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Estimating somatotype from a single-camera 3D body scanning system
Chuang-Yuan Chiu a, Raimonds Ciemsb, Michael Thelwella, Alice Bullasa and Simon Choppina

aSports Engineering Research Group, Sheffield Hallam University, Sheffield, UK; bHawk-eye Innovations Ltd., Basingstoke, UK

ABSTRACT
Somatotype is an approach to quantify body physique (shape and body composition).
Somatotyping by manual measurement (the anthropometric method) or visual rating (the
photoscopic method) needs technical expertize to minimize intra- and inter-observer errors.
This study aims to develop machine learning models which enable automatic estimation of
Heath-Carter somatotypes using a single-camera 3D scanning system. Single-camera 3D
scanning was used to obtain 3D imaging data and computer vision techniques to extract
features of body shape. Machine learning models were developed to predict participants’
somatotypes from the extracted shape features. These predicted somatotypes were compared
against manual measurement procedures. Data were collected from 46 participants and used as
the training/validation set for model developing, whilst data collected from 17 participants were
used as the test set for model evaluation. Evaluation tests showed that the 3D scanning
methods enable accurate (mean error < 0.5; intraclass correlation coefficients >0.8) and precise
(test-retest root mean square error < 0.5; intraclass correlation coefficients >0.8) somatotype
predictions. This study shows that the 3D scanning methods could be used as an alternative to
traditional somatotyping approaches after the current models improve with the large datasets.

KEYWORDS
3D analysis; body
composition; measurement;
modeling; technology

1. Introduction

Somatotype is an approach to quantify body physique
(shape and body composition) (Hume & Ackland, 2017).
It was originally developed in an attempt to relate body
physique with intelligence, moral worth and future
achievement, though this idea that body type is an indi-
cator of temperament has since been disputed (Carter,
Carter, & Heath, 1990; Sheldon, 1954; Sheldon, Stevens,
& Tucker, 1940; Vertinsky, 2007). However, somatotyping
is now widely used, particularly the Heath-Carter revision
of the method which represents body shapes along three
scales based on manual measurement (the anthropo-
metric method) or visual photoscopic ratings (the photo-
scopic method), in an attempt to relate body physique
and sports characteristics (Carter et al., 1990; Olds,
Daniell, Petkov, & David Stewart, 2013).

Carter, Ackland, Kerr, and Stapff (2005) andMartín-Matil-
las et al. (2014) indicated that individuals’ somatotype is
related to their playing positions in team sports. Moss,
McWhannell, Michalsik, and Twist (2015) and Bacciotti,
Baxter-Jones, Gaya, and Maia (2018) compared different
level athletes’ somatotype and found that elite-level hand-
ball players tend to have central somatotype class, while

sub-elite gymnasts have significantly higher mesomorph
components compared to recreational gymnasts. This
suggests that elite performers in a particular sport tend
to have different body type characteristics compared to
the general population. Ryan-Stewart, Faulkner, and
Jobson (2018) and Giannopoulos, Vagenas, Noutsos, Bar-
zouka, and Bergeles (2017) showed that somatotype can
even be related to specific sports performance attributes,
such as attacking performance in volleyball and anaerobic
performance (e.g. 3 repetition maximum bench press and
back squat). Consequently, previous literature has
suggested somatotype has the potential to be used in a
variety of applications, such as sports talent identification
and development (Buśko, Lewandowska, Lipińska,
Michalski, & Pastuszak, 2013; Milić et al., 2017).

The equipment used in both manual measurement
and visual rating procedures is easily accessible and
simple to calibrate. Consequently, the use of manual
measurement tools is prevalent within applied sports
practice and research, with both national and inter-
national databases of these measures currently available
(Hume, Sheerin, & de Ridder, 2018). Nevertheless,
manual measurement and visual ratings need technical
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expertize to minimize intra- and inter-observer errors,
with photoscopic somatotype only able to be rated
objectively by those who have had validity and reliability
established against those of an experienced criterion
(Hume &Marfell-Jones, 2008; Perini, de Oliveira, Ornellas,
& de Oliveira, 2005).

In an attempt to overcome the requirement of techni-
cal expertize, previous studies have explored alternative
techniques for obtaining the Heath-Carter somatotypes.
Anisimova, Godina, Nikolaev, and Rudnev (2016) used
bioelectrical impedance analysis (BIA) and regression
models to predict endomorph and mesomorph scales.
Olds et al. (2013) applied 3D scanning techniques to
extract anthropometrics, including segment lengths,
breadths, girths, and volumes to characterize somato-
type clusters using machine learning techniques.
However, both attempts cannot estimate the exact
values of all three Heath-Carter scales. No model has pre-
viously been developed to estimate ectomorph scales
from BIA. The method developed by Olds et al. (2013)
can only indicate specific clusters instead of the real
values (numbers) of all three Heath-Carter scales.

Recently, novel 3D reconstruction techniques that use
low-cost depth cameras to generate 3D human models
have become commercially available – increasing the
accessibility of 3D scanning (Newcombe et al., 2011). The
suitability of these systems is further encouraged by
reports with acceptable accuracy in 3D reconstruction,
for example, Chiu et al. (2019) indicated that the difference
between the models produced by 3D reconstruction and
commercial 3D scanning system were less than 1 cm.
Some commercial solutions have also developed auto-
matic body measurement techniques, which extract
anthropometric data without the need for technical
expertize for manual data post-processing (Ng, Hinton,
Fan, Kanaya, & Shepherd, 2016). Wong et al. (2019) used
these techniques to obtain anthropometrics and esti-
mated body composition by machine learning models.
The accessibility of this technology facilitates the extrac-
tion of measures beyond conventional anthropometric
data (segmental length, breadth, girth, surface area, and
volume), such as principal components of 3D body
shape variation; which can complement existing anthro-
pometric measures in estimating blood metabolites,
body composition, and functional strength (Ng et al.,
2019). By using principal components, a more accurate
prediction of these factors is achievable than simply
using conventional anthropometrics (Ng et al., 2019). To
the best of the authors’ knowledge, no model has been
built to estimate all three scales in Heath-Carter somato-
type using 3D scanning techniques. Thus, this study
aims to develop machine learning models, which
enable the estimation of Heath-Carter somatotypes

from the principal components of body shape variation,
using a single-camera 3D scanning system.

2. Material and methods

2.1. Participants

The study received institutional ethical approval before
commencing. All tests were conducted in the labs at the
university campus with a comfortable temperature. Volun-
teers who are age above 18, able-bodied (people without
amputations or missing limbs), not pregnant were invited
to participate in this study. Sixty-three participants were
recruited in this study and all participants provided
written consent before participating. Participants were sep-
arated into two groups: training/validation set (n= 46 par-
ticipants) for model development; test set (n= 17
participants) for model evaluation. Participants’ character-
istics are listed in Table 1. Each participant was measured
using traditional manual anthropometric techniques and
had 3D scan data captured using a single-camera 3D scan-
ning system (Chiu et al., 2019). All participants were
requested to wear non-compressive form-fitting shorts,
with female participants also required to wear a form
fitting, non-compressive sports top during data collection.

2.2. Traditional manual measurement

Anthropometric data collected from participants
included: Stature, Mass, Skinfolds of Triceps, Subscapular,
Supraspinale, Medial Calf, Girths of Bicep (flexed and
tensed) and Calf, as well as Bone Breadths of Humerus

Table 1. Participants’ characteristics for the train/validation and
test group.

Train / Validation
Group Test Group All

Number of
participants

34 males, 12
females

12 males, 5
females

46 males, 17
females

Trial number 138 trials 34 trials 172 trials
Age (years) 30 ± 11 (18, 61) 28 ± 10 (19, 57) 29 ± 11 (18, 61)
Body mass (kg) 75.9 ± 17.4 (50.9,

139.4)
76.6 ± 12.6
(56.9, 105.9)

76.1 ± 16.2
(50.9, 139.4)

Body height (cm) 176.7 ± 9.5
(156.3, 193.5)

176.0 ± 6.8
(165.6, 187.2)

176.5 ± 8.8
(156.3, 193.5)

Endomorphy
(manual)

3.0 ± 1.3 (1.0, 6.6) 3.4 ± 1.4 (1.8,
7.1)

3.1 ± 1.3 (1.0,
7.1)

Mesomorphy
(manual)

5.1 ± 1.5 (2.0, 8.9) 5.1 ± 1.8 (2.3,
9.5)

5.1 ± 1.5 (2.0,
9.5)

Ectomorphy
(manual)

2.3 ± 1.4 (0.1, 5.3) 2.1 ± 1.2 (0.1,
4.6)

2.2 ± 1.3 (0.1,
5.3)

Endomorphy (3D
scan)

2.9 ± 1.1 (0.8, 5.4) 3.2 ± 1.3 (1.5,
6.0)

3.0 ± 1.1 (0.8,
6.0)

Mesomorphy (3D
scan)

5.1 ± 1.2 (2.7, 8.6) 5.2 ± 1.3 (3.0,
7.7)

5.1 ± 1.2 (2.7,
8.6)

Ectomorphy (3D
scan)

2.3 ± 1.3 (−0.2,
4.8)

1.8 ± 1.3 (−1.4,
3.6)

2.2 ± 1.3 (−1.4,
4.8)

Minimum and maximum values for characteristics were listed in the
brackets.
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and Femur. All manual measures were collected by an
accredited anthropometrist (ISAK level 1 or 2), according
to standard protocols and equipment of the International
Society for the Advancement of Kinanthropometry
(Stewart, Marfell-Jones, Olds, & De Ridder, 2011). The
Heath-Carter somatotypes were calculated within Excel
(Microsoft, USA). The Heath-Carter somatotype obtained
by the traditional manual measurement was used as a
reference scale for model development and evaluation.

2.3. Test procedures with a single-camera 3D
scanning system

The single-camera 3D scanning system (Chiu et al., 2019)
was used to obtain 3D data. This single-camera 3D scan-
ning system consisted of a Microsoft Kinect V2 mounted
on a rotating camera rig with a central-stationary plat-
form to capture participants’ depth images from
different directions. The Microsoft Kinect V2 was
mounted at a height between 0.8 and 1.0 metres and
a capture distance between 1.4 and 1.7 metres. The
height and capture distance were adjusted according
to each participants’ stature to enable their full-body
depth images to be captured. KinectFusion techniques
(Newcombe et al., 2011) were applied to complete the
3D reconstruction and generate 3D point clouds from
the captured depth images (Figure 1a). For participants
in the training/validation set, three repeated scanning
trials were applied so we can have more data points
for developing effective model with less bias and var-
iance of error (Brain & Webb, 2000). For participants in
the test set, two repeated scanning trials were applied.

2.4. Post-processing for 3D data

The random sample consensus (Fischler & Bolles, 1981)
and distance filters were applied to remove noise on
the 3D point clouds obtained from the scanning
system, such as the floor, scanning platform, or reflec-
tions (Figure 1b). The Screened Poisson Surface Recon-
struction (Kazhdan & Hoppe, 2013) in Open3D library
(Zhou, Park, & Koltun, 2018) were then used to generate
the individual 3D human model as shown in Figure 1c.

The generated individual 3D human models were
matched by the deformable model, “skinned multi-
person linear model” (Loper, Mahmood, Romero, Pons-
Moll, & Black, 2015) as shown in Figure 1d and e.

The correspondence between the reconstructed 3D
human models and skinned multi-person linear base
models were acquired by 3D-CODED (Groueix, Fisher,
Kim, Russell, & Aubry, 2018). The optimization techniques,
“BOBYQA” (Powell, 2009), via the software package, NLopt
(Johnson, 2020), was used to adjust pose and shape

parameters (i.e. the principal components) to minimize
differences between deformable models and their corre-
spondence. The adjusted shape parameters (the principal
components of body shape) were regarded as the
extracted features for estimating somatotypes.

2.5. Model development

LIBSVM (Chang & Lin, 2011) was used to find three
regression models for estimating the scales of the Heath-
Carter somatotype (i.e. ectomorphy, endomorphy, and
mesomorphy). The shape features (the shape parameters
of the deformable skinned multi-person linear model) and
gender were used as the inputs of the model. The values
of the three somatotype scales were regarded as the
output of each model. The data collected from the train-
ing/validation set were used to train the weight and the
bias of the LIBSVM regression models. Randomized par-
ameter optimization was applied to find the best non-train-
able parameter setting of the support vector regressors.

2.6. Evaluation tests

The developed models which were built with optimized
weight, bias and nontrainable parameters were then

Figure 1. Overview of post-processing for 3D data in this study. (a)
a 3D point cloud obtained from the single-camera 3D scanning
system. (b) a 3D point cloud after removing noise. (c) a recon-
structed mesh from the filtered 3D point cloud. (d) a deformed
skinned multi-person linear model (blue) that fit the reconstructed
mesh (red). (e) a deformed skinned multi-person linear model.
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applied to estimate the somatotypes of the participants
in the test set. Each participant’s gender with two sets of
shape features obtained from repeated trials were used
to estimate two sets of somatotypes. In total, 34 sets of
somatotypes estimated from 17 participants in the test
group were obtained. Each participant’s mean somato-
type scales estimated from the 3D scan was compared
with a reference set of somatotype obtained from tra-
ditional manual measurement. Bland–Altman analysis,
standard errors, intraclass correlation coefficients (ICC),
standardized mean difference and the coefficient of vari-
ation (CV) were calculated to determine the accuracy of
the proposed methods. The test-retest precisions of
repeated trials from the test set were also calculated
by comparing the estimated somatotypes of repeated
trials and quantified by root mean square errors, ICC,
standardized mean difference and the CV.

3. Results

Participants’ measured and predicted somatotypes are
shown on standard somatocharts (Figure 2a and b).
The intra-observer relative technical error of measure-
ment for all three anthropometrists was less than 5%
in skinfolds and 1% in all other measurements, shown
in Supplemental Table 1. Mesomorphy (manual
measurement result: 5.1 ± 1.5) was the dominate com-
ponent for the participants in this study. The results of
the evaluation tests are shown in Table 2.

For all participants in the test group, the mean errors
for all three components were less than 0.5. The root
mean square error of repeated measures was less than

0.5 for all components. The ICC for both accuracy and
reliability were higher than 0.8 for all participants in
the test group. Compared with mesomorphy and ecto-
morphy, the model estimated endomorphy with a
larger 95 % limits of agreement for the test groups
with all participants.

The developed models show differences in perform-
ance for male and female participants. The developed
models generate large bias (absolute mean error) for
female ectomorph and mesomorph components. The
developed model tends to underestimate endomorph
scales for male participants but shows the opposite
trend for female endomorph scales. The root mean
square error of males is less than that of females. The
ICC for the accuracy of female endomorph scales were
less than for males. The calculated CV for reliability of
male ectomorphy was higher than for females.

Most absolute values of standardized mean differ-
ences for both accuracy and reliability were less than
0.2. The CV for mesomorph accuracy (9.14%) was
smaller than for endomorph and ectomorph accuracy
(17.66% and 11.68%). A similar trend was also shown
in the CV for reliability. The CV for mesomorph reliability
were less than 5%, while CV for endomorph and ecto-
morph were usually larger than 5%.

4. Discussion

The aim of this study was to develop machine learning
models which enable estimation of Heath-Carter soma-
totypes from principal components of body shape vari-
ation, using a single-camera 3D scanning system. By

Figure 2. Test results in this study. Somatochart for the participants obtained from (a) manual anthropometry and (b) 3D scan (the
mean prediction for each participant) of this study. (Red: Train/Validation set; Blue: Test set).
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using 3D scanning techniques, technical expertize for
traditional manual measurement and visual rating
could be avoided. The proposed methods perform auto-
matic post-processing of acquired 3D scan data, mini-
mizing the requirement of expertize necessary in
previous clustering approaches (Olds et al., 2013).
Unlike clustering approaches (Olds et al., 2013), the pro-
posed method estimated the real values for each of the
somatotype scales, providing further information for
body measurement and monitoring. The proposed
methods avoid the necessity for invasive body contact
during manual measurement and body landmarking
procedures used in previous 3D scanning techniques
(Olds et al., 2013). The developed algorithms can be
also applied to the data from commercial 3D scanning
systems.

The evaluation results show that the proposed
models can estimate somatotype with small mean
error (<0.5) and high ICC for accuracy (> 0.8). The stan-
dard errors of the proposed methods (< 0.3) were
much less compared to the errors produced by BIA
(>0.5; Anisimova et al. (2016)). Furthermore, the pro-
posed method can estimate ectomorph scales, which
cannot be estimated from the approaches developed
by Anisimova et al. (2016). Thus, the proposed method
provides an alternative to traditional manual and visual
rating approaches of somatotyping, compared to BIA.
The proposed methods were shown to be able to deter-
mine somatotypes and combine previous research for
sports performance prediction (e. g. anaerobic perform-
ance), sports talent identification and development.

The 95 % limit of agreement and the CV were larger
for predicted endomorphy compared to ectomorphy
and mesomorphy which suggests that the proposed
models demonstrate differences in accuracy in the pre-
diction of each of the three somatotype components.
This is potentially attributable to the difference

between the endomorphy distribution of the training/
validation group (3.0 ± 1.3) to that of the test group
(3.4 ± 1.4). The difference in endomorphy was larger
than the other components. This difference might also
cause a large bias for the male and female endomorphy
(absolute mean error > 0.5). The participants in this study
were classified predominantly within the mesomorph
region of the somatochart, meaning that there was
less variation in body types and compositions to train
the regression models (Figure 2a and b). Similarly, the
reduced number of female participants might have
caused a larger bias (absolute mean errors) than for
male participants. Because the models trained with
both male and female participants, the bias for male
and female group show opposite directions
(e. g. underestimation for male endomorph and overes-
timation for female endomorph). Less female partici-
pants might lead to a large bias in mesomorph and
ectomorph scales. Further studies should be conducted
to collect data from a large cohort of male and female
participants with a wider range of body type character-
istics and somatotypes for retraining and testing of the
proposed models, to improve the estimation accuracy
of an individual’s somatotype in all three components.

The proposed method avoids using BIA to extract fea-
tures. Moreover, using parametric models (skinned multi-
person linear model) to fit the scanning data to avoid the
pose variations and extract “pose-invariant” features
(Hume & Ackland, 2017). These minimized the effect of
noise (e.g. differences in posture between repeated
trials) and lead to good levels of precision of the proposed
method (RMSE < 0.5, the ICC for reliability > 0.9). Ng et al.
(2019) also showed that using similar techniques for 3D
data capturing and processing could estimate other
characteristics (e.g. body composition) reliably.
However, the difference in repeated trials still exists
because of the random errors generated from the

Table 2. Results of the evaluation tests which compared the manual measurement and the prediction from 3D scanning.
All Participants in Test Group (n = 17)

M±S LoA SSE ICC-a SME-a CV-a RMSE ICC-r SME-r CV-r

Endomorphy −0.20 ± 1.06 −2.28, 1.88 0.26 0.82 −0.15 17.66 % 0.28 0.98 0.01 5.81 %
Mesomorphy 0.11 ± 0.77 −1.39, 1.62 0.19 0.94 0.07 9.14 % 0.25 0.98 −0.08 2.75 %
Ectomorphy −0.20 ± 0.63 −1.43, 1.02 0.15 0.93 −0.17 11.68 % 0.19 0.99 0.04 20.14 %
Male Participants in Test Group (n = 12)

M±S LoA SSE ICC-a SME-a CV-a RMSE ICC-r SME-r CV-r
Endomorphy −0.52 ± 0.81 −2.11, 1.07 0.23 0.91 −0.37 18.81 % 0.24 0.98 −0.02 6.31 %
Mesomorphy −0.05 ± 0.82 −1.65, 1.56 0.24 0.92 −0.03 8.01 % 0.21 0.99 −0.11 2.00 %
Ectomorphy −0.05 ± 0.61 −1.25, 1.15 0.18 0.94 −0.04 8.69 % 0.17 0.99 0.05 25.34 %
Female Participants in Test Group (n = 5)

M±S LoA SSE ICC-a SME-a CV-a RMSE ICC-r SME-r CV-r
Endomorphy 0.56 ± 1.29 −1.98, 3.10 0.58 0.55 0.48 14.88 % 0.35 0.95 0.09 4.61 %
Mesomorphy 0.49 ± 0.51 −0.51, 1.49 0.23 0.89 0.61 11.85 % 0.33 0.90 −0.04 4.54 %
Ectomorphy −0.57 ± 0.55 −1.64, 0.51 0.25 0.93 −0.52 18.86 % 0.25 0.99 −0.01 7.64 %

M±S: mean ± standard deviation of error, LoA: 95% limit of agreement, SSE: standard error, ICC-a: intraclass correlation coefficient for accuracy, SME-a: stan-
dardized mean difference for accuracy, CV-a: coefficient of variation for accuracy, RMSE: root mean square error, ICC-r: intraclass correlation coefficient for
reliability, SME-r: standardized mean difference for reliability, CV-r: coefficient of variation for reliability.
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process of depth image capturing and feature extraction.
In addition, this caused large test-retest error for partici-
pants with extreme body types (e. g. ectomorph scales
were close to 0 in the male test group), leading to high
CV of reliability in male ectomorphy. Further studies
should be conducted to improve the quality of depth
camera data, the robustness of feature extraction for esti-
mation of somatotype, as well as the estimation of more
useful body characteristics for use in sports sciences
(e. g. body composition) from 3D scanning data.

Three anthropometrists contributed to the collection
of body measurements in this study to improve the
efficiency of data collection. All three anthropometrists
were found to meet the requirements for intra-observer
reliability according to ISAK. The models might estimate
the somatotypes with less personal effect than the ones
generated by a single measurer. Although ISAK level 1 &
2 anthropometrists improve the accuracy and reliability
of manual measurement (Perini et al., 2005), the intra-
and inter-observer technical error of measurement
(TEM) potentially still affects the model development
and analysis results. Inviting an ISAK level 3 or 4 anthro-
pometrist to control the quality of data collection is
highly recommended for future studies conducting
model improvement and validation.

The main limitation of this study is the participants’
cohort. Although mesomorphy was the dominate com-
ponent for participants in this study, this could reflect
typical scenarios within sports science applications.
However, this means that the developed models were
not able to achieve consistent performance when esti-
mating ectomorph or endomorph participants and
cause the difference in CV for accuracy and reliability.
As a result, the current model might not be appropriate
for use in other applications, such as health sciences,
where individuals display a greater range of body types.
The unbalanced gender ratios in this study led the devel-
oped models to demonstrate differences in accuracy and
reliability for male and female participants. The small
number of participants also led to low standardized
mean differences. To the best of the authors’ knowledge,
this study is the first study to estimate Heath-Carter soma-
totype scales from 3D scan data with machine learning
models. Further study should increase the number of par-
ticipants in both genders with various somatotypes and
train the gender-specific models to enhance prediction
performance with non-mesomorph groups and minimize
the gender differences.

5. Conclusion

This study developed machine learning models which
enable estimation of Heath-Carter somatotypes from

principal components of body shapes extracted using
a single-camera 3D scanning system. The developed
method minimizes the requirement of technical exper-
tize and provides good levels of accuracy and precision
compared to other estimation methods. Further study
should be conducted to improve the current model
with a larger dataset in order to develop an effective
alternative to traditional somatotype approaches
(manual measurement or visual rating). The proposed
method, after improving accuracy and reliability of
somatotyping could be used for sports performance pre-
diction (e. g. anaerobic performance), sports talent
identification and development and could also be
extended to predict additional characteristics, such as
body composition.
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