Torso length 2.88 ± 0.01 1.04 ± 0.02 2.86 ± 0.01 1.11 ± 0.02 

Results are displayed as X ± SE. 
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6.2.4 3D imaging data post-processing 

Data processing algorithms described in Chapter Three, were used to process the 3D 

imaging data. These scripts had to be modified to account for the differences in 

anatomical landmark locations marked on the 3D images of participants in the LIFE-

Adult cohort. Previously in Chapters Three, Four and Five, bony anatomical landmarks 

were manually palpated and marked on the skin of each participant during data 

collection, and then digitised during post-processing. However, as described in Section 

6.2.2, landmarks within the LIFE-Adult 3D images were identified automatically by 

proprietary software, which did not always correspond to the manually palpated 

landmarks, defined in Chapter Three. An investigation was therefore conducted, using 

a subset of 100 participants from the LIFE-Adult cohort, to determine whether 

landmarks identified by Anthroscan software could be used to process 3D images as in 

Chapter Three, Four and Five. 

Identification of inferior and superior boundaries of the torso segment 

Previously the inferior torso segment boundary was defined at the height of the 

anterior superior iliac spine (ASIS) markers, while the superior torso segment boundary 

was defined at the height of the xiphoid process. However, locating these anatomical 

points requires manual palpation and therefore were not identified by the automatic 

landmarking algorithms within the ScanWorX software. Examination of landmarks 

identified by the ScanWorX software highlighted several possible alternatives that 

could be used to define the inferior and superior boundaries of the torso segment. 

Figure 6.1 shows a typical 3D image from the LIFE-Adult dataset, with alternative 

landmarks for the inferior and superior torso segment boundaries also presented. 

Exploration of these alternative landmarks indicated that several were unreliably 

identified; either they were not identified or were identified incorrectly on the 3D 

image. 
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 Figure 6.1. Typical 3D body scan provided by the Vitus XXL Smart Laser Scanner and selected anatomical 
landmarks identified within the software. 

 

Of the potential inferior anatomical landmarks, identification of the ScanWorX point 

'11330' (buttock height) was the most reliable. The location of this landmark 

corresponds to the gluteal (hip) girth location, defined by ISAK guidelines as: "The 

gluteal girth is taken at the level of the greatest posterior protuberance of the 

buttocks." (53) (p84). This landmark is lower than the ASIS markers used in previous 

chapters to define the inferior boundary of the torso segment. However, its ease of 

identification within the 3D images and its agreement with ISAK anthropometric 

guidelines made this landmark suitable for use as the inferior boundary of the torso 

segment. Of the potential superior anatomical landmarks, only the ScanWorX 'Neck 

Front' landmark was reliably identified. However, the 'Neck Front' landmark was 

considerably higher than the xiphoid process landmark used as the superior boundary 

of the torso segment previously. If this landmark was used as the superior boundary of 

the torso segment then the participant shoulder and armpit areas would be within the 

region of interest, introducing complications into the data processing stage. However, 

since the buttock and neck landmarks both provided reliably identified points within 

the 3D images it was posited that it would be possible to calculate proportional 

distances along the length of the 3D images to define the inferior and superior 

boundaries of the torso segment.  

Landmark 
ID 

Anatomical              
Landmark 

Superior/
Inferior 

Landmark 
ID 

Anatomical              
Landmark 

Superior/ 
Inferior 

A '3D Waistband Left' Inferior E Buttock ('11330') Inferior 

B '3D Waistband Right' Inferior F 'Neck Front' Superior 

C '3D Waistband Front' Inferior G 'Breast Front' Superior 

D 'Crotch Center' Inferior H 'Scapula Point' Superior 
   I 'Midriff Girth' Superior 

A B 

E 

H

F

G

I

C 
D 
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An investigation was conducted, using 3D imaging data of 90 participants with 

manually palpated landmarks, presented in Chapters Three, Four and Five, to 

determine the proportionate distance of the xiphoid process landmark along the 

length of the torso segment. It was determined that the xiphoid process landmark was 

60 ± 1.5% of the proportionate vertical distance between the buttock and neck height 

locations (Figure 6.2). It is possible that these differences between the manually 

palpated xiphoid location and the calculated location could influence the results of 

subsequent analysis of torso variation. However, it has been shown that trained 

anthropometrists exhibit intra-observer errors of approximately 5 mm when manually 

palpating the xiphoid process landmark (106), which may also contribute to these 

differences in location. It was decided that this method was sufficient for determining 

the inferior and superior boundaries of the torso segment. 

 
Figure 6.2. Determining the superior and inferior boundaries of the torso segment of interest. 

 

Creating local anatomical coordinate system 

The orientations of images acquired by the Vitus Smart XXL 3D laser imaging system 

are based on the Vitus coordinate system (Figure 6.3a), consequently if participants 

were not scanned facing in the frontal direction of the scanner differences in 

orientation in the acquired imaging data were present (Figure 6.3b). A local anatomical 

co-ordinate system was therefore required to remove differences in location and 

orientation between participants in the LIFE-Adult cohort. As described in Chapter 

Three, the centre of each torso image was defined as the midpoint between the 

xiphoid process and the 9th thoracic vertebra landmarks, with the vector between 

these used as the sagittal axis. However, as these palpated anatomical landmarks were 

60 % 

Neck Height 

Buttock Height 



106 
 

not present in the LIFE-Adult 3D imaging data, an alternative method to create a local 

co-ordinate system was required. 

 

Figure 6.3. Vitus scanner coordinate system. a) Correct positioning of participant; b) Incorrect 
positioning of participant. 

 

Initial alignment of the 3D images was required to ensure that the anterior and 

posterior aspects of the torso segment of each participant were facing in the positive 

and negative directions on the x-axis for further processing, respectively. This was 

achieved by aligning the vector between the left and right shoulder landmarks, 

identified by the ScanWorX software, with the x-axis of the global coordinate system. A 

slice of data points was extracted from each 3D image at the estimated xiphoid 

process location, which contained features present on the surface of the torso that 

could be used to define the local coordinate system (Figure 6.4a). The inferior-superior 

z component of all raw data points within this slice was disregarded, considering the 

planar dimensions of all data points only in the x-y plane (Figure 6.4b). The local 

maxima and minima of the extracted point slice data along the x-axis were then 

identified on the posterior and anterior aspects of the torso, respectively (Figure 6.4b). 

These localised peaks in the point slice data were assumed to correspond to the 

approximate locations of the xiphoid process and vertebra landmarks, which would 

otherwise be manually palpated. Experimentation with the subset of 100 3D images 

from the LIFE-Adult cohort demonstrated that these simple features could be 

identified reliably for all individuals. As a result, the centre of each torso segment could 

then be defined as the midpoint between the identified anterior and posterior 

landmarks, in the same manner as described in Section 3.3.2.  

a) b) 

Z 

Y 

Z 

Y 

X X 
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Figure 6.4. Creating local coordinate system torso segment. a) Extract cross-sectional slice from 3D 
image; b) Identification of anterior, posterior and midpoint landmarks in slice; c) Creation of coordinate 

system within torso segment. 

As described in Section 3.3.2, a vector from the anterior landmark to the posterior 

landmark identified on the surface of the 3D image was defined the sagittal axis of the 

local coordinate system. In the absence of anatomical landmarks on the lateral aspect 

of the torso segment, the cross product of the sagittal axis and an angled vector on the 

x-y plane was used to define the longitudinal axis, assuming that the participant was 

stood parallel to the global vertical axis. This is a limitation, since it has been shown in 

Chapter Four that a participants' posture during imaging can vary considerably in the 

lateral direction. Finally, the transverse axis was defined as being perpendicular to the 

plane formed by the sagittal and longitudinal axes (Figure 6.4c). This anatomical axis 

system ensured differences in translation and orientation between participants were 

removed during data processing.  

Torso shape feature detection 

Following alignment, the remaining stages of the analytical procedure detailed in 

Chapter Three were carried out: segmenting the 3D images to remove coordinate 

points not related to the torso region of interest; extracting features of torso shape 

variation. For this, 25 separate 2mm thick bands of 3D coordinate points were 

extracted from each torso segment point cloud, at proportionate distances along their 

c) 

b) a) 

Anterior 

Posterior 
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length to account for the increase in the region of interest. The centroid size of all 

extracted data point slices were scaled by a single scale factor to ensure that all torso 

segments were of uniform overall size, removing differences in scale. The first 10 

frequency coefficients present within each data slice were then extracted using a fast-

Fourier transform algorithm, reducing the total number of variables representing each 

participant to 250 complex Fourier coefficients. Finally, a principal components 

analysis (PCA) was carried out to detect independent features of torso shape that 

exhibited the highest variation within the LIFE-Adult cohort. PCA was carried out for all 

participants in the LIFE-Adult cohort, both male and female, to capture all possible 

torso shape variations present within the sample. This enabled differences between 

males and females for each of the identified shape features to be evaluated. 

6.2.5 Statistical analysis 

To ensure the selection of suitable statistical analysis procedures the parametric 

nature of all variables were first explored within SPSS (IBM SPSS Statistics 24.0). 

Histograms and Q-Q plots were visually inspected and a Shapiro-Wilks test was 

conducted to assess the normality of all extracted size measures and shape features. 

Previous studies have shown that there are underlying sexual dimorphisms in adipose 

tissue biology and deposition, caused by genetic and hormonal factors, which cause 

differences in body size and shape between males and females (65,66). Consequently, 

sex-specific means and standard deviations for each torso shape principal component 

and size measure were calculated. Independent t-tests were conducted to determine if 

there were statistically significant differences between male and female participants in 

all 34 traditional anthropometrics (listed in Tables 6.3 & 6.4) and shape PC's. Pearson's 

product-moment correlations, r, were used to assess linear relationships between 

individual size measures, as well as between measures of size and shape. P-values < 

0.001 were considered statistically significant, because with large sample sizes 

statistical tests will often demonstrate significant differences when using a typical 

alpha level (0.05) (245). The coefficient of determination, R2, was also calculated as a 

measure of effect size, to assess the practical importance of correlations between 

individual variables independent of sample size (245). Correlations and effect sizes 

were calculated within SPSS (IBM SPSS Statistics 24.0). In addition, mutual information 

(I(X,Y)) - a non-parametric measure of total dependence between random variables 
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(246) - was calculated to assess whether there was any degree of dependence, either 

linear or nonlinear, between measures of size and shape. Mutual information was 

calculated within MATLAB (version 9.2, Mathworks, USA) using kernel estimates of 

mutual information (247). 

Allometry is typically assessed by a multivariate regression of shape variables onto a 

measure of size, to determine the expected change in shape per unit increase in size 

(181). For this investigation, allometry was examined using partial least squares 

regression (PLSR) models to determine how much the variance in each identified torso 

shape principal component depends on traditional anthropometrics extracted from 3D 

imaging data. Originally proposed by Wold (248), PLSR is a generalisation of multiple 

linear regression (MLR) that combines elements of linear regression and factor 

analysis. PLSR is particularly useful for this analysis, because unlike MLR it can perform 

analysis with a large number of strongly collinear predictor variables (249), which has 

been shown to be the case with measures of body size (2,122). PLSR reduces the 

predictor (x) and response (y) variables to principal components. The y-component 

scores are then predicted from the x-components creating several latent factors, which 

in turn are used to predict the raw y-variable (250). PLSR is reported to be more 

efficient than PCA as it takes the response variable into account (251). According to 

Wold et al. (248) if y variables are correlated they should be analysed together, 

however, if the y variables are independent, separate PLSR models should be created 

for each. Since the torso shape principal components are orthogonal, separate PLSR 

models were created for each shape principal component with all torso size measures 

used as predictor variables. PLSR analyses were conducted within MATLAB (version 

9.2, Mathworks, USA) using the plsregress MATLAB library.  

The mean squared prediction error (MSEP) by 10-fold cross-validation was calculated 

to determine the number of components required for each PLSR model, preventing 

overfitting of the model to ensure the same data are not used to fit a model and 

estimate prediction error. The importance of each size measure within each PLSR 

model was determined using the variable importance in projection (VIP) statistic. VIP is 

the weighted sum of squares of the PLSR-weights, with the weights calculated from 

the amount of y-variance of each PLSR component (248,252). Wold (248) previously 

suggested that predictor variables demonstrating a VIP ≥ 0.8 can be considered to 
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significantly contribute to the model with high predictive power. VIP's were calculated 

within MATLAB (version 9.2, Mathworks, USA) using libPLS (253) MATLAB library.  

Stepwise MLR analyses were performed to determine how much variance in traditional 

anthropometrics could be explained by the torso shape PCs. As demonstrated in 

Chapter Five, shape PCs are uncorrelated and can be combined as predictor variables 

within a single MLR model, without multicollinearity reducing the precision of the 

coefficient estimates of the regression model (236,254). Separate MLR models were 

created to estimate each individual size measure from combinations of the torso shape 

PCs. The predictor variable that had the strongest correlation with the outcome 

variable was entered into the model first and was retained if it contributed significantly 

to the model. Subsequent predictor variables that had the highest semi-partial 

correlations with the outcome variable were then added, but were only retained if 

they contributed significantly to the model (254). MLR analyses were executed within 

SPSS (IBM SPSS Statistics 24.0). 

Sex-specific allometric models were created to assess the inter-dependence of 

measures of torso size and shape within the LIFE-Adult cohort. For this, PLSR models 

were created to estimate changes in each torso shape PC from unit changes in torso 

size, using coefficients from the previously calculated PLSR models. Changes in torso 

shape were estimated across the entire range of torso size measures within the LIFE-

Adult cohort, with height measures constant at 180 cm and 160 cm for the male and 

female allometric models, respectively.  

6.3 Results 

6.3.1 Torso shape features within LIFE-Adult cohort  

PCA produced 9 PCs that captured 90.6 % of the total torso shape variation within the 

LIFE-Adult cohort (Figure 6.5). PCs which accounted for less than 1% of the total 

variance in torso shape were removed from the analysis. Figure 6.5 shows the 

maximum deviations from the average torso shape of the sample along each of these 

PCs. Blue and red regions on the images represent areas that protrude less, or more 

than the average torso shape of the cohort, respectively. The torso shape features 

identified within the LIFE-Adult cohort resemble those identified in Chapter Five, such 

as variations in anterior-posterior weighting (PC1), abdominal roundness (PC3), lateral 

asymmetry (PC4) and mass distributions along the length of the torso segment (PC2). 
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PC's 2, 5 and 7 in the LIFE-Adult cohort clearly represent differences between male and 

female body shapes.  

 

 

Figure 6.5. First 9 principal components capturing 90.6 % of variation in torso shape in the LIFE-Adult 
cohort, shown as the maximum positive (left) and negative (right) deviations from the sample mean. 

Blue and red regions represent areas that protrude less, or more than the average torso, respectively. 

Statistical difference testing found significant differences between males and females 

for all size and shape anthropometrics collected in this study (Appendix 4). Figure 6.6 

shows the mean torso shapes for males and females within the LIFE-Adult cohort, 

demonstrating clear differences in mass distribution between male and female body 

shapes. Males have mass located more centrally along the torso segment, while 
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females have more mass in the lower torso and in the bust region. As a result, all 

subsequent analyses were stratified by sex. 

 
Figure 6.6. Average torso shape of male (left) and female (right) participants in the LIFE-Adult cohort. 

 

6.3.2 Relationships between size and shape measures 

There were moderate to strong correlations between the majority of extracted size 

anthropometrics, for both male and female participants (Appendix 4). In particular, 

individual torso girth measures were strongly correlated with each other and with 

body weight and torso width measures. These correlations were statistically significant 

(p < 0.01) and had medium to large effect sizes. However, girth measures were less 

strongly correlated with torso length and distance measures, such as side upper torso 

length and waist-buttock distance. Though these correlations were statistically 

significant (p < 0.01), they only demonstrated small effect sizes. Shape PC3 was 

strongly correlated with torso girth measures and demonstrated moderate to strong 

correlations with body weight and torso width measures, for both male and female 

participants. These correlations were statistically significant (p < 0.01) and 

demonstrated medium to large effect sizes. Shape PC's 1, 2 and 5 demonstrated weak 

to moderate correlations with torso girth and width size measures, suggesting 

reasonable linear relationships between these measures. However, though these 

correlations were statistically significant (p < 0.01), they only demonstrated small to 

medium effect sizes. The remaining shape PCs demonstrated only weak to no linear 

correlations with traditional anthropometrics. In addition, according to calculated 

mutual information primarily linear dependence was observed between measures of 

body size and shape, with low amounts of nonlinear dependence.  
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6.3.3 Regression analysis 

Predicting shape from size - Partial Least Squares Regression (PLSR)  

Size measures explained between 3.2-84.4% and between 4.3-72.7% of shape PC 

variation for male and female participants, respectively. Between 44-65% of predictor 

size measures used within each PLSR model demonstrated VIP values ≥ 0.8 for males 

(Table 6.3), while 41-82% of size measures had VIP values ≥ 0.8 for females (Table 6.4), 

with different combinations of size measures contributing to the prediction of shape.  

 

Table 6.3. Variable importance in projection statistic scores and predicted variance in male PLSR models. 
 

 

Shape PCs 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Shape explained by size: 64.9% 57.9% 84.4% 3.2% 66.5% 42.5% 56.8% 15.2% 38.3% 

Size Measure          
Weight 0.76 0.62 1.01* 1.20* 0.52 0.69 0.63 0.82* 0.43 
Waist girth 1.15* 1.17* 1.26* 0.40 0.80* 0.89* 1.30* 0.96* 0.78 
Belly circ.  1.01* 0.63 1.38* 0.33 1.29* 0.63 1.50* 0.73 0.38 
Bust chest girth 1.03* 1.66* 1.30* 0.28 2.15* 1.37* 0.73 0.94* 0.82* 
Buttock girth 0.90* 1.91* 1.19* 0.48 0.56 0.90* 1.34* 1.03* 1.57* 
High hip girth 0.95* 0.52 1.44* 0.34 1.32* 0.56 1.41* 0.94* 0.28 
High waist girth 1.23* 1.33* 1.17* 0.50 0.59 0.90* 1.07* 0.84* 0.80* 
Hip girth 0.95* 1.97* 1.21* 0.32 0.53 0.99* 1.42* 1.34* 1.58* 
Middle hip 0.89* 0.55 1.59* 0.48 1.28* 0.51 0.88* 1.26* 0.70 
Torso width waist 2.39* 1.19* 1.11* 0.53 1.39* 2.02* 1.00* 0.98* 0.76 
Under bust circ. 1.05* 1.62* 1.39* 0.58 2.36* 0.74 0.82* 0.97* 0.84* 
Waistband  0.88* 1.09* 1.27* 0.41 0.93* 1.03* 0.79 1.48* 0.74 
Distance neck - hip 0.63 0.56 0.31 0.71 0.51 1.16* 0.83* 1.23* 1.33* 
Side upper torso left 0.49 0.52 0.53 0.49 0.87* 0.37 0.49 0.39 0.80* 
Side upper torso right 0.47 0.54 0.50 1.54* 0.79 0.55 0.49 0.52 0.71 
Cross shoulder 0.76 0.73 1.11* 0.50 1.07* 0.76 0.56 0.60 0.37 
Across front width  0.67 0.70 0.86* 0.54 0.93* 0.41 0.57 0.70 0.72 
Width armpits 1.30* 0.98* 0.90* 0.83* 1.39* 0.60 0.47 0.54 0.20 
Across back width 0.87* 0.85* 1.13* 0.65 1.02* 0.82* 0.60 0.71 1.11* 
Neck - waist  0.51 0.40 0.50 0.81* 0.88* 0.83* 0.64 0.51 1.01* 
Neck left - waist back  0.59 0.41 0.52 1.07* 0.96* 1.01* 0.62 0.63 0.94* 
Neck right - waist back 0.68 0.54 0.52 0.81* 0.90* 1.03* 0.60 0.47 0.93* 
Across back width 0.56 0.54 0.32 0.55 0.69 0.65 0.76 0.44 1.24* 
Waist - high hip back 0.53 0.40 0.40 0.92* 0.48 1.21* 0.80* 1.21* 0.59 
Waist - buttock 1.56* 1.39* 0.75 1.49* 0.50 1.59* 0.88* 1.24* 1.34* 
Waistband - buttock 1.19* 1.65* 1.30* 0.81* 0.81* 1.87* 1.24* 1.54* 2.14* 
Crotch length 1.01* 0.57 1.25* 0.33 0.64 0.55 1.29* 0.78 0.80* 
Crotch length front 0.91* 0.59 1.21* 0.80* 0.71 0.65 1.42* 1.33* 1.72* 
Crotch length rear 1.45* 0.94* 1.15* 0.97* 0.70 0.53 1.26* 1.31* 0.86* 
Waist - buttock (L) 0.64 0.60 0.50 2.80* 0.41 1.23* 0.79 1.13* 0.55 
Waist - buttock (R) 0.66 0.66 0.54 2.65* 0.43 1.21* 0.79 1.20* 0.61 
Waistband-buttock (L) 1.04* 1.02* 0.67 1.04* 0.75 1.00* 1.48* 0.91* 1.28* 
Waistband-buttock (R) 1.05* 1.06* 0.69 0.58 0.78 1.02* 1.52* 1.10* 1.29* 
Torso length 0.84* 0.50 0.54 1.17* 0.59 1.14* 1.00* 1.41* 0.50 

*Variable importance in projection (VIP) values ≥ 0.8, shown in grey fields.
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Table 6.4. Variable importance in projection statistic scores and predicted variance in female PLSR 
models. 

 

Shape PCs 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Shape explained by size: 65.6% 51.1% 72.7% 4.3% 62.2% 29.5% 57.0% 7.3% 35.1% 

Size Measure          
Weight 0.82* 0.88* 1.10* 1.02* 0.54 0.95* 0.83* 1.24* 0.76 
Waist girth 1.03* 0.89* 1.13* 0.82* 0.81* 0.94* 0.87* 0.80* 0.80* 
Belly circ.  0.94* 0.63 1.21* 0.84* 0.99* 0.90* 1.41* 0.51 0.94* 
Bust chest girth 1.08* 1.57* 1.20* 1.03* 2.01* 1.10* 0.62 0.30 1.65* 
Buttock girth 0.88* 1.59* 1.22* 0.76 0.58 1.01* 1.16* 0.67 1.46* 
High hip girth 0.91* 0.47 1.30* 0.82* 0.92* 0.84* 1.46* 0.49 0.59 
High waist girth 1.13* 1.21* 1.05* 0.85* 0.67 0.75 0.59 0.33 0.85* 

Hip girth 0.89* 1.73* 1.29* 0.76 0.55 1.27* 1.27* 0.44 1.53* 
Middle hip 0.95* 0.50 1.50* 0.78 0.65 0.76 0.78 0.46 0.52 
Torso width waist 1.75* 1.33* 0.97* 0.92* 1.31* 1.10* 0.76 1.84* 1.29* 
Under bust circ. 1.09* 1.57* 1.34* 1.02* 0.91* 0.73 1.03* 1.88* 0.47 
Waistband  1.04* 0.48 1.11* 0.80* 0.94* 1.24* 1.57* 0.58 0.64 
Distance neck - hip 0.87* 0.61 0.46 0.46 1.17* 0.71 0.65 1.15* 1.41* 
Side upper torso left 0.53 0.51 0.44 0.43 0.51 0.83* 0.63 0.76 0.44 
Side upper torso right 0.60 0.51 0.45 1.01* 0.63 1.03* 0.60 0.66 0.50 

Cross shoulder 0.91* 0.74 1.11* 0.99* 0.90* 0.70 0.62 0.94* 0.73 
Across front width  0.83* 0.79 0.92* 0.69 0.75 0.78 0.61 1.33* 0.99* 
Width armpits 0.94* 0.95* 0.90* 1.22* 0.85* 0.82* 0.76 0.91* 0.46 
Across back width 1.02* 0.65 1.14* 0.88* 0.99* 0.55 0.60 0.35 1.20* 
Neck - waist  0.48 0.67 0.56 0.56 0.47 0.92* 0.83* 0.35 1.06* 
Neck left - waist back  0.60 0.59 0.61 0.97* 0.68 1.29* 0.73 0.60 0.41 
Neck right - waist back 0.66 0.73 0.61 1.12* 0.71 1.32* 0.75 0.74 0.42 
Across back width 0.58 0.61 0.26 0.68 0.38 0.86* 0.78 1.07* 0.87* 
Waist - high hip back 0.95* 0.70 0.62 0.51 1.64* 1.11* 0.86* 1.01* 0.64 
Waist - buttock 1.48* 1.51* 0.97* 0.48 1.38* 1.40* 0.87* 0.54 1.31 
Waistband - buttock 1.35* 2.05* 1.31* 0.82* 0.83* 0.98* 0.46 0.57 0.73 
Crotch length 0.81* 0.64 1.29* 0.77 0.71 0.63 1.89* 0.78 0.85* 
Crotch length front 0.96* 0.70 1.19* 0.73 0.62 0.68 1.88* 2.27* 1.53* 
Crotch length rear 1.28* 0.98* 1.29* 0.81* 0.82* 0.55 1.87* 1.55* 1.07* 
Waist - buttock (L) 0.99* 0.67 0.86* 2.39* 1.47* 1.32* 0.79 0.58 0.69 
Waist - buttock (R) 1.02* 0.72 0.95* 1.90* 1.46* 1.15* 0.75 0.55 0.85* 
Waistband-buttock (L) 1.10* 0.96* 0.52 1.41* 0.87* 0.79 0.47 0.71 0.85* 
Waistband-buttock (R) 1.12* 1.01* 0.57 0.98* 0.87* 0.70 0.47 0.83* 0.84* 
Torso length 1.23* 0.90* 0.70 1.25* 1.78* 1.90* 0.91* 1.80* 1.94* 

*Variable importance in projection (VIP) values ≥ 0.8, shown in grey fields. 

Predicting size from shape - Multiple Linear Regression (MLR) 

Combinations of shape PCs explained between 5.8-82.8% and between 4.8-80.1% of 

the variance in torso size measures for male and female participants, respectively. 

Similar to the PLSR models, the results of the MLR analysis demonstrate that though 

shape anthropometrics can predict some of the variation in torso size measures, there 

are residual components of torso size variation which cannot be explained by torso 

shape.  
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6.3.4 Allometric model between torso size and shape measures in LIFE-Adult cohort 

Shape variations explained by changes in size  

Figures 6.7 and 6.8 present the predicted (allometric) variations in all identified torso 

shape features corresponding to unit changes in waist girth measures for males and 

females, respectively. 

a) 

 

b) 

   
Waist Girth: 68 cm Waist Girth: 110 cm Waist Girth: 152 cm 

  

Figure 6.7. Allometric scaling between size and shape measures for male participants. a) Predicted 
changes in shape features using PLSR models; b) Reconstructed allometric torso shapes for males with 

waist girths of 68, 110 and 152 cm.
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a) 

 

b)   

   

Waist Girth: 59 cm Waist Girth: 102 cm Waist Girth: 143 cm 

  

Figure 6.8. Allometric scaling between size and shape measures for female participants. a) Predicted 
changes in shape features using PLSR models; b) Reconstructed allometric torso shapes for females with 

waist girths of 59, 102 and 143 cm. 

There are strong allometric relationships between torso size and shape PCs 1, 2, 3 and 

5, with increases in torso size corresponding to considerable changes in these shape 

features for both males and females (Figure 6.7a & 6.8a). These predicted changes in 

torso shape are visualised as reconstructed torso meshes for the smallest, mean and 

largest waist girth values within the LIFE-Adult cohort for males (Figures 6.7b) and 

females (Figure 6.8b). Increases in torso size correspond to greater mass and increased 

curvature on the anterior aspect of the torso segment for both males and females. 

Though, as described in Section 6.3.1, males appear to exhibit these changes primarily 
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in the central region of the torso, while females exhibit these changes initially in the 

lower torso and bust region. However, at the largest torso sizes changes in shape also 

occur across the rest of the anterior aspect of the torso segment for female 

participants.  

Shape variations unexplained by changes in size 

Figures 6.9a and 6.10a show the predicted torso shapes for individuals with the 50th 

percentile waist girth measure according to the developed allometric models, for 

males (100 cm) and females (91 cm), respectively. Figures 6.9b and 6.10b show 

examples of observed torso shapes for individuals within the LIFE-Adult cohort who all 

have waist girth measures at the 50th percentile. Although these individuals all have 

the same waist girth they differ considerably from the predicted torso shape, due to 

non-allometric variations which cannot be explained by changes in size measures. 

Figures 6.9c and 6.10c show boxplots displaying the amount of residual (non-

allometric) shape variation present in the developed PLSR models for each torso shape 

PC for male and female participants, respectively. These residuals represent size-

corrected shape variables, which are uncorrelated with changes in the size measures 

used as predictor variables in the PLSR models. Outliers were observed for each of the 

shape PCs, representing the extreme variations in torso shape from the mean of the 

sample that were unexplained by allometric scaling, with PC4 and PC8 exhibiting the 

greatest amount of unexplained shape variation. The values of the non-allometric 

deviations from the predicted torso shape for each of the observed participants are 

also shown in the boxplots in Figures 6.9c and 6.10c for males and females, 

respectively. 
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Predicted Torso Shape 

 
 

 
Participant 72 

 
Participant 538 

 
Participant 1651 

 
Participant 3304 

 

b) 

a) 

c) 

 

Figure 6.9. Non-allometric male torso shape variation. a) Predicted torso shape for males with waist 
girth 100 cm; b) Examples of observed torso shapes of males with waist girth 100 cm; c) Boxplots 

showing the amount of residual variation for each shape principal component in PLSR model, with 
deviations from the predicted torso shape displayed by the participants in b).
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Predicted Torso Shape 

 
 

 
Participant 913 

 
Participant 2026 

 
Participant 3269 

 
Participant 4138 

 

a) 

b) 

c) 

 
Figure 6.10. Non-allometric female torso shape variation. a) Predicted torso shape for females with 

waist girth 91 cm; b) Examples of observed torso shapes of females with waist girth 91 cm; c) Boxplots 
showing the amount of residual variation for each shape principal component in PLSR model, with 

deviations from the predicted torso shape displayed by the participants in b). 
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6.4 Discussion 

Allometry is the study of relationships between measures of body size and shape, and 

is commonly used to assess morphological variations within species (181). Previous 

investigations have found that several developmental processes and morphological 

traits change with body size, due to allometric scaling (201,202,242). However, there 

are also non-allometric aspects of shape variation which cannot be explained by 

changes in body size, due to factors such as environment, phylogenetic heritable traits 

and individual morphological variation (181,202,203). Thus, if variations in human 

torso shape cannot be fully explained by existing anthropometric techniques this 

would suggest that additional measures are required to evaluate all aspects of human 

morphology in practice. The aim of this study was to determine whether shape 

anthropometrics provide additional information regarding variations in human 

morphology that cannot be captured by existing anthropometric techniques. 

Previous investigations which have used 3D imaging to perform anthropometric 

assessments, have typically only obtained traditional anthropometrics of body size in 

order to analyse variations within the population (2,19,122). Though this approach 

enables a thorough characterisation of body size, it discards body shape information 

captured by 3D imaging systems. As a result, this has limited analyses within the 

discipline of anthropometry to only consider relationships between body size 

measures and derived indices, without considering allometric relationships between 

size and shape. The results of this investigation agree with those of previous biological 

studies (2,19,122), demonstrating that measures of an organisms size are strongly 

linearly correlated, suggesting that aspects of torso size increase proportionally. 

However, this form of analysis does not consider variations in other morphological 

traits which cannot be captured by measures of body size and it has been suggested 

that more sophisticated shape measures could provide additional information 

regarding human morphology that complement existing anthropometrics (2).  

Recent investigations have also utilised statistical methods, such as PCA, to identify 

features of body shape variation directly from 3D imaging data (170), which have been 

used to improve predictions of body composition (23) and refine methods for apparel 

sizing (173). These studies have typically used Pearson's correlation coefficients to 

determine whether there are linear relationships between torso shape PCs and 
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traditional anthropometrics. The results of this investigation reiterate those of 

previous studies (23,170), finding that certain torso shape PCs demonstrate moderate 

to strong correlations with individual measures of body size. For example, shape PC3 in 

this investigation was found to be strongly correlated with torso girth measures and 

body weight. This suggests that there are proportions of human torso shape variation 

which are related to changes in size. However, assessing the relationships between 

individual size measures and features of shape in this way is limited, in that 

correlations can only evaluate the linear dependence between variables. Whereas, the 

shape features identified in this study represent complex, scale-invariant features, 

such as curvatures and contours, present on the external surface of the human body, 

which may not be dependent on changes in size. Though morphological traits often 

increase with body size, to identify shape variations which are not related to size it is 

necessary to perform some kind of size-correction analysis. 

Geometric morphometric studies of allometry typically utilise regression analyses to 

evaluate allometric scaling between size and shape, as well as to partition total 

observed shape variation into both predicted and residual components (181). The 

predicted component represents allometric shape variation, which can be explained by 

changes in size, while the residual component represents non-allometric shape 

variation, which size measures cannot explain. Previous geometric morphometric 

studies have found that allometry can account for large proportions of total shape 

variation within different species (181,201–203). The results of this investigation agree 

with these previous studies of allometry, with large proportions of observed torso 

shape variation explained by changes in size measures. For example, torso size 

measures explained over 50% of the variation in each of shape PC's 1, 2, 3 and 5, for 

both males and females. VIP values for size measures used in the PLSR models, 

demonstrated that torso girth measures contributed most to the prediction of shape. 

This suggests that size-related changes in these torso shape features are explained 

primarily by changes in girths, which could explain why girth measures and their ratios 

are often used as proxies of abdominal shape. These size-related changes in torso 

shape represent the allometric components of shape variation which can already be 

explained by existing anthropometric techniques. However, the results of this 
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investigation also showed that significant proportions of all identified torso shape PCs 

cannot be explained by changes in body size according to allometric scaling.  

Certain shape PCs, such as PC4 and PC8, were found to represent subtle, localised 

variations on the torso surface, which were almost completely unexplained by changes 

in torso size. Even torso shape PCs which demonstrate changes with increases in body 

size according to allometric scaling, such as PC's 1, 2, 3 and 5, contain information 

about body shape that cannot be explained by existing anthropometric techniques, 

represented as residual error in the PLSR models. Currently, practitioners conducting 

clinical and population-based health screenings rely upon traditional anthropometrics 

and derived indices, to estimate quantities of abdominal visceral adiposity and classify 

individuals according to their associated cardio-metabolic health risk (12,73). However, 

it is acknowledged that these existing anthropometric techniques are confounded by 

levels of subcutaneous fat and can only identify overall changes in body size or provide 

proxies of central obesity (241). Though it is currently unknown what the non-

allometric variations in torso shape PCs represent in terms of physical health, the 

additional information provided might identify subtle surface morphological features 

that are related to body fat distributions and associated health risks. Further study is 

required to establish these relationships.  

Also, it has been shown that the non-allometric variations from the predicted torso 

shape are randomly distributed throughout the entire range of torso sizes within the 

LIFE-Adult cohort (Appendix 4). This indicates that the expected unexplained variations 

in each of the shape PCs can be assumed to be equal for individuals of any torso size. 

This means that individuals classed as having different cardio-metabolic risk, according 

to traditional anthropometrics, could exhibit the same torso shape features which 

would go unnoticed by existing measurement techniques. As a result, the ability to 

measure variations in body shape could enable clinical practitioners to perform more 

effective population-level diagnoses of cardio-metabolic health risk, not possible using 

current size-based anthropometric techniques. Similarly, apparel designers rely almost 

entirely on the use of linear body size measures when creating clothing sizing systems 

and designing garments (35). However, the results of this study demonstrate that if 

designers only use traditional anthropometrics when establishing sizing standards, 

there will be variations in body shape that cannot be accounted for, leading to 
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considerable proportions of their target populations being dissatisfied with the fit of 

mass produced clothing. These results further illustrate the wealth of information 

regarding body shape and weight distribution which cannot be captured by 

measurements used in current anthropometric practice. 

6.4.1 Limitations 

This study has limitations that require consideration. First, the data for some 

participants in the LIFE-Adult cohort could not be analysed (455 of 9,664) due to 

missing size measures resulting from anatomical landmarks not being successfully 

identified by the Anthroscan ScanWorX software. This potentially limited the range of 

body shapes and sizes assessed in this investigation. Further study is therefore 

required to investigate improved methods of landmark identification during data post-

processing to help improve the effectiveness of automatic digital anthropometric 

techniques. Second, though the LIFE-Adult cohort is one of the largest collections of 3D 

imaging data currently available, containing equal proportions of male and female 

participants that represent an extensive range of body shapes and sizes, the dataset 

has a lack of ethnic diversity since the cohort is of central European origin. This is 

significant, since it has been established that different ethnic groups vary in their 

cardio-metabolic risk, with several components of body composition variability that 

differ across ethnic groups (fat/lean ratio, fat distribution, lean mass composition and 

metabolism, and adipose tissue biology) increasingly linked with cardio-metabolic risk 

(63,95,255). In addition, only 400 participants in the LIFE-Adult cohort were under the 

age of 40 years old. Further study is required to assess individuals from a more 

extensive range of ages and ethnicities to determine whether these allometric 

relationships are representative of the wider population. Finally, in this investigation 

body size measures of each participant were normalised by being divided by body 

height, as in a previous study of the LIFE-Adult cohort (19). This method of 

normalisation adjusts measures for body height and assumes that the size of different 

parts of the body scale linearly with height. However, this was an inappropriate 

method of height normalisation, since it has been shown previously that regional body 

lengths and girths do not all scale linearly with body height, but in fact scale 

disproportionally with increased height (244). In future studies, scaling exponents 

should be determined for body size measures across all regions of the body, rather 
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than simply dividing my height to achieve more precise normalisation of body size, as 

demonstrated in Section 6.2.3. 

 

6.5 Conclusion 

The results of this investigation suggest that geometric morphometric methods of 

shape analysis can identify non-allometric variations in human morphology which 

cannot be identified by existing size-based digital anthropometric techniques. These 

results further demonstrate the need for more comprehensive body measurement 

tools which characterise human body shape and its underlying mass distribution. 

Future research should further evaluate the benefits of improved body measurement 

in different applications, such as obesity classification and epidemiology. 
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Chapter 7 - Application of shape anthropometrics for obesity categorisation. 

7.1 Introduction 

The results of Chapter Six suggest that shape anthropometrics can identify non-

allometric variations in human morphology that cannot be captured by current 

techniques. Though these results demonstrate that some features of body shape are 

independent of size, the value of shape anthropometrics as an effective tool remains 

unknown. Derived health indices are used extensively in epidemiological studies and 

health screening - the most prolific of which being BMI. As discussed in Chapter Two, 

obesity is defined using BMI according to the World Health Organization (WHO) (60). 

However, it has been shown that obesity is a heterogeneous condition; whereby 

people with the same BMI can have distinct cardiovascular and metabolic risk profiles, 

making true health risk difficult to determine (12,62). Categorising individuals using 

BMI in isolation can result in some receiving treatment which is unnecessary, while 

others are subsequently missed. Susceptibility to adverse metabolic and cardiovascular 

diseases has been shown not to be determined solely by total body fat mass, but in 

fact depends on the distribution of adiposity (12,64) and amounts of lean mass and 

organ size (69), which is also affected by ethnicity, sex and age-associated variability. 

Additional proxies of abdominal or central obesity, such as waist girth (WC) and waist-

hip ratio (WHR) have been suggested as being a means of refining obesity classification 

and assessing cardio-metabolic risk (73,74). The WHO and previous literature have 

shown that combining BMI with a measure of central obesity can improve the 

capabilities of anthropometric techniques in the prediction of disease risk (61,74,256). 

However, it has also been suggested that more sophisticated measures of body shape 

could provide additional information to improve population-level obesity 

categorisation (2). The aim of this investigation was to demonstrate that there are 

variations in body shape within existing obesity classifications, which provide 

additional information compared to anthropometrics currently used in practice. The 

objectives were to: 

• Categorise participants within the LIFE-Adult cohort according to existing World 

Health Organisation (WHO) obesity classification guidelines and torso shape. 

• Determine the level of agreement between existing anthropometric classifications 

of overall and central obesity, and body shape-based clusters. 
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• Demonstrate that within existing classifications there are variations in body shape 

parameters which cannot be identified by current anthropometric techniques.  

7.2 Methods 

7.2.1 Participants 

3D body scan data and anthropometrics of 9,565 participants from the LIFE-Adult 

cohort were analysed in this study. Summary characteristics of participants analysed in 

this investigation are shown in Table 7.1. All participant data adheres to the same 

ethical procedures detailed in Section 6.2.1.  

Table 7.1. Sample characteristics (mean ± standard deviation). 

 

 

 

 

7.2.2 Data processing  

Size measures required for this investigation included: stature, mass, waist and hip 

girth. External torso shape PCs were extracted from the 3D scan data of participants, 

as described in Section 6.2.4.   

Extracted measures of body size were used to calculate indices of weight status and 

central obesity in order to categorise participants according to WHO recommended 

guidelines (61). Participants were stratified into the following BMI categories: 

underweight (BMI < 18.5 kg/m2); normal weight (BMI 18.5 - 24.9 kg/m2); overweight 

(BMI 25.0 - 29.9 kg/m2); obese (BMI ≥ 30.0 kg/m2). Participants were also stratified 

according to WHO established sex-specific cut-off points for waist girth (WC) and 

waist-hip ratio (WHR), beyond which cardiovascular disease (CVD) risk is augmented or 

substantially increased (61). According to the WHO (61) population groups can be 

categorised by WC and WHR into one of the following risk levels:  

• Level I: Low risk - Males (WC ≤ 94 cm or WHR < 0.90) and females (WC ≤ 80 cm or 

WHR < 0.85) are deemed to have the lowest level of risk, with less than 10 % of 

individuals in this category likely to present any indicative health risk factors. 

Descriptive Male Female 
No. of participants 4,538 5,027 
Age (years) 58 ± 13 57 ± 12 
Stature (cm) 176.1 ± 7.3 164.0 ± 7.0 
Mass (kg) 88.8 ± 18.2 76.8 ± 16.9 
BMI (kg/m2) 27.6 ± 4.2 27.1 ± 5.6 
Waist Girth (cm) 101.1 ± 12.4 92.1 ± 14.0 
WHR 0.99 ± 0.07 0.87 ± 0.07 
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• Level II: Increased risk - Males (94 < WC ≤ 102 cm) and females (80 < WC ≤ 88 cm) 

have an increased level of risk, with 80 % of individuals in this category highly likely 

to present at least one indicative health risk factor. Providing them with health 

advice or other appropriate action is deemed essential.  

• Level III: High risk - Males (WC > 102 cm or WHR ≥ 0.90) and females (WC > 88 cm 

or WHR ≥ 0.85). Everyone in this category is certain to present at least one 

indicative health risk factors, with these individuals deemed to demonstrate 

double the level of risk compared to those in the low-risk group. 

Agglomerative hierarchical clustering using the Ward linkage algorithm (257), was 

performed to categorise participants in the LIFE-Adult cohort that exhibited similar 

torso shape characteristics. Clusters were based on the pairwise Euclidean distances, d, 

between individuals, according to their scores on first nine shape PCs, identified in 

Section 6.3.1. Three hierarchical shape clusters were selected to correspond to the 

number of health risk categories defined by existing anthropometric classification 

methods according to the WHO (61). Hierarchical clustering was conducted within 

MATLAB (version 9.2, Mathworks, USA). 

7.2.3 Data analysis 

All anthropometric indices and shape measures were converted into sex-specific z-

scores; measures were first centralised with respect to their mean value and then 

divided by their standard deviation. Pearson's product-moment correlations (r) were 

used to assess linear relationships between existing indices and extracted shape 

anthropometrics. Pearson's chi-square tests for independence (258) were used to 

examine the association between existing obesity classifications and identified body 

shape clusters. The chi-square statistic (χ2) was used to determine whether there was a 

statistically significant association between existing classification methods and shape 

clusters. The null hypothesis was that classifications of individuals according to the 

different anthropometric and shape-based techniques were independent of each 

other. However, if χ2 was significant (p < 0.05), the null hypothesis could be rejected 

and would provide confidence that there is an association between the different 

classification methods. All correlation and chi-squared tests were conducted within 

SPSS (IBM SPSS Statistics 24.0).  
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Graphic analyses of age-associated variability in torso shape between standard BMI 

categories is presented, as well as shape variations within combined risk classifications, 

based on both overall and central obesity. For this second demonstration, BMI = 22 

kg/m2 represented normal weight, BMI = 26 kg/m2 represented overweight and BMI = 

30 kg/m2 represented obese, similar to previous studies (74). WHR is used in clinical 

practice to relate waist circumference to the overall body shape and is considered an 

effective proxy of central obesity (82). The 10th and 90th percentiles of WHR values in 

the LIFE cohort were selected to represent individuals classed as low and high risk, 

these values were 0.89 and 1.08 for male, and 0.78 and 0.95 for female participants. 

7.3 Results  

Dendrograms of the three hierarchical clusters for male and female participants within 

the LIFE-Adult cohort, according to their torso shape PCs are shown in Figures 7.1a and 

7.2a, respectively. Figures 7.1b and 7.2b visualise the centroids of the identified 

clusters as reconstructed torsos for males and females, respectively.  

a) 

 
b) 

   
Cluster 1 Cluster 2 Cluster 3 

 
 Figure 7.1. Hierarchical clustering of male participants in LIFE cohort according to shape. a) 

Dendrogram showing cluster 1 (blue), cluster 2 (red) and cluster 3 (green); b) Reconstructed torsos 
of cluster centroids and their deviations from the average male torso. 
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a) 

 
b) 

   
Cluster 1 Cluster 2 Cluster 3 

 

 

 

Associations between existing classifications and body shape clusters 

Correlation testing demonstrated statistically significant (p ≤ 0.05), positive 

correlations between existing indices (BMI, WC and WHR) (Appendix 5). For example, 

there was strong positive correlations between BMI and waist girth for males and 

females (r = 0.91, R2 = 0.83, p < 0.001). There was also moderate positive correlation 

between BMI and WHR among males (r = 0.62, R2 = 0.39, p < 0.001), but only weak 

positive correlation among females (r = 0.44, R2 = 0.19, p < 0.001). In addition, existing 

indices demonstrated statistically significant (p ≤ 0.05), moderate to strong 

correlations with shape PC1 and PC3, but only weak to no correlations with the 

remaining shape PCs for male and female participants. 

 

Figure 7.2. Hierarchical clustering of female participants in LIFE cohort according to shape. a) 
Dendrogram showing cluster 1 (blue), cluster 2 (red) and cluster 3 (green); b) Reconstructed torsos 

of cluster centroids and their deviations from the average female torso. 
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The results of chi-square testing between existing classifications are presented in Table 

7.2. This shows the percentage of participants within each BMI classification that are 

categorised at each level of cardio-metabolic health risk, according to WC and WHR. 

There was a statistically significant (p < 0.001) association between BMI classification 

and central obesity indices WC and WHR (Figure 7.3). However, these results also 

demonstrate considerable overlap between classifications, with 69.1% and 40.8% of 

male and female participants classed as normal weight according to BMI classed as 

having high risk of metabolic complications according to WHR, respectively. At the 

same time, 40.3% of female participants classed as overweight or obese were also 

classed as having low risk of metabolic complications according to WHR. 

Table 7.2. Chi-square (χ2) results showing percentage of participants within each BMI classification at 
each risk level according to WC and WHR. 

Central  
Obesity Index 

BMI Classification 
χ2 df Sig. Фc 

Normal Weight Overweight Obese 

Males (n = 4538)        
WC (cm)    

3349.82 4 <.001 0.608 
Low Risk 79.4% 14.9% 0.2% 

Increased Risk 18.7% 43.5% 1.9% 

High Risk 1.9% 41.6% 97.9% 
WHR    

745.21 2 <.001 0.405 Low Risk 30.9% 4.4% 0.4% 

High Risk 69.1% 95.6% 99.6% 

Females (n = 5027)        

WC    

3126.98 4 <.001 0.558 
Low Risk 52.6% 1.9% 0.0% 

Increased Risk 33.6% 16.7% 0.2% 

High Risk 13.9% 81.4% 99.8% 
WHR    

798.30 2 <.001 0.399 Low Risk 59.2% 25.4% 14.9% 

High Risk 40.8% 74.6% 85.1% 

 

Table 7.3 shows the results of chi-square testing between existing individual 

anthropometric classifications (BMI, WC and WHR) and clusters based on torso shape. 

This shows the percentage of participants within each of the BMI, WC and WHR 

classification groups that are represented by each shape cluster. There was a 

statistically significant (p < 0.001) association between existing classifications and 

shape clusters (Figure 7.3). However, it can also be seen that there are individuals 

representing each of the identified shape clusters within every weight/health risk 

category according to existing anthropometric classifications methods.  
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Table 7.3. Chi-square (χ2) results showing percentage of participants within each BMI, WC and WHR 
classification within each shape cluster. 

Existing 
Classifications 

Shape Cluster 
χ2 df Sig. Фc 

Cluster 1 Cluster 2 Cluster 3 

Males (n = 4538)        
BMI     

4 

  

Normal Weight 70.1% 19.3% 10.7% 

961.95 <.001 0.326 Overweight 40.9% 43.2% 15.9% 

Obese 16.0% 37.7% 46.3% 
WC    

1283.32 4 <.001 0.376 
Low Risk 79.4% 12.8% 7.8% 

Increased Risk 44.0% 40.4% 15.6% 

High Risk 18.1% 46.7% 35.2% 
WHR    

600.96 2 <.001 0.364 Low Risk 94.3% 1.6% 4.0% 

High Risk 36.6% 39.2% 24.2% 

Females (n = 5027)        
BMI    

1846.92 4 <.001 0.429 
Normal Weight 46.6% 43.0% 10.4% 

Overweight 14.6% 47.5% 37.9% 

Obese 2.2% 20.1% 77.8% 
WC    

1802.59 4 <.001 0.423 
Low Risk 64.0% 30.9% 5.1% 

Increased Risk 31.0% 51.9% 17.1% 

High Risk 7.5% 37.6% 54.9% 
WHR    

874.69 2 <.001 0.417 Low Risk 47.4% 33.2% 19.4% 

High Risk 11.3% 42.2% 46.5% 

 

Table 7.4 shows the results of chi-square testing between combined classifications 

(BMI & WC, and BMI & WHR) and clusters based on torso shape, demonstrating the 

percentage of participants within these combined classification groups that are 

represented by each shape cluster. There was a statistically significant (p < 0.001) 

association between these combined classifications and shape clusters (Figure 7.3). 

Though, there are individuals representing each of the identified shape clusters within 

several of the combined weight/health risk categories according to existing 

anthropometric classifications methods.  
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Table 7.4. Chi-square (χ2) results showing the percentage of participants within combined classifications 
(BMI & WC, and BMI & WHR) that are within each shape cluster. 

Combined Indices 

Shape Cluster 

χ2  df Sig. Фc Cluster 
1 

Cluster 
2 

Cluster 
3 

Males (n = 4538)         
BMI & WC     

1522.47 16 <.001 0.410 

Normal Weight 

Low Risk 79.1% 11.8% 9.1% 

Increased Risk 37.4% 44.9% 17.7% 

High Risk 20.0% 72.0% 8.0% 

Overweight 

Low Risk 81.2% 14.9% 3.9% 

Increased Risk 46.2% 38.9% 14.9% 

High Risk 21.3% 57.5% 21.1% 

Obese 

Low Risk 0.0% 50.0% 50.0% 

Increased Risk 54.5% 27.3% 18.2% 

High Risk 15.3% 37.8% 46.8% 
BMI & WHR     

1231.23 10 <.001 0.368 

Normal Weight 
Low Risk 94.9% 1.3% 3.8% 

High Risk 59.0% 27.3% 13.8% 

Overweight 
Low Risk 93.6% 2.1% 4.3% 

High Risk 38.4% 45.1% 16.4% 

Obese 
Low Risk 60.0% 20.0% 20.0 % 

High Risk 15.9% 37.7% 46.4 % 

Females (n = 5027)         
BMI & WC     

2363.58 16 <.001 0.485 

Normal Weight 

Low Risk 64.10% 31.00% 5.00% 

Increased Risk 32.50% 53.10% 14.30% 

High Risk 16.10% 63.40% 20.50% 

Overweight 

Low Risk 68.80% 21.90% 9.40% 

Increased Risk 29.00% 48.30% 22.80% 

High Risk 10.40% 48.00% 41.60% 

Obese 

Low Risk - - - 

Increased Risk 0.00% 0.00% 100.0% 

High Risk 2.20% 20.10% 77.70% 
BMI & WHR     

2234.61 10 <.001 0.471 

Normal Weight 
Low Risk 60.50% 33.20% 6.30% 

High Risk 26.50% 57.30% 16.20% 

Overweight 
Low Risk 28.70% 41.50% 29.80% 

High Risk 9.80% 49.60% 40.70% 

Obese 
Low Risk 6.50% 13.50% 80.00% 

High Risk 1.40% 21.20% 77.40% 
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a) b) 

  
c) d) 

  
  

Figure 7.3. Associations between current indices and shape. BMI vs WC vs Shape: a) male, b) female; BMI vs WHR vs Shape: c) male, d) female. 



134 
 

Age-associated torso shape variations within BMI categories 

Graphic analysis of age-associated variations within BMI categories for all shape PC's 

(1-9) was conducted (Appendix 5), with selected plots presented here. Figures 7.4a and 

7.4b present plots by age of shape PC1 for males and females, respectively. Shape PC1 

which captures variations in anterior-posterior weighting (Section 6.3.1), increased 

across the BMI categories in males and females. Age also appeared to have a strong 

effect on this trend, though both trends appeared stronger in females. Older groups of 

obese women, exhibited values of shape PC1 similar to that of older overweight males, 

and higher values than that of all younger males.  

Figures 7.5a and 7.5b present similar plots of shape PC5 for males and females, 

respectively. Age appeared to have very little effect on shape PC5 for males, with very 

little difference between age groups, whereas age demonstrated a strong effect for 

females. PC5 describes differences in mass accumulation between the bust and 

abdominal region of the torso, and appears to be strongly influenced by age, with 

older females exhibiting higher values for PC5 across BMI categories.  

Figures 7.6a and 7.6b present plots of shape PC6 for males and females, respectively. 

Similar to PC5, age appears to have a stronger effect on shape PC6 for females than for 

males, with PC6 describing differences in mass accumulation between the lower and 

upper abdomen. However, for both males and females there appears to be greater 

age-associated variation in PC6 for underweight individuals, with values converging for 

overweight and obese individuals. 

 

Figure 7.4. Shape PC1 by BMI category and age group in a) males and b) females. 
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Figure 7.5. Shape PC5 by BMI category and age group in a) males and b) females. 

 

 

Figure 7.6. Shape PC6 by BMI category and age group in a) males and b) females. 

 

Observed torso shape variations within combined risk classifications  

Figures 7.7 and 7.8 show representative torso shapes of each of the three shape 

clusters observed within the combined weight/health risk classifications according to 

BMI and WHR, for males and females, respectively. 
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Figure 7.7. Male torso shape variations within combined BMI and WHR obesity/risk classifications, with representative torsos of shape cluster 1 (blue), cluster 2 
(red) and cluster 3 (green). 
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Figure 7.8. Female torso shape variations within combined BMI and WHR obesity/risk classifications, with representative torsos of shape cluster 1 (blue), cluster 2 

(red) and cluster 3 (green). 
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7.4 Discussion 

It has been suggested that more sophisticated shape anthropometrics, acquired using 

3D imaging, can surpass manual measures in epidemiology and clinical practice for 

classification of individuals in the population (2). The aim of this investigation was to 

demonstrate that there are variations in torso shape within existing obesity 

classifications that can provide additional information regarding human morphology, 

compared to indices currently used in practice.  

Though BMI is the accepted means of monitoring the prevalence of obesity at the 

population-level, previous studies have suggested that combining measures of central 

obesity, such as WC and WHR, with BMI will provide improved means of stratifying 

individuals in the assessment of metabolic disease risk associated with obesity 

(12,74,241). The results of this investigation agree with those of previous studies, 

demonstrating that though BMI and waist girth are strongly correlated at the 

population level, individual waist girth measures can vary considerably at any given 

BMI value, causing differences in classification between the two methods. The 

implications of these variations in waist girth within BMI categories are significant, 

since it has been shown that differences in waist girth in both obese and non-obese 

individuals are associated with variations in quantities of both adipose tissue (241) and 

lean mass (77), each of which contribute to differences in metabolic load and 

metabolic capacity, respectively (63). Similar relationships were observed between 

BMI and WHR. The majority of individuals classed as obese according to BMI were also 

classed as having high risk of metabolic complications according to WHR; however, 

measures of WHR were also shown to vary considerably within BMI classifications. It 

has previously been suggested that individuals, classed as being normal weight 

according to BMI, but exhibiting central obesity according to WC or WHR, have up to 

60% greater risk of mortality compared to obese individuals without central obesity 

(74). This suggests that by combining BMI with indices of central obesity, such as WC 

and WHR, it is possible to identify obesity subgroups within BMI categories, such as 

metabolically healthy and obese, or metabolically unhealthy and normal weight which 

would otherwise be missed if using BMI alone (62,73,74).  

Existing indices of central obesity provide relatively simple proxies of fat distribution 

and body shape, reducing the complexity of human form down to a single value that 
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can be obtained and interpreted easily by practitioners and patients. However, 

previous studies have suggested that more sophisticated indices of body shape could 

surpass the use of body girths in obesity assessment and health monitoring, providing 

finer morphological distinctions in body characteristics (2,19). Principal components of 

torso shape identified within the LIFE-Adult cohort in Chapter Six have been shown to 

capture subtle variations in torso shape, which cannot be explained by measures of 

body size currently used in practice. When assessed at the population level it has been 

shown that there is a statistically significant association between existing 

anthropometric classifications and body shape clusters, suggesting that overall the 

largest individuals in the population differ from the smallest individuals in terms of 

their torso shape. However, the results of this investigation also demonstrate that 

there are variations in body shape that existing classification methods cannot identify.  

First, it has been shown that certain aspects of torso shape can vary considerably 

across the adult lifespan independently of BMI, particularly for females with increasing 

age being associated with greater accumulations of mass in the abdomen, as 

demonstrated in a previous study by Wells et al. (67). The reason for this being that as 

females get older their reproductive biology undergoes significant changes, which 

changes how mass is distributed around their body, most notably characterised by 

greater amounts of fat mass being deposited in the abdomen rather than in the lower 

body, subsequently causing a reduction in sexual dimorphisms in body shape observed 

in younger adults (65,66,68). In addition, though it has been suggested that combining 

BMI with a measure of central obesity can improve the capabilities of anthropometry 

in the prediction of disease risk, even when indices of overall and central obesity are 

combined there are still significant amounts of variation within these classification 

groups that cannot currently be identified. Conversely, there are clusters of individuals 

within the sample that exhibit similar torso shape features, but are represented across 

all BMI weight categories and across all WC and WHR metabolic risk classifications. For 

example, when combining BMI with WHR, individuals classed as having either low and 

high risks of metabolic complications, within each of the normal weight, overweight or 

obese weight categories, were shown to represent all three identified shape clusters. 

In addition, individuals classed as normal weight with low risk of metabolic 

complications were shown to exhibit the same torso shape features as individuals who 

were classed as obese with a high risk of metabolic complications. This suggests that 
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there are a greater number of dimensions in which the torso shape of individuals can 

vary than can currently be identified by existing anthropometric classification 

techniques. Though it is currently unknown what this additional information regarding 

torso shape variation represents in terms of human health, these results further 

illustrate the wealth of information regarding body shape and weight distribution 

cannot be captured by measurements used in current practice.  

The findings of this investigation further demonstrate the potential for 

misclassification of individuals using existing simple anthropometrics and how more 

sophisticated measures could complement existing methods of obesity classification. 

Indices of central obesity have been shown to be associated with accumulations of 

visceral and deep superficial adipose tissue and can identify subgroups of abdominally 

obese individuals within BMI classifications. However, even when measures, such as 

WC and WHR, are used in combination with BMI to refine health risk classification they 

have still been shown to be insensitive to variations in mass distribution and shape 

related to age, sex and ethnicity (61,63,67,73,241). Traditional anthropometrics have 

typically been considered a relatively unsophisticated approach to assessing body 

composition and health risk, with contemporary studies instead using more direct 

imaging approaches, such as magnetic resonance imaging (MRI) or computed 

tomography (CT) scanning to assess fat distribution. However, despite their high 

accuracy, MRI and CT are not ideal for routine practice due to their high cost and 

harmful radiation exposure, meaning anthropometry remains the most practical 

solution. This investigation has shown that shape measures are able to identify 

differences in human morphology between individuals who would be otherwise be 

classed as having the same level of health risk. However, further study with more 

diverse populations is required to establish whether there are key features of body 

shape which reveal variations in mass distribution that are also associated with sex, 

age and ethnicity. Establishing these relationships would enable the development of a 

new health index can identify individuals at risk of cardio-metabolic issues, without 

having to undergo expensive and potentially harmful radiographic imaging procedures.   
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7.4.1 Limitations 

As discussed in Chapter Six, though the LIFE-Adult cohort is one of the largest 

collections of 3D body scan data currently available, the dataset has a limited age 

range and lack of ethnic diversity. In particular, there was only a small subset of data 

for younger adults (<40 years), which could have affected the assessment of age-

associated shape variations. As such, further study is required to assess individuals 

from a wider range of ages and ethnicities to determine whether the findings of this 

investigation can be generalised to the wider population.  

7.5 Conclusion  

The results of this investigation suggest that in the categorisation of individuals, 

measures of body shape can identify variations in external human form that cannot be 

captured by existing anthropometric techniques. These results further demonstrate 

the need for more comprehensive body measurement tools which characterise 

external body shape and its underlying mass distribution. Future research should 

investigate relationships between body shape, body composition and associated 

health risks for specific groups of individuals to improve population-level diagnostics. 
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Chapter 8 - Overall discussion 

8.1 Introduction 

The aim of this programme of research was to determine whether shape 

anthropometrics can complement existing anthropometric techniques in the 

assessment of human morphology. This research was motivated by previous literature, 

which has suggested that external human form is dependent on its internal anatomical 

structures and the belief that an individual's body shape is a direct indicator of physical 

health (1–3). Though there have been significant advances in 3D imaging technology 

since the end of the 20th century, practitioners and researchers in areas such as 

healthcare (123,127) and apparel sizing (13,14), still rely predominantly on traditional 

anthropometric techniques to assess human body shape. However, manual 

anthropometrics are prone to human error and limited by their simplicity, as they do 

not fully describe the complex variations present on the surface of the body (4,19–21). 

Even studies which have utilised 3D imaging devices to acquire anthropometrics have 

typically used a specific definition of body shape, based on the ratios and relative 

proportions of 1D anthropometrics, such as waist girth and stature. This approach 

discards the shape information captured by 3D imaging systems and is a common 

misconception within anthropometry literature (28). Geometric morphometrics are 

established methods within the fields of anthropology and evolutionary biology to 

analyse variations in shape and its covariation with other variables (29). Though these 

methods have been used extensively to analyse biological shape (32,33), few studies 

have investigated how geometric morphometrics can complement existing 

anthropometric techniques in the assessment of human morphology. This chapter 

summarises the findings of this programme of research in relation to each specified 

objective, as well as the primary contributions to knowledge, practical implications, 

limitations, potential areas for further research and overall conclusions. 

8.2 Summary of work 

8.2.1 Objective One: Review published literature regarding existing anthropometric 

techniques and quantitative methods for analysing the shape of biological organisms.  

This was achieved in Chapter Two through a review of previous literature within the 

field of anthropometry, in particular: the foremost scientific fields and applications 

which require measures of human body size and shape; existing techniques for 
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acquiring anthropometrics; as well as other quantitative methods for analysing the 

shape of biological organisms. Previous literature suggests researchers are critical of 

manual anthropometric techniques, due to their susceptibility to observer error and 

the limited information which they can provide regarding human morphology. 3D 

imaging systems have been shown to acquire both traditional and more complex 

anthropometrics with minimal physical contact between the researcher and the 

participant. However, there are potential sources of measurement error when using 

digital anthropometric techniques, such as anatomical landmark identification and 

postural variation, which need to be considered. Though 3D imaging technology is well 

established, the methods and metrics used to analyse human shape information is not, 

with the majority of previous studies typically extracting traditional anthropometrics 

from acquired point cloud data. Consequently, further research into how sophisticated 

methods of shape analysis can complement existing anthropometric techniques in the 

assessment of human morphology was warranted. 

8.2.2 Objective Two: Develop analytical procedures for extracting scale-invariant 

features of human body shape from 3D imaging data. 

This was achieved in Chapter Three, which detailed the development of methods to be 

used throughout this programme of research to enable the assessment of human 

morphology. This included establishing methods for defining the torso segment region 

of interest according to the location of anatomical landmarks and the acquisition of 3D 

imaging data of the human torso. In addition, analytical procedures were developed to 

segment acquired 3D geometries, perform Procrustes superimposition to implement 

geometric morphometric methods and to extract numeric parameters describing scale-

invariant features of the human torso. These methods were evaluated in Chapter Five, 

which investigated how shape anthropometrics obtained using these methods could 

complement traditional anthropometrics in the assessment of human morphology and 

the estimation of subcutaneous central adiposity within a small cohort. Shape 

anthropometrics acquired using the developed method were shown to capture scale-

invariant features which are absent from traditional measures used in current 

anthropometric practice. In addition, anthropometrics currently used in practice were 

shown to explain up to 52.2% of variance in waist skinfold thickness measures, while a 

combined regression model using size and shape anthropometrics explained 76.5 % of 
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variation. This initial investigation suggested that more sophisticated methods of 

analysis could be used to complement traditional anthropometric techniques. 

8.2.3 Objective Three: Determine the test-retest reliability of developed methods for 

acquiring measures of body shape and the effect of identified sources of measurement 

error. 

This was achieved in Chapter Four, which investigated the effects of potential sources 

of measurement error within the developed analytical procedures, as well as the 

reliability of obtained shape anthropometrics. The results of this investigation suggest 

that although sources of measurement error, such as landmark location and posture, 

do affect shape anthropometrics, the developed method had high test-retest reliability 

(ICC > 0.9), suitable for use within clinical applications. It was also determined that 

variations in a participants posture affects all identified shape PCs, rather than being 

isolated to a single component as has been suggested in previous literature. This is 

likely due to the human torso being a deformable object, meaning that when a 

participant's posture changes between repeat measures multiple aspects of their torso 

segment will deform and consequently change in shape. However, these changes in 

torso shape caused by variations in posture have been shown to not be statistically 

significant. Future investigations should evaluate these developed methods in 

longitudinal studies to determine whether shape measures can reliably monitor 

changes in body composition following treatment interventions. 

8.2.4 Objective Four: Critically evaluate the degree of allometric scaling between 

measures of body size and shape, as well as identifying nonallometric variations in 

torso shape which cannot be explained by existing anthropometric techniques. 

This was achieved in Chapter Six, which investigated allometry between measures of 

torso size and shape extracted from 3D imaging data of individuals and whether shape 

anthropometrics provide additional information which cannot be captured by existing 

anthropometric techniques. Size and shape anthropometrics were extracted from a 

large cohort of participants (n = 9,209 (4,405 male, 4,804 female)) collected in the LIFE-

Adult study. The results of this investigation suggest that although certain shape PCs 

demonstrate allometric scaling, there are significant proportions of shape variation 

which cannot be explained by changes in size and existing anthropometric techniques. 

In addition, it has been shown that these nonallometric deviations from the predicted 
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torso shape according to allometry are randomly distributed throughout the entire 

range of torso sizes and can be assumed to be equal for individuals of any torso size. 

These results further illustrate the wealth of information regarding body shape and 

weight distribution which cannot be captured by measurements used in current 

anthropometric practice. 

8.2.5 Objective Five: Determine how body shape measurement can complement 

anthropometric techniques currently used in population-based studies and obesity 

assessment. 

This was achieved in Chapter Seven, which investigated whether there are variations in 

body shape within existing obesity classifications that can provide additional 

information compared to anthropometric techniques currently used in practice. 

Participants within the LIFE-Adult cohort were first categorised into obesity and cardio-

metabolic health risk classification groups, according to WHO recommended guidelines 

for BMI, WC and WHR. In addition, participants were separately grouped according to 

their torso shape PCs using hierarchical clustering. Chi-square statistical testing was 

then performed to determine whether there were associations between existing 

classification methods and clusters of individuals based on their shape. The results of 

this investigation suggest that when assessed at the population level there is a 

statistically significant association between existing anthropometric classifications and 

body shape clusters, suggesting that the largest individuals are different in shape from 

the smallest individuals. However, it was also shown that within current classification 

groups there are individuals who exhibit significant variations in torso shape which are 

not identified by existing anthropometric techniques. Simultaneously, there are 

clusters of individuals within the cohort that exhibit similar torso shape features, but 

are represented across different BMI weight categories and WC/WHR metabolic risk 

classifications. This suggests that shape anthropometrics can identify subtle variations 

in human morphology which are not captured by existing anthropometric techniques 

and could complement population-level diagnostics of cardio-metabolic health risk. 

8.3 Contribution to knowledge 

This programme of research makes several contributions to the body of knowledge 

within the field of anthropometry regarding the objective measurement of human 

body shape. First, a novel analytical procedure has been developed which uses 
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methods from geometric morphometrics and statistical shape analysis to extract shape 

anthropometrics from 3D imaging data of the human torso. This method has been 

shown to be an effective technique for capturing and quantifying morphological 

information from the surface of the human torso, which is absent from existing 

anthropometric techniques. In addition, these independent features of body shape can 

be used in combination with existing anthropometrics to improve the estimation of 

subcutaneous abdominal adiposity.  

This programme of research has also identified potential sources of measurement 

error within the developed analytical procedures when acquiring shape 

anthropometrics and has determined their effect on the test-retest reliability of shape 

measurement. Principally, errors in anatomical landmark identification can adversely 

affect the results of shape measurement, requiring investigators to be ISAK level 1 

accredited anthropometrists to ensure reliable palpation if using manual landmarking 

techniques. In addition, variations in a participant's posture can affect the acquisition 

of shape anthropometrics due to deformations of the human torso and should be 

controlled during the collection of 3D imaging data through proper instructions or 

postural aids in future studies. 

This research has established a database of body shape information, which 

characterises the morphological features of participants within the LIFE-Adult cohort 

that can be used in future anthropometric studies. This research has identified non-

allometric variations in torso shape within a population-based cohort which cannot be 

explained by traditional anthropometric techniques currently used in practice. This 

contributes to improving current understanding of how human morphology can vary 

for people of different sizes throughout the population and between individuals. In 

addition, this research has demonstrated the potential for misclassification of 

individuals using indices, such as BMI, WC or WHR, and how more sophisticated shape 

anthropometrics can complement existing methods of obesity and health risk 

classification. Though indices of central obesity have been shown to be associated with 

accumulations of visceral adipose tissue and can identify subgroups of abdominally 

obese individuals within BMI classifications they remain confounded by levels of 

subcutaneous fat and factors such as age, sex and ethnicity. This research has shown 

that there are individuals who would be classed as being low risk according to WC and 
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WHR, that exhibit the same shape features as individuals who are classed as having 

high risk of metabolic complications. The additional information about human 

morphology contained within shape anthropometrics may be able to identify subtle, 

localised features on the surface of the body that reveal variations in body fat 

distribution and associated cardio-metabolic health risks that cannot be captured by 

existing anthropometric techniques. The knowledge gained throughout this 

programme of research informs future studies investigating relationships between 

human morphology and body composition, as well as the development of tools to 

improve the diagnostic and predictive capabilities of measures used in practice. 

8.4 Practical applications 

The primary contributions to knowledge of this programme of research offer practical 

applications in a range of fields, including healthcare, apparel sizing and 

kinanthropometry.  

8.4.1 Healthcare 

Currently, healthcare practitioners conducting population-level health screenings rely 

upon size anthropometrics and derived indices, such as BMI, WC and WHR, to estimate 

quantities of abdominal visceral adiposity and classify individuals according to their 

associated cardio-metabolic health risks (12,73). However, it is acknowledged that 

existing anthropometric techniques are confounded by levels of subcutaneous fat, age, 

sex and ethnicity (61,73,241), and can only identify overall changes in body size or 

provide proxies of central obesity (241). The findings of this research further 

demonstrate the potential for misclassification of individuals using existing 

classification methods. It has been shown that individuals classed as having low levels 

of risk can exhibit the same shape characteristics as individuals classed as being at high 

risk of cardio-metabolic complications. In addition, individuals who are the same size 

according to traditional anthropometrics and are within the same health risk 

classification group can vary considerably in body shape. Though it is currently 

unknown what these scale-invariant shape variations represent in terms of human 

health, the additional information provided by shape anthropometrics may be able to 

identify subtle features on the surface of the human body that reveal variations in 

body fat distribution and associated health risks that cannot be captured by existing 

anthropometric techniques. Clinical nutritionists primarily use anthropometrics such 
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as, weight, BMI, WC and WHR to monitor longitudinal changes in a patient's health, 

following either exercise or nutritional interventions (3,114). Similarly, these simple 

anthropometrics are also used to monitor the development and growth of children 

and adolescents, and is recognised as an important indicator of proper development 

(55,56). However, the findings of this research suggest that traditional anthropometric 

techniques are unable to identify non-allometric variations in human morphology 

which change independently of increases in body size. The ability to identify these 

deviations from the allometric trend within the population could be used to: 

differentiate between normal physiological and pathological developments in children 

as they grow; or determine whether a change in an overweight individual's weight 

following a diet or exercise programme corresponds to changes in their quantities of 

muscle or fat.  

8.4.2 Apparel 

Another key application of the findings of this research is within apparel sizing and 

ecommerce. It is accepted within the apparel industry that in order to design and 

manufacture well-fitting clothing both effective measurements and in-depth 

understanding of body shapes and sizes within the target population is required (35). 

However, this presents a significant design challenge, due to large variations in body 

dimensions within the general population and major demographic changes in 

developed countries. Individuals vary in their size, shape and body proportions, with 

these characteristics also varying according to sex, age, nationality and ethnicity 

(14,157). In addition, consumers' body size and shape characteristics have changed 

significantly in recent years, resulting from changes in nutrition, healthcare and more 

sedentary lifestyles (13,157). Standard garment sizing systems have been developed in 

many countries and are based on the concept of dividing the population into 

subgroups of individuals who are similar in relevant body dimensions (157). However, 

many consumers deviate from these standard dimensions, highlighting the need for 

more comprehensive anthropometrics that can capture as wide a range of body sizes 

and shapes as possible (117,259). The findings of this programme of research suggest 

that combining shape anthropometrics with traditional anthropometrics could enable 

clothing retailers and manufacturers to gain a better understanding of the 

morphological variations that exist within their target markets when conducting large-
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scale anthropometric surveys. This improved understanding of variations within the 

population could enable the development of sizing systems which cater for individuals 

that would normally deviate from standard dimensions used in mass produced, ready-

to-wear (RTW) garments. In addition, recent growths in ecommerce, combined with 

the inclusion of depth sensing 3D imaging technology within modern smartphones 

(260) has facilitated the development of phone-based 3D scanning apps that provide 

virtual try-on and garment sizing recommendations (120). More sophisticated shape 

anthropometrics could enable online customers to receive improved garment size and 

style recommendations based on their inputted 3D imaging data and clothing fit 

preferences, as well as the development of custom-fit clothing that accounts for 

variations in their body size and shape. 

8.4.3 Kinanthropometry 

The findings of this programme of research also have several applications within sport 

and kinanthropometry. First, shape anthropometrics could enable researchers and 

practitioners to perform more comprehensive descriptive assessments of elite 

performers within a specific sport, enabling researchers and practitioners to identify 

subtle features that differentiate them from the general population. Though 

anthropometrics are not the only factor determining sporting success, the ability to 

describe additional physical attributes of elite athletes could assist in the creation of 

more sophisticated talent identification criteria when assessing the future potential of 

young athletes. Shape anthropometrics could also enable researchers to perform 

comprehensive applied assessments, to evaluate whether characteristics of elite 

athletes are related to biomechanical and physiological measures of sporting 

performance. For example, previous studies have compared the anthropometric and 

physiological characteristics of elite mountain bikers and road cyclists to examine 

differences in their power-to-weight characteristics (261). Determining relationships 

between shape anthropometrics and performance could provide coaches with easily 

obtained measures that can be used to optimise training programmes and monitor 

performance. In addition, the findings of this research could provide sports 

practitioners with improved tools for monitoring longitudinal changes in an athlete's 

body size and shape in relation to changes in their performance following a period of 

intense training, as well as understanding the stability of measures during or between 
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seasons (15,164). Similarly, longitudinal changes within specific athletic populations in 

response to factors such as rule changes, and technological advancements in 

equipment within that sport could be assessed with greater specificity. For example, it 

has been shown that changes in a specific athletic populations' anthropometrics can 

differ significantly from changes within the general population; such as the height of 

elite jockeys and gymnasts remaining relatively constant despite height increases in 

the general population (262). 

8.5 Limitations 

Limitations have been identified in each chapter of this programme of research; 

however, there are three that warrant further consideration. First, the analytical 

procedures developed during this programme of research were only designed to 

evaluate the shape of the torso segment in isolation. In its current implementation the 

proposed method is unable to analyse other body segments, such as the arms and 

legs, or the shape of the human body as a whole. The rationale for only assessing the 

torso segment during this research was that the torso has the greatest potential for 

differences in size and shape between participants, due to considerable variations in 

the types and amounts of tissue present. However, this is a limitation of the current 

procedure and represents an area of potential further work to extend the findings of 

this research to the rest of the body.  

Second, the LIFE-Adult dataset analysed during this research contains one of the 

largest collections of 3D imaging data currently available, representing an extensive 

range of body shapes and sizes. However, by design this study focused specifically on 

inhabitants of the city of Leipzig in Germany, causing the LIFE-Adult dataset to have a 

distinct lack of ethnic diversity, being primarily of central European origin. This lack of 

ethnic diversity is a common issue within nutrition and biomedical research, with 

current knowledge and understanding regarding health risk being dominated by 

studies of Europeans within industrialised countries, or of different ethnic groups 

within these same environments (255,263). However, chronic disease risk has become 

increasingly prevalent around the world, with the majority of those suffering chronic 

diseases living in low- and middle-income countries, where both ethnic profile and 

environmental conditions differ significantly from those studied in research studies. 

From the evidence that does exist, it has been demonstrated that body composition 
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and associated chronic disease risk differ systematically across ethnic groups (69). 

Previous studies have demonstrated that both the amount and distribution of adipose 

tissue vary between ethnic groups, with African Americans having low levels of visceral 

fat compared to Europeans, while South Asians have higher total body fat content for a 

given BMI and greater amounts of visceral fat. In addition, differences in birth weight 

between ethnic groups lead to reduced amounts of muscle mass and organ size, while 

brain growth and adiposity levels are preserved. These ethnic differences in body build 

and organ size persist into later life, with lower amounts of lean mass observed in 

South Asian individuals compared to Europeans, with evidence suggesting that 

individuals with smaller organs have reduced metabolic capacity to maintain 

homeostasis (63,69). In addition to variations in the amount and distribution of 

adipose tissue, ethnic groups also vary in the level of metabolic impact these factors 

cause. For example, it has been shown that associations between adipose tissue and 

insulin resistance were stronger in South Asians compared to those of 

African/Caribbean or European ethnicity. This suggests that excess levels of adiposity 

appear to be more damaging for some ethnic groups compared to others, with some 

populations having greater risk of metabolic complications for a given mass of body 

fat, such as South Asians in the UK, African and Hispanic Americans in the US and 

aboriginal populations in Australia. However, understanding these relationships 

presents a significant research challenge since ethnic-associated variability is complex, 

with several biological and cultural components contributing to chronic disease risk, 

not just variations in body composition (255). Additional factors could contribute to 

these observed ethnic variations include: living environment, dietary habits, likelihood 

of smoking, physical activity levels, as well as long-term racial prejudices and 

psychosocial stresses which may elevate metabolic load through chronic activation of 

the stress response. These ethnic variations increase the complexity of assessing 

variations in human body shape still further, with further research required to 

understand how these differences between ethnic groups are expressed as variations 

in body shape, and whether shape anthropometrics can be used to identify to an 

individual's cardio-metabolic risk regardless of ethnicity.  

Finally, during this programme of research shape anthropometrics were extracted 

from 3D imaging data acquired using either a 3dMDbody5 stereo photogrammetry 

imaging system, or a Vitus Smart XXL 3D laser scanner. Both of these represent high 
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cost, high accuracy 3D imaging systems. It is possible that the high cost of these 3D 

imaging systems may limit the transferability and practical implications of the findings 

and recommendations reported within this body of work.  

8.6 Future research 

Several areas of further research have been highlighted through this programme of 

research. First, practitioners conducting clinical and population-level health screenings 

currently rely upon manual anthropometrics and derived indices, such as the BMI and 

WHR, to classify individuals according to their cardio-metabolic health risks. However, 

the findings of this research have shown that existing techniques can only identify 

overall changes in body size and allometric changes in body shape. Whereas, it has 

shown that shape anthropometrics, measured directly from the surface of the body 

can identify subtle, non-allometric variations in human morphology, which could 

complement existing techniques in the characterisation of human morphology and the 

estimation of body composition. It is posited that the additional information provided 

by shape anthropometrics identified during this programme of research can identify 

localised, morphological variations on the surface of the body that relate to 

distributions of body fat and associated health risks, such as diabetes and 

cardiovascular disease. Further research is required to establish these relationships 

and to improve current understanding of associations between human morphology 

and health risk. This could enable clinical practitioners to perform more effective 

population-level diagnoses of cardio-metabolic health risk, not possible using current 

anthropometric techniques. In addition, as discussed in Section 8.5, the majority of 

previous research has taken place in multi-ethnic countries such as the UK, USA and 

Australia and therefore comparatively little is known about chronic disease profiles in 

other human populations. Therefore, larger, more representative cohorts are needed, 

as well as cohorts from low- and middle-income countries to improve understanding of 

the ethnic heterogeneity of cardio-metabolic profiles, as well as the enhanced disease 

risk of migrants from different ethnic backgrounds.  

Second, the procedures for evaluating shape anthropometrics developed during this 

research are limited to only analysing the shape of the torso segment only and are not 

able to analyse the human body as a whole. Further research should address this 

limitation and investigate adapting current methods to enable analysis of the entire 
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human body. This could be achieved either by: assessing the shape of individual body 

segments similar to current methods and combining them; or investigating a new 

procedure which can identify scale-invariant features across the entire body surface. 

Finally, further research should investigate the use of low-cost tools to acquire shape 

anthropometrics from the surface of the body, enabling all practitioners to assess 

human morphology without relying on expensive 3D imaging devices. These low-cost 

tools could either be physical objects, allowing practitioners to manually measure body 

shape features such as curvature and simple ratios, or smartphone-based scanning 

apps, which are able to capture shape anthropometrics to a required level of accuracy.  

 

8.7 Conclusions  

The findings of this programme of research demonstrate how geometric 

morphometrics analysis methods can identify shape anthropometrics which 

complement traditional anthropometric techniques in the assessment of human 

morphology. It has been shown that sophisticated shape anthropometrics can improve 

estimations of subcutaneous abdominal adiposity and the potential for 

misclassification of individuals using existing obesity and health risk classification 

methods. This programme of research contributes to current understanding of human 

morphological variation, which could inform the development of tools to improve the 

capabilities of anthropometrics used in applications, such as healthcare, apparel sizing 

and kinanthropometry. 
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Chapter 10 - Appendices 

Appendix 1 

A.1.1 Anthropometrics included in the restricted and full ISAK profiles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Type No. Site Restricted Full 

Basic 

1 Mass X X 

2 Stature X X 

3 Sitting height  X 

4 Arm span  X 

Skinfolds 

5 Triceps X X 

6 Subscapular X X 

7 Biceps X X 

8 Iliac crest X X 

9 Supraspinale X X 

10 Abdominal X X 

11 Front thigh X X 

12 Medial calf X X 

Girths 

13 Head  X 

14 Neck  X 

15 Arm (relaxed) X X 

16 Arm (flexed and tensed X X 

17 Forearm (maximum)  X 

18 Wrist (distal styloids)  X 

19 Chest (mesosternale)  X 

20 Waist (minimum) X X 

21 Gluteal (hips) X X 

22 Thigh (1cm gluteal fold)  X 

23 Thigh (mid-troch-tib. lat.)  X 

24 Calf (maximum) X X 

25 Ankle (minimum)  X 

Lengths 

26 Acromiale-radiale  X 

27 Radiale-stylion  X 

28 Midstylion-dactylion  X 

29 Iliospinale height  X 

30 Trochanterion height  X 

31 Trochanterion-tibiale laterale  X 

32 Tibiale laterale height  X 

33 Tibiale mediale-sphyrion tibiale  X 

Breadths 

34 Biacromial  X 

35 A-P abdominal depth  X 

36 Biliocristal  X 

37 Foot length  X 

38 Transverse chest  X 

39 A-P chest depth  X 

40 Humerus X X 

41 Bi-styloid  X 

42 Femur X X 
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Appendix 2 

A.2.1 Research ethics approval  
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A.2.2 Participant consent form 
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A.2.3 Participant information sheet 
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Appendix 3 

A.3.1 Research ethics approval. 
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A.3.2 Participant information sheet 
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A.3.3 Participant consent form 
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Appendix 4 

A.4.1 Data sharing agreement with LIFE Consortium and Leipzig University. 
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A.4.2 Research ethics approval. 
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A.4.3 Sex differences in size and shape measures. 

 

Measure

Male                      

Mean (SD)

Female                 

Mean (SD) p-value

Height (cm) 176.07 (7.34) 164.0 (6.97) <0.001

Weight (kg) 85.97 (14.46) 72.13 (14.28) <0.001

BMI (kg/m
2
) 27.59 (4.19) 26.97 (5.27) <0.001

WHR 0.99 (0.07) 0.87 (0.06) <0.001

Waist Girth (cm) 100.99 (12.32) 91.76 (13.78) <0.001

Belly Circ. (cm) 103.03 (11.86) 96.71 (11.78) <0.001

Bust Chest Girth (cm) 107.91 (9.71) 102.01 (11.36) <0.001

Buttock Girth (cm) 104.04 (7.88) 107.14 (10.78) <0.001

High Hip Girth (cm) 102.98 (11.74) 98.69 (11.68) <0.001

High Waist Girth (cm) 100.21 (11.72) 88.80 (13.13) <0.001

Hip Girth (cm) 105.18 (7.85) 108.46 (10.49) <0.001

Middle Hip (cm) 102.56 (11.20) 103.15 (12.36) <0.001

Torso Width Waist (cm) 46.97 (7.34) 43.34 (7.40) <0.001

Under Bust Circ. (cm) 103.15 (9.64) 89.07 (11.36) <0.001

Waistband (cm) 98.78 (10.18) 95.22 (11.51) <0.001
Distance Neck - Hip (cm) 61.66 (3.23) 56.90 (3.18) <0.001

Side Upper Torso Length Left (cm) 24.90 (2.81) 23.13 (3.1) <0.001
Side Upper Torso Length Right (cm) 24.47 (2.77) 22.77 (3.06) <0.001

Cross Shoulder (cm) 50.24 (3.36) 46.62 (3.78) <0.001

Across Front Width (cm) 44.05 (4.32) 41.54 (4.71) <0.001

Width Armpits (cm) 47.05 (4.96) 45.37 (6.47) <0.001

Across Back Width (cm) 42.48 (3.36) 38.71 (3.61) <0.001

Neck - Waist Centre Back (cm) 43.80 (2.31) 40.77 (2.39) <0.001

Neck Left - Waist Back (cm) 48.30 (2.78) 44.34 (2.74) <0.001

Neck Right - Waist Back (cm) 48.05 (2.79) 44.18 (2.68) <0.001
Distance Across Back Width (cm) 26.82 (3.61) 25.79 (3.45) <0.001

Waist - High Hip Back (cm) 6.22 (1.51) 5.07 (2.1) <0.001

Waist - Buttock (cm) 20.14 (1.72) 18.63 (2.3) <0.001

Waistband - Buttock (cm) 12.18 (2.37) 15.44 (1.98) <0.001

Crotch Length (cm) 87.41 (6.09) 77.93 (6.11) <0.001

Crotch Length Front (cm) 44.70 (3.47) 37.30 (3.38) <0.001

Crotch Length Rear (cm) 42.70 (2.97) 40.64 (3.09) <0.001

Waist - Buttock Height Left (cm) 20.1 (1.68) 18.43 (2.32) <0.001

Waist - Buttock Height Right (cm) 20.14 (1.7) 18.49 (2.38) <0.001

Waistband - Buttock Height Left (cm) 9.63 (2.55) 14.53 (2.38) <0.001

Waistband - Buttock Height Right (cm) 9.60 (2.58) 14.57 (2.41) <0.001

Torso Length (cm) 32.14 (2.13) 30.13 (2.06) <0.001

PC1 0.8548 (1.7198) -0.7929 (2.1113) <0.001

PC2 -0.9941 (1.1194) 0.9042 (1.176) <0.001

PC3 0.3587 (1.0173) -0.3185 (0.8644) <0.001

PC4 0.0399 (0.7877) -0.0338 (0.9612) <0.001

PC5 -0.2286 (0.5389) 0.194 (0.9027) <0.001

PC6 0.0274 (0.5056) -0.0225 (0.6052) <0.001

PC7 0.0745 (0.3467) -0.0793 (0.4739) <0.001

PC8 0.0188 (0.3541) -0.0103 (0.4242) <0.001

PC9 -0.0103 (0.3251) 0.0283 (0.3972) <0.001

Shape 

Features

Size 

Measures
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A.4.4 Pearson correlation and effect size - size measures male and female.  

 
2Female data 

Age 0.09(0.01) 0.46(0.21) 0.42(0.17) 0.3(0.09)

Weight 0.16(0.02)² 0.8(0.63) 0.82(0.66) 0.79(0.63)

Waist Girth 0.46(0.21)² 0.84(0.71)² 0.99(0.98) 0.9(0.8)

Belly Circ. 0.39(0.15)² 0.87(0.76)² 0.98(0.95)² 0.89(0.78)

Bust Chest Girth 0.38(0.14)² 0.83(0.69)² 0.94(0.88)² 0.93(0.86)²

Buttock Girth 0.3(0.09)² 0.88(0.78)² 0.88(0.78)² 0.91(0.83)² 0.85(0.73)²

High Hip Girth 0.39(0.15)² 0.88(0.77)² 0.97(0.94)² 0.99(0.99)² 0.92(0.85)²

High Waist Girth 0.45(0.21)² 0.84(0.71)² 0.99(0.97)² 0.97(0.93)² 0.95(0.91)²

Hip Girth 0.27(0.07)² 0.87(0.76)² 0.85(0.73)² 0.89(0.79)² 0.83(0.69)²

Middle Hip 0.43(0.19)² 0.87(0.75)² 0.96(0.92)² 0.97(0.94)² 0.91(0.83)²

Torso Width Waist 0.39(0.15)² 0.75(0.56)² 0.89(0.79)² 0.87(0.76)² 0.83(0.69)²

Under Bust Circ. 0.4(0.16)² 0.83(0.69)² 0.94(0.89)² 0.93(0.87)² 0.96(0.92)²

Waistband 0.42(0.18)² 0.87(0.75)² 0.97(0.94)² 0.98(0.96)² 0.93(0.87)²

Distance Neck - Hip -0.27(0.07)² -0.14(0.02)² -0.23(0.05)² -0.13(0.02)² -0.23(0.05)²

Side Upper Torso  Left -0.2(0.04)² -0.17(0.03)² -0.18(0.03)² -0.17(0.03)² -0.2(0.04)²

Side Upper Torso  Right -0.24(0.06)² -0.21(0.04)² -0.23(0.05)² -0.22(0.05)² -0.26(0.07)²

Cross Shoulder 0.37(0.14)² 0.64(0.41)² 0.79(0.62)² 0.78(0.6)² 0.81(0.66)²

Across Front Width 0.39(0.15)² 0.54(0.3)² 0.68(0.47)² 0.67(0.45)² 0.7(0.49)²

Width Armpits 0.31(0.1)² 0.59(0.35)² 0.67(0.45)² 0.68(0.46)² 0.71(0.51)²

Across Back Width 0.22(0.05)² 0.55(0.31)² 0.63(0.4)² 0.63(0.4)² 0.68(0.46)²

Neck - Waist Centre Back 0.29(0.08)² 0.37(0.14)² 0.51(0.26)² 0.48(0.23)² 0.4(0.16)²

Neck Left - Waist Back 0.33(0.11)² 0.4(0.16)² 0.54(0.29)² 0.51(0.26)² 0.42(0.18)²

Neck Right - Waist Back 0.33(0.11)² 0.4(0.16)² 0.54(0.29)² 0.51(0.26)² 0.43(0.18)²

Distance Across Back Width 0.12(0.01)² -0.05(0)² 0.02(0)² 0(0)² -0.07(0)²

Waist - High Hip Back -0.5(0.25)² -0.37(0.13)² -0.61(0.37)² -0.48(0.23)² -0.53(0.28)²

Waist - Buttock -0.5(0.25)² -0.32(0.1)² -0.57(0.32)² -0.43(0.18)² -0.48(0.23)²

Waistband - Buttock -0.16(0.03)² 0.07(0)² 0.03(0)² 0.11(0.01)² 0.01(0)²

Crotch Length 0.24(0.06)² 0.77(0.6)² 0.71(0.5)² 0.78(0.6)² 0.75(0.56)²

Crotch Length Front 0.26(0.07)² 0.76(0.58)² 0.73(0.53)² 0.79(0.62)² 0.77(0.6)²

Crotch Length Rear 0.19(0.04)² 0.7(0.49)² 0.6(0.36)² 0.68(0.46)² 0.63(0.4)²

Waist - Buttock  Left -0.47(0.22)² -0.42(0.18)² -0.65(0.42)² -0.51(0.26)² -0.55(0.3)²

Waist - Buttock  Right -0.48(0.23)² -0.42(0.18)² -0.65(0.43)² -0.52(0.27)² -0.55(0.3)²

Waistband - Buttock  Left -0.26(0.07)² -0.12(0.02)² -0.2(0.04)² -0.13(0.02)² -0.21(0.05)²

Waistband - Buttock  Right -0.27(0.07)² -0.13(0.02)² -0.21(0.04)² -0.14(0.02)² -0.22(0.05)²

Torso Length -0.37(0.14)² -0.22(0.05)² -0.36(0.13)² -0.27(0.07)² -0.29(0.09)²

WeightAge Waist Girth Belly Circ. Bust Chest Girth
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2Female data 

 

Age 0.28(0.08) 0.41(0.17) 0.45(0.21) 0.23(0.05) 0.4(0.16)

Weight 0.8(0.64) 0.82(0.67) 0.8(0.63) 0.79(0.63) 0.82(0.67)

Waist Girth 0.86(0.74) 0.98(0.96) 1(0.99) 0.84(0.71) 0.96(0.92)

Belly Circ. 0.89(0.79) 1(0.99) 0.98(0.96) 0.87(0.76) 0.98(0.96)

Bust Chest Girth 0.82(0.68) 0.88(0.77) 0.91(0.83) 0.81(0.66) 0.86(0.74)

Buttock Girth 0.9(0.8) 0.86(0.73) 0.99(0.98) 0.92(0.84)

High Hip Girth 0.92(0.85)² 0.97(0.94) 0.88(0.77) 0.99(0.97)

High Waist Girth 0.87(0.76)² 0.96(0.92)² 0.83(0.7) 0.95(0.9)

Hip Girth 0.99(0.99)² 0.9(0.81)² 0.85(0.71)² 0.9(0.81)

Middle Hip 0.95(0.89)² 0.98(0.95)² 0.95(0.89)² 0.93(0.86)²

Torso Width Waist 0.77(0.59)² 0.86(0.74)² 0.88(0.77)² 0.74(0.55)² 0.84(0.71)²

Under Bust Circ. 0.86(0.74)² 0.93(0.86)² 0.97(0.93)² 0.84(0.7)² 0.91(0.83)²

Waistband 0.89(0.79)² 0.98(0.95)² 0.96(0.93)² 0.86(0.74)² 0.96(0.91)²

Distance Neck - Hip -0.14(0.02)² -0.13(0.02)² -0.25(0.06)² -0.12(0.01)² -0.18(0.03)²

Side Upper Torso  Left -0.17(0.03)² -0.17(0.03)² -0.21(0.04)² -0.17(0.03)² -0.17(0.03)²

Side Upper Torso  Right -0.23(0.05)² -0.22(0.05)² -0.27(0.07)² -0.22(0.05)² -0.23(0.05)²

Cross Shoulder 0.72(0.52)² 0.77(0.59)² 0.8(0.64)² 0.7(0.49)² 0.77(0.59)²

Across Front Width 0.62(0.39)² 0.67(0.45)² 0.69(0.48)² 0.6(0.36)² 0.67(0.45)²

Width Armpits 0.63(0.4)² 0.67(0.45)² 0.69(0.47)² 0.61(0.38)² 0.66(0.44)²

Across Back Width 0.59(0.34)² 0.62(0.39)² 0.65(0.42)² 0.57(0.32)² 0.62(0.38)²

Neck - Waist Centre Back 0.42(0.18)² 0.48(0.23)² 0.46(0.21)² 0.41(0.17)² 0.49(0.24)²

Neck Left - Waist Back 0.46(0.21)² 0.51(0.26)² 0.49(0.24)² 0.44(0.19)² 0.53(0.28)²

Neck Right - Waist Back 0.45(0.21)² 0.51(0.26)² 0.49(0.24)² 0.44(0.19)² 0.53(0.28)²

Distance Across Back Width -0.03(0)² 0(0)² -0.02(0)² -0.03(0)² 0.01(0)²

Waist - High Hip Back -0.43(0.19)² -0.48(0.23)² -0.57(0.33)² -0.41(0.16)² -0.54(0.29)²

Waist - Buttock -0.35(0.12)² -0.42(0.18)² -0.53(0.28)² -0.32(0.1)² -0.47(0.22)²

Waistband - Buttock 0.18(0.03)² 0.13(0.02)² 0.01(0)² 0.19(0.04)² 0.12(0.02)²

Crotch Length 0.83(0.69)² 0.79(0.62)² 0.74(0.55)² 0.82(0.68)² 0.78(0.61)²

Crotch Length Front 0.79(0.63)² 0.79(0.63)² 0.77(0.59)² 0.78(0.6)² 0.78(0.61)²

Crotch Length Rear 0.78(0.61)² 0.69(0.47)² 0.63(0.4)² 0.78(0.61)² 0.7(0.48)²

Waist - Buttock  Left -0.44(0.2)² -0.51(0.26)² -0.6(0.36)² -0.41(0.17)² -0.56(0.32)²

Waist - Buttock  Right -0.44(0.2)² -0.52(0.27)² -0.61(0.37)² -0.41(0.17)² -0.57(0.32)²

Waistband - Buttock  Left 0.01(0)² -0.11(0.01)² -0.23(0.05)² 0.03(0)² -0.09(0.01)²

Waistband - Buttock  Right 0.01(0)² -0.11(0.01)² -0.23(0.05)² 0.03(0)² -0.09(0.01)²

Torso Length -0.26(0.07)² -0.27(0.07)² -0.36(0.13)² -0.24(0.06)² -0.32(0.1)²

Hip Girth Middle HipButtock Girth High Hip Girth High Waist Girth
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2Female data 

 

Age 0.43(0.18) 0.36(0.13) 0.38(0.15) -0.14(0.02) -0.11(0.01)

Weight 0.63(0.4) 0.79(0.63) 0.81(0.66) 0.04(0) -0.16(0.02)

Waist Girth 0.84(0.7) 0.93(0.86) 0.94(0.89) -0.03(0) -0.19(0.04)

Belly Circ. 0.82(0.68) 0.91(0.83) 0.96(0.93) -0.02(0) -0.19(0.04)

Bust Chest Girth 0.67(0.45) 0.98(0.95) 0.86(0.73) -0.02(0) -0.24(0.06)

Buttock Girth 0.69(0.48) 0.83(0.69) 0.94(0.87) 0.04(0) -0.16(0.03)

High Hip Girth 0.81(0.66) 0.9(0.81) 0.97(0.94) -0.05(0) -0.19(0.04)

High Waist Girth 0.84(0.7) 0.94(0.89) 0.93(0.87) -0.03(0) -0.2(0.04)

Hip Girth 0.67(0.45) 0.81(0.66) 0.92(0.84) 0.04(0) -0.16(0.02)

Middle Hip 0.8(0.63) 0.88(0.77) -0.98(0.96) -0.04(0) -0.18(0.03)

Torso Width Waist 0.75(0.56) 0.77(0.6) 0.02(0) -0.19(0.03)

Under Bust Circ. 0.84(0.71)² 0.88(0.77) -0.03(0) -0.23(0.05)

Waistband 0.86(0.74)² 0.93(0.87)² -0.04(0) -0.18(0.03)

Distance Neck - Hip -0.17(0.03)² -0.25(0.06)² -0.22(0.05)² 0.4(0.16)

Side Upper Torso  Left -0.21(0.04)² -0.23(0.05)² -0.2(0.04)² 0.41(0.17)²

Side Upper Torso  Right -0.25(0.06)² -0.28(0.08)² -0.25(0.06)² 0.44(0.2)² 0.55(0.3)²

Cross Shoulder 0.65(0.42)² 0.8(0.64)² 0.77(0.6)² -0.15(0.02)² -0.28(0.08)²

Across Front Width 0.69(0.48)² 0.69(0.48)² 0.67(0.45)² -0.14(0.02)² -0.32(0.1)²

Width Armpits 0.75(0.56)² 0.7(0.49)² 0.67(0.45)² -0.17(0.03)² -0.48(0.23)²

Across Back Width 0.46(0.22)² 0.66(0.43)² 0.63(0.39)² -0.11(0.01)² -0.13(0.02)²

Neck - Waist Centre Back 0.44(0.2)² 0.38(0.15)² 0.45(0.2)² 0.37(0.14)² 0.27(0.07)²

Neck Left - Waist Back 0.48(0.23)² 0.42(0.18)² 0.48(0.23)² 0.28(0.08)² 0.23(0.05)²

Neck Right - Waist Back 0.48(0.23)² 0.42(0.18)² 0.48(0.23)² 0.29(0.08)² 0.22(0.05)²

Distance Across Back Width 0.04(0)² -0.07(0)² -0.02(0)² 0.31(0.09)² 0.4(0.16)²

Waist - High Hip Back -0.49(0.24)² -0.51(0.26)² -0.54(0.29)² 0.63(0.39)² 0.12(0.01)²

Waist - Buttock -0.46(0.21)² -0.47(0.22)² -0.49(0.24)² 0.63(0.4)² 0.12(0.01)²

Waistband - Buttock 0.02(0)² 0(0)² -0.02(0)² 0.48(0.23)² 0.2(0.04)²

Crotch Length 0.64(0.41)² 0.77(0.59)² 0.79(0.62)² -0.1(0.01)² -0.26(0.07)²

Crotch Length Front 0.68(0.46)² 0.8(0.64)² 0.81(0.65)² -0.12(0.02)² -0.26(0.07)²

Crotch Length Rear 0.52(0.27)² 0.65(0.42)² 0.68(0.47)² -0.05(0)² -0.24(0.06)²

Waist - Buttock  Left -0.52(0.27)² -0.53(0.28)² -0.56(0.32)² 0.6(0.36)² 0.1(0.01)²

Waist - Buttock  Right -0.53(0.28)² -0.54(0.29)² -0.57(0.32)² 0.6(0.36)² 0.1(0.01)²

Waistband - Buttock  Left -0.19(0.04)² -0.23(0.05)² -0.24(0.06)² 0.46(0.21)² 0.2(0.04)²

Waistband - Buttock  Right -0.19(0.04)² -0.23(0.05)² -0.25(0.06)² 0.47(0.22)² 0.2(0.04)²

Torso Length -0.27(0.07)² -0.33(0.11)² -0.34(0.11)² 0.79(0.63)² 0.31(0.1)²

Side Upper Torso 

Left

Torso Width 

Waist

Under Bust 

Circ. Waistband

Distance Neck - 

Hip 
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2Female data 

 

Age -0.14(0.02) 0.27(0.07) 0.37(0.14) 0.29(0.08) 0.13(0.02)

Weight -0.13(0.02) 0.55(0.3) 0.39(0.15) 0.48(0.23) 0.52(0.27)

Waist Girth -0.17(0.03) 0.71(0.5) 0.57(0.33) 0.6(0.36) 0.6(0.36)

Belly Circ. -0.17(0.03) 0.7(0.48) 0.56(0.32) 0.59(0.35) 0.58(0.34)

Bust Chest Girth -0.22(0.05) 0.75(0.56) 0.51(0.26) 0.6(0.36) 0.71(0.51)

Buttock Girth -0.14(0.02) 0.66(0.43) 0.51(0.26) 0.56(0.31) 0.56(0.31)

High Hip Girth -0.18(0.03) 0.69(0.47) 0.56(0.31) 0.59(0.35) 0.58(0.33)

High Waist Girth -0.18(0.03) 0.71(0.51) 0.58(0.33) 0.61(0.37) 0.61(0.37)

Hip Girth -0.13(0.02) 0.65(0.42) 0.5(0.25) 0.54(0.3) 0.55(0.31)

Middle Hip -0.17(0.03) 0.67(0.45) 0.55(0.3) 0.58(0.33) 0.56(0.31)

Torso Width Waist -0.17(0.03) 0.5(0.25) 0.63(0.39) 0.7(0.49) 0.33(0.11)

Under Bust Circ. -0.21(0.04) -0.73(0.53) 0.55(0.3) 0.63(0.39) 0.68(0.46)

Waistband -0.17(0.03) 0.67(0.45) 0.55(0.3) 0.58(0.33) 0.56(0.31)

Distance Neck - Hip 0.44(0.19) 0.05(0) 0.07(0) 0.04(0) 0.03(0)

Side Upper Torso  Left 0.51(0.26) -0.27(0.07) -0.16(0.03) -0.34(0.12) -0.21(0.04)

Side Upper Torso  Right -0.25(0.06) -0.15(0.02) -0.32(0.1) -0.19(0.03)

Cross Shoulder -0.32(0.1)² 0.73(0.54) 0.67(0.44) 0.76(0.58)

Across Front Width -0.34(0.11)² 0.84(0.71)² 0.9(0.8) 0.33(0.11)

Width Armpits -0.49(0.24)² 0.73(0.54)² 0.89(0.79)² 0.37(0.14)

Across Back Width -0.17(0.03)² 0.76(0.58)² 0.48(0.23)² 0.46(0.21)²

Neck - Waist Centre Back 0.24(0.06)² 0.4(0.16)² 0.36(0.13)² 0.24(0.06)² 0.25(0.06)²

Neck Left - Waist Back 0.17(0.03)² 0.4(0.16)² 0.38(0.14)² 0.27(0.07)² 0.24(0.06)²

Neck Right - Waist Back 0.19(0.03)² 0.4(0.16)² 0.38(0.14)² 0.27(0.07)² 0.24(0.06)²

Distance Across Back Width 0.38(0.14)² 0.01(0)² 0.18(0.03)² -0.07(0.01)² -0.21(0.04)²

Waist - High Hip Back 0.17(0.03)² -0.46(0.21)² -0.4(0.16)² -0.32(0.1)² -0.32(0.1)²

Waist - Buttock 0.17(0.03)² -0.42(0.17)² -0.36(0.13)² -0.28(0.08)² -0.28(0.08)²

Waistband - Buttock 0.21(0.04)² 0.03(0)² 0(0)² 0.02(0)² 0.04(0)²

Crotch Length -0.3(0.09)² 0.62(0.38)² -0.55(0.3)² 0.59(0.35)² 0.52(0.27)²

Crotch Length Front -0.3(0.09)² 0.64(0.41)² 0.57(0.33)² 0.61(0.38)² 0.53(0.28)²

Crotch Length Rear -0.27(0.07)² 0.53(0.28)² 0.46(0.22)² 0.5(0.25)² 0.44(0.19)²

Waist - Buttock  Left 0.15(0.02)² -0.46(0.21)² -0.4(0.16)² -0.33(0.11)² -0.33(0.11)²

Waist - Buttock  Right 0.15(0.02)² -0.47(0.22)² -0.4(0.16)² -0.33(0.11)² -0.33(0.11)²

Waistband - Buttock  Left 0.23(0.05)² -0.14(0.02)² -0.15(0.02)² -0.14(0.02)² -0.09(0.01)²

Waistband - Buttock  Right 0.23(0.05)² -0.15(0.02)² -0.16(0.02)² -0.14(0.02)² -0.1(0.01)²

Torso Length 0.36(0.13)² -0.25(0.06)² -0.24(0.06)² -0.19(0.04)² -0.13(0.02)²

Cross Shoulder

Side Upper Torso  

Right

Across Back 

WidthWidth Armpits

Across Front 

Width 
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2Female data 

 

Age 0.28(0.08) 0.29(0.08) 0.3(0.09) 0.24(0.06) -0.44(0.19)

Weight 0.17(0.03) 0.2(0.04) 0.18(0.03) -0.11(0.01) -0.03(0)

Waist Girth 0.29(0.09) 0.32(0.1) 0.3(0.09) 0.01(0) -0.28(0.08)

Belly Circ. 0.28(0.08) 0.31(0.1) 0.3(0.09) 0(0) -0.26(0.07)

Bust Chest Girth 0.14(0.02) 0.16(0.02) 0.15(0.02) -0.17(0.03) -0.14(0.02)

Buttock Girth 0.28(0.08) 0.3(0.09) 0.29(0.08) -0.03(0) -0.18(0.03)

High Hip Girth 0.28(0.08) 0.31(0.09) 0.29(0.08) -0.01(0) -0.28(0.08)

High Waist Girth 0.28(0.08) 0.3(0.09) 0.29(0.08) -0.01(0) -0.26(0.07)

Hip Girth 0.26(0.07) 0.29(0.08) 0.27(0.07) -0.04(0) -0.16(0.03)

Middle Hip 0.28(0.08) 0.31(0.1) 0.3(0.09) -0.01(0) -0.26(0.07)

Torso Width Waist 0.27(0.07) 0.31(0.1) 0.29(0.09) 0.11(0.01) -0.2(0.04)

Under Bust Circ. 0.18(0.03) 0.19(0.04) 0.18(0.03) -0.11(0.01) -0.18(0.03)

Waistband 0.28(0.08) 0.32(0.1) 0.3(0.09) 0(0) -0.27(0.08)

Distance Neck - Hip 0.56(0.31) 0.42(0.17) 0.42(0.18) 0.31(0.09) 0.76(0.57)

Side Upper Torso  Left 0.34(0.11) 0.3(0.09) 0.27(0.07) 0.42(0.17) 0.23(0.05)

Side Upper Torso  Right 0.34(0.12) 0.25(0.06) 0.32(0.1) 0.4(0.16) 0.27(0.07)

Cross Shoulder 0.25(0.06) 0.22(0.05) 0.22(0.05) 0.04(0) -0.17(0.03)

Across Front Width 0.33(0.11) 0.33(0.11) 0.33(0.11) 0.41(0.17) -0.2(0.04)

Width Armpits 0.19(0.04) 0.21(0.04) 0.2(0.04) 0.17(0.03) -0.12(0.01)

Across Back Width 0.07(0.01) 0.04(0) 0.03(0) -0.26(0.07) -0.05(0)

Neck - Waist Centre Back 0.91(0.83) 0.9(0.81) 0.6(0.36) -0.04(0)

Neck Left - Waist Back 0.92(0.84)² 0.87(0.76) 0.55(0.3) -0.13(0.02)

Neck Right - Waist Back 0.93(0.86)² 0.9(0.81)² 0.56(0.31) -0.12(0.02)

Distance Across Back Width 0.52(0.27)² 0.48(0.23)² 0.49(0.24)² -0.08(0.01)

Waist - High Hip Back -0.41(0.17)² -0.44(0.19)² -0.46(0.21)² -0.13(0.02)²

Waist - Buttock -0.38(0.15)² -0.41(0.17)² -0.42(0.17)² -0.14(0.02)² 0.97(0.94)²

Waistband - Buttock 0.21(0.04)² 0.18(0.03)² 0.19(0.04)² 0.1(0.01)² 0.29(0.08)²

Crotch Length 0.15(0.02)² 0.2(0.04)² 0.19(0.04)² -0.18(0.03)² -0.13(0.02)²

Crotch Length Front 0.16(0.02)² 0.2(0.04)² 0.2(0.04)² -0.17(0.03)² -0.17(0.03)²

Crotch Length Rear 0.13(0.02)² 0.17(0.03)² 0.16(0.03)² -0.17(0.03)² -0.07(0)²

Waist - Buttock  Left -0.44(0.19)² -0.46(0.21)² -0.47(0.22)² -0.14(0.02)² 0.97(0.94)²

Waist - Buttock  Right -0.44(0.2)² -0.47(0.22)² -0.47(0.22)² -0.14(0.02)² 0.97(0.94)²

Waistband - Buttock  Left 0.09(0.01)² 0.06(0)² 0.07(0)² 0.09(0.01)² 0.36(0.13)²

Waistband - Buttock  Right 0.09(0.01)² 0.05(0)² 0.07(0)² 0.09(0.01)² 0.37(0.13)²

Torso Length 0(0)² -0.12(0.01)² -0.12(0.01)² 0.07(0)² 0.68(0.46)²

Waist - High 

Hip Back

Distance Across 

Back Width

Neck Right - 

Waist Back 

Neck Left - 

Waist Back 

Neck - Waist 

Centre Back 
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2Female data 

 

Age -0.42(0.18) -0.12(0.01) 0.23(0.05) 0.25(0.06) 0.19(0.04)

Weight -0.03(0) -0.07(0.01) 0.72(0.51) 0.68(0.47) 0.67(0.44)

Waist Girth -0.23(0.05) -0.1(0.01) 0.77(0.59) 0.76(0.58) 0.68(0.46)

Belly Circ. -0.21(0.04) -0.1(0.01) 0.79(0.63) 0.78(0.61) 0.71(0.5)

Bust Chest Girth -0.11(0.01) -0.09(0.01) 0.75(0.56) 0.73(0.54) 0.67(0.44)

Buttock Girth -0.11(0.01) 0.06(0) 0.78(0.6) 0.73(0.53) 0.73(0.54)

High Hip Girth -0.22(0.05) -0.11(0.01) 0.8(0.64) 0.78(0.61) 0.72(0.52)

High Waist Girth -0.22(0.05) -0.11(0.01) 0.77(0.59) 0.77(0.59) 0.68(0.46)

Hip Girth -0.09(0.01) 0.06(0) 0.77(0.6) 0.72(0.52) 0.74(0.54)

Middle Hip -0.2(0.04) -0.04(0) 0.81(0.65) 0.79(0.62) 0.73(0.53)

Torso Width Waist -0.17(0.03) -0.09(0.01) 0.65(0.42) 0.68(0.46) 0.52(0.27)

Under Bust Circ. -0.15(0.02) -0.11(0.01) 0.75(0.56) 0.75(0.56) 0.66(0.44)

Waistband -0.22(0.05) -0.05(0) 0.78(0.61) 0.76(0.57) 0.71(0.51)

Distance Neck - Hip 0.76(0.58) 0.39(0.16) 0.1(0.01) 0.09(0.01) 0.1(0.01)

Side Upper Torso  Left 0.23(0.05) 0.16(0.02) -0.15(0.02) -0.16(0.02) -0.12(0.01)

Side Upper Torso  Right 0.27(0.08) 0.17(0.03) -0.13(0.02) -0.14(0.02) -0.1(0.01)

Cross Shoulder -0.12(0.01) -0.04(0) 0.56(0.32) 0.56(0.31) 0.5(0.25)

Across Front Width -0.16(0.03) -0.06(0) 0.45(0.2) 0.45(0.21) 0.39(0.15)

Width Armpits -0.09(0.01) -0.05(0) 0.51(0.26) 0.52(0.27) 0.43(0.19)

Across Back Width -0.02(0) -0.01(0) 0.49(0.24) 0.47(0.22) 0.44(0.2)

Neck - Waist Centre Back -0.01(0) 0.13(0.02) 0.15(0.02) 0.14(0.02) 0.14(0.02)

Neck Left - Waist Back -0.1(0.01) 0.09(0.01) 0.17(0.03) 0.16(0.03) 0.15(0.02)

Neck Right - Waist Back -0.1(0.01) 0.1(0.01) 0.16(0.03) 0.15(0.02) 0.15(0.02)

Distance Across Back Width -0.08(0.01) 0.02(0) -0.08(0.01) -0.07(0) -0.07(0.01)

Waist - High Hip Back 0.97(0.93) 0.39(0.15) 0.01(0) 0(0) 0.01(0)

Waist - Buttock 0.44(0.19) 0.07(0.01) 0.06(0) 0.09(0.01)

Waistband - Buttock 0.34(0.11)² -0.19(0.04) -0.2(0.04) -0.16(0.02)

Crotch Length -0.05(0)² -0.02(0)² 0.96(0.91) 0.93(0.86)

Crotch Length Front -0.11(0.01)² -0.06(0)² 0.95(0.91)² 0.78(0.61)

Crotch Length Rear 0.03(0)² 0.03(0)² 0.94(0.88)² 0.79(0.63)²

Waist - Buttock  Left 0.95(0.91)² 0.26(0.07)² -0.14(0.02)² -0.18(0.03)² -0.07(0.01)²

Waist - Buttock  Right 0.05(0)² 0.27(0.07)² -0.14(0.02)² -0.19(0.03)² -0.08(0.01)²

Waistband - Buttock  Left 0.39(0.15)² 0.85(0.72)² -0.19(0.04)² -0.23(0.05)² -0.13(0.02)²

Waistband - Buttock  Right 0.4(0.16)² 0.85(0.72)² -0.19(0.04)² -0.23(0.05)² -0.13(0.02)²

Torso Length 0.67(0.45)² 0.37(0.14)² -0.16(0.03)² -0.18(0.03)² -0.13(0.02)²

Crotch 

Length Rear

Crotch 

Length 

Front

Crotch 

Length

Waistband - 

Buttock

Waist - 

Buttock
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2Female data 

 

Age -0.41(0.17) -0.42(0.18) -0.25(0.06) -0.25(0.06) -0.25(0.06)

Weight -0.09(0.01) -0.1(0.01) -0.31(0.09) -0.3(0.09) -0.02(0)

Waist Girth -0.28(0.08) -0.3(0.09) -0.41(0.17) -0.41(0.16) -0.16(0.03)

Belly Circ. -0.26(0.07) -0.28(0.08) -0.41(0.17) -0.41(0.17) -0.15(0.02)

Bust Chest Girth -0.13(0.02) -0.15(0.02) -0.33(0.11) -0.32(0.1) -0.04(0)

Buttock Girth -0.17(0.03) -0.18(0.03) -0.17(0.03) -0.17(0.03) -0.1(0.01)

High Hip Girth -0.28(0.08) -0.3(0.09) -0.42(0.17) -0.41(0.17) -0.17(0.03)

High Waist Girth -0.26(0.07) -0.29(0.08) -0.41(0.16) -0.4(0.16) -0.15(0.02)

Hip Girth -0.15(0.02) -0.16(0.03) -0.16(0.03) -0.16(0.03) -0.09(0.01)

Middle Hip -0.27(0.07) -0.29(0.08) -0.36(0.13) -0.35(0.12) -0.17(0.03)

Torso Width Waist -0.2(0.04) -0.21(0.04) -0.36(0.13) -0.36(0.13) -0.1(0.01)

Under Bust Circ. -0.17(0.03) -0.19(0.04) -0.36(0.13) -0.35(0.12) -0.07(0)

Waistband -0.27(0.07) -0.29(0.08) -0.33(0.11) -0.32(0.1) -0.17(0.03)

Distance Neck - Hip 0.78(0.6) 0.77(0.59) 0.37(0.14) 0.37(0.14) 0.75(0.56)

Side Upper Torso  Left 0.24(0.06) 0.24(0.06) 0.21(0.04) 0.21(0.04) 0.23(0.05)

Side Upper Torso  Right 0.27(0.07) 0.27(0.07) 0.21(0.04) 0.21(0.04) 0.25(0.06)

Cross Shoulder -0.14(0.02) -0.15(0.02) -0.23(0.05) -0.22(0.05) -0.06(0)

Across Front Width -0.18(0.03) -0.18(0.03) -0.21(0.04) -0.21(0.05) -0.08(0.01)

Width Armpits -0.1(0.01) -0.11(0.01) -0.22(0.05) -0.22(0.05) -0.02(0)

Across Back Width -0.03(0) -0.05(0) -0.17(0.03) -0.17(0.03) 0.02(0)

Neck - Waist Centre Back -0.02(0) -0.03(0) 0.04(0) 0.04(0) 0.04(0)

Neck Left - Waist Back -0.11(0.01) -0.12(0.01) 0(0) -0.01(0) -0.11(0.01)

Neck Right - Waist Back -0.1(0.01) -0.12(0.01) 0(0) 0.01(0) -0.1(0.01)

Distance Across Back Width -0.06(0) -0.07(0) 0.03(0) 0.03(0) -0.02(0)

Waist - High Hip Back 0.98(0.96) 0.98(0.96) 0.43(0.19) 0.43(0.18) 0.82(0.67)

Waist - Buttock 0.96(0.93) 0.96(0.92) 0.44(0.19) 0.43(0.19) 0.8(0.65)

Waistband - Buttock 0.4(0.16) 0.4(0.16) 0.87(0.75) 0.86(0.74) 0.33(0.11)

Crotch Length 0.01(0) -0.01(0) -0.45(0.2) -0.45(0.2) 0.03(0)

Crotch Length Front 0(0) -0.01(0) -0.47(0.22) -0.46(0.21) 0.03(0)

Crotch Length Rear 0.01(0) 0(0) -0.37(0.14) -0.37(0.13) 0.02(0)

Waist - Buttock  Left 0.99(0.99) 0.45(0.2) 0.44(0.2) 0.83(0.69)

Waist - Buttock  Right 0.99(0.98)² 0.46(0.21) 0.45(0.2) 0.83(0.69)

Waistband - Buttock  Left 0.37(0.14)² 0.37(0.13)² 0.99(0.97) 0.36(0.13)

Waistband - Buttock  Right 0.37(0.14)² 0.38(0.14)² 0.99(0.98)² 0.35(0.12)

Torso Length 0.66(0.44)² 0.66(0.44)² 0.4(0.16)² 0.4(0.16)²

Waist - 

Buttock  

Left

Torso 

Length

Waistband - 

Buttock  Right

Waistband - 

Buttock  Left

Waist - 

Buttock  Right
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A.4.5 Pearson correlation and effect size - size and shape male participants.  

Size measure 

Shape principal components 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Age 0.28(0.08) -0.23(0.05) -0.34(0.11) 0.06(0) -0.1(0.01) -0.07(0.01) -0.33(0.11) -0.08(0.01) -0.06(0) 
Weight 0.39(0.15) -0.14(0.02) -0.6(0.36) -0.01(0.0) -0.22(0.05) -0.1(0.01) -0.17(0.03) -0.1(0.01) 0.04(0.0) 
Waist Girth 0.53(0.28) -0.3(0.09) -0.74(0.55) 0.02(0.0) -0.33(0.11) -0.07(0.01) -0.38(0.14) -0.15(0.02) 0.02(0.0) 
Belly Circ.  0.5(0.25) -0.25(0.06) -0.77(0.59) 0.02(0.0) -0.38(0.14) -0.08(0.01) -0.38(0.14) -0.17(0.03) 0.02(0.0) 
Bust Chest Girth 0.45(0.2) -0.32(0.1) -0.54(0.29) 0.01(0.0) -0.05(0.0) -0.15(0.02) -0.26(0.07) -0.11(0.01) 0.11(0.01) 
Buttock Girth 0.36(0.13) -0.04(0.0) -0.65(0.43) 0.02(0.0) -0.26(0.07) -0.16(0.03) -0.07(0.01) -0.18(0.03) -0.09(0.01) 

High Hip Girth 0.49(0.24) -0.23(0.05) -0.78(0.61) 0.02(0.0) -0.38(0.14) -0.1(0.01) -0.36(0.13) -0.19(0.03) 0.03(0.0) 
High Waist Girth 0.54(0.29) -0.31(0.1) -0.71(0.51) 0.02(0.0) -0.28(0.08) -0.07(0.0) -0.36(0.13) -0.15(0.02) 0.02(0.0) 
Hip Girth 0.33(0.11) -0.03(0.0) -0.63(0.4) 0.01(0.0) -0.26(0.07) -0.16(0.03) -0.05(0.0) -0.19(0.04) -0.09(0.01) 
Middle Hip 0.45(0.2) -0.19(0.04) -0.8(0.65) 0.01(0.0) -0.38(0.14) -0.1(0.01) -0.29(0.08) -0.2(0.04) 0.04(0.0) 
Torso Width Waist 0.58(0.34) -0.16(0.03) -0.63(0.4) 0.01(0.0) -0.36(0.13) 0.06(0.0) -0.3(0.09) -0.11(0.01) 0.06(0.0) 
Under Bust Circ. 0.5(0.25) -0.33(0.11) -0.56(0.31) 0.02(0.0) -0.06(0.0) -0.12(0.02) -0.29(0.09) -0.12(0.01) 0.1(0.01) 
Waistband  0.45(0.21) -0.14(0.02) -0.75(0.56) 0.02(0.0) -0.34(0.12) -0.17(0.03) -0.27(0.07) -0.21(0.05) -0.03(0.0) 
Distance Neck - Hip  -0.04(0.0) 0.03(0.0) 0.04(0.0) -0.04(0.0) -0.07(0.01) 0.23(0.05) 0.06(0.0) 0.17(0.03) -0.09(0.01) 
Side Upper Torso Length Left -0.18(0.03) 0.02(0.0) 0.1(0.01) -0.01(0.0) 0.02(0.0) 0.06(0.0) 0.02(0.0) 0.07(0.0) -0.13(0.02) 
Side Upper Torso Length Right -0.17(0.03) 0.01(0.0) 0.1(0.01) -0.04(0.0) 0.01(0.0) 0.1(0.01) 0.02(0.0) 0.09(0.01) -0.12(0.01) 
Cross Shoulder 0.37(0.13) -0.19(0.04) -0.41(0.16) 0.02(0.0) -0.13(0.02) -0.12(0.01) -0.2(0.04) -0.11(0.01) 0.05(0.0) 
Across Front Width  0.25(0.06) -0.21(0.04) -0.38(0.14) 0.02(0.0) -0.11(0.01) -0.1(0.01) -0.23(0.05) -0.12(0.01) -0.06(0.0) 
Width Armpits 0.26(0.07) -0.24(0.06) -0.38(0.15) 0.0(0.0) -0.03(0.0) -0.08(0.01) -0.2(0.04) -0.09(0.01) 0.02(0.0) 
Across Back Width 0.37(0.13) -0.15(0.02) -0.28(0.08) 0.0(0.0) -0.06(0.0) -0.07(0.01) -0.12(0.02) -0.06(0.0) 0.14(0.02) 
Neck - Waist Centre Back  0.06(0.0) -0.07(0.01) -0.21(0.04) 0.02(0.0) -0.24(0.06) -0.14(0.02) -0.16(0.02) -0.03(0.0) -0.11(0.01) 

Neck Left - Waist Back  0.05(0.0) -0.09(0.01) -0.25(0.06) 0.04(0.0) -0.27(0.07) -0.19(0.04) -0.14(0.02) -0.08(0.01) -0.11(0.01) 
Neck Right - Waist Back  0.03(0.0) -0.1(0.01) -0.23(0.05) 0.02(0.0) -0.25(0.06) -0.19(0.04) -0.14(0.02) -0.06(0.0) -0.12(0.01) 
Distance Across Back Width -0.06(0.0) -0.02(0.0) -0.04(0.0) 0.02(0.0) -0.12(0.01) -0.08(0.01) -0.14(0.02) -0.02(0.0) -0.2(0.04) 
Waist - High Hip Back -0.13(0.02) 0.08(0.01) 0.22(0.05) -0.07(0.0) 0.08(0.01) 0.32(0.1) 0.23(0.05) 0.19(0.04) 0.04(0.0) 
Waist - Buttock -0.22(0.05) 0.0(0.0) 0.12(0.01) -0.08(0.01) 0.05(0.0) 0.37(0.14) 0.27(0.07) 0.21(0.04) 0.1(0.01) 
Waistband - Buttock -0.26(0.07) 0.02(0.0) -0.02(0.0) -0.04(0.0) 0.0(0.0) 0.19(0.03) 0.31(0.1) 0.11(0.01) -0.02(0.0) 
Crotch Length 0.35(0.12) -0.18(0.03) -0.69(0.48) 0.0 (0.0) -0.26(0.07) 0.01(0.0) -0.08(0.01) -0.13(0.02) 0.11(0.01) 
Crotch Length Front 0.41(0.17) -0.17(0.03) -0.67(0.45) -0.01(0.0) -0.28(0.08) 0.03(0.0) -0.09(0.01) -0.15(0.02) 0.18(0.03) 
Crotch Length Rear 0.23(0.05) -0.18(0.03) -0.63(0.39) 0.01(0.0) -0.2(0.04) -0.01(0.0) -0.05(0.0) -0.09(0.01) 0.02(0.0) 
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Waist - Buttock Height Left -0.13(0.02) 0.1(0.01) 0.24(0.06) -0.05(0.0) 0.09(0.01) 0.3(0.09) 0.24(0.06) 0.2(0.04) 0.04(0.0) 
Waist - Buttock Height Right -0.14(0.02) 0.11(0.01) 0.26(0.07) -0.08(0.01) 0.1(0.01) 0.3(0.09) 0.25(0.06) 0.19(0.04) 0.03(0.0) 
Waistband - Buttock Height Left -0.34(0.11) 0.22(0.05) 0.34(0.12) -0.03(0.0) 0.19(0.04) 0.05(0.0) 0.41(0.17) 0.1(0.01) -0.18(0.03) 
Waistband - Buttock Height Right -0.34(0.11) 0.22(0.05) 0.34(0.12) -0.04(0.0) 0.2(0.04) 0.05(0.0) 0.42(0.18) 0.09(0.01) -0.18(0.03) 
Torso Length -0.03(0.0) 0.05(0.0) 0.2(0.04) -0.05(0.0) 0.12(0.01) 0.3(0.09) 0.11(0.01) 0.22(0.05) 0.05(0.0) 

 

 

 

A.4.6 Pearson correlation and effect size - size and shape female participants. 

 Shape principal components 

Size measures PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Age 0.27(0.07) -0.18(0.03) -0.31(0.1) -0.02(0.0) 0.26(0.07) -0.35(0.13) -0.06(0.0) 0.01(0.0) -0.15(0.02) 
Weight 0.44(0.19) -0.08(0.01) -0.61(0.38) -0.11(0.01) 0.22(0.05) -0.15(0.02) 0.29(0.08) 0.07(0.01) -0.13(0.02) 
Waist Girth 0.56(0.32) -0.24(0.06) -0.65(0.43) -0.12(0.01) 0.31(0.1) -0.28(0.08) 0.11(0.01) 0.05(0.0) -0.17(0.03) 
Belly Circ.  0.51(0.26) -0.21(0.04) -0.68(0.47) -0.12(0.01) 0.22(0.05) -0.25(0.06) 0.13(0.02) 0.05(0.0) -0.18(0.03) 
Bust Chest Girth 0.57(0.32) -0.27(0.07) -0.56(0.31) -0.12(0.02) 0.44(0.19) -0.26(0.07) 0.17(0.03) 0.04(0.0) -0.07(0.01) 
Buttock Girth 0.39(0.15) -0.04(0.0) -0.65(0.43) -0.11(0.01) 0.24(0.06) -0.17(0.03) 0.34(0.11) 0.06(0.0) -0.24(0.06) 
High Hip Girth 0.49(0.24) -0.19(0.03) -0.7(0.49) -0.12(0.01) 0.22(0.05) -0.25(0.06) 0.14(0.02) 0.05(0.0) -0.17(0.03) 
High Waist Girth 0.59(0.34) -0.25(0.06) -0.63(0.4) -0.11(0.01) 0.33(0.11) -0.26(0.07) 0.17(0.03) 0.04(0.0) -0.17(0.03) 
Hip Girth 0.36(0.13) -0.02(0.0) -0.63(0.4) -0.1(0.01) 0.22(0.05) -0.15(0.02) 0.35(0.12) 0.05(0.0) -0.24(0.06) 
Middle Hip 0.46(0.22) -0.15(0.02) -0.72(0.52) -0.11(0.01) 0.27(0.07) -0.25(0.06) 0.19(0.04) 0.05(0.0) -0.17(0.03) 
Torso Width Waist 0.59(0.35) -0.14(0.02) -0.57(0.33) -0.11(0.01) 0.2(0.04) -0.2(0.04) 0.12(0.01) 0.07(0.01) -0.08(0.01) 
Under Bust Circ. 0.57(0.32) -0.27(0.07) -0.56(0.32) -0.11(0.01) 0.35(0.12) -0.23(0.05) 0.24(0.06) 0.0(0.0) -0.13(0.02) 
Waistband  0.56(0.31) -0.18(0.03) -0.66(0.44) -0.12(0.01) 0.26(0.07) -0.29(0.08) 0.13(0.02) 0.05(0.0) -0.17(0.03) 
Distance Neck - Hip  -0.33(0.11) 0.03(0.0) 0.1(0.01) 0.01(0.0) -0.41(0.17) 0.16(0.03) -0.11(0.01) 0.04(0.0) 0.12(0.01) 
Side Upper Torso Length Left -0.21(0.04) -0.01(0.0) 0.09(0.01) 0.03(0.0) -0.13(0.02) 0.12(0.01) -0.14(0.02) -0.01(0.0) 0.08(0.01) 

Side Upper Torso Length Right -0.24(0.06) 0.0(0.0) 0.12(0.01) 0.01(0.0) -0.14(0.02) 0.15(0.02) -0.16(0.02) 0.0(0.0) 0.09(0.01) 
Cross Shoulder 0.49(0.24) -0.18(0.03) -0.42(0.17) -0.1(0.01) 0.32(0.1) -0.24(0.06) 0.14(0.02) 0.0(0.0) -0.07(0.01) 
Across Front Width  0.38(0.14) -0.2(0.04) -0.39(0.16) -0.09(0.01) 0.3(0.09) -0.23(0.05) 0.11(0.01) -0.02(0.0) -0.14(0.02) 
Width Armpits 0.38(0.15) -0.2(0.04) -0.42(0.17) -0.11(0.01) 0.29(0.08) -0.18(0.03) 0.15(0.02) 0.0(0.0) -0.1(0.01) 
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Across Back Width 0.43(0.19) -0.11(0.01) -0.3(0.09) -0.09(0.01) 0.25(0.06) -0.14(0.02) 0.13(0.02) 0.02(0.0) 0.0(0.0) 

Neck - Waist Centre Back  0.17(0.03) -0.12(0.01) -0.31(0.1) -0.05(0.0) 0.1(0.01) -0.23(0.05) -0.1(0.01) 0.01(0.0) 0.0(0.0) 
Neck Left - Waist Back  0.17(0.03) -0.15(0.02) -0.34(0.12) -0.04(0.0) 0.09(0.01) -0.27(0.08) -0.07(0.0) 0.0(0.0) -0.06(0.0) 
Neck Right - Waist Back  0.16(0.03) -0.16(0.03) -0.34(0.12) -0.06(0.0) 0.09(0.01) -0.28(0.08) -0.08(0.01) 0.0(0.0) -0.06(0.0) 
Distance Across Back Width -0.1(0.01) -0.03(0.0) -0.02(0.0) 0.02(0.0) -0.05(0.0) -0.11(0.01) -0.16(0.03) -0.04(0.0) -0.04(0.0) 
Waist - High Hip Back -0.48(0.23) 0.1(0.01) 0.29(0.08) 0.06(0.0) -0.56(0.31) 0.28(0.08) 0.04(0.0) 0.0(0.0) 0.12(0.02) 
Waist - Buttock -0.53(0.28) 0.06(0.0) 0.19(0.04) 0.05(0.0) -0.52(0.27) 0.32(0.1) 0.12(0.01) 0.01(0.0) 0.15(0.02) 
Waistband - Buttock -0.32(0.1) -0.1(0.01) -0.17(0.03) -0.03(0.0) -0.22(0.05) 0.14(0.02) -0.03(0.0) 0.02(0.0) -0.04(0.0) 

Crotch Length 0.33(0.11) -0.08(0.01) -0.65(0.42) -0.08(0.01) 0.12(0.02) -0.15(0.02) 0.49(0.24) 0.03(0.0) -0.14(0.02) 
Crotch Length Front 0.43(0.18) -0.08(0.01) -0.62(0.38) -0.09(0.01) 0.14(0.02) -0.17(0.03) 0.45(0.2) -0.01(0.0) -0.08(0.01) 
Crotch Length Rear 0.18(0.03) -0.06(0.0) -0.6(0.36) -0.07(0.01) 0.09(0.01) -0.11(0.01) 0.48(0.23) 0.07(0.0) -0.19(0.03) 
Waist - Buttock Height Left -0.47(0.22) 0.16(0.03) 0.34(0.12) 0.08(0.01) -0.54(0.29) 0.26(0.07) 0.06(0.0) 0.0(0.0) 0.12(0.01) 
Waist - Buttock Height Right -0.47(0.22) 0.16(0.03) 0.35(0.12) 0.05(0.0) -0.54(0.29) 0.27(0.07) 0.07(0.0) 0.0(0.0) 0.11(0.01) 
Waistband - Buttock Height Left -0.38(0.14) 0.13(0.02) 0.08(0.01) 0.02(0.0) -0.26(0.07) 0.14(0.02) -0.05(0.0) -0.01(0.0) 0.0(0.0) 

Waistband - Buttock Height Right -0.38(0.14) 0.13(0.02) 0.08(0.01) 0.01(0.0) -0.27(0.07) 0.15(0.02) -0.04(0.0) -0.01(0.0) 0.0(0.0) 
Torso Length -0.26(0.07) 0.1(0.01) 0.23(0.05) 0.0(0.0) -0.25(0.06) 0.32(0.1) -0.1(0.01) 0.07(0.0) 0.24(0.06) 
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A.4.7 Allometric Model - Residual vs Fitted Male Shape Variation Plots PC's 1-9. 

PC1 Residuals PC2 Residuals PC3 Residuals 

   
PC4 Residuals PC5 Residuals PC6 Residuals 

   
PC7 Residuals PC8 Residuals PC9 Residuals 
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A.4.8 Allometric Model - Residual vs Fitted Female Shape Variation Plots PC's 1-9. 

PC1 Residuals PC2 Residuals PC3 Residuals 

   
PC4 Residuals PC5 Residuals PC6 Residuals 

   
PC7 Residuals PC8 Residuals PC9 Residuals 
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Appendix 5  

A.5.1 Pearson correlation coefficients and effect sizes male participants. 

  
 WC WHR BMI 

Existing 
indices 

WHR 0.79(0.63)*   

BMI 0.91(0.83)* 0.62(0.39)*  

Shape 
parameters 

PC1 0.52(0.27)* 0.54(0.29)* 0.42(0.18)* 

PC2 -0.26(0.07)* -0.39(0.15)* -0.18(0.03)* 

PC3 -0.74(0.54)* -0.65(0.43)* -0.65(0.42)* 

PC4 0.02(0.00) 0.03(0.00) 0.00(0.00) 

PC5 -0.34(0.11)* -0.35(0.12)* -0.23(0.05)* 

PC6 -0.06(0.00)* 0.02(0.00) -0.10(0.01)* 

PC7 -0.38(0.14)* -0.53(0.28)* -0.19(0.03)* 

PC8 -0.14(0.02)* -0.12(0.01)* -0.12(0.01)* 

PC9 0.01(0.00) 0.14(0.02)* 0.04(0.00)* 

(*P < 0.05; BMI, Body-mass-index; WC, waist girth; WHR, waist-hip ratio) 

 
A.5.2 Pearson correlation coefficients and effect sizes female participants. 

 
 WC WHR BMI 

Existing 
indices 

WHR 0.63(0.40)*   
BMI 0.91(0.83)* 0.44(0.19)*  

Shape 
parameters 

PC1 0.57(0.32)* 0.55(0.30)* 0.46(0.21)* 

PC2 -0.21(0.05)* -0.34(0.11)* -0.14(0.02)* 

PC3 -0.65(0.43)* -0.34(0.12)* -0.65(0.42)* 

PC4 -0.12(0.01)* -0.07(0.00)* -0.11(0.01)* 

PC5 0.29(0.08)* 0.21(0.04)* 0.26(0.07)* 

PC6 -0.25(0.06)* -0.27(0.07)* -0.17(0.03)* 

PC7 0.13(0.02)* -0.15(0.02)* 0.32(0.10)* 

PC8 0.05(0.00)* 0.02(0.00) 0.05(0.00)* 

PC9 -0.2(0.04)* 0.01(0.00) -0.16(0.02)* 
(*P < 0.05; BMI, Body-mass-index; WC, waist girth; WHR, waist-hip ratio) 
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A.5.3 Shape PC1 by age and BMI category in a) males and b) females. 

 

A.5.4 Shape PC2 by age and BMI category in a) males and b) females. 

 

A.5.5 Shape PC3 by age and BMI category in a) males and b) females. 
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A.5.6 Shape PC4 by age and BMI category in a) males and b) females. 

 

A.5.7 Shape PC5 by age and BMI category in a) males and b) females. 

 

A.5.8 Shape PC6 by age and BMI category in a) males and b) females. 
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A.5.9 Shape PC7 by age and BMI category in a) males and b) females. 

 

A.5.10 Shape PC8 by age and BMI category in a) males and b) females. 

 

A.5.11 Shape PC9 by age and BMI category in a) males and b) females. 

 


