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Simple Summary: Transglutaminase-2 (TG2) is an enzyme primarily involved in protein cross-
linking, which has been shown to play a role in the development and progression of numerous cancers.
Increasing evidence indicates that TG2 is capable of modulating the tumour microenvironment (TME),
resulting in changes which influence tumour initiation, growth, and metastasis. This review aims
to highlight TG2’s role in the biological and biomechanical changes observed in the TME and the
potential for therapeutic targeting of these changes in order to improve patient outcomes.

Abstract: Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the
transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been
implicated in the development and progression of numerous cancers, with a direct role in multiple
cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal tran-
sition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation,
progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in
matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion.
There is growing interest in targeting the TME therapeutically in response to advances in the under-
standing of its critical role in disease progression, and a number of approaches targeting biophysical
properties and biomechanical signalling are beginning to show clinical promise. In this review we
aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its
potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to
invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors,
and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical
function of TG2 in the TME.

Keywords: transglutaminase; biomechanics; extracellular matrix; tumour microenvironment

1. Introduction

The enzyme Transglutaminase-2 (TG2), also known as tissue transglutaminase, is
found in many different tissues, cell types, and subcellular compartments and has been
shown to be associated with both normal cellular processes and various disease states.
It is the most highly expressed member of the transglutaminase enzyme family, whose
main catalytic activity is the Ca2+ dependent creation of lysine-glutamine isopeptide bonds,
leading to protein cross-linking (transamidation). However, other enzymatic activities
have also been linked to TG2, including deamidation and GTPase signalling, and each of
these enzymatic functions has been studied in the context of cancer biology. TG2 struc-
turally consists of four distinct globular domains: an N-terminal β-sandwich containing a
fibronectin and integrin binding site; a domain containing a catalytic triad (Cys277, His335,
and Asp358), primarily for acyl-transfer, as well as a conserved tryptophan; and two
β-barrel domains, one containing a phospholipase C binding sequence and one containing
the C-terminus [1–4]. The various activities and wide array of targets attributed to TG2
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have led to the elucidation of a role in numerous cancers, linking to pathways involved in
tumour initiation, progression, and eventual metastasis. In addition to mediating cancer
cell behaviour and intracellular signalling, recent evidence also suggests TG2 is involved in
alterations to the biomechanical environment and signalling in the tumour microenviron-
ment (TME), and this review aims to highlight and discuss the impacts of these processes
on tumour progression.

2. TG2 and the Hallmarks of Cancer

The wide range of subtypes, mutational backgrounds, and organs of origin emphasise
that cancer is highly heterogenous at a genetic and molecular level. However, despite this
diversity, the general principle of a progressive evolution of normal cells to a neoplastic
state has been neatly conceptualised as a multistep acquisition of six key hallmarks of
cancer [5,6]. These original hallmarks include sustaining proliferative signalling, evading
growth suppressors, resisting cell death, enabling replicative immortality, inducing angio-
genesis, and activating invasion. TG2 has a diverse range of substrates and is implicated
in a number of processes linked to these hallmarks, including epithelial mesenchymal
transition (EMT), cancer stem cell survival, drug resistance, inflammatory and proliferative
signalling, and invasive and metastatic behaviour [7] (Table 1). Prominent TG2 expression
has been identified in a diverse range of cancers including leukaemia, prostate cancer,
breast cancer, renal cancer, lung cancer, ovarian cancer, glioblastoma, cervical cancer, col-
orectal cancer, squamous cell cancers, mesothelioma, and pancreatic cancer [8–18]. Whilst
there is considerable evidence indicating a role for TG2 in the progression of these cancers,
some studies also show involvement in tumour suppressive pathways [19]. This ability
to exert contrasting effects may be dependent on structural conformation, with variation
between transamidation and GTP-binding forms exhibiting different effects within the
same cellular context [20].

Table 1. TG2 and the hallmarks of cancer. The various mechanisms and signalling pathways shown to be linked to TG2
activity in the hallmarks of cancer.

Hallmark Key Mechanisms/Pathways References

Sustaining proliferative signals TGF-β, PI3K/AKT, B-catenin/Wnt, ERK1/2 [21–24]

Evading growth suppressors Regulation of RB/p53 pathways [25–27]

Resisting cell death Caspase-3/Bax, TRAIL [28–33]

Enabling replicative immortality CSCs (CD44), EMT, YAP/TAZ [34–39]

Inducing angiogenesis VEGF, NF-κB/HIF1α, ECM remodelling [40–43]

Activating invasion EGF, EMT/TGF-β, type I collagen/β-1
integrins, Rac, ECM alterations [12,35–37,44–47]

2.1. Cellular Proliferative Signalling

The ability to sustain limitless proliferation is considered one of the key traits of cancer
cells [48], and the presence of mitogenic growth signalling transitions cells from a quiescent
state into active proliferation. Mitogenic signalling is modulated by a variety of molecules,
including growth factors, components of the extracellular matrix (ECM), and inter-cell
adhesive/interaction molecules [23]. TG2 is able to promote cellular proliferation and cell
survival through its functional relationship with transforming growth factor-beta (TGF-β),
a multifunctional cytokine involved in numerous processes including proliferation, dif-
ferentiation, and immune function. TG2 expression is regulated by TGF-β via SMADs
and TGF-β-activated kinase 1, leading to activation of the transcription factor nuclear
factor-κB (NF-κB) and enhanced cellular proliferation, resulting in formation of spheroids
and metastasis [21]. However, much like TG2, the role of TGF-β in cancer proliferation
appears to be context-dependent, with studies showing both inhibition and promotion of
cancer proliferation [49].
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TG2 is also linked to cancer proliferation through other signalling routes. For example,
Fu et al. [22] showed that TG2 knockdown impaired the proliferation of glioma stem
cells, via reduced DNA binding 1 (ID1) protein expression. Proliferation was restored by
overexpressing ID1, highlighting ID1 as a downstream mediator of TG2 via activation of
the PI3K/AKT pathway. Moreover, TG2 has been associated with the accumulation of
β-catenin, normally stimulated by activation of the Wnt pathway, which translocates to the
nucleus and stimulates expression of CyclinD-1 and c-Myc, maintaining proliferation of
ovarian cancer cells [23]. TG2 has also been observed to promote proliferation in gastric
cancer via the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) pathway [24].
TG2 knockdown supressed cellular proliferation, and with the introduction of a specific
ERK1/2 inhibitor, proliferation was partially reversed, suggesting an involvement of the
ERK1/2 pathway in mediating TG2-driven proliferation.

2.2. Evading Growth Suppressors

The acquisition of sustained proliferation is complementary to the ability of cancer
cells to evade growth suppression [50]. Cancer cells acquire the capability to circumvent
the regulatory processes that negatively regulate cellular proliferation, which are mainly
dependent on the action of tumour suppressors [51]. Two well-characterised tumour sup-
pressor pathways involve retinoblastoma protein (RB) and tumour protein p53 (p53) [52].
These tumour suppressor genes function to either repress the cell cycle or promote apopto-
sis [53]. RB protein has been shown to play a pivotal role in the negative control of the cell
cycle, whereas p53 activates expression of numerous genes regulating cell death, cell cycle
arrest, senescence, and DNA repair [54,55].

TG2 activity has been recognised to modulate the activity of these tumour suppressors.
In a hypophosphorylated state, RB inhibits cellular proliferation by modifying the function-
ality of transcription factors involved in regulating the expression of genes for transitioning
from G1 to S phase in the cell cycle [56]. Several studies have shown that RB is a substrate
for TG2 kinase activity [25], which mediates an anti-apoptotic effect by phosphorylation of
RB. Earlier studies of TG2 also showed that RB was a substrate in lymphoma cells under-
going apoptosis and reported that TG2 protected RB from caspase-induced degradation in
a transamidation-dependent manner [26].

TG2 expression also has an impact on the tumour suppressor p53. The Mouse double
minute 2 protein (MDM2) binds and ubiquitinates p53 for degradation, and the ability of
p53 to induce transcription of MDM2 generates a negative feedback system [57]. However,
this negative feedback loop can be interfered with by the kinase activity of TG2, preventing
the subsequent degradation and leading to the accumulation of p53, thereby facilitating
potential further apoptosis [27].

2.3. Resisting Cell Death

Apoptosis is a form of programmed cell death which results in the orderly removal of
damaged cells through a caspase-dependent mechanism, and avoiding this fate, despite
extensive mutational damage, is a key characteristic in cancer development [58]. This also
provides a challenge to treatment, as many chemotherapy approaches rely on triggering
intrinsic or extrinsic apoptotic cell death [59]. Intriguingly, several studies have highlighted
the role of TG2 and its involvement in the apoptotic process. Early observations that
increased TG2 expression accompanied the apoptotic programme [60] were followed by
studies observing proapoptotic or antiapoptotic effects that are fundamentally dependent
on its cellular context and structural conformation [61]. For example, induction of TG2
activity using the calcium ionophore A23187 results in high levels of apoptosis in cancer
cells [62,63], and there is evidence that TG2 crosslinking of the transcription factor Sp1
can induce apoptosis [64]. By contrast, multiple studies have demonstrated an inhibition
of apoptosis by TG2, through mechanisms involving modification of caspase-3 and Bax
activities [28–31], underlining the importance of cellular context for a complex system of
TG2-mediated influence. Indeed, intracellular localisation and TG2 isoform both appear
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to be critical factors in determining how TG2 mediates cell fate [65,66], and TG2 itself is
a target of caspase-3 [67]. In fact, multiple variants of TG2 have been identified, and the
effects and impacts of this complex regulation remain to be clarified [68]. The involvement
of TG2 in the efferocytosis of apoptotic cells [69,70] and in cross-linking during necro-
sis [71] suggests an important role in containing tissue damage and restricting potentially
damaging inflammation as a result of cell death.

The activation of tumour necrosis factor-related apoptosis-inducing factor (TRAIL)
eradicates cancer cells via the activation of the extrinsic apoptosis pathway and through
ligation to receptors including death receptor 4 (DR4)/TRAIL-R1 and DR5/TRAIL-R2 [72].
By establishing an acquired TRAIL resistance in lung cancer cells, Li et al. [32] identified
TG2 as one of the most highly upregulated genes via gene expression screening, and
inhibition led to sensitization and apoptosis [33]. The introduction of Epidermal Growth
Factor Receptor (EGFR)-mediated activation of extracellular-signal-regulated kinase (ERK)
and c-Jun N-terminal kinase (JNK), which increased TG2 expression, contributed to the
acquired resistance of TRAIL and a reduction of MMP-9, a matrix metalloproteinase
involved in invasion and migration. EGFR therefore appears to be a fundamental upstream
signalling pathway of TG2 in cells with TRAIL resistance [32].

2.4. Chemoresistance

The development of drug resistance in cancer cells presents a major clinical challenge
to successful cancer treatment. Understanding the fundamental mechanisms of drug
resistance is therefore essential for the application of anti-cancer therapeutics. Interest-
ingly, the selective expression of TG2 in cancer cells has been demonstrated to promote
chemoresistance through a number of mechanisms. This phenomenon was first observed
by Mehta [73], who demonstrated that a doxorubicin-resistant subclone of breast cancer
cells expressed higher levels of TG2 than doxorubicin-sensitive cells. The ability of TG2 to
modulate chemoresistance in a range of cancer types has since been reported in several
different studies, and chronic expression of TG2 triggers a range of signalling pathways
that contribute to the development of drug resistance [10]. Along with extrinsic TRAIL
resistance, doxorubicin and cisplatin resistance has been reported in a range of cancer cell
types, through interaction with the pathways that lead to intrinsic resistance to apoptosis.
More recent studies also point to the TG2 mediated resistance to a newer generation of
treatment approaches, such as those aimed at mechanistic target of rapamycin complex 1
(mTORC1) [74,75] and histone deacetylase inhibitors [76], showing that TG2 is involved in
a wide spectrum of chemoresistance mechanisms.

The self-degradative process of autophagy is a fundamental cellular homeostasis
program, essential for balancing sources of energy at critical times of development and
nutrient stress [77]. Cellular conditions that induce an autophagic response include ox-
idative stress, hypoxia, nutrient deprivation, and exposure to chemotherapeutics [78]. As
the activities of TG2 and autophagy can both be induced under cellular stress, including
chemotoxic stress, and as both are linked to chemoresistance, a potential role for TG2 in
mediating autophagy has been explored. For instance, overexpression of TG2 in mantle
cell lymphoma activates NF-κB signalling to increase STAT3 and IL-6 signalling, which
leads to an enhanced autophagy-dependent cell survival response [79]. Furthermore, the
autophagic response has a positive feedback impact on IL-6 and TG2 signalling, further
stimulating this survival mechanism [80]. Work in the context of cystic fibrosis has demon-
strated that in response to endoplasmic reticulum (ER) stress TG2 can cause cross-linking
and aggregation of beclin-1, a protein which plays a key role in autophagy [81] through the
regulation of autophagosome formation, with impacts linked to the inflammatory profile
of this disease. Given the relationship between ER stress, reactive oxygen species (ROS),
and cancer [82,83], and the inflammatory signalling pathways mediated by NF-kB and IL-6,
further work to explore the context-dependant contribution of TG2 in cancer progression
would be informative.
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2.5. Enabling Unlimited Replicative Immortality

An additional hallmark of cancer is the capability for unlimited replicative poten-
tial, in contrast to the behaviour of non-cancer cells, which are restricted by the Hayflick
limit [84]. This trait is closely connected to the hallmarks already described: insensitivity
to antigrowth and apoptotic signals and growth signal autonomy, leading to the dysregu-
lation of mitogenic signalling [5]. The majority of cancers are adenocarcinomas, arising
within epithelial layers. Epithelial layers are defined by their polarity and adhesion to
neighbouring cells and the ECM, and loss of these attachments triggers anoikis, leading to
apoptosis [85]. The EMT is a phenotypic switch allowing cells to avoid this fate through
the downregulation of adhesion molecules such as e-cadherin, and reprogramming from
an epithelial to a mesenchymal gene expression profile and upregulation of survival tran-
scription factors, including NF-kB and regulators of cell adhesion, such as Zeb1, Zeb2,
Slug, TWIST, and SNAIL. Accordingly, cancer cells frequently adopt EMT to confer cell
survival characteristics and avoid anoikis during invasive and metastatic progression [86].
TG2 has been shown to confer survival from anoikis in a manner dependent on fibronectin
binding [87], and a number of studies have identified a role for TG2 in EMT. TG2-induced
NF-kB activation promotes the EMT–CSC phenotype in tumour cells, and TGF-β exhib-
ited a complete dependency on TG2 for its capability for inducing EMT in breast cancer
cells [35]. Moreover, the introduction of TG2-siRNA prior to TGF-β treatment failed to
induce EMT, further highlighting TG2 as a downstream mediator of TGF-β-induced EMT
in mammalian epithelial cells [36]. TG2-induced EMT has also been associated with further
phenotypic stem cell properties, such as self-renewal capability and cell plasticity [37]. This
association highlights the ability of TG2, not only to induce EMT within the initial tumour,
but perhaps to also contribute to stemness-associated properties within secondary tumours,
and thereby support metastasis.

There is growing evidence that the indefinite growth potential of many tumours is
sustained by this population of cancer cells showing characteristics of a de-differentiated
stem cell phenotype, and that these cancer stem cells (CSCs) are linked to TG2 activity [34].
CD44 is a transmembrane glycoprotein commonly used as a marker for CSCs of many
solid malignancies and plays an essential role in tumour progression by supporting pro-
liferation and enabling replicative immortality, metastasis, and chemoresistance through
the activity of several signalling pathways [88,89]. Interestingly, TG2 has been shown to
increase CD44 activity in breast cancer cells, regulating the promotion of stem cell phe-
notype and metastatic potential [90], and inhibition of TG2 lead to depleted CSC surface
antigens such as CD44 in renal cell carcinoma [45]. Recently, it was also demonstrated by
Condello et al. [91] that functional inhibition of TG2 fibronectin-binding supressed complex
formation, CSCs survival, and stemness-associated with Wnt/β-catenin signalling. This
suggests an additional function of TG2 in CSC phenotype, spheroid proliferation, and
tumour-initiating capacity modulated through the direct interaction with Wnt receptor
Frizzled 7 (Fzd7).

3. TG2 as a Key Functional Player in the TME
3.1. The Tumour Microenvironment

The original definition of the “hallmarks” of cancer acknowledged that in addition
to rapidly proliferating cancer cells that resist death, cancer progression is fundamentally
dependant on the interaction of tumours with their environment, defining processes such
as angiogenesis and invasion which lead to, and are dependant on, cellular and tissue
remodelling of their surroundings. This was refined in the updated hallmarks [6], to reflect
the observations that during all the stages of carcinogenesis, malignant cells interact with
the environment around them, creating an effective organ-like system that is defined as
the tumour microenvironment (TME). In this complex system, cellular and non-cellular
components cross-talk with the tumour and in some cases become functionally altered by
the malignant cells and the unique metabolic and molecular conditions, with an increase in
chromosomal instability being shown in TME stromal cells [92–94]. This can lead to host
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tissue cellular components becoming dysfunctional in support of cancer progression [95].
A number of studies have identified a strong expression and activity of TG2 in the stromal
tissue surrounding tumours [47,96,97], and proposed TG2 as a biomarker with stromal
expression showing distinct clinical profiles and prognosis when compared to epithelial
expression [98,99]. Since differential expression of the multiple variants of TG2 is dependent
on cell type and disease state [68], this points towards a critical and complex role within
this multi-cellular TME (Figure 1).
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Figure 1. TG2 roles in the tumour microenvironment (TME). (A) Schematic representation of the tu-
mour microenvironment (TME) showing the presence of resident and infiltrated cellular constituents
and extracellular matrix (ECM) components. Cancer, stroma, and immune system constantly interact,
and within this complex system TG2 plays a role in multiple pathways and responses. Subfigures
B-E are magnifications of the indicated areas within the TME. (B) TG2 is linked to adipocyte and
fibroblast phenotype. Upregulation of cancer-derived TG2 may inhibit adipogenesis by cross-linking
of proliferative-activated receptor y (PPARγ) along with other events, such as the re-activation of
WNT canonical pathway. The TGF-β/TG2 link is associated with the activation of fibroblasts to
a de-differentiated, contractile cancer-associated fibroblast (CAF) phenotype. Increased stromal
stiffening enhances integrin activation and signalling through pathways such as YAP/TAZ which can
further regulate TG2 expression. (C) TG2 in chemoresistance, apoptosis, and replicative immortality.
Chemotherapeutics induce apoptosis in sensitive cancer cells, but in chemoresistant cells several
mechanisms are activated to contrast death. A hypoxic-induced loop between HIF/TG2/NF-κB is
responsible for apoptotic resistance in cancer cells. Increased expression of TG2 promotes chemore-
sistance and survival in cancer cells through several pathways but also through the binding with
integrins and the activation of FAK signalling. TG2 increases CD44+ activation, leading to the high
proliferative and chemo-resistant cancer stem cell (CSC) phenotype. (D) TG2 cross-linking activity
contributes to TME stiffening of the primary and metastatic sites. TG2 linked to fibronectin (FN)
upon HSPG/SDC4 release from fibroblasts and macrophages in the extracellular space activates its
cross-linking activity, remodelling the ECM and contributing to cancer cells migration and fibrosis.
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Cancer-derived extracellular vesicles (EVs) express TG2/FN on their membranes and alter the
metastatic niche through paracrine signalling. (E) TG2 is linked to cancer invasive behaviour.
The reciprocal relationship between TGF-β and TG2 mediates epithelial-to-mesenchymal transi-
tion (EMT) in cancer cells, leading to enhanced migration, which is also increased by the binding
TG2/Fn/integrins and the following adhesion to the ECM. Increased cell contractility is promoted by
downstream signalling of TG2/Fn/integrins binding, such as the inhibition of EGFR activity through
FAK signalling. The balance between TG2 enzymatic activity on laminin/nidogen complexes and
upregulation of matrix metalloproteinases (MMPs) by cancer cells contributes to basement membrane
(BM) integrity, and thus invasive potential.

3.2. TG2 and the Cancer-Associated Fibroblast

Fibroblasts are a major contributor to the tumour supportive conditions found in
the TME. Under normal physiological conditions, fibroblast function in the stroma is the
synthesis and deposition of ECM components. In this normal fibroblast functionality,
TG2 contributes to cell-matrix interactions by targeting key ECM components, including
collagen and fibronectin, and plays a role in the regulation of cell spreading, migration,
and reorganisation of the ECM [100]. Fibroblasts play a major role in wound healing and
fibrosis, becoming activated and displaying a highly contractile, myoblastic phenotype.
This activation state appears to be mirrored in the TME, where highly abundant fibroblasts
promote tumour growth and invasive potential. These aberrant cells are known as cancer-
associated fibroblasts (CAFs) and often characterised by smooth muscle actin (SMA) and
vimentin expression, and induce significant desmoplasia and remodelling of the ECM.
TG2 is closely involved with the wound healing response [101,102], appears functionally
in-volved in the development of the activated myofibroblast phenotype [103] linked to
devel-opment of fibrotic disease, and has recently been proposed as an additional marker
of CAFs, shown to be upregulated in comparison to normal fibroblasts both in patient
samples and in fibroblasts activated by TGF-β [104].

These CAFs display a diverse range of phenotypes, potentially due to their different
lineages and mechanisms of activation. The population appears to include activated resi-
dent stromal fibroblasts, as well as dedifferentiated pericytes, adipocytes, endothelial cells,
mesenchymal stem cells, and epithelial cells. This leads to the heterogeneity observed in
various studies, which showed diverse fibroblast subpopulations such as inflammatory, qui-
escent, antigen-presenting, and myofibroblasts, as well as their precursor forms [105–107].
Senescent fibroblasts have also been identified in the TME [108], a phenotype linked to
increased accumulation of transglutaminase-crosslinked products [109]. Their mechanisms
of activation are also diverse, with roles in fibroblast growth factor (FGF), platelet-derived
growth factor (PDGF), ROS, TGF-β, and tumour necrosis factor (TNF) [110].

Of these factors, TGF-β appears to be particularly important. Cancer-secreted TGF-β
is capable of inducing CAF phenotype [111–113], and TGF-β signalling in CAFs is closely
linked to poor clinical outcome [94,114], with inhibition leading to remodelling of CAF
dynamics, better immune response, and disease regression in in vitro models. The well-
established link between TG2 and TGF-β is therefore critical, with TGF-β upregulating
TG2, while TG2 is also known to be capable of transforming inactive TGF-β to its active
form [115–117].

CAFs can also promote EMT in resident cancer cells. This transformation is caused
by paracrine signalling from the TME, and it has been demonstrated that CAF-induced
EMT was in fact dependent on TG2 expression mediated by IL-6 in hepatocellular carci-
noma [118], positioning TG2 as critical for the cancer/CAF cross-talk within the TME.

3.3. TG2 and Adipocyte Function

Obesity is recognised as a major risk factor for many cancers and is characterised
by an increase in adipocyte cell size and number, with subsequent expansion of adipose
tissue. Obesity contributes directly to activation of myofibroblasts and increased desmo-
plasia, and obesity and metabolic syndromes are linked to expression of TG2 [119,120].
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Cancer associated adipocytes (CAAs) are adipocytes found in the TME and have been
shown to be present in a number of cancers including breast [121], pancreatic [122], and
colorectal [123]. CAAs exhibit a dedifferentiated phenotype, and the crosstalk between
CAAs and tumour cells can eventually give rise to the formation of adipocyte-derived
fibroblasts (ADFs) following activation of the Wnt signalling pathway by tumour cells.
This results in upregulation of type I collagen and fibronectin, increased invasiveness and
migratory potential, and increased expression of CAF fibroblast specific markers [124].
TG2 has been shown to be an inhibitor of adipogenesis [125], providing a potential link
to the transformation of normal adipocytes to a dedifferentiated CAA phenotype. In
fact, TG2 deficient mouse embryonic fibroblasts have been shown to exhibit increased
lipid accumulation, increased expression of adipogenic transcription factors PPARγ and
C/EBPa, and absence of Pref-1/Dlk1 and defective canonical Wnt signalling, all involved
in the inhibition of adipogenesis and maintenance of the preadipocyte phenotype [125].
Exogenous TG2 was shown to reverse these effects, suggesting that cancer-cell derived
TG2 may be capable of having the same effect. Proliferator-activated receptor-γ (PPARγ)
is a known target of TG2, and cross-linking causes aggregation and downregulation of
PPARγ activity [81,126]. While this has been shown in the context of inflammation in cystic
fibrosis and celiac disease, there may be a role for this mechanism in the TME, since PPARγ
is critical for adipocyte maturation and CAA/ADF balance.

3.4. TG2 and the Immune System in Cancer

The interactions between inflammation, immune response, and cancer are closely
connected to progression and outcome [6]. Despite the presence of TG2 in inflammatory
signalling observed in conditions as diverse as cystic fibrosis [126], celiac disease [127],
fibrosis [128], and sepsis [129], a possible triangular relationship between immune system–
tumour–TG2 remains relatively unexplored. The positive feedback loop originating from
the TG2–TGF-β association is a strong pro-inflammatory signal, and a similar loop charac-
terises the relationship between TG2 and NF-kB, the central transducer of inflammatory
signalling. TG2 mediates signalling via NF-kB, by either polymerization of the inhibitory
I-kBa subunit or inducing phosphorylation of RelA/p65 [130,131], and is also reciprocally
regulated by an NF-kB binding motif in its promoter region [132].

Production of the pro-inflammatory cytokine Intereukin-6 (IL-6) in the TME has been
established to be dependent on TG2 expression [133,134]. IL-6 production has been associ-
ated with the acquisition of a stem cell phenotype, as well as involvement in the EMT [135].
This IL-6 expression was dependant on TG2 upregulated through NF-kB, PI3K-, and JNK-
dependent signalling cascades in promoting a cancer stem cell phenotype and inducing
the EMT and metastasis when amplified by Interleukin 1 beta (IL1B) production [90].

Within the TME, many cancers have significant immune infiltrate, and yet malignant
cells are able to avoid and exhaust this immune response, even in the presence of extensive
inflammatory signalling [136]. It is clear that macrophages have a critical role to play
in the tumour microenvironment, and tumour-associated macrophages (TAMs) are the
prominent immune cell observed in the TME and clearly linked to disease progression [137].
There is evidence from studies of CNS inflammation that TG2 can mediate macrophage
recruitment [138], and this appears to be an early event in many cancers. Macrophages can
differentiate into M1 and M2 lineages, with the former associated with pro-inflammatory
functions and the latter linked to immune resolution [139]. TAMs are frequently imbalanced
towards the M2 phenotype, and it is known that TG2 is a marker of this differentiated
lineage [140]. In multiple sclerosis, it has been shown that TG2 is a key mediator in
macrophage differentiation and myelin phagocytosis, with a reduction in TG2 expression
pushing macrophages towards an M1, pro-inflammatory state [141]. The relation between
syndecan-4 and TG2 on the surface of macrophages is significant, as it seems to support the
recruitment and migration against apoptotic or unfunctional cells, ultimately protecting
from a chronic inflammatory state [142]; and extracellular release performed through
syndecan-4 promotes TG2 to contribute to cross-linking of the ECM, which is a contributor
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to fibrosis [143]. The ECM of the TME bears a lot of the hallmarks of a fibrotic response,
with dense collagen deposition and cross-linking [144,145]. The link between TAMs, ECM
remodelling in cancer [146], and TG2 is currently under-explored, and given the growing
evidence that TAM/CAF-mediated remodelling appears critical to the exclusion of anti-
cancer immune responses [147], further work in this field would be informative. TG2 is also
associated with dendritic cell function [148], notably in the interaction between dendritic
cells and T-cells [149,150], which could have significant implications within the TME, where
T-cell exhaustion is frequently linked to poor outcome, and where driving anti-cancer T-
cell responses is a major focus of immunotherapy [151,152]. Notably, TG2 expression
has recently been linked to immunosuppression in pancreatic cancer, correlating with
upregulation of immunomodulatory cells and exclusion of effector cells, in mechanisms
involving NF-kB and the regulation of programmed death ligand-1 (PD-L1) [153], and
TG2 has been identified in an immune signature associated with poor prognosis in lung
squamous cell carcinoma [99].

3.5. The Hypoxic TME

Like all cells, cancer cells require the exchange of oxygen and nutrients, as well as
the ability to evacuate metabolic waste via the production of tumour-associated neovas-
culature via angiogenesis [154]. Rapid proliferation of cancer cells is linked to aberrant
metabolic activity and a dependence on aerobic glycolysis, which leads to a characteristic
production of lactate and acidic conditions in the TME [155,156]. TG2 appears to be capable
of influencing mitochondrial activity and metabolic profile [157,158], and intriguingly
providing a link between metabolism and ECM remodelling [159]. An interesting feature
of glutaminases is the release of ammonia as a reaction biproduct, and there is evidence
that this may be a mechanism by which cancer cells tolerate acidic conditions [160], though
this may not actually result in a net change in pH, due to an amine being required as a
substrate during transamidation. The intratumoral vessels of the TME are often incom-
pletely formed with irregular architecture characterised with increased fenestration and
“leakiness” [161]. Restricted blood supply to a rapidly expanding tumour leads to hypoxic
areas, and Hypoxia-inducible factor-1 (HIF-1) expression has been correlated with poorer
clinical outcomes, as it confers resistance to apoptosis of tumour cells [30]. Under normal
conditions HIF-1α protein is expressed but unstable and oxygen is required for it to be hy-
droxylated. Under hypoxic conditions HIF-1a accumulates and translocates to the nucleus,
binding to HIF-1β to express HIF-1 [162], and the anti-apoptotic role of TG2 is further
mediated by HIF-1, which inhibits the main executioner of apoptosis in both intrinsic and
extrinsic death signalling caspase 3 [30,163]. Studies on mesothelioma models also indicate
that hypoxia induces TG2 via HIF2 [16], and through inhibitor experiments it is clear that
TG2 activity plays an important role in the survival of hypoxic environments in response
to the HIF family of transcription factors.

3.6. Induction of Angiogenesis

The process of tumour-associated angiogenesis occurs through the continual activation
of the angiogenic switch, subsequently triggering normal quiescent vasculature to alternate
to sustained angiogenesis, which supports the requirements of a developing tumour [164].
Hypoxia leads to the release of vascular growth factors, such as vascular endothelial growth
factor (VEGF), which are produced to stimulate angiogenesis, and resident vascular cells
such as pericytes and endothelial cells are also fundamental for cancer progression [165].
The presence of pericytes has been shown to protect against the evolution of disease;
endothelial cells are essential for generating new vessels due to the hypoxic-induced
growth factors produced by the cancer cells [165,166].

TG2 is abundantly distributed in endothelial cells and has been shown to exert effects
on tubule formation, resulting in inhibition of angiogenesis and cancer progression [167].
However, Wang et al. [40] showed that the site-directed irreversible inhibition of TG2
transamination activity resulted in inhibition of angiogenesis by regulation of VEGF re-
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lease into the ECM, ultimately facilitating activation of signalling via VEGF receptor 2.
More recently Lei et al. [42] demonstrated that inhibiting TG2 GTP-binding activity led to
suppression of the downstream NF-κB/HIF1α pathways, ultimately leading to inhibition
of angiogenesis. In renal cell carcinoma, TG2 has also been shown to promote angiogenesis
through degradation of p53, which leads to HIF1α activation and increased production
of VEGF [41]. The fundamental ability of TG2 to support or supress angiogenesis is most
likely governed by its cellular context and structural conformation.

Mechanical alterations across the vascular wall have an impact on angiogenesis.
Compression of the blood vessels in the TME reduces blood flow leading to hypoxia,
and thus contributing to cancer progression [168]. TG2 has been shown to alter vascular
stiffness through regulation of smooth muscle cell contractility and proliferation [169], as
well as through matrix remodelling; altering the mechanical properties of collagen fibres by
cross-linking in the vascular wall [43]. Changes in mechanical properties have been shown
to influence drug delivery and immunotherapy interventions, with angiotensin receptor
blockers such as losartan showing promise through the targeting of tension in the TME
and promotion of vascular function [170,171]. Moreover, the depletion of CAFs with an
inhibitor of the sonic hedgehog pathway alleviated solid stress, decompressed blood and
lymphatic vessels, and increased perfusion, leading to more effective therapies [168].

4. TG2 Is Key to the Biomechanical Progression of Cancer
4.1. The Mechanics of Cancer Progression

As is evident from the impact of mechanical stress on vascular function and cancer
treatments, it has become increasingly apparent that cancer progression is not only depen-
dant on the cellular physiology, but also on the biophysical and biomechanical properties
of the TME [172], driven by the unique cellular composition and a dense, remodelled ECM,
which plays an integral role in the mechanical progression of the tumour [173]. Dysreg-
ulation of fibrous proteins (such as collagen), adhesive glycoproteins (such as laminins),
and proteoglycans (such as heparan sulphate proteoglycans) [174] are all linked to the hall-
marks of cancer, and there is growing evidence of their contribution to abnormal physical
attributes, including increased solid stresses, elevated interstitial fluid pressure, altered
matrix architecture, and increased tissue stiffness of the TME [175].

Solid stresses are mechanical forces (tensile, compressive, and shear) that are generated
due to the uncontrolled growth of the tumour cells, remodelling of the ECM, and the
mechanical confinement by the surrounding ECM [176]. These forces have a direct impact
on the proliferation and migration of tumour cells [177] and activate CAFs, which in turn
further promote the migration of tumour cells [178]. CAFs generate contractile forces on the
ECM, which is known to result in the release and activation of TGF-β1 [179], and activation
of TGF-β signalling in fibroblasts, which in turn upregulates various cross-linking enzymes
in the ECM, including TG2 that has a further impact on the biomechanical environment by
increasing tissue stiffness [96]. Mechanical stresses can also directly induce and stabilize an
open catalytically active conformation of TG2; hence, active TG2 results in a cross-linked
ECM that can act as a storage depot for TGF-β [180].

Increased tissue stiffness is the most well-observed mechanical abnormality in tumours,
it contributes to several biological tumour processes, including proliferation [172,181], angio-
genesis [182], invasion [183], and metastasis [184]. Tumour tissues tend to become stiffer as the
tumour progresses, due to several factors, such as increased matrix deposition, cross-linking
by lysyl oxidase (LOX) and TG2 enzymes [185,186], matrix remodelling, and the accumulation
of both solid and interstitial pressures [187]. Various studies have correlated the activity of
CAFs to matrix stiffness, and it has been shown that CAFs induce collagen cross-linking,
leading to stiffer ECM; the increased ECM stiffness and TGF-β signalling in turn activates
fibroblasts, generating a positive feedback loop that further promotes the ECM stiffening [188].
The relationship between CAFs, TG2, and TGF-β indicates that TG2 is likely to be a vital
contributor to this matrix-stiffness positive feedback loop.
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4.2. Mechanical Forces and Invasion Initiation

Mechanical forces are vital for the initiation of the invasion-metastatic cascade [177].
Throughout all steps of the cascade, mechanical interactions between the invasive tumour
cells and the surrounding TME seem to be involved, as invading cells respond to the
mechanical modulations in the TME and alter the mechanical properties of their microen-
vironment to promote their progression and invasion [189]. For example, in epithelial
cancers, where cells migrate collectively [190], the mechanical compressive stress triggers
the initiation of the invasion, and cells can undergo phenotypic transformation when com-
pressed and become leader cells at the leading edge, which can coordinate collective cell
migration as they extend protrusions towards the direction of migration and guide other
migratory “follower” cells [191]. Accordingly, TG2 has been found to facilitate invasion at
the leading edge, and it has been shown that EGF stimulates the expression of TG2 at the
leading edge through Ras and c-Jun N-terminal kinase pathways, resulting in the enhanced
motility and invasiveness of tumour cells [44]. Mechanical signalling mechanisms also
contribute to the induction of EMT, supporting cancer cells to adopt motile phenotypes
and detaching from the primary site [192]. Indeed, physio-mechanical mechanisms are not
only involved in the initiation of invasion but are also needed to facilitate the migration
of invasive cells through different microenvironments (stroma, blood vessel endothelium,
vascular system, and secondary tissue site). For instance, the adhesion strength of tumour
cells to their surrounding stroma determines whether they can detach and migrate through
the surrounding tissues and barriers [193], while it is evident that TG2 is involved in the
adhesion and attachment of tumour cells, due to its association with the integrins linking
cells to the ECM [194]. In addition, elastic deformations of tumour cells are needed during
the intravasation and extravasation processes to facilitate the penetration of cells through
the endothelial cell–cell junctions, and TG2 likely plays a role in this, since it is linked to
the intracellular tension of cancer cells through the loss of EGFR-mediated inhibition of
cell contractility [195]. Lastly, the interplay between cell velocity and adhesion through the
vascular system determines the location of the malignant tumour’s secondary site [189].

4.3. Interaction and Invasion through the Basement Membrane

Following the mechanical induction of invasion, invading tumour cells must migrate
across the basement membrane (BM); the ECM barrier separating the epithelium and the
stroma in nearly all tissues. They are mainly composed of collagen IV [196], laminin, and
glycoproteins (nidogen, heparan sulphate proteoglycans) [197]. The BM’s biomechanical
properties provide structural and adhesion support to cells and harbour various growth
factors that contribute to cell growth, survival, and migration, such as TGF-β, heparin
epidermal growth factor (HB-EGF), FGF, and VEGF [198]. The density of the covalently
cross-linked network of the BM protects the cells from the surrounding mechanical stress
and acts defensively to prevent invading cells from reaching the stroma [199].

However, mechanical compromise and the proteolytic remodelling mechanisms
of the BM facilitate the breaching of the BM and the crossing of tumour cells into the
stroma [200,201]. Matrix metalloproteinases (MMPs), a subgroup of the metalloproteinase
gene family, play a key role in the BM’s proteolytic remodelling and ECM degradation [202],
and are notably upregulated in invasive carcinomas [203]. MMPs act prominently to
degrade ECM proteins in opposition to the crosslinking and mechanical strengthening
provided by TG2 to resist proteolytic attack [204]. For instance, TG2 mediates the binding
between laminin and nidogen. Laminin is the most abundant non-collagenous protein of
the BM that is highly susceptible to proteolytic degradation, and its binding to nidogen
protects it from degradation. Hence, TG2 is crucial for the stability of the BM [205,206].

It therefore appears that TG2 is expressed as a host response to invasion [207]. TG2
treatment restricts the invasive behaviour of tumour cells [208], and knockout of TG2 leads
to enhanced tumour metastasis [209]. Indeed, in vivo injection of cDNA TG2 plasmids
resulted in a reduction in the number of metastatic foci, and thus a better prognosis [210].
An increase in collagen density coupled with TG2 activity in 3D tumour/stroma co-culture
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models appeared to limit the growth of cancer spheroids [96], which agrees with other
studies showing that a stiffer ECM restricts the rate of growth of cancer cells in vitro.
However, this may be counter-productive in the long-term, as cancer cells respond to
stiffer microenvironments through enhanced integrin activation and more invasive be-
haviour [211]. Whilst initially restricting growth, stiffer matrices promote higher expression
of Mena, an invadopodium protein, and Fibronectin (FN), which are then associated with
cell migration [183]. The consequences of cross-linking and matrix stiffening supported by
TG2 may therefore be context- and stage-dependant.

Whilst the activity of TG2 in restricting invasion through cross-linking and proteolytic
resistance appears to be in contrast to MMPs in the integrity of the BM, studies revealed
a complex relationship between both proteins. It was observed that TG2 activates the
expression of MMP-2 [212], with a coordinated interplay with MT1-MMP, which hydrolyses
TG2 at the tumour/stroma boundary. However, the cross-linking activity of TG2 at the
early stages of the tumour, together with deposition of collagen and an increased stiffness
around the perimeter of the tumour, may act as a barrier protecting against invasive
behaviour [47,96,213]. It was shown that TG2-cross-linked collagen is more resistant to
MMP’s proteolytic degradation [214]. Hence, the loss of the TG2 at the tumour–stromal
interface alters matrix modulation and decreases the cell–matrix interaction, which in turn
reduces adhesion and promotes cell motility and invasion [215,216], and it is intriguing
that a number of studies identify down-regulation of TG2 in association with invasion and
metastasis [47,217,218].

4.4. Role of TG2 in Interstitial Extracellular Matrix Remodelling

Pathological remodelling of the ECM, which is altered by tumour-induced interactions,
is a hallmark of cancer and fibrotic diseases [219]. Tumours, in association with other cells
in the TME, can shape their microenvironment to promote their progression and migration;
they deposit, biochemically and biophysically modify, and degrade the tumour-associated
ECM. ECM proteins, which are often known to provide structural support, play a key role
in the cell signalling pathways providing biochemical signals that are interpreted by cell
surface receptors [220], such as integrins [221]; thus, initiating the cell signalling cascades
that are involved in vital cellular processes, such as proliferation [220].

The interstitial matrix forms a porous network surrounding the cells that connects
stromal cells. In contrast to the BM, the matrix is remodelled in response to mechanical
forces. In tumours, the matrix remodelling alters various biophysical and biochemical
mechanisms that have an impact on ECM stiffness, cell signalling, tumour progression, and
migration [172,222,223]. The remodelling process is highly regulated however, and cells
dysregulate this process in pathological conditions such as tissue fibrosis and cancer [224].
In particular, the increased ECM matrix stiffness due to cellular deposition and cross-linking
mechanisms seems to develop a tumorigenic ECM that facilitates tumour progression.

The vital role of TG2 in matrix remodelling is not only achieved through its cross-
linking function, but also through its role in the mechano-activation of CAFs and tumour-
associated macrophages, which play a vital role in the production and remodelling of
collagen and other ECM proteins; with a central role for TG2, as discussed earlier [186,225].
While, activated fibroblasts are the major producer of the interstitial matrix, secreting
ECM proteins such as fibronectin (FN) and collagen [226] and exerting contractile forces
supporting tumour growth and progression [227].

TG2 contributes to the matrix stiffness and is involved in the maintenance of the me-
chanical homeostasis of the ECM. The degradation of ECM by the MMPs promotes ECM
synthesis and deposition by fibroblasts, and the matrix stiffness is then adjusted by fibroblasts
through the secretion of TG2 and LOXs [228]. These homeostatic feedback mechanisms are
altered in the tumour due to the altered expression levels of ECM proteins (such as collagens)
and ECM-modifying enzymes (such as LOXs and TG2) leading to stiffer ECM [47,211,229]. In
contrast to the restriction of invasion medited by TG2 [47,96,208–210,215,216], overexpression
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of TG2 in breast cancer is associated with increased cell migration, metastasis, recurrence, and
poor overall survival which may be due to the cross-linked stroma [97,211].

4.5. Role of TG2 in Biomechanical Signalling of TME

The interplay between the mechanics and biomechanics of TME mediates tumour pro-
gression. For instance, mechanical forces induced by tumour growth trigger stromal cells to
release various growth factors that assist with tumour progression. Notably, TG2-induced
matrix modulation is correlated to the induction of various biomechanical signalling path-
ways. It has been shown that TG2-induced matrix stiffening drives integrin clustering
to enforce the focal adhesions and intracellular growth signalling pathways, such as the
PI3K [214,230,231] and Hippo pathways [186]. The Hippo pathway, Yes-associated pro-
tein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), is one of the
oncogenic signalling pathways that is activated due to TG2-induced matrix stiffening and
enriched stroma with cross-linked collagen and active fibroblasts, promoting cell prolifer-
ation and tumour progression [187]. In fact, the cross-talk between TG2 activity and the
YAP/TAZ pathway appears bi-directional, with growing evidence that TG2 is a target gene
for YAP/TAZ as well as a driver of EMT, migration and invasion through the YAP1/TEAD
transcription complex [38,39,232]. Moreover, the TG2-induced modulation of focal adhe-
sions and the subsequent activation of FAK were linked to the increased contractility of
tumour cells [195], and to chemo-resistance phenotype due to the activation of several
downstream signalling pathways, including the apoptosis-resistance mechanism [233].

TG2 has many vital roles beyond protein cross-linking, e.g., it mediates the non-
enzymatic protein–protein interactions that are involved in the cell-matrix crosstalk. In
contrast to the observations linking the cross-linking activity of TG2 to restricted tumour
invasion [47,96,208–210,215,216], TG2-induced biomechanical alterations can also promote
tumour invasion. Surface TG2 has been shown to act as a bridge between the α1 and α3 in-
tegrins families and fibronectin. This activity, which is enabled by the strong affinity of TG2
for the 42-kDa fragment of fibronectin, has a role in cell adhesion and migration [234,235].
A higher level of TG2 in tumours results in an accumulation of FN [236] and increased
association of integrins (integrin- β1, β4, and β5), with FN leading to enhanced cell adhe-
sion. Whereas, the loss of TG2 suppressed integrins interaction with FN, cell attachment,
migration, and invasion since it compromised the integrin-FN association [45,194,237,238].
Therefore, inhibition of TG2 can be considered as a potential therapeutic strategy.

In addition to the integrin-FN association, TG2 has been shown to promote invasion
through the activation of RAC (GTPase) signalling protein that mediates cell movement
through its involvement in the structural changes of the actin cytoskeleton, thus controlling
cell migration [239]. TG2 contributes to actin fibre assembly through the induction of
RAC [12]. Indeed, the loss of TG2 has shown an impact on the assembly of actin stress
fibre [45].

5. TG2—A Stage-Specific Cancer Target
5.1. TG2 and Tumour Metastasis

Most patients who die from cancer do so because it has metastasised from the primary
site [240]. Given the complex multicellular events that mediate tumour growth within
specific microenvironmental niches, the processes leading to the formation of the metastatic
niche are only beginning to be understood, and there is evidence of a key role for TG2
in these processes; with studies suggesting a pro- and anti-metastatic functions through
differential expression in metastatic cancers, cell lines, and consequences of inhibition in
animal models across a range of cancer types [17,47,134,209,210,241–244].

As Paget’s classic “seed and soil” hypothesis implies, the formation of a metastatic
niche is widely thought to occur prior to the arrival of an invading tumour, and the growing
interest in the field of extracellular vesicles (EVs) has drawn attention to their role in this
process. EVs are small, membrane-enclosed packages of bioactive molecules which are
released by cells and can travel through biofluids to be taken up by recipient cells, both
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locally and distally. TG2 has been linked to their biogenesis and has been shown to be a
key cargo, which is transported in its active form [245,246]. Release of TG2 as a cargo is
stimulated by TGF-β and dependent upon the interaction with syndecan-4 [200]. EVs are
also heavily enriched in regulatory RNA molecules such as miRNA, a number of which
have been shown to regulate TG2, both theoretically and experimentally [247].

As EVs can be released from cancer cells, enter the circulation, and reach all parts
of the body, they are heavily implicated in the creation of the pre-metastatic niche [248]
and appear to be involved in organotropism; determining the eventual site of metastasis
in an integrin-dependent manner [249]. The interaction between TG2 and fibronectin
appears to be important, and in this context, TG2 binding fibronectin has been found
on the surface of MVs secreted by cancer cells that reach the secondary organ, raising
interest in their possible influence on modification of cell adhesion in the stroma of the
pre-metastatic niche [245,250]. Although their presence has been demonstrated and linked
to poor prognosis, the specific mechanism of action is still not fully understood. However,
the direct secretion of microvesicles derived from cancer cells and the uptake and functional
activity of TG2 in recipient fibroblast cells has been demonstrated, resulting in the activation
of mitogenic signalling and subsequent transformation [245]. This was dependent on the
simultaneous transfer of fibronectin, which is cross-linked within the microvesicle and
is required for fibroblast activation [245,250]. The enrichment of TG2 in MVs following
h-RAS-induced EMT provides a potential link between EVs and the ability of TG2 to
mediate EMT and subsequent invasive behaviour [251].

Since TG2 plays an important role in mediating cell tension and contractility, with
implications for cancer cell motility [100], and as cell stiffness has also been linked to cell
uptake capability [252], there could be great interest in fully characterising TG2, EVs, and
cancer progression and whether these mechanisms could directly feed into the influence of
EVs on cancer progression and the cell substrates and enzymatic functions involved. Actin
and tubulin have both been implicated in TG2-mediated processes [253–255], potentially
providing a link between matrix and cytoskeletal mechanics.

Indeed, cellular mechanics are likely to be relevant throughout the TME, and, in-
terestingly, the uptake of EVs and the subsequent activation of CAFs is linked to matrix
stiffness, providing a potential link between TG2, matrix mechanics, EVs, and cellular
behaviours driving cancer [256]. However, EVs are not the only method proposed for
TG2 externalisation, with export via the P2 × 7 purinergic receptor also identified [257]; a
system also involved in cancer progression and metastasis [258].

5.2. Targeting Mechanobiology of TME

The growing evidence pointing towards the importance of biophysical and biome-
chanical factors in driving the hallmarks of cancer has resulted in a number of therapeutic
strategies being developed. The critical role and therapeutic potential of TG2 in the patho-
logical remodelling of ECM and altered mechanical properties of tumour and stroma are
demonstrated by its interaction with a number of strategies currently in development as
cancer treatments (Figure 2).

Stiffness-activated FAK has been linked to the activation and survival of myofibrob-
lasts and cancer cells and is considered a potent target in fibrosis. A FAK inhibitor, De-
factinib, has shown a potent anti-fibrotic effect in fibrosis and desmoplastic tumours in
preclinical models and is now being investigated in humans [259]. Trials of the agents
GSK2256098, PF-00562271, VS-6063, and BI 853,520 are also underway and so far show
good safety profiles, although with limited efficacy; but with potential for combination
therapy [260]. TGF-β1, which has a clear reciprocal relationship with TG2, is another
potent mechanical target. A range of approaches have been developed to block the TGF-β
signalling cascade, with key clinical leads in cancer treatment including anti-TGF-β an-
tibodies, anti-TGF-β receptor antibodies, and small molecular inhibitors of TGFR-linked
kinases [261]. Integrins are also highly desirable targets, due to their key role in mediating
biomechanical signalling in cancer. Recent reviews of this field identified some 430 clinical
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leads, but only seven that had reached the clinical market (abciximab; tirofiban; eptifibatide;
natalizumab; vedolizumab; and lifitegrast), indicating potential limitations in isolating
anti-cancer effects of integrin signalling [262]. Strategies to target the relationship between
integrins and other mediators such as TGF-β or fibronectin are also under evaluation [263],
and TG2 remains an under-explored addition to this route.

Compelling evidence now shows that ECM matrix stiffness is correlated to tumour
progression and metastasis, reducing tumour vascularization, and drug delivery to tu-
mours. Therefore, targeting matrix crosslinking and stiffness is a promising treatment
approach [264]. Accordingly, TG2 and LOXs have been identified as mechano-therapeutic
targets to reduce matrix stiffness and prevent the mechano-activation that promotes tumour
progression [265]. In fibrosis, a non-specific LOX inhibitor β-aminopropionitrile (BAPN)
has been shown to reduce tissue stiffness and alleviate fibrosis [266]. While in cancer,
KCC009 selective inhibitor of TG2 blocked the remodelling of fibronectin in ECM, and
sensitized tumours to chemotherapy due to the remodelling of fibronectin in ECM [267].
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fibrotic and cancer indications. (B) Direct targeting of TG2 is a viable approach to targeting the TME; cysteamine, ZED1227,
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promising candidates showing pre-clinical efficacy in cancer models, such as KCC009, GK921, NC9, VA4, VA5, TGGM5826,
1-155 and R281. The impact of direct or indirect effects on TG2 activity includes altering chemosensitivity, apoptosis,
inflammatory and proliferative signalling, EMT, and stem cell characteristics across a wide range of cancer cell types, and
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ECM and subsequent biomechanical signalling, with impacts on the cellular milieu associated with cancer development
and progression.
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5.3. Current State of TG2 Inhibitors

The concept of targeting TG2 to treat cancer has a long history, resulting in significant
drug development efforts. TG2 conformation is key in determining the effects it confers
and this also has ramifications in therapeutic targeting. The GTP signalling, or “closed”,
form is the most prevalent in the intracellular environment, where high levels of GTP are
seen, and the transamidase active, or “open”, form is more prevalent in the extracellular
space, though it also can be preferred in the presence of high calcium levels. It has been
suggested that GTP signalling/closed conformation contributes to pro-survival signalling
pathways and cancer cell survival, and that transamidase/open conformation serves to
cross-link and sequester tumour suppressors, as well as modify the ECM to benefit the
tumour [7].

One way in which treatment may be targeted is by modulating the conformation of
TG2, and treatment with TG2 inhibitor NC9 in immortalised normal mouse cells resulted in
a shift to the open configuration [268]. This affect has also been shown with TG2 inhibitors
VA4, an VA5 in epidermal squamous cell carcinoma cells [269], and importantly was shown
to prevent both GTP signalling and transamidase activity by also blocking the transamidase
site, as well as forcing a confirmation that restricts the GTP binding site. Due to the calcium
binding nature of the transamidase/open form, treatments which increase intracellular
calcium levels are also capable of forcing increased activation of transamidase activity,
leading to cancer cell death [46,270].

Giving the increased evidence of the impact of TG2 on various signalling proteins,
blocking the TG2 binding to signalling protein is another promising approach. For example,
the TG2 inhibitor, GK921, has been shown to be effective in a xenograft model in renal
cell cancer (RCC), the GK921-binding site overlaps with that of p53 and thus prevents
it from binding to TG2, and therefore maintains the stability of the tumour suppressor
activity of p53, resulting in a significant anticancer effect. In addition, GK921 inactivates the
enzyme by binding to its N-terminus, resulting in a conformational change that increases
the non-covalent self-polymerisation of the protein, resulting in the inactivation of the
enzyme [271].

Some drugs targeting TG2 are already being developed for the treatment of other
diseases. Cysteamine is an established, commercially available, safely tolerated inhibitor of
TG2, initially developed for the treatment of cystinosis but which has since shown promise
in the treatment of other diseases such as Huntington’s chorea, Leigh disease, mitochondrial
disease, Parkinson’s disease, and Rett syndrome, and it is now being considered for re-
evaluation in new disease contexts including cancer, given the growing knowledge of the
role of TG2 in the TME [272]. ZED1227 developed by Zedira is a TG2 inhibitor developed
for the treatment of celiac disease and is already in advanced clinical trials [273]. Zedira
are currently also moving towards TG2 inhibitors for fibrosis, which may open up the
future possibility of re-purposing towards TME applications. UCB Celltech has also
developed the inhibitory antibody Zampilimab, which is in phase I/II trails for adult
kidney transplant recipients with chronic allograft injury. These pharmacological agents
demonstrate contrasting approaches to TG2 targeting. Small, cell-permeable inhibitors are
likely to have significantly different impacts on the TME context compared to antibody-
based agents targeted at matrix cross-linking in the extracellular environment. Targeting
of ECM cross-linking has been trialled before in the treatment of fibrosis. Simtuzumab is
a humanised monoclonal antibody that targets LOXL2, a catalyst in the cross-linking of
collagen. Unfortunately, clinical trials were halted at phase 2 due to a lack of efficacy [274].
It is promising however that TG2 shows potential in this context as an ECM targeting,
anti-fibrotic agent [128], and development of small molecule inhibitors as anti-fibrotic
agents continues [103].

5.4. Future Directions

There already exists a huge weight of data demonstrating the presence and activity
of TG2 in the TME, in addition to the growing mechanistic understanding of its role
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in mediating cancer progression at the cellular and extracellular levels. Functioning in
both driving cell behaviour within the complex TME milieu, as well as exerting ECM
cross-linking and mediating biophysical and biomechanical forces, TG2 remains a viable
target as a cancer treatment. Drug development efforts have yielded a range of inhibitory
approaches, some of which are clinically validated, and which could be re-purposed as
either standalone treatments or adjuvants to existing cancer treatments. Lessons could be
learned from trials on MMP inhibitors, where disappointing results were partly linked
to drug trials designed to target stages of disease that were unresponsive to inhibition of
proteolytic activity [275]. The growing understanding of the dynamic role of TG2 as cancer
evolves and progresses, coupled to the enormous efforts characterising the mechanical
events driving cancer cell survival and invasion, suggest that pre-clinical development
focussed on an appropriate window of opportunity has the potential to position TG2 as
a valid, useful, biological, and biomechanical target to expand the options available for
the treatment of cancers, particularly advanced-stage tumours that show extensive ECM
deposition and remodelling, and that currently have poor prognosis.
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