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Abstract: The stabilisation of a two-wheel robot is a classical benchmarking problem for 

determining the effectiveness of a control technique. In this paper, a nonlinear optimal 

control technique is applied to a two-wheel robot which demonstrates excellent control 

performance comparing against the linear quadratic regulator technique. Simulation results 

demonstrated that this nonlinear optimal controller can achieve accurate tracking of wheel 

angular displacement and effective stabilisation of the robot from a very large range of initial 

pitch angles. Practical factors such as maximum motor voltages are considered and analysed 

using an extended state-space model to embed such control saturations. Significantly, the 

two-wheel robot can be balanced from a body pitch angle of up to 88. 𝟎° with a maximum 

motor voltage of 48V using the proposed nonlinear optimal control technique, larger than 

any other methods achieved in the literature. Controllability studies are also performed 

throughout this research to facilitate understanding and visualisation of the substantial 

stabilisation ranges with and without control saturations.     
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1 Introduction 

An underactuated system is one in which there are 

fewer control inputs than degrees of freedom. 

Underactuated systems are apparent in many 

applications, for example, underwater, space, flying, 
mobile robots and flexible robots. An inherent property 

of these systems is that they contain non-linearities and 

are often highly unstable. Typical examples include the 
Acrobot (Spong, 1995), Pendubot (Spong and Block, 

1995), Passive Walker (McGeer, 1990), Quadrotor 

UAV (Jasim and Gu 2018, Nadda and Swarup 2020), 
Inverted Pendulum (Boubaker, 2013) and Double 

Inverted Pendulum (Elkinany et. al. 2020). 

The inverted pendulum is a widely studied problem 

in control theory and a useful test bed for 
experimentation on underactuated systems. A typical 

approach to the problem of controlling the inverted 

pendulum is to linearise around an operating point 
(ordinarily 0 degrees) by means of a Taylor series 

expansion (Boubaker, 2013). When the pendulum 

approaches this operating point, standard methods of 

linear control can be applied, for example PID 
(Shalaby, El-Hossainy and Abo-Zalam, 2019) or linear 

quadratic regulator (LQR) (Maity and Luecke, 2019). 

Whilst this approach enables control within a small 
bounded range of angles, multiple control strategies 

need to be applied with this approach; the first to swing 

the pendulum close to the controlled point, and the 
second to control the pendulum angle around this 

operating point. Other more recent control methods 

applied to the inverted pendulum, including 

backstepping (Huang et. al., 2019a), high-order 
disturbance observer based sliding mode control 

(Huang et. al, 2019b) and perceptual control (Johnson 

et. al., 2020), all share the same foundation.   
Xu, Zhang and Carbone (2017) applied a global non-

linear control method known as Nonlinear Freezing 

Optimal Control (NFOC) in order to accurately and 
efficiently control the pendulum from any given initial 

starting angle. 

NFOC is a global nonlinear control technique that 

can be applied to any general nonlinear system and can 
be optimised against a specific cost function (Banks and 

Mhana, 1992; McCaffrey and Banks, 2001). Further 

details regarding the derivation of this method and 
application can be found in section 3 of this paper. 

An expansion of the principle of the inverted 

pendulum is that of the wheeled inverted pendulum. 

The wheeled inverted pendulum possesses both interest 

from a theoretical perspective but also from a practical 
perspective for use of a wheeled mobile robot. Two-

Wheel Robots (TWR) possess good manoeuvrability, 

an ability to locomote over a wide range of different 

terrains and ability to turn on a small radius. There have 
been numerous studies devoted to these devices, for 

example, in (Grasser et al., 2002) and (Salerno and 

Angeles, 2003), and use of the mechanism within 
personal transportation devices (Segway, 2020). Just as 

with the inverted pendulum, these devices are non-

linear and underactuated. 
A number of studies have been undertaken on 

wheeled inverted pendulum and their control systems, a 

common approach being similar to that of the inverted 

pendulum with the linearisation of the systems around 
a vertical operating point (Ren, Chen and Chen, 2008).   

There are some notable alternative approaches: (i). 

Kim, Kim and Kwak (2006) presented a wheeled 
inverted pendulum robot and analysed its performance 

when progressing over an inclined surface; (ii). Pathak, 

Franch and Agrawal (2005) applied the principle of 

partial feedback linearisation which is a familiar 
approach to the control of underactuated robots (Spong, 

1995); (iii). Huang et al. (2010) presented a sliding 

mode controller approach which was able to tolerate 
both parameter uncertainty and external disturbances 

although in performance could only control to within 

the bounds of a linearised system. It is worth noting that 
the performance when controlling the pitch angle of 

these systems is similar in range to the linearised 

approach; (iv). Guo, Rizvi and Lin, 2021) developed a 

feedback-based reinforcement learning algorithm 
which produced converged LQR solution, without the 

knowledge of system parameters, to control a self-

balancing TWR .  
Rigatos et al. (2020) proposed a nonlinear optimal 

control method which linearised around temporary 

operating point at each time step using a Taylor 
expansion and Jacobian matrix, an H-infinity feedback 

controller was developed taking into account the 

disturbance effect. It is worth noting that the majority 

of disturbance was due to Taylor series truncation 
performed to linearise around the temporary operating 

point. Unlike this paper and the preceding studies, 

control of the pitch angle was not simulated. 
It will be shown in this paper that by application of 

a Nonlinear Freezing Optimal Controller to a Two-

wheel Robot, it provides significant advantages over 

other approaches. Firstly, the method proposed is a 
global control strategy which is able to stabilise a much 



larger range of robot pitch angles than what were shown 

in others based on linear techniques. For example, 

(Guo, Rizvi and Lin, 2021) and (Maity and Luecke, 
2019) both used LQR based control approaches and 

demonstrated narrow balancing ranges of up to 0.1 rad 

(~5.7°) and 4.5°, respectively. Secondly, the NFOC 

method can control all (multiple) state variables 
simultaneously; in addition to robot pitch angle, pitch 

angular velocity, wheel angular displacement, and 

wheel angular velocity can also be controlled. This is 
more efficient over traditional single input single output 

control methods, where multiple controllers are 

required, for example, to control pendulum angle and 

cart position (Shalaby, El-Hossainy and Abo-Zalam, 
2019).  The NFOC method proposed is robust and due 

to the recalculation of control gains at every iteration 

step, disturbance effects are minimised. Finally, this 
method is an extension of optimal control so can 

calculate control gains flexibly with an optimised cost 

function which is able to minimise control energy 
consumption. 

The structure of this paper is as follows: in Section 

2, nonlinear dynamic models of the prototype two-

wheel robot is developed, using forces and then motor 
voltages as control inputs. In Section 3, the background 

and theory of NFOC are explained and a NFOC 

controller is designed for the two-wheel robot. The 
simulation results are presented, together with analysis 

and detailed discussion in Section 4. Finally, in Section 

5, concluding remarks are presented. 

 

2 Dynamic Model of the Two-Wheel Robot  

2.1. Two-Wheel Robot prototype using Lego EV3 
A TWR shares many similarities with and can be 

modelled in a similar manner as a two-wheel inverted 

pendulum and cart system (Xu, Zhang and Carbone, 

2017; Rigatos et al. 2020). Figure 1 shows a two-wheel 
robot constructed using Lego EV3 components from a 

side view and a top view. The angels indicated in Figure 

1 are: 𝜃, average wheel angular displacement between 

the left and right wheels; 𝜓, pitch angle of the robot 

body; and 𝜙, yaw angle of the robot body, all in radians.  

  

2.2. Nonlinear Model with Control Forces 
The dynamical model of the TWR can be obtained 

using a variety of methods, such as using force analysis 

and the Newton’s law, the Hamiltonian equation and the 
Lagrangian method. Here, the Lagrangian approach is 

adopted, such that the Lagrangian equation is calculated 

as follows: 

𝐿 =  𝑇 − 𝑉,                                 ( 1 ) 
𝑑

𝑑𝑡

𝜕𝐿

𝜕�̇�𝑗
−
𝜕𝐿

𝜕𝑥𝑗
= F𝑗 , 1 ≤ 𝑗 ≤ 𝑛,                             (2) 

where L, 𝑇, 𝑉, 𝑥𝑗  and F𝑗 represent the Lagrangian 

expression, generalised kinetic energy, generalised 
potential energy, the jth generalised coordinate of the 

𝑛th dimensional system, and the jth generalised force 

applied on the object, respectively. 

The kinetic energy of the TWR system, 𝑇 (the sum of 

translational energy 𝑇1 and rotational energy 𝑇2) and the 

potential energy 𝑉 can be calculated as shown in 

(Yamamoto, 2009) as follows: 

𝑇1 =
1

2
𝑚 [2𝑅2�̇�2 +

𝑊2

2
�̇�2] 

 +
1

2
𝑀[𝑅2�̇�2 + 𝐿2 𝑠𝑖𝑛2 𝜓 �̇�2 + 2𝑅𝐿�̇�𝑐𝑜𝑠 𝜓 �̇� + 𝐿�̇�2], 

𝑇2 =
1

2
𝐽𝑤 (2�̇�

2 −
𝑊2�̇�2

2𝑅2
) +

1

2
𝐽𝜓�̇�

2 +
1

2
𝐽𝜙�̇�

2 

   +
1

2
𝑛2𝐽𝑚 [2�̇�

2 + 2�̇�2 − 4�̇��̇� +
𝑊2�̇�2

2𝑅2
], 

and 

𝑉 =  2𝑚𝑔𝑅 +𝑀𝑔𝑅 +𝑀𝑔𝐿𝑐𝑜𝑠 𝜓, 
where 𝑚, 𝑀, 𝑅, 𝑊, 𝐿, 𝐽𝑤,  𝐽𝜓, 𝐽𝜙, 𝐽𝑚 and 𝑔 denote the 

wheel mass, the robot body mass, the wheel radius, the 

robot body width, the distance between the wheel axle 
and the robot’s centre of mass, the wheel’s inertia 

moment, the robot body’s pitch inertia moment, the 

robot body’s yaw inertia moment, the DC motor’s 

inertia moment and acceleration due to gravity, 

respectively. �̇�, �̇� and �̇� represent the average wheel 

angular velocity, the robot body pitch angular velocity 

and the robot body yaw angular velocity, respectively.  
Substitute the energy expressions into Eq.s (1-2), a 

nonlinear dynamic model of the TWR system can be 

obtained similarly as obtained in (Yamamoto, 2009). In 
order to demonstrate the effectiveness of the NFOC 

technique utilised in this paper and for the ease of 

understanding, the TWR’s motion is restricted to be 
within a two-dimensional plane and the robot’s yaw 

movement is not considered. To achieve a simpler 

dynamic model, the robot’s yaw angle 𝜙 is neglected 

and the focus are on: (i). the regulation of the most 
unstable (and therefore most challenging) variable - the 

robot’s pitch angle 𝜓 and (ii). the tracking of the 

wheels’ angular displacement 𝜃. This approach proves 
to be computationally efficient, as the dimensions of the 

TWR’s state-space model reduce to 4 for a regulator 

design and to 5 for a single reference tracking control 

design. As introduced in Section 1, the NFOC method 
applies to any general nonlinear control system (Banks 

and Mhana, 1992) and (McCaffrey and Banks, 2001), 

therefore, the optimal control of the TWR system’s full 
set of state-space variables is entirely achievable, using 

more powerful computing resources.  

    Now simplifying the TWR’s dynamic model by 
neglecting the yaw motion and organising the nonlinear 



model into a state-space matrix form, the following is 

obtained: 

(

�̇�1
�̇�2
�̇�3
�̇�4

) =

(

 
 
 

0 1 0 0

0 0
𝑒23(𝑥3)

[𝑎 + 𝑏(𝑥3)]𝑥3

𝑒24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0 0
𝑒43(𝑥3)

[𝑎 + 𝑏(𝑥3)]𝑥3

𝑒44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3) )

 
 
 

(

𝑥1
𝑥2
𝑥3
𝑥4

)

 +

(

 
 
 

0 0
𝑓21

𝑎 + 𝑏(𝑥3)

𝑓22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓42
𝑎 + 𝑏(𝑥3))

 
 
 

(
𝐹𝜃
𝐹𝜓
)                           

 

where 𝑥1 = 𝜃, 𝑥2 = �̇�, 𝑥3 = 𝜓, 𝑥4 = �̇�, the functions 

are defined as: 

𝑏(𝑥3) = 𝑀
2𝑅2𝐿2 𝑠𝑖𝑛(𝑥3)

2 + 4𝑀𝐿𝑅𝑐𝑜𝑠(𝑥3)𝑛
2𝐽𝑚 , 

𝑒23(𝑥3) = 2𝑛
2𝐽𝑚𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3) 

                  −𝑀2𝑅𝐿2𝑐𝑜𝑠(𝑥3)𝑔 𝑠𝑖𝑛(𝑥3), 
𝑒24(𝑥3, 𝑥4) = 𝑥4sin (𝑥3)(𝑀

2𝑅𝐿3 + 2𝑀𝑅𝐿𝑛2𝐽𝑚 

                                          +𝑀𝑅𝐿𝐽𝜓), 

𝑒43(𝑥3) = 𝑀𝑔𝐿𝑠𝑖𝑛(𝑥3)(2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 

                                        +𝑀𝑅2), 
𝑒44(𝑥3, 𝑥4) = 𝑥4sin (𝑥3)(−𝑀

2𝑅2𝐿2𝑐𝑜𝑠(𝑥3) 
                                               +2𝑀𝑅𝐿𝑛2𝐽𝑚), 
𝑓22(𝑥3) = 𝑓41(𝑥3) = 2𝑛

2𝐽𝑚 −𝑀𝑅𝐿𝑐𝑜𝑠(𝑥3), 
and the parameters are defined as: 

𝑎 = 2𝐽𝑤𝐽𝜓 + 2𝑚𝑅
2𝑀𝐿2 + 4𝑚𝑅2𝑛2𝐽𝑚 + 2𝑀𝑅

2𝑛2𝐽𝑚 

       +2𝑛2𝐽𝑚𝑀𝐿
2 + 2𝑚𝑅2𝐽𝜓 +𝑀𝑅

2𝐽𝜓  + 2𝐽𝑤𝑀𝐿
2 

       +4𝐽𝑤𝑛
2𝐽𝑚 + 2𝑛

2𝐽𝑚𝐽𝜓, 

𝑓21 = 𝑀𝐿
2 + 2𝑛2𝐽𝑚 + 𝐽𝜓, 

𝑓42 = 2𝑛
2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅

2 +𝑀𝑅2 , 
    Note, the state-space representation of any dynamic 

system is non-unique and the choice of a particular 

state-space model affects the controllability of the 
system. This point will be discussed in more detail in 

Section 4.1.  

 

2.3. Nonlinear Tracking Model with Control 
Voltages 

In Section 2.2, the dynamics and a nonlinear state-space 

model of the TWR were presented, using generalised 

forces 𝐹𝜃 and 𝐹𝜓 as control inputs. In reality, these 

forces in a TWR robot system are generated by motors. 

For example, in the Lego EV3 TWR robot introduced 

in Section 2.1, two DC motors (left and right) are used 
to generate such forces and the relationship between the 

forces and the motor voltages can be found by following 

Yamamoto’s work (2009) as shown below: 

𝐹𝜃 = 𝑐(𝑣1 + 𝑣2) − 2(𝑑 + 𝑓𝑤)𝑥2 + 2𝑑𝑥4, 
𝐹𝜓 = −𝑐(𝑣1 + 𝑣2) + 2𝑑(𝑥2 − 𝑥4), 

where 𝑣1 and 𝑣2 represent the left and right DC motor 

voltages which are the new control signals, 𝑓𝑤 

represents the friction coefficient between the wheel 

and the ground surface, and parameters 𝑐 =
𝑛𝐾𝑡

𝑅𝑚
 and 

𝑑 =
𝑛𝐾𝑡𝐾𝑏

𝑅𝑚
+ 𝑓𝑚 , with 𝑛,  𝐾𝑡 , 𝐾𝑏 , 𝑅𝑚 and 𝑓𝑚 denoting 

the gear ratio, the DC motor torque constant, the DC 
motor back EMF constant, the DC motor resistance and 

the friction coefficient between the robot body and the 

DC motor, respectively. 

    Next, a new variable 𝑥5 is introduced as: 

�̇�5 = 𝑥1 
to assist the design of a nonlinear optimal tracking 

system which can follow a pre-defined wheel angular 
displacement reference, in Section 3.2. A new nonlinear 

state-space model of the TWR for tracking the wheel 

angle, with DC motor voltages as control inputs, can 
therefore be written as the following: 

𝑒𝑚22(𝑥3) = 2𝑑𝑓22(𝑥3) − 2(𝑑 + 𝑓𝑤)𝑓21, 
𝑒𝑚24(𝑥3, 𝑥4) = 𝑒24(𝑥3, 𝑥4) + 2𝑑[𝑓21 − 𝑓22(𝑥3)], 

(

 
 

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

 
 
=

(

 
 
 
 

0 1 0 0

0
𝑒𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒23(𝑥3)

[𝑎 + 𝑏(𝑥3)]𝑥3

𝑒𝑚24(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
0 0 0 1

0
𝑒𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑒43(𝑥3)

[𝑎 + 𝑏(𝑥3)]𝑥3

𝑒𝑚44(𝑥3, 𝑥4)

𝑎 + 𝑏(𝑥3)
1 0 0 0 )

 
 
 
 

                                    

 

×

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 
+

(

 
 
 
 

0 0
𝑓𝑚21(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚22(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0

𝑓𝑚41(𝑥3)

𝑎 + 𝑏(𝑥3)

𝑓𝑚42(𝑥3)

𝑎 + 𝑏(𝑥3)
0 0 )

 
 
 
 

(
𝑣1
𝑣2
),  

(3) 

where new functions are defined based on the function 

in Section 2.2 as follows: 

𝑒𝑚22(𝑥3) = 2𝑑𝑓22(𝑥3) − 2(𝑑 + 𝑓𝑤)𝑓21, 
𝑒𝑚24(𝑥3, 𝑥4) = 𝑒24(𝑥3, 𝑥4) + 2𝑑[𝑓21 − 𝑓22(𝑥3)], 
𝑓𝑚21(𝑥3) = 𝑓𝑚22(𝑥3) = 𝑐[𝑓21 − 𝑓22(𝑥3)], 
𝑒𝑚42(𝑥3) = 2𝑑𝑓42 − 2(𝑑 + 𝑓𝑤)𝑓41(𝑥3), 
𝑒𝑚44(𝑥3, 𝑥4) = 𝑒44(𝑥3, 𝑥4) + 2𝑑[𝑓41(𝑥3) − 𝑓42], 
𝑓𝑚41(𝑥3) = 𝑓𝑚42(𝑥3) = 𝑐[𝑓41(𝑥3) − 𝑓42]. 

 

2.4. Linearisation 
The proposed optimal stabilising controller design in 

Section 3 utilises a NFOC technique and will have the 

capability of controlling the TWR system globally. 

Traditionally, TWR (and more generally, the inverted 
pendulum (Rigatos et al. 2020; Boubaker 2013) system 

are linearised around the top equilibrium using Taylor 

series expansion. In order to be able to compare 
stabilising control results between the nonlinear 

freezing technique adopted with the conventional linear 

ones in Section 4.2, here, linearisation in a small 

neighbourhood of the top equilibrium (around when the 
TWR is in the upright position and has a very small 

pitch angular velocity) is performed, assuming: 



𝑠𝑖𝑛(𝑥3) ≈ 𝑥3, 𝑐𝑜𝑠(𝑥3) ≈ 1, 𝑠𝑖𝑛 (𝑥3)
2 ≈ 0  

and  𝑥4 𝑠𝑖𝑛(𝑥3) ≈ 0.  

    Then an approximated linear model is obtained as 

follows: 

(

 
 

�̇�1
�̇�2
�̇�3
�̇�4
�̇�5)

 
 
=

(

  
 

0 1 0 0

0
𝑒𝑚22𝐿

𝑎+𝑏𝐿

𝑒23𝐿

𝑎+𝑏𝐿

𝑒𝑚24𝐿

𝑎+𝑏𝐿

0 0 0 1

0
𝑒𝑚42𝐿

𝑎+𝑏𝐿

𝑒43𝐿

𝑎+𝑏𝐿

𝑒𝑚44𝐿

𝑎+𝑏𝐿

1 0 0 0 )

  
 

(

 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5)

 
 

+

(

 
 
 

0 0
𝑓𝑚21𝐿

𝑎+𝑏𝐿

𝑓𝑚22𝐿

𝑎+𝑏𝐿

0 0
𝑓𝑚41𝐿

𝑎+𝑏𝐿

𝑓𝑚42𝐿

𝑎+𝑏𝐿

0 0 )

 
 
 
(
𝑣1
𝑣2
) ,

              (4) 

where constants are defined as below: 

𝑒𝑚22𝐿 = 2𝑑𝑓22𝐿 − 2(𝑑 + 𝑓𝑤)𝑓21, 
𝑓22𝐿 = 𝑓41𝐿 = 2𝑛

2𝐽𝑚 −𝑀𝑅𝐿, 

𝑏𝐿 = 4𝑀𝐿𝑅𝑛
2𝐽𝑚 , 

𝑒23𝐿 = 2𝑛
2𝐽𝑚𝐿𝑀𝑔 −𝑀

2𝑅𝐿2𝑔,  
𝑒𝑚24𝐿 = 2𝑑(𝑓21 − 𝑓22𝐿), 
𝑒𝑚42𝐿 = 2𝑑𝑓42 − 2(𝑑 + 𝑓𝑤)𝑓41𝐿  , 
𝑒43𝐿 = 𝑀𝑔𝐿(2𝑛

2𝐽𝑚 + 2𝐽𝑤 + 2𝑚𝑅
2 +𝑀𝑅2), 

𝑒𝑚44𝐿 = 2𝑑(𝑓41𝐿 − 𝑓42),   
𝑓𝑚21𝐿 = 𝑓𝑚22𝐿 = 𝑐(𝑓21 − 𝑓22𝐿), 
𝑓𝑚41𝐿 = 𝑓𝑚42𝐿 = 𝑐(𝑓41𝐿 − 𝑓42). 
 

3 Nonlinear Optimal Controller Design 

3.1 Linear Quadratic Regulating and Tracking 

Method 
Linear control systems in general can be represented in 

the form of: 

�̇� = 𝑨𝒙 + 𝑩𝒖 ,                                                           (5) 

where 𝒙 and 𝒖 denote the state variable vector and the 

control vector, and 𝑨 and 𝑩 are the system matrix and 

the control matrix. Note, to design any state-space 

controllers such as the LQR, matrices 𝑨 and 𝑩 must 
satisfy the controllability or at least the stabilisability 

requirement.  

    In a linear quadratic regulating or tracking system, a   
quadratic infinite-time cost function can be defined as 

follows (Ogata, 2002): 

𝐽 =
1

2
∫ (𝒙𝑻𝑸𝒙+ 𝒖𝑻𝑹𝒖)𝑑𝑡
∞

0

 

which generates a local optimal feedback control 

solution given by: 

𝒖 = −𝑲𝒙 = −𝑹−𝟏𝑩𝑻𝑷𝒙 ,                                                    (6) 

where 𝑸, 𝑹 and 𝑷 are all positive-definite Hermitian or 

real symmetric matrices. In particular, 𝑸 and 𝑹 are 

weighting matrices which jointly determine the relative 

importance between reducing errors and reducing 

control energy expenditure. Matrix 𝑷 is the solution of 

the algebraic Riccati equation in the form of: 

𝑨𝑻𝑷 +𝑷𝑨+ 𝑸− 𝑷𝑩𝑹−𝟏𝑩𝑻𝑷 = 𝟎 . 
Substituting Eq. (6) into Eq. (5), the implementable 
stable controlled system is represented by: 

�̇� = (𝑨 − 𝑩𝑹−𝟏𝑩𝑻𝑷)𝒙,   

with the condition that (𝑸
𝟏

𝟐, 𝑨)  is an observable pair. 

    This linear optimal control technique can be applied 

to the linearised model of the TWR presented in Section 
2.4 to track wheel angle reference and regulate all other 

variables. Simulation results will be shown and 

discussed in comparison with the results from the 
nonlinear control method in Section 4.   

 

3.2 Nonlinear Optimal Control Strategy  
Dynamical models of most nonlinear systems can be 

constructed in the following state-space form (Xu, 

Zhang and Carbone, 2017): 
�̇� = 𝒇(𝒙, 𝒖) =  𝑨(𝒙)𝒙 + 𝑩(𝒙)𝒖(𝒙) ,                          (7) 

provided that the nonlinear system has an equilibrium 

at the origin, i.e. 𝒇(𝟎,𝟎) = 𝟎 and the Jacobian matrices 

of matrices 𝑨(𝒙) and 𝑩(𝒙) are subject to Lipschitz 

condition of bounded growth (Harrison, 2003). Then 
the nonlinear optimal control can be extended from the 

linear method explained in Section 3.1 in the following 

steps.  
    First, a generalised quadratic infinite time optimal 

cost function can be defined as:  

𝐽 =
1

2
∫ [𝒙𝑻𝑸(𝒙)𝒙 + 𝒖𝑻𝑹(𝒙)𝒖]𝑑𝑡
∞

0

 

and when attached to the nonlinear system governed by 
Eq. (7), generates the nonlinear optimal control: 

𝒖 = −𝑲(𝒙)𝒙 = −𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)𝒙 ,               (8) 

where 𝑷(𝒙) must satisfy the extended algebraic Riccati 

equation shown as follows: 

𝑨𝑻(𝒙)𝑷(𝒙) + 𝑷(𝒙)𝑨(𝒙) + 𝑸(𝒙) 
−𝑷(𝒙)𝑩(𝒙)𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙) = 𝟎 .                     (9) 

Next, substitute the nonlinear optimal control 

solution shown in Eq. (8) into Eq. (7), the system model 
results in: 

�̇� = [𝑨(𝒙) − 𝑩(𝒙)𝑹−𝟏(𝒙)𝑩𝑻(𝒙)𝑷(𝒙)]𝒙.          (10) 

    Finally, Eq. (10) can be solved numerically, using an 

integration method, where 𝑨(𝒙), 𝑩(𝒙), 𝑩𝑻(𝒙), 𝑹−𝟏(𝒙) 
and 𝑷(𝒙) are fixed (frozen) at each time step. This 

method can therefore be referred to as the ‘nonlinear 
freezing optimal control - NFOC’ for this reason. Note, 

in the linear quadratic regulating or tracking control 

cases explained in Section 3.1, the optimal control gain 

matrix 𝑲 was obtained by performing the optimisation 

once and then applied to the linearised system for all 

time. Differently, in the nonlinear optimal freezing 

control, an optimisation is performed and therefore 

results in a varying 𝑲(𝒙) at every time step. Generally, 

as the linear optimal gain matrix was calculated based 

the linearised model around a small neighbourhood of 



the equilibrium, the control will only function as 

intended when the system is restricted within this 

neighbourhood. In comparison, the nonlinear freezing 
technique is far more flexible and can control globally 

where 𝑨(𝒙) and 𝑩(𝒙) are a stabilisable pair.   

The numerical procedure of calculating the nonlinear 

optimisation solution of the control gain matrix 𝑲(𝒙) 
can be summarised as follows: 

1) Use the initial state vector 𝒙(𝟎) to determine 

matrices 𝑨(𝒙(𝟎)) and 𝑩(𝒙(𝟎)) at time step 𝑡 =
0. 

2) Solve the algebraic Riccati equation shown in 

Eq. (9) to obtain 𝑷(𝒙(𝟎)) and then substitute it 

into Eq. (8) to determine the optimal control gain 

matrix for the initial time step 𝑲(𝒙(𝟎)). 

3) Substitute 𝑨(𝒙(𝟎)), 𝑩(𝒙(𝟎)) and 𝑷(𝒙(𝟎)) into 

Eq. (10) and use an integration method (e.g. a 4th 

order Runge-Kutta method) to solve for 𝒙 at the 

next time step 𝑡 = 1, say 𝒙(𝟏).   
4) Repeat steps 1) - 3) using 𝒙(𝟏) to work out the 

optimal control gain matrix at 𝑡 = 1 as 𝑲(𝒙(𝟏)) 

and then move onto the next time step following 

the same procedure.  
This nonlinear freezing technique (see (Banks and 

Mhana, 1992) and (McCaffrey and Banks, 2001) for 

detailed derivation and theoretical analysis) will be 
applied to the TWR system to provide stabilising and 

tracking controls. In the next section, the nonlinear 

state-space model of the TWR system given in Eq. (3) 

will used and simulation results from this nonlinear 
control will be compared with the linear tracking 

control extended from the traditional LQR method.   

 
4 Simulation Results and Discussions 

4.1 Controllability Tests 

State-space representations of dynamical systems have 
non-unique forms and controllability (or at least, 

stabilisability) is a necessary condition of controller 

design in state-space. For a linear system, as matrices 𝑨 

and 𝑩 are time-invariant, controllability of any state-
space model is fixed and can be tested 

straightforwardly. For a nonlinear system and any given 

state-space model, however, matrices 𝑨(𝒙) and 𝑩(𝒙) 
both depend on the state vector 𝒙 and therefore vary.  

Using the nonlinear state-space model derived in Eq. 

(3) of a tracking TWR system, where matrices 𝑨(𝒙) and 

𝑩(𝒙) depend on the state variables 𝑥3 and 𝑥4 only, the 
controllability information can be obtained as shown in 

Figure 2 where the TWR system is fully controllable 

when the values of state variables 𝑥3 and 𝑥4  lie in the 

yellow region representing Rank(𝓒) = 5, where the 

controllability test matrix 𝓒 = [𝑩(𝒙) ⋮ 𝑨(𝒙)𝑩(𝒙) ⋮
𝑨(𝒙)2𝑩(𝒙) ⋮ 𝑨(𝒙)3𝑩(𝒙) ⋮ 𝑨(𝒙)4𝑩(𝒙)]. In the blue 

region, Rank(𝓒) = 4, the TWR system has a 

controllability rank deficiency and therefore is not 

completely state controllable.  

Clearly, if a different state-space model than the one 
shown in Eq. (3) is adopted for the TWR system, the 

controllability dependence on the state vector will vary 

accordingly.     
 
4.2 Control Results and Comparisons 

In this section, the control performance and controllable 

range of the NFOC design of the TWR system will be 
examined, comparing against LOC, in simulations 

conducted in MATLAB environment. The weighting 

matrices are chosen as 𝑸 = 𝑑𝑖𝑎𝑔{20, 1, 1, 1, 5} and 

𝑹 = 10𝑰𝟐×𝟐 after some simple trial and error tests. The 
weighting matrices are then kept the same for all 

simulation runs when using both the NFOC and LOC 

techniques. 
Using the NFOC theory and numerical procedure 

explained in Section 3.2, the tracking control of wheel 

angular displacement 𝑥1 (when the reference input is 2𝜋 

or 360°) and the stabilising control results of the TWR 

system with different initial pitch angle 𝑥3 can be 

shown in Figures 3 and 4, respectively. For the ease of 

interpretation, units of all angles have been converted 

from radians to degrees (°). Note all state variables in 

Figure 3 and all other state variables apart from 𝑥3 in 

Figure 4 have zero initial conditions.  

    It can be seen from Figure 3 that the designed 
nonlinear freezing optimal controller has the ability to 

track reference input in 𝑥1 well with a settling time at 

~8s. The performance of the linear optimal controller is 
comparable to the one by NFOC. 

    In Figure 4, as the initial pitch angle of the robot body 

increases, as one would expect, the maximum 

oscillation amplitudes of all state variables (physically, 
the wheel angular placement, the wheel angular 

velocity, the body pitch angle, the pitch angular velocity 

and the accumulation of translational displacement) and 
the corresponding control input get larger. It can also be 

seen from Figure 4 that the time taken to stabilise the 

TWR rises when the pitch angle x3 increases, however, 

the NFOC is capable of stabilising the TWR system 
starting from a wide range of initial pitch angles. This 

is because for these initial 𝑥3 angles, the controllability 

trajectories due to dynamical evolutions of state 

variables 𝑥3 and 𝑥4 stay within the controllable region. 

A typical example is shown in Figure 5, where the red 

asterisks represent the rank test results for specific 𝑥3 

and 𝑥4 values which evolved from initial condition 

𝑥3 = 30
°, 𝑥4 = 0

°/𝑠 and the TWR system controlled 
by the nonlinear optimal technique. 

When the pitch angle 𝑥3 increases further to 87.2° 
whilst all other state variables remain 0 initially, the 

controlled response of TWR using NFOC is only just 

stable, with dramatic fluctuations and very large 



maximum oscillation amplitudes for all state variables, 

as shown in Figure 6. The controllability results for this 

case are shown in Figure 7. It can be seen that the red 
asterisks which represent the dynamical evolution path 

of state variables 𝑥3 and 𝑥4 still remain in the yellow 

controllable region, where the controllability test matrix 

is of full rank.  
The control results shown in Figures 3, 4 and 6 are 

achieved through simulations which demonstrate the 

theoretical capability of the NFOC. These results will 
be compared against the ones obtained from using the 

LOC in later part of this section to show the superiority 

of NFOC in achieving stabilisation of much wider 

ranges of important state variables and robustness. 
Although the simulation results are stable, clearly, 

when implementing TWR, hardware constraints will 

apply which means the control inputs and some 
variables may exceed their physical limits. For 

example, in Figures 4 and 6, the peak control voltages 

demanded by the NFOC when initial 𝑥3 = 60
° and 

87.2° are ~110𝑉 and ~750𝑉, respectively, which are 

much larger than voltage supplied by any existing Lego 

motors and indeed, by most motors used in robotics. 
The peak pitch angular velocities of the robot body are 

~ − 1500°/𝑠 and > 9000°/𝑠 (also < −9000°/𝑠), 
respectively, which are also physically unrealistic to 

achieve. Further design and experiments which limit the 

control voltage supplied is necessary to make the results 
more physically meaningful and will be demonstrated 

in Section 4.3. 

    For now, the controllable range of the TWR from the 

model identified in Eq. (3) is tested for the NFOC 

method. When the initial robot pitch angle 𝑥3 is 

increased to 87.3°, the system becomes unstable, as 

shown by simulation results in Figure 8.    
    Similarly as before, the controllability results can be 

displayed, tracing the dynamical evolution path of 𝑥3 

and 𝑥4 starting from 𝑥3= 87.3°, as shown in Figure 9. 
This time, however, the state variables travel into the 

blue region, where the controllability test matrix 𝓒 has 

a rank deficiency of 1 (i.e. Rank(𝓒) = 4). Because the 

system is not fully controllable at these specific values 
of the state variables, as one would expect, the TWR 

cannot be stabilised using any state-space control 

technique, including the NFOC method. This 
controllability conclusion matches the results of 

unstable state variable evolutions against time, shown 

in Figure 8. 

    It can also be shown in Figure 10 that when the initial 

value for 𝑥3 is further increased to 90°(i.e. the robot is 
lying flat down on the horizontal surface), the TWR 

system is not fully controllable at a number of values on 

the state variables dynamical evolution path, and 

therefore it cannot be stabilised. 

Next, stabilising ranges between the NFOC and the 

LOC methods are compared. LOC is an extended 

tracking control method based on the powerful LQR 
technique briefly explained in Section 3.1, where a set 

of optimal control gains are calculated for the linearised 

model of the system. The approximations made at the 

linearisation stage restrict the operational range of the 
system to be within a small neighbourhood of the 

equilibrium. In the case of the TWR system, the 

equilibrium sits in the robot’s upright position with zero 
pitch angular velocity.  

The LOC method can perform excellent tracking and 

stabilising control when the state variables stay within 

the operational range (close to the equilibrium). For 

example, when the initial robot pitch angle is 5°, the 
LOC control results are nearly identical to the ones 

generated by the NFOC method, as shown in Figure 11. 

Indeed, the set of linear optimal control gains 𝑲𝒍 
calculated as shown below:  

𝑲𝒍 = [−1.391,−1.449, −59.848,−7.168,−0.5], 
are very similar to the ones obtained for the nonlinear 

case. Nonlinear freezing optimal control gains  
𝑲𝒏(𝒙) vary depending on the state vector 𝒙, so a subset 

of the gains calculated is shown in Table 4.1 for 

different corresponding values of 𝑥3,  where 𝑥1, 𝑥2, 𝑥4 

and 𝑥5 are all set at 0. 
However, when the state variables of the TWR either 

start initially at or subsequently travel into, any region 

outside the small neighbourhood of the equilibrium, the 
control performed by LOC is no longer optimal, even 

when the system is still fully controllable. This 

restriction does not apply to the NFOC method, because 

it is a nonlinear control method in which a new set of 
optimal control gains is calculated, updated and utilised 

for control at every time step. The advantage of the 

NFOC technique is therefore that it can achieve optimal 
control of any nonlinear system (subject to the 

condition that 𝑨(𝒙) and 𝑩(𝒙) are a stabilisable pair) 

globally. In addition, because the optimal control gains 

are calculated and refreshed at every time step, taking 
into account of effects of any disturbances, the system 

is intrinsically more robust. 

It has already been demonstrated that the NFOC 
technique can control the TWR system from a large 

range of initial values of the most unstable variable - the 

robot body’s pitch angle, up to 𝑥3= 87.2°. This 

represents a much wider range than shown in other 

recent simulation work on TWR (Guo et. al. 2021) and 
inverted pendulum control (Maity and Luecke, 2019). 

In Figure 12, the stabilising control results between the 

NFOC and the LOC methods are compared, at a lower 

initial pitch angle at 𝑥3= 65.7°, as the LOC cannot 

provide stabilising control exceeding this angle. Even 
though the LOC is still able to control the TWR starting 

from 𝑥3= 65.7°, Figure 12 shows more oscillatory 



responses with nearly always larger peak amplitudes of 

the state variables, comparing against the NFOC 

method.   
When the robot body pitch angle is further increased 

to 65.8°,  the TWR controlled by LOC is unstable, as 

shown in Figure 13, whilst the stabilising control 

performance by NFOC is still satisfactory, as shown in 

Figure 14. 
 

4.3 Control Saturations 

As discussed in Section 4.2, there are physical limits 

of voltages, a Lego EV3 motor, or indeed, any motor 
used in robotics research, could supply for the TWR. In 

order to consider the effect of the motor voltage 

limitation, the model of the TWR needs to be modified 
to take into account of this constraint. Harrison’s (2003) 

scalar input state augmentation approach is adopted and 

extended to a vector input state augmentation, as two 
motors are utilised in TWR and therefore generating 

two control inputs.  

Now for the TWR system, let: 

𝝓(𝑥6) = [
𝜙𝐿(𝑥6)

𝜙𝑅(𝑥6)
] = 𝒖 = [

𝑣1
𝑣2
]  

and define the additional state variable 𝑥6 such that  

�̇�6 = 𝑤, 
then the extended TWR model can be rewritten as: 

�̇�𝒄 = [
�̇�
�̇�6
] = [

𝑨(𝒙)
𝑩(𝒙)𝝓(𝑥6)

𝑥6

01×𝑛 0
] [
𝒙
𝑥6
] + [

0𝑛×1
1
]𝑤,         

 (16) 

where  �̇�𝒄 = [�̇�1, �̇�2, �̇�3, �̇�4, �̇�5, �̇�6]
𝑇 and 𝑤 is the new 

‘artificial’ (non-physical) scalar control input. The 

control saturation vector 𝝓(𝑥6) can be defined as any 

smooth and differentiable functions, for example, by 

using the one introduced in (Harrison, 2003) as follows: 

𝜙𝐿(𝑥6) = 𝜙𝑅(𝑥6) = {

           𝜆  ,             𝑥6 >  𝜆

𝜆𝑠𝑖𝑛 (
𝜋𝑥6
2𝜆
), |𝑥6| ≥ 𝜆

             −𝜆  ,             𝑥6 < −𝜆    

, 

where 𝜆 denotes the maximum motor voltage of the 

TWR. For a Lego EV3 motor, this value is 8.3V. 

The full state-space model of the extended TWR with 
the motor voltages constraint embedded can be 

obtained by substituting Eq. (3) into Eq. (16), giving the 

following state-space representation: 

�̇�𝒄 = 𝑨𝒄(𝒙𝒄)𝒙𝒄 + 𝑩𝒄(𝒙𝒄)𝑤,             (17) 
where  

𝑨𝒄 =

(

 
 
 
 

0 1 0 0 0 0

0
𝑒𝑚22

𝑎+𝑏

𝑒𝑚23
(𝑎+𝑏)𝑥3

𝑒𝑚24

𝑎+𝑏
0

𝑓𝑚21𝜙𝐿(𝑥6)+𝑓𝑚22𝜙𝑅(𝑥6)

(𝑎+𝑏)𝑥6

0 0 0 1 0 0

0
𝑒𝑚42

𝑎+𝑏

𝑒𝑚43
(𝑎+𝑏)𝑥3

𝑒𝑚44

𝑎+𝑏
0

𝑓𝑚41𝜙𝐿(𝑥6)+𝑓𝑚42𝜙𝑅(𝑥6)

(𝑎+𝑏)𝑥6

1 0 0 0 0 0
0 0 0 0 0 0 )

 
 
 
 

and 𝑩𝒄 = [0, 0, 0, 0, 0, 1]
𝑇. Thus, the quadratic infinite 

time optimal cost function becomes: 

𝐽 =
1

2
∫ [𝒙𝒄

𝑻𝑸𝒄(𝒙𝒄)𝒙𝒄 + 𝑤
𝑇𝑹𝒂(𝒙𝒄)𝑤]𝑑𝑡,

∞

0

 

where the control weighting matrix 𝑹𝒂 is now a scalar 

quantity due to the new scalar control input adopted and 

is chosen to be 𝑅𝑎 = 0.001 and the state weighting 

matrix 𝑸𝒄 is given by  

𝑸𝒄 = [
𝑸 0

0 2𝜙𝐿
2(𝑥6)𝑹11

], 

with 𝑸 and 𝑹 chosen to be the same as in Section 4.2, 

i.e. 𝑸 = 𝑑𝑖𝑎𝑔{20, 1, 1, 1, 5} and 𝑹 = 10𝑰𝟐×𝟐 (so 𝑹11 = 

10). 

    Now because the state-space model of the TWR has 
changed with the motor voltage constraint embedded, 

controllability of the system also changed but can be 

analysed using the same method as explained in Section 

4.2.  
Rank of the new controllability test matrix depends 

on 3 state variables of the new TWR model with motor 

voltage input saturations, as shown in Figure 15. Same 
as before, the yellow region represents fully 

controllable states (i.e. Rank(𝓒) = 6) and the blue region 

represents partly controllable states (i.e. Rank(𝓒) = 5 so 

there is a controllability rank deficiency of 1).  
Cross-sections of the controllability cuboid presented 

in Figure 15 can be plotted to better visualise  the 

dynamical evolution path of the state variables, when 1 

of the 3 state variables 𝑥3, 𝑥4 and 𝑥6 is fixed. For 

example, when 𝑥4 is fixed at 𝑥4 = 0
°/𝑠, the 

controllability information, in terms of  𝑥3 and 𝑥6 can 

be captured and visualised more easily as shown in 

Figure 16. Note, the coordinates (𝑥3, 𝑥6) of the 2 points 

marked by red asterisks are approximated as (−90°,
−8.4 × 1015) and (90°, 8.6 × 1015), which indicate 

the boundaries of the fully controllable range. 

Similarly, if 𝑥3 is fixed at 𝑥3 = 0
°, the controllability 

information can be presented by the cross-sectional plot 

shown in Figure 17, where the coordinates (𝑥4, 𝑥6) of 

the 2 points marked by red asterisks are (−200 °/s,
−8.4 × 1015) and (−200 °/s, 8.6 × 1015). 

When the maximum motor voltage 𝜆 is increased, as 

one would expect, the larger the stabilising control 

range of the robot pitch angle 𝑥3 can be achieved, using 
the NFOC method with embedded control saturations. 

For example, if a motor - Maxon series EC 60 flat with 

a nominal voltage 48V and a high nominal torque 298 

mNm (Maxongroup, 2012) is selected, the TWR 
system’s controllability is shown in Figure 18.   

Simulation experiments show that with 𝜆 = 48𝑉, the 

NFOC technique can stabilise the TWR robot pitch 

angle 𝑥3, up to 88.0°, as shown in Figure 19. Although 

the motor voltage has a maximum value of 48V, the 

nonlinear optimal control performance compares 



favourably against the situation when there was no 

motor voltage saturation, as plotted in Figure 6. Here as 

shown in Figure 19, all state variables show less 
oscillatory evolutions than in Figure 6.  The TWR robot 

has returned to the upright position from a very large 

initial pitch angle in less than 2𝑠 and the settling time 

for the wheel angle displacement is approximately 6𝑠.   
As one would expect, the NFOC with the motor 

voltage saturated at 48V can achieve better stabilisation 

performance than the LOC method with the same 
control saturation, for the TWR system. When control 

saturations of ±48V are applied to the linearised TWR 

system given by Eq. (4), the LOC technique can be 

shown to stabilise the robot body pitch angle, up to 

56.3°. The LOC and NFOC controlled responses of 

state variables when the TWR started from 𝑥3= 56.3° 
are presented in Figure 20 and although stable, the LOC 
controlled responses are very oscillatory in comparison 

with the NFOC one. When 𝑥3 exceeds this angle, LOC 

cannot provide sufficient control and the system 
becomes unstable. Therefore, it is demonstrated that 

NFOC achieves a much larger stabilisation range and 

more stable responses than LOC in 𝑥3 for the TWR 

system, when motor voltage is saturated at  ±48V. 
NFOC is an intrinsically robust control technique due 

to its nature of generating state-vector dependent 

control solutions. Typical robustness tests include the 
introduction of model uncertainties and external 

disturbances (Huang et. al. 2019b). Here, the TWR is 

subject to a 0.12kg body mass and a 5cm height 

increment, representing model uncertainties fluctuating 
to 18.75% of additional mass and 23.81% of additional 

height, respectively. Control results of the TWR from 

using both LOC and NFOC are depicted in Figure 21 

where the maximum stabilisation angle of  36.4° 
(comparing against 56.3° without modelling 

uncertainties) for LOC is reached. It is also clear that 

the LOC responses are much more oscillatory than the 
NFOC ones. Figure 22 shows using NFOC can achieve 

a maximum stabilisation angle of 77.6° (comparing 

against 88.0° without modelling uncertainties), which 
demonstrates NFOC’s capability in the existence of 

large modelling uncertainties and that NFOC is more 

robust than LOC.  

 
5 Conclusions 

In this paper, a TWR constructed using Lego EV3 

components was used as a prototype to test the 
effectiveness of a nonlinear stabilising optimal control 

technique - NFOC. A nonlinear state-space model of the 

TWR was obtained using the Lagrangian method and 
then extended to a tracking system model to facilitate 

successful achievement of an extra control objective of 

following a pre-defined wheel angular displacement 

reference, on top of the self-balancing control of robot 

body. The control strategy and numerical procedure of 

the NFOC were presented and applied to the TWR 

system. Simulation results demonstrated superior 
stabilisation ability of the NFOC, not only covering a 

much wider range of the robot body pitch angle 𝑥3, (up 

to 87.2°), comparing against the LOC (up to 65.7°) and 

other results in recent literature (Guo, Rizvi and Lin, 
2021) and (Maity and Luecke, 2019), but also providing 

less oscillatory responses when 𝑥3 is large. The 

stabilisation outcome was consistent when the motor 

voltage saturations were taken account of and the 
complexity of the TWR model was increased. 

Furthermore, the robustness tests demonstrated NFOC 

could still achieve excellent stabilisation outcome when 
the TWR had large model uncertainties. These results 

were significant as the achieved control range of the 

robot pitch angle was larger than any other methods 

reported in the literature and demonstrated that the 
NFOC was a truly global controller.   

Future work will include practical implementations of 

the NFOC and the LOC for the Lego EV3 TWR system 
for comparison. Extended Kalman filter designs will 

also be conducted in order to remove sensor noises.  

 
 
Figure 1    A two-wheel robot constructed with LEGO EV3 

(a) side view; (b) top view

 
(a) 



 

(b) 

 
Figure 2    Rank of Controllability Test Matrix of the TWR 

model

 
 

 

Figure 3    The tracking controls of 𝑥1 of TWR using NFOC 
and LOC

 

 
Figure 4    The stabilising controls of TWR using NFOC 

from varying initial 𝑥3 shown in the legend

 
 



Figure 5    Rank of Controllability Test Matrix and 

dynamical evolutions of x3 and x4, starting from x3 = 30
° 

and x4 = 0
°/s, controlled by NFOC 

 
 

 

Figure 6    The stabilisation of TWR using NFOC from 

initial pitch angle 𝑥3= 87.2°

 

 
 

 

 

 

 

 

Figure 7    Rank of Controllability Test Matrix and 

dynamical evolutions of 𝑥3 and 𝑥4, starting from 𝑥3 =
87.2°,controlled by NFOC

 

 

Figure 8    Uncontrollable system from the initial pitch 

angles 𝑥3= 87.3°, using NFOC

  

 

 

 

 

 

 

 

 

 

 

 



Figure 9    Rank of Controllability Test Matrix and 

dynamical evolutions of x3 and x4, starting from x3 =
87.3°,controlled by NFOC  

 
 

 

Figure 10    Rank of Controllability Test Matrix and 

dynamical evolutions of x3 and x4, starting from x3 = 90
°, 

controlled by NFOC

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 11    Stabilisation of the TWR using LOC and 

NFOC methods from initial pitch angle 𝑥3= 5° 

 
 

Figure 12    Stabilisation of the TWR using LOC and 

NFOC methods from initial pitch angle 𝑥3= 65.7°

 

 

 



Figure 13    Unstable performance of the TWR controlled 

by LOC from initial pitch angle x3= 65.8° 

 
 

 

Figure 14    Stable performance of the TWR controlled by 

NFOC from initial pitch angle x3= 65.8°

 
 

 

 

Figure 15    Rank of Controllability Test Matrix of the 

TWR model with motor voltage input saturations 

 
 
 

Figure 16    Rank of Controllability Test Matrix Cross-

sectional Plot when x4 is fixed at x4 = 0
°/s

 
 
 

Figure 17    Rank of Controllability Test Matrix Cross-

sectional Plot when x3 is fixed at x3 = 0
° 

 
 



Figure 18    Rank of Controllability Test Matrix of the 
TWR model with motor voltage input saturated at 48V 

 
 

 

Figure 19    The stabilisation of TWR with control saturated 

at 48V using NFOC, from initial pitch angle 𝑥3= 88.0°

 

 
 

 

 

 

 

 

 

 

 

Figure 20    The stabilisation of TWR with control saturated 

at 48V using LOC and NFOC, from initial pitch angle x3= 

56.3° 

 
 

 

Figure 21    The stabilisation of TWR when subject to 

model uncertainties with control saturated at 48V using 

LOC and NFOC, from initial pitch angle x3= 36.4° 

 
 

 

 

 

 



Figure 22    The stabilisation of TWR when subject to 
model uncertainties with control saturated at 48V using 

NFOC, from initial pitch angle x3= 76.6° 

 
 

Table 4.1    NFOC gains 𝑲𝒏(𝒙) for a small range of  𝑥3 

𝑥3 𝑲𝒏(𝒙) 

±5° [−1.391,−1.449,−59.968,−7.187,−0.5] 

±4° [−1.391,−1.449,−59.925,−7.180,−0.5] 

±3° [−1.391,−1.449,−59.891,−7.175,−0.5] 

±2° [−1.391,−1.449,−59.867,−7.171,−0.5] 

±1° [−1.391,−1.449,−59.852,−7.169,−0.5] 

0° [−1.391,−1.449, −59.848,−7.168 − 0.5] 
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