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A review and comparison of breast 
tumor cell nuclei segmentation 
performances using deep 
convolutional neural networks
Andrew Lagree1,2,3,4, Majidreza Mohebpour2, Nicholas Meti3,5, Khadijeh Saednia10, 
Fang‑I. Lu3,6, Elzbieta Slodkowska6, Sonal Gandhi3,5, Eileen Rakovitch1,7, Alex Shenfield8, 
Ali Sadeghi‑Naini1,4,9,10 & William T. Tran1,2,3,4,7,11*

Breast cancer is currently the second most common cause of cancer-related death in women. 
Presently, the clinical benchmark in cancer diagnosis is tissue biopsy examination. However, 
the manual process of histopathological analysis is laborious, time-consuming, and limited by 
the quality of the specimen and the experience of the pathologist. This study’s objective was to 
determine if deep convolutional neural networks can be trained, with transfer learning, on a set of 
histopathological images independent of breast tissue to segment tumor nuclei of the breast. Various 
deep convolutional neural networks were evaluated for the study, including U-Net, Mask R-CNN, and 
a novel network (GB U-Net). The networks were trained on a set of Hematoxylin and Eosin (H&E)-
stained images of eight diverse types of tissues. GB U-Net demonstrated superior performance in 
segmenting sites of invasive diseases (AJI = 0.53, mAP = 0.39 & AJI = 0.54, mAP = 0.38), validated on 
two hold-out datasets exclusively containing breast tissue images of approximately 7,582 annotated 
cells. The results of the networks, trained on images independent of breast tissue, demonstrated that 
tumor nuclei of the breast could be accurately segmented.

Breast cancer remains the most commonly diagnosed type of cancer and the second most common cause of 
cancer-related death in women1,2. Improved patient survival requires a multidisciplinary approach, with special-
ists in pathology, medical, surgical, and radiation oncology3. Clinical management and accurate diagnosis of 
breast cancer type, staging, and grade require tissue biopsies. Biopsy specimens must be processed onto slides and 
stained using immunohistochemical (IHC) staining procedures4. Hematoxylin and Eosin (H&E) is a common 
stain4 used to identify nuclei and cytoplasm; Hematoxylin stains nuclei blue; Eosin stains the cytoplasm pink4–6. 
Examination of tissue biopsy specimens, prepared onto slides, is currently considered the gold-standard clinical 
diagnosis of cancer6. A recent update to the American Joint Committee on Cancer (AJCC) breast cancer staging 
manual7 now also incorporates histological features, such as grade and receptor status, into the prognostic staging 
process. However, the manual process of histopathological analysis is laborious, time-consuming, and limited by 
the quality of the specimen and the experience of the pathologist8,9. As a result, there has been growing interest 
in automating and digitizing pathological workflows, in addition to using computer-aided diagnosis (CAD) to 
streamline and optimize the process of tissue analysis8.

The emerging field of digital pathology has been made possible with the advent of high-resolution whole slide 
image (WSI) scanners10 and has further been driven by advancements in imaging technologies, data storage, 
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and computer vision algorithms11. The high-resolution WSIs, obtained by scanning histopathological specimens, 
allow for in silico analysis. The application of artificial intelligence (AI) – in particular, its subfields of machine 
learning (ML) and deep learning (DL) – for in silico analysis are proving to be promising tools10. Researchers and 
data scientists in AI have applied convolutional neural networks (CNN) and machine classifiers to segment and 
classify objects, predict disease diagnosis, and treatment response; to tailor medical treatment, develop diagnostic 
assays, and determine patient response to treatment therapies10. For example, Wang et al.,12 demonstrated that 
in combining a CNN and random forest classifiers, mitotic nuclei could accurately be detected in H&E stained 
breast tissue. Digital pathology aims to develop clinically relevant computational methods to enhance specimen 
characterization and automate the detection of conventional features such as nuclear pleomorphism (e.g. nuclear 
shape and size) and tissue-spatial characteristics (e.g. cellular distribution)13.

Recent developments in CNN architectures represent the rapidly growing field of DL14. CNNs, trained on 
sizeable supervised image datasets, have been used to develop state-of-the-art learning algorithms15, capable of 
carrying out classification and segmentation tasks for medical image analysis. However, a significant challenge 
with advancing these algorithms includes the limited availability of supervised histopathological datasets. A 
dataset review is presented in Table 1 and outlines publicly available supervised histopathological datasets16–25. 
These datasets feature expert annotations of histopathological structure from a variety of tissues and staining 
techniques. A number of these datasets contain breast tissue samples; however, the method in which the his-
topathological structures were annotated is not consistent. Of the seven datasets that contain breast tissue, two 
datasets17,21 were not exhaustively annotated, and two other datasets18,23 contained annotations where the bor-
ders of the nuclei were not outlined. In general, training CNNs for semantic or instance segmentation requires 
exhaustive and full annotations of specific histopathological structures19.

U-Net26 is an example of a deep CNN (DCNN) that provides semantic segmentations. The network was first 
developed by Ronneberger et al., building on the fully convolutional network27 (FCN). U-Net improved on the 
FCN by reducing training time and enhancing localization with the addition of long skip connections and up-
sampling layers to the encoder-decoder architecture. Since the introduction of U-Net, it is now recognized that 
the network can yield state-of-the-art segmentation results28–31.

Innovative segmentation algorithms that have gained widespread attention further include Mask regional 
convolutional neural network32 (Mask R-CNN), a two-stage DCNN. He et al.,32 introduced Mask R-CNN to 
provide instance segmentation, expanding on faster regional convolutional neural network33 (Faster R-CNN). 
At a high-level Mask R-CNN localizes each object instance to a bounding box then segments each instance.

Many recent state-of-the-art DCNN architectures, together with network weights pre-trained on large super-
vised image repositories, have been made publicly available for researchers and data scientists to implement. 
However, one of the restrictive factors in breast pathomics is the limited availability of supervised histopatho-
logical datasets. Previous studies34,35 and computer vision competitions22,36 have tested the generalizability of 
novel DCNN on multi-organ and multi-organism datasets; however, no study has evaluated if DCNNs trained 
on a variety of organs can accurately segment breast tumor nuclei. Therefore, this study aimed to determine if 
DCNNs, trained on histology images independent of breast tissue, can accurately segment tumor nuclei of the 
breast. Two DCNN architectures, one providing semantic segmentation (U-Net) and one providing instance 
segmentation (Mask R-CNN), will be evaluated. Additionally, classical segmentation methods will segment 
tumor nuclei of the breast, and the results compared to those of the DCNNs.

Methods
Training datasets.  The training dataset implemented in this study featured open-source images from the 
Multi-Organ Nucleus Segmentation (MoNuSeg) challenge16,37. The MoNuSeg dataset, obtained from National 
Cancer Institute’s cancer genome atlas38 (TCGA), included high-resolution WSI of H&E stained slides from nine 
tissue types, digitized in eighteen different hospitals at 40 × magnification16. The types of tissue included breast, 
liver, kidney, prostate, bladder, colon, stomach, lung, and brain. Sub-regions (1,000 × 1,000 pixel), densely popu-
lated with nuclei, were extracted from the WSI. This study used the ground truth annotations released during the 
challenge. These ground truth annotations included all epithelial and stromal cells, which were annotated by stu-
dents, then approved by an expert pathologist, with less than a 1% error in detection16. There were approximately 
28,000 nuclei annotated across the entire dataset. The training set for this study consisted of colour normalized39 
H&E images from all tissue types, excluding breast.

Testing datasets.  The hold-out (test) set exclusively contained H&E-stained images of breast tissue. There 
were fifty-eight images in total from two separate datasets. Eight images were from the MoNuSeg dataset and 
fifty from the Triple Negative Breast Cancer (TNBC) dataset19. The ground truth annotations associated with 
these images were curated and released with the respective dataset. The TNBC dataset contained fifty H&E 
stained images taken at 40 × magnification from eleven TNBC patients19. Three to eight sub-regions (512 × 512 
pixel), with varying cellularity, were extracted per patient. The annotations were performed by three expert 
pathologists. Annotated cells included: normal epithelial cells, myoepithelial breast cells, invasive carcinoma 
cells, fibroblasts, endothelial cells, adipocytes, macrophages, and inflammatory cells. As the cell class was una-
vailable, with respect to both datasets, performance measures were based on segmenting all annotated cells 
within the test images.

All images were colour normalized39, then tiled to a size of 256 × 256 pixels with a 50% overlap. Post-pro-
cessing the probability map, from any given U-Net like DCNN, involved calculating a threshold that maximized 
precision at a given intersections over union (IoU) threshold. Furthermore, we implemented morphological 
operations that filled missing pixels and removed small predicted artifacts.
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Software and hardware.  All software related to this study was written in Python programming language 
version 3.7.6., using Anaconda (https://​www.​anaco​nda.​com). Each DCNN was trained and implemented with 
Keras version 2.3.140 and Tensorflow version 2.1.041. U-Net like architectures were implemented with the seg-
mentation models package (https://​github.​com/​qubvel/​segme​ntati​on_​models) and Mask R-CNN was imple-
mented with the matterport package (https://​github.​com/​matte​rport/​Mask_​RCNN). The ImageJ2-Fiji42,43 (Fiji) 
package (https://​imagej.​nih.​gov/​ij/​downl​oad.​html) was applied for nuclei segmentation. Otsu threshold44 and 
watershed transform45,46 were applied with the scikit-image package (https://​scikit-​image.​org) version 0.17.2. All 
experiments were performed on a workstation equipped with an AMD (Advanced Micro Devices, Inc., Santa 
Clara, USA) Ryzen Threadripper 1920X 12-Core Processor, 64 GB of RAM, and a single NVIDIA (NVIDIA 
Corporation, Santa Clara, USA) GeForce RTX 2080 Ti graphics processing unit (GPU).

Table 1.   Open-source histopathological datasets. The datasets were annotated in two ways, 1) foreground 
– borders of the nuclei were outlined, 2) point – nuclei were identified with a single mark. Exhaustive 
annotations indicate that all nuclei within the images had been marked or outlined.

Authors Article Tissue Stain Number of Images
Number of 
Annotated Nuclei Type of Annotation

Exhaustive 
Annotations

Caicedo, J. et al.,

Nucleus segmenta-
tion across imaging 
experiments: the 
2018 Data Science 
Bowl

A variety of organ-
isms including: 
Human, Mice, and 
Fly

A variety of stains 
including: Fluores-
cent, Bright field, 
and H&E

841 37,333 Foreground Yes

Drelie G. et al.,
A biosegmentation 
benchmark for evalu-
ation of bioimage 
analysis methods

Breast H&E 58 Unavailable Foreground No

Gamper, J. et al.,
PanNuke Dataset 
Extension, Insights 
and Baselines

Bladder, Ovar-
ian, Pancreatic, 
Thyroid, Liver, Testis, 
Prostate, Stomach, 
Kidney, Adrenal 
gland, Skin, Head 
Neck, Cervix, Lung, 
Uterus, Esophagus, 
Bile-duct, Colon, 
Breast

H&E 7000 +  205,343 Foreground Yes

Irshad, H. et al.,

Crowdsourcing 
image annotation for 
nucleus detection 
and segmenta-
tion in computa-
tional pathology: 
Evaluating experts, 
automated methods, 
and the crowd

Kidney, Renal H&E 810 Unavailable Foreground Yes

Janowczyk, A. et al.,

Deep learning for 
digital pathology 
image analysis: A 
comprehensive 
tutorial with selected 
use cases

Breast H&E 143 12,000 Foreground No

Kumar et al.,
A Dataset and 
a Technique for 
Generalized Nuclear 
Segmentation

Breast, Liver, Kidney, 
Prostate, Bladder, 
Colon, Stomach, 
Lung, Brain

H&E 44 28,000 Foreground Yes

Ljosa, V. et al.,
Annotated high-
throughput micros-
copy image sets for 
validation

HT29 Colon-cancer Fluorescent 12 Unavailable Foreground Yes

Martel et al.,

Assessment of 
Residual Breast 
Cancer Cellularity 
after Neoadjuvant 
Chemotherapy using 
Digital Pathology 
[Data set]

Breast H&E 96 30,694 Point Yes

Naylor, P. et al.,

Segmentation of 
Nuclei in Histopa-
thology Images by 
Deep Regression of 
the Distance Map

Breast H&E 50 4,022 Foreground Yes

Wienert, S. et al.,

Detection and 
Segmentation of Cell 
Nuclei in Virtual 
Microscopy Images: 
A Minimum-Model 
Approach

Breast, Bone marrow, 
Liver, Kidney, Intesti-
nal Mucosa

H&E 36 7,931 Point Yes

https://www.anaconda.com
https://github.com/qubvel/segmentation_models
https://github.com/matterport/Mask_RCNN
https://imagej.nih.gov/ij/download.html
https://scikit-image.org
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Classical segmentation techniques.  Fiji is an open-source image processing and analysis software pack-
age that features a built-in nuclei segmentation pipeline. To prepare the images for segmentation, they were first 
colour normalized39, then converted to gray-scale. The pipeline involved implementing a Gaussian filter, thresh-
olding the images, followed by applying the watershed transform. The classical segmentation techniques (Otsu 
threshold, Watershed transform, Fiji) applied to the images of this study, were used to compare the performance 
of DCNNs to such techniques.

U‑net.  Eight DCNNs with U-Net like architecture were trained for this study; furthermore, the encoders of 
the DCNNs were replaced with the following networks: visual geometry group47 (VGG)-16, VGG-1947, Resid-
ual Networks48 (ResNet)-50, ResNet-10148, ResNet-15248, Dense convolutional Network49 (DenseNet)-121, 
DenseNet-20149, and Inception-v350. These DCNN encoders were chosen because of their success in image 
classification14,51 and their wide use in a range of instance and semantic segmentation tasks52–54. Weights pre-
trained on the ImageNet55 dataset initialized each DCNN. All DCNN decoders consisted of up-sampling, con-
catenation of the respective feature map from the encoding path, followed by two blocks of 3 × 3 convolutions, 
batch normalization56, and rectified linear units57 (ReLU) activation. The final layer of all DCNNs consisted of a 
1 × 1 convolution with SoftMax activation.

All U-Net like DCNNs implemented training images with randomly applied combinations of rotation, distor-
tion, skew, shear, and flip augmentations. The normalized training images was passed through an augmentation 
pipeline in groupings of H&E images, annotations, and weighted maps; ensuring that all corresponding images 
remained spatially aligned. All images were further tiled to a size of 256 × 256 pixels, with a 10% overlap.

There were 6,720 images used during training, split into a ratio of 80:20 between the training and validation 
sets, respectively. Adaptive moment estimation58 (Adam) optimizer with a learning rate of 1e-4 was used to 
fine-tune all U-Net like DCNNs. All DCNNs were trained until convergence. Each DCNN had a combined loss 
function of weighted cross-entropy26 and soft Dice (Eq. 1):

Equation (2), which represents weighted cross-entropy26 was formulated as:

where X  was the image used during training, α was the ground truth annotation of each image, across all classes, 
and W was the weighted map introduced to the loss function. Dice loss (Eq. 3) was formulated as:

where P was the output of the SoftMax activation function, and gt was the ground truth annotation.

Mask R‑CNN.  Prior to training Mask R-CNN, all training images were tiled to a resolution of 256 × 256 
pixels with a 10% overlap, for a total of 560 images. The images were further randomly split into training and 
validation sets at a ratio of 80:20, respectively. The CNN backbone of Mask R-CNN was ResNet-101 and through 
optimization, Gradient Descent59 was chosen as the optimizer for the network. Furthermore, ResNet-101 was 
initialized with weights pre-trained on the common objects in context60 (COCO) dataset. Gradient Descent was 
set to a momentum to 0.9, a learning rate of 1e-3, a weight regularizer of 1e-4, and trained until convergence.

Ensemble networks.  U-Net ensemble calculated the pixel-wise mean of the probability maps from the 
U-Net like DCNNs with VGG-19, ResNet-101, and DenseNet-121 encoders.

A gradient boosting network (GB U-Net) was developed to improve localization. GB U-Net is a two-stage 
network where at a high-level, concatenates feature maps from U-Net like DCNNs with VGG-19, ResNet-101, 
and DenseNet-121 encoders with the colour normalized H&E image, then uses the concatenated images as 
input to an additional U-Net (Fig. 1). The feature maps concatenated with the H&E image were taken from the 
last convolutional layer, just before the SoftMax activation. The second stage of GB U-Net was trained with a 
slightly modified encoder, which featured repeated blocks of 3 × 3 convolutions, batch normalization56, ReLU57 
activation, and Dropout61 layers. The decoder followed the same structure as all previous U-Net like DCNNs. 
GB U-Net was trained until convergence using the 6,720 augmented H&E images, masks, and weighted maps 
previously mentioned. The network featured a combined loss function of weighted cross-entropy26 and soft 
Dice, previously outlined.

Evaluation metrics.  This study’s evaluation metrics were Aggregated Jaccard Index16 (AJI) and mean aver-
age precision (mAP). Kumar et al.,16 proposed AJI, which penalized pixel and object level detection. AJI penal-
ized missed objects, falsely detected objects, along with under and over segmented objects. It did this by com-
puting the ratio of aggregated cardinality of intersection and union of predicted nuclei matched with annotated 
nuclei. The mAP is a popular metric used in object detection and segmentation tasks. The metric yields average 
precision over multiple IoU thresholds. Specifically, ten IoU thresholds starting at 0.5 and increasing linearly by 
0.05 to 0.95, were used for this study.

(1)Lcombined = LWCE + (1− LDice)

(2)LWCE = −

∑

X∈X

Wmap(x)log(pa(x)(X ))

(3)LDice =
2
∑

X∈X
p(X )gt(X )

∑
X∈X

(p(x)2 + gt(X )2)
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Results
Table 2a,b summarize the results of the DL and classical segmentation methods for the MoNuSeg and TNBC 
datasets, respectively. Table 2a is composed of three categories, 1) classical segmentation methods (Otsu thresh-
old, watershed transform, Fiji), 2) U-Net like DCNNs with varying encoders, 3) Mask R-CNN and ensemble 
networks. With an AJI of 0.3396 and mAP of 0.237, Fiji considerably outperformed the Otsu thresholding and 
watershed transform. However, the DL methods outperformed Fiji across all metrics. In comparing all U-Net 
like DCNNs, the Densenet-201 encoder scored highest in AJI with 0.5083, while the ResNet-101 encoder scored 
highest in mAP with 0.3318. With the highest AJI, the Densenet encoder surpassed all U-Net like DCNNs in both 
object level and pixel-wise segmentation accuracy. In contrast, the ResNet encoder demonstrated that it excelled 
in accurately classifying nuclei from other histopathological structures. Furthermore, the DenseNet-201 encoder 
scored highest in F1 at an IoU threshold of 0.5 and recall at IoU thresholds of 0.5 and 0.7; demonstrating that the 
network excelled in correctly identifying all nuclei, while also provided the best balance in correctly identify-
ing and separating nuclei from other structures. With regards to the TNBC dataset (Table 2b) the ResNet-101 
encoder scored highest in AJI with 0.5080, mAP with 0.3306, and AP at both IoU thresholds.

The overall top-scoring network in both datasets was GB U-Net. For the MoNuSeg dataset GB U-Net achieved 
an AJI of 0.5331 and a mAP of 0.3909, while for the. TNBC dataset the network achieved an AJI of 0.5403 and 
mAP of 0.3772.

Figure 2 displays AP plotted against the evaluated IoU thresholds for several segmentation methods using the 
MoNuSeg test dataset. GB U-Net and Mask R-CNN scored highest in this metric. Both networks displayed simi-
lar AP values throughout the IoU thresholds; however, GB U-Net displayed superior performance in the lower 
thresholds, while Mask R-CNN performed better in thresholds greater than 0.65. Both the ResNet-101 encoder 
and U-Net Ensemble displayed similar mAP scores, and Fig. 2 also demonstrated that both AP values remained 
similar across all IoU thresholds. A noticeable difference between the networks was that U-Net ensemble scored 
slightly higher in AP throughout the mid-range of IoU thresholds (0.55–0.8). Additionally, Fig. 2 demonstrated 
that the DCNNs outperformed the top-scoring classical segmentation method (Fiji) across all IoU thresholds.

Figure 3 displays the predicted maps of the MoNuSeg test images with the lowest and highest combined AJI. 
The predicted maps were colour coded with green indicating correctly classified pixels (true positive), red indi-
cating pixels not classified as nuclei (false negative), and blue indicating pixels that were miss classified as nuclei 
(false positive). Row 1 (Fig. 3) provided examples of predicted maps associated with the lowest scoring image. 
The AJI values of these images are summarized in Table 3. The image was difficult to segment accurately, as large 
areas of the image displayed densely crowded regions of tumor nuclei. Fiji struggled to correctly separate nuclei 
within these areas, which resulted in over-segmentation. However, Fiji also under-segmented the surrounding 
areas. The DCNNs were better able to separate nuclei within the crowded areas; however, the networks tended 
to over-segment the outer areas. The top-scoring networks, GB U-Net and Mask R-CNN performed similarly 
on both images; however, under qualitative analysis, the main difference between the networks was that Mask 
R-CNN tended to over-segment images compared to GB U-Net.

Figure 1.   Network architecture of GB U-Net, a gradient boosting network. The first stage of GB U-Net 
concatenated features maps from three U-Net like DCNN (VGG-19, DenseNet-121, and ResNet-101 encoders), 
with the colour normalized H&E image. The second stage of GB U-Net passed the concatenated image through 
a final U-Net. The original H&E images were curated by the TCGA. Ground truth annotations were released by 
Kumar et al.16, and additional annotations were released during the MoNuSeg challenge.
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Table 2.   F1, recall, and precision metrics are reported for two intersection over union thresholds, 0.5 and 0.7. 
Bolded values identify the highest scoring segmntation method within 1)classical segmentation, 2)U-Net like 
DCNNs, 3)Mask R-CNN and ensemble networks, with respect to the evaluation metric. 

Segmentation 
Methods

Aggregated 
Jaccard 
Index

Mean Avg. 
Precision F1(0.7) Recall(0.7) Precision(0.7) F1(0.5) Recall(0.5) Precision(0.5)

(a) Nuclei segmentation results for the MoNuSeg test dataset

Otsu 0.0456 0.0677 0.0310 0.0255 0.0396 0.1619 0.1331 0.2065

Watershed 0.0828 0.1581 0.0863 0.0591 0.1594 0.2743 0.1880 0.5070

Fiji 0.3396 0.2370 0.1828 0.1447 0.2481 0.4411 0.3493 0.5986

U-Net(VGG-16) 0.4925 0.2736 0.2886 0.2927 0.2845 0.6511 0.6604 0.6420

U-Net(VGG-19) 0.4841 0.3007 0.3452 0.3480 0.3426 0.6735 0.6788 0.6683

U-Net(ResNet-50) 0.4882 0.3163 0.3772 0.3884 0.3667 0.6967 0.7173 0.6772

U-Net(ResNet-101) 0.4687 0.3318 0.3242 0.2834 0.3788 0.6133 0.5360 0.7166

U-Net(ResNet-152) 0.4396 0.3119 0.3368 0.3241 0.3506 0.6706 0.6452 0.6980

U-Net(DenseNet-121) 0.4668 0.2988 0.3579 0.3738 0.3432 0.6796 0.7099 0.6517

U-Net(DenseNet-201) 0.5083 0.3185 0.3760 0.3884 0.3645 0.6980 0.7208 0.6765

U-Net(Inception-v3) 0.4440 0.2879 0.3044 0.3005 0.3085 0.6422 0.6339 0.6507

Mask R-CNN 0.5282 0.3884 0.4028 0.3518 0.4773 0.6648 0.5813 0.7859

U-Net Ensemble 0.4926 0.3381 0.3791 0.3677 0.3913 0.6957 0.6746 0.7180

GB U-Net 0.5331 0.3909 0.4007 0.3509 0.4669 0.6862 0.6010 0.7997

(b) Nuclei segmentation results for the TNBC dataset

U-Net(VGG-16) 0.3538 0.1672 0.1614 0.1581 0.1648 0.5042 0.4940 0.5149

U-Net(VGG-19) 0.3829 0.1742 0.1364 0.1226 0.1536 0.5099 0.4585 0.5741

U-Net(ResNet-50) 0.3972 0.2324 0.2701 0.2530 0.2897 0.5638 0.5281 0.6048

U-Net(ResNet-101) 0.5080 0.3306 0.2904 0.2214 0.4217 0.5427 0.4139 0.7882

U-Net(ResNet-152) 0.4063 0.2594 0.2790 0.2478 0.3194 0.5874 0.5216 0.6723

U-Net(DenseNet-121) 0.4246 0.2929 0.3600 0.3327 0.3922 0.6216 0.5745 0.6772

U-Net(DenseNet-201) 0.4453 0.2843 0.3604 0.3287 0.3988 0.6298 0.5745 0.6970

U-Net(Inception-v3) 0.3817 0.1962 0.1562 0.1303 0.1947 0.4703 0.3925 0.5864

Mask R-CNN 0.4899 0.3449 0.4392 0.4027 0.4830 0.6732 0.6172 0.7403

U-Net Ensemble 0.4836 0.2808 0.2849 0.2430 0.3442 0.6068 0.5176 0.7331

GB U-Net 0.5403 0.3772 0.4205 0.3540 0.5176 0.6581 0.5541 0.8102

Figure 2.   Average precision graphically displayed, across ten intersection over union thresholds, for the 
MoNuSeg test dataset.
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Discussion
This was the first study that investigated DCNN’s accuracy in segmenting invasive carcinoma of the breast when 
trained on H&E-stained digital images of liver, kidney, prostate, bladder, colon, stomach, lung, and brain cancers. 
The eleven DCNNs trained for this study included: eight U-Net like architectures with various encoders, two 
gradient boosting networks, and Mask R-CNN. Furthermore, the study’s three classical segmentation methods 
included: Otsu threshold, watershed transform, and Fiji. Overall, the DCNNs outperformed all classical segmen-
tation methods. The top-scoring DCNN in AJI and mAP was GB U-Net. Mask R-CNN scored slightly lower; 
however, it outperformed all U-Net like DCNNs in the MoNuSeg test dataset. Segmentation performance of the 
DCNNs demonstrated that, in using transfer learning, the networks were able to effectively implement features 
learned independently of breast tissue to segment tumor nuclei within breast tissue.

The work presented in this study reflects the emerging field of pathomics, which combines digital pathol-
ogy and novel AI-based software. Overall, pathomics-based approaches provide novel techniques to augment 
clinical workflows by automating WSI feature extraction for diagnostic, treatment, and prognostic applications. 
For example, breakthroughs in AI-based technologies have automated histological grading of breast cancer 
specimens62, mitosis detection12, nuclei pleomorphism segmentation63, and tubule nuclei classification of estrogen 
receptor (ER) + breast cancers64. Furthermore, DL networks have automated important diagnostic and prognostic 
factors such as the classification of human epidermal growth factor receptor 2 (HER2) score65, along with ER and 
progesterone receptor (PR) status66. These molecular markers are fundamental to clinical decision making both at 
the time of diagnosis and recurrence, if recurrence occurs, to select the most effective therapies. Recent work has 
also identified certain tumor nuclei morphological features to be independent prognostic factors for tumor size 
and tubular formation67, alongside features that are significantly associated with eight-year disease-free survival68. 
Additionally, recent work by Ali et al.,69,70 introduced a prognostic assay that evaluated lymphocyte density as 
a predictor of pathological complete response (pCR) in breast cancer patients with neoadjuvant chemotherapy 
regimens. As the field of oncology moves into an era of precision medicine71, novel insights and innovations in 
tumor nuclei segmentation and feature extraction may lead to more precise breast cancer treatment selection. 
One such way is AI driven diagnostic and theragnostic tools that leverage DL architectures.

Figure 3.   Nuclei annotations of the lowest and highest AJI images of the MoNuSeg dataset. Annotations 
pertaining to classical segmentation methods and the DCNN have been colour coded, such that green indicated 
true positive, red indicated false negative, and blue indicated false positive pixels. The original H&E images were 
curated by the TCGA. Ground truth annotations were released by Kumar et al.16, and additional annotations 
were released during the MoNuSeg challenge.

Table 3.   Individual Aggregated Jaccard Index scores of the eight breast tissue images, which composed the 
MoNuSeg test dataset.

Image ID Fiji U-Net (DenseNet-201) Ensemble U-Net Mask R-CNN GB U-Net

TCGA-A7-A13E-01Z-00-DX1 0.35 0.515 0.579 0.517 0.628

TCGA-A7-A13F-01Z-00-DX1 0.328 0.434 0.491 0.554 0.518

TCGA-AC-A2FO-01A-01-TS1 0.252 0.493 0.478 0.543 0.511

TCGA-AO-A0J2-01A-01-BSA 0.323 0.561 0.486 0.56 0.535

TCGA-AR-A1AK-01Z-00-DX1 0.31 0.526 0.458 0.511 0.5

TCGA-AR-A1AS-01Z-00-DX1 0.634 0.623 0.632 0.611 0.676

TCGA-E2-A14V-01Z-00-DX1 0.272 0.482 0.436 0.5 0.464

TCGA-E2-A1B5-01Z-00-DX1 0.249 0.433 0.379 0.43 0.432
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U-Net excels in biomedical semantic segmentation29; however, the network struggles with correctly classify-
ing close or touching objects. In semantic segmentation, each pixel is identified with a class label specific to the 
object. Object instances within the same class are not separated; therefore, all foreground objects will possess 
the same class label within binary segmentation. Objects that are close together or overlapping, i.e., areas of 
crowded nuclei, may be incorrectly classified as a single object. Weighted cross-entropy26 is a loss function used 
to improve pixel classification of close or touching objects. Pre-calculated weighted maps26, are passed to the 
network and used to weight the cross-entropy loss. Weighted cross-entropy severely penalizes incorrect pixel 
classification of close or touching nuclei.

Symmetrical networks such as U-Net’s encoder-decoder architecture further possess an opportunity to modify 
the network’s structure and improve performance. The original U-Net encoder followed a typical CNN structure, 
where successive convolution, activation, and pooling layers calculated feature maps. However, the complexity of 
training DCNNs has resulted in the advancement of network architectures15 and contributed to the development 
of novel networks such as: VGG47, ResNet48, DenseNet49, and GoogLeNet50. These relatively newer networks have 
achieved superior state-of-the-art object detection results14 with improvements in feature extraction, minimizing 
the vanishing gradient, and aiding network convergence. By modifying the network architecture or replacing 
the standard encoder with a deeper CNN and using U-Nets long skip connections, researchers have improved 
object and segmentation level performance52,53,72.

Mask R-CNN is a novel network that was proposed to provide instance level annotations. The first stage of 
Mask R-CNN is identical to region proposal networks33 (RPN) of Faster-RCNN, which proposes class probability 
maps. The CNN backbone of Mask R-CNN provides the feature map as input for the convolutional layer specific 
to RPN; the convolutional layer’s output then feeds both regression and classification layers. The regression layer 
predicts region proposals, while the classification layer predicts the probability of an object bound within the 
proposal. The second stage of Mask R-CNN uses the region proposals to calculate the object class, bounding box 
offset, and segments the object using the FCN27. Region of interest (RoI) align was introduced with Mask R-CNN 
to correct the RoI pool’s roundoff error, aligning the segmented image with the object. RoI pool, introduced 
with fast regional convolutional neural network73 (Fast R-CNN), was developed to reduce computational time 
by taking feature maps, defined by a RoI, and scaling them to a fixed size; this prompted misalignment between 
the feature map and input image. RoI align incorporated bilinear interpolation to calculate floating-point values 
of the sampling points, avoiding quantization. Mask R-CNN outputs bounding box coordinates, object class 
probability score, and a segmented map of each object instance.

ML-based approaches work exceptionally well when the training and testing data are drawn from the same 
feature space74. In circumstances where data are sparse, transfer learning can transfer knowledge from one 
domain to a task within an independent domain74. However, it is imperative to ensure that both domains are 
related to avoid negative transfer. Transfer learning has been extensively implemented by data scientists for tasks 
such as text classifiers75–77. However, this was the first study investigating the use of transfer learning to segment 
tumor nuclei of breast tissue exclusively, to the author’s knowledge. Currently there are minimal open-source 
annotated breast tissue datasets (Table 1), therefore it is essential to identify if DCNNs can leverage transfer learn-
ing to accurately segment breast nuclei from open-source datasets. Previous studies34,35,78 have used the MoNuSeg 
and TNBC datasets to evaluate the segmentation accuracy of novel DCNNs. The MoNuSeg test dataset of these 
studies included fourteen tissue samples from seven organs, three (bladder, colon, stomach) of which were with-
held from the training set. Specifically, work by Graham et al78., compared a novel DCNN (HoVer-Net) to various 
other DCNNs. In the first experiment Graham and colleagues trained the DCNNs using the MoNuSeg dataset. 
In comparing the results of the current study to those of Graham and colleagues, GB U-Net outperformed Cell 
Profiler79 (AJI: 0.366), QuPath80 (AJI: 0.432), FCN827 (AJI: 0.281), FCN8 + WS (AJI: 0.429), SegNet81 (AJI: 0.377), 
SegNet + WS (AJI: 0.508), deep contour-aware network (DCAN)82 (AJI: 0.525), and CNN316 (AJI: 0.508). In the 
second experiment Graham and colleagues evaluated the DCNNs using the TNBC dataset. In comparing their 
results to the current study GB U-Net outperformed FCN8 + WS (AJI: 0.506), FCN8 (AJI: 0.281), Mask R-CNN 
(AJI: 0.529), DCAN (AJI: 0.537), Micro-Net83 (AJI: 0.531), and DIST19 (AJI: 0.523). Furthermore, a study by 
Wang et al34., evaluated various DCNNs trained using the MoNuSeg dataset. In comparing their results to the 
current study GB U-Net, again, outperformed FCN (AJI: 0.452), U-Net26 (AJI: 0.513), SegNet (AJI: 0.505), and 
DCAN (AJI: 0.518). Additionally, a study by Liu et al35., used thirteen images from the TNBC dataset to evaluate 
multiple DCNNs. In comparing their results to the current study GB U-Net outperformed GCN84 (AJI: 0.1907), 
Mask R-CNN (AJI: 0.5297), and pixel2pixel85 (AJI: 0.4760). However, novel DCNNs including HoVer-Net (AJI: 
0.618 & 0.59), Bending Loss34 (AJI: 0.641), and panoptic segmentation35 (AJI: 0.5865) achieved a higher AJI 
compared to GB U-Net.

Many of the studies mentioned above featured DCNNs developed to provide precise segmentation of tumor 
nuclei, explicitly improving on segmenting areas of densely populated nuclei. Differentiation of nuclei is essential 
for spatial features; however, a study by Boucheron et al86., identified that, specific to tumor nuclei classification, 
perfectly segmented nuclei do not guarantee optimum classification accuracy. Although GB U-Net did not out-
perform all DCNNs the results demonstrate that transfer learning can be implemented while training DCNNs 
to segment breast tumor nuclei if precise segmentations are not explicitly required.

A limitation of this study is the relatively small dataset used for training and testing, based on the limited 
open-source datasets. Future work will involve expanding the number of images and types of tissues included 
in the dataset. Generative adversarial networks (GANs) are an innovative approach to creating synthetic histo-
pathological images. GANs are a promising approach to data synthesis, in which synthetic H&E stained histo-
pathology images and ground truth images can be generated from features learned from the training data87–89. 
GANs have the potential to significantly increase histopathological training sets without requiring additional 
annotations from expert pathologists.
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Conclusion
The study’s objective was to determine if transfer learning could be implemented with DCNNs to segment tumor 
nuclei of breast tissue accurately. This study introduced a novel ensemble network (GB U-Net), which scored 
highest in AJI and mAP. Mask R-CNN scored slightly lower in AJI and mAP, compared to GB U-Net; however, 
one of the main differences between the networks was that Mask R-CNN displayed improved AP at higher IoU 
thresholds (greater than 0.65). Overall, this study demonstrated that DCNNs trained on images independent of 
breast tissue could accurately segment invasive carcinoma of the breast by implementing transfer learning. One of 
the main limitations facing DL based researchers and data scientists is the limited availability of training and test-
ing data. As it is impractical to expect that expert pathologists provide the time commitment required to produce 
large-scale histopathological datasets, various boosting and data synthesis options, such as transfer learning and 
GANs, should be further explored to augment clinical workflows and ultimately lead to improved patient care.

 Data availability
The MoNuSeg dataset used for the current study is available in the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI) 2018, MoNuSeg challenge repository, https://​monus​eg.​grand-​chall​enge.​
org/​Data/. The TNBC dataset used for the current study is available in the segmentation of nuclei in histopathol-
ogy images by deep regression of the distance map, Peter Jack Naylor GitHub repository, https://​github.​com/​
Peter​JackN​aylor/​DRFNS. The authors have made every effort to provide a detailed description of the software 
and hardware implemented with this study. All data, which has not been published in tables or alongside the 
article will be made available from the corresponding author upon request.
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