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Abstract
Purpose of Review Understanding and manipulating abstract concepts is a fundamental characteristic of human intelligence that
is currently missing in artificial agents. Without it, the ability of these robots to interact socially with humans while performing
their tasks would be hindered. However, what is needed to empower our robots with such a capability? In this article, we discuss
some recent attempts on cognitive robot modeling of these concepts underpinned by some neurophysiological principles.
Recent Findings For advanced learning of abstract concepts, an artificial agent needs a (robotic) body, because abstract and
concrete concepts are considered a continuum, and abstract concepts can be learned by linking them to concrete embodied
perceptions. Pioneering studies provided valuable information about the simulation of artificial learning and demonstrated the
value of the cognitive robotics approach to study aspects of abstract cognition.
Summary There are a few successful examples of cognitive models of abstract knowledge based on connectionist and probabi-
listic modeling techniques. However, the modeling of abstract concept learning in robots is currently limited at narrow tasks. To
make further progress, we argue that closer collaboration among multiple disciplines is required to share expertise and co-design
future studies. Particularly important is to create and share benchmark datasets of human learning behavior.

Keywords Embodiment .Languagegrounding .Cognitivemodeling .Developmental neurorobotics . Sensorimotorknowledge .
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Introduction

Human intelligence is characterized by the ability to create
and manipulate abstract concepts like “wisdom” and “love.”
This ability is at the core of human creativity, and, indeed, it is
required for advanced cognitive capabilities like the retrieval
of past thoughts and memories, relational reasoning and
problem-solving in current situations, and the processing of
thoughts linked to the future (e.g., planning and design). For
these reasons, abstract concepts constitute an essential part of

human language, where abstract words are often used in daily
conversations to represent emotions, events, and situations
that occur in physical environments and social interactions
among people.

Human language includes concrete concepts, such as “wa-
ter” or “stone,” which are linked to objects that can be objec-
tively defined and understood. These are usually studied
through a bottom-up approach that involves five major levels
of analysis: phonetics, lexical, semantic, syntactic, and prag-
matics. In contrast, abstract concepts like “beauty” or “free-
dom” do not have specific physical referents; hence, they are
more ambiguous, and their notion can significantly variate
across individuals [1••]. In this article, abstract concepts are
broadly defined as higher-order, or complex, thoughts that are
not bounded to a single, perceptually derived information and
that do not exist at any particular time or place [2].

Even if the most intuitive definition of abstraction is oppo-
site to that of concreteness, abstract and concrete concepts are
not a dichotomy, but they are considered part of a continuum
[3], in which entities can have both abstract and concrete fea-
tures in different proportions ranging from highly abstract
(e.g., “justice”) to highly concrete (e.g., “glass”). The contin-
uum view has gained strength in recent years, after the
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growing evidence in support of embodied and grounded the-
ories of cognition. In fact, a number of proposals have argued
that abstract concepts can be grounded in the sensorimotor
system like concrete concepts (see review by Pexman [4•]),
characterized by a continuum from unembodied (fully sym-
bolic) to strongly embodied [5]. A fundamental assumption of
this view is that abstract concepts can be linked to embodied
perceptions and learned through a process of progressive ab-
straction [6].

The embodied theories for the development of abstract
thinking and reasoning constitute the theoretical resource for
the design of artificial agents capable of abstract and symbolic
processing, which is required for higher cognitive functions
such as natural language understanding. This is one of the
current challenges for the fast-growing field of cognitive ro-
botics where future robots are expected to take on tasks once
thought too complex or delicate to automate, especially in the
fields of social care, companionship, therapy, domestic assis-
tance, entertainment, and education [7–9].

This short review aims at stimulating new investigation in
cognitive robotics and artificial intelligence toward the crea-
tion of smarter robots that will be capable of understanding
and manipulating abstract concept and words, thus overcom-
ing the current limitations in human-robot communication
using natural language. The latter is the most intuitive form
of user interfaces [10]. To this end, we will present pioneering
work on cognitive robotics models of abstract words imple-
mented using grounding transfer mechanism. This short re-
view is based on [11], which provides an extensive survey
and analysis of the multidisciplinary contributions to the field.

Abstract concepts can be categorized into different do-
mains and each can be acquired using a combination of dif-
ferent strategies. As an example, we will present a “direct
grounding” strategy for the embodied learning of numerical
concepts that combines gestures and action with words, such
as in the use of finger counting representations for augment
teaching a child (or a robot) about numbers. Numbers are a
special domain of abstract concepts that constitute the build-
ing blocks of mathematics, a language of the human mind that
can express the fundamental workings of the physical world
and make the universe intelligible. Finally, we will discuss the
current limitations and give our conclusion and future direc-
tion about abstract cognition and robotics research.

Cognitive Robotics Models of Abstract Concepts

Cognitive models that enable robots to learn new words and
concepts typically adopt an embodied and grounded ap-
proach. Cangelosi and Riga [12] have introduced the “direct
grounding” approaches for developing language models in
robots and presented applications of this strategy in learning
more concrete words, i.e., where the robot learns the names of
objects it can perceive or words for actions it is performing or

observing. For instance, robots can simulate the early stages of
language development via the interaction of infants with care-
givers, which is reviewed in [13].

The abstract/concrete continuum view of concepts suggests
that the learning of higher-order, more abstract words may be
obtained by extending the strategies and models for the
grounding of concrete words. In the “grounding transfer”
strategy, new concepts and words are learned by the robot in
successive stages, via combining words whose meanings have
been previously acquired through direct grounding. For exam-
ple, a robot can discover themeaning of “centaur” if instructed
to merge the previously acquired grounded meanings of
“man” and “horse,” and then transferring the result to the
new word, without ever seeing such a fantastic animal. In
the “direct grounding” strategy, the robot learns abstract con-
cepts by associating words to gestures and actions, for exam-
ple, the use of finger counting to teach a child (or a robot) to
count. In the following section, we first review some examples
of the “grounding transfer” strategy; then the next section
presents cognitive robotics models of number cognition that
are examples of the “direct grounding” strategy.

The last section presents a relatively recent idea, which
suggests that abstract meaning is grounded through emotions
[14]. The argument is that emotional experience should be
considered a primary source of the embodied information that
supports the development of abstract thinking and reasoning.
Indeed, they form a continuum that goes from sensorimotor
experience that strongly characterizes concrete words repre-
sentations, to emotional experiences that dominates represen-
tations for abstract words [15].

Cognitive Robotics Models that Learns Higher
Abstract Concepts via Grounding Transfer

The abstract/concrete continuum view of concepts suggests
that the learning of higher-order, more abstract words may
be obtained by extending the strategies and models for the
grounding of concrete words. However, in the scientific liter-
ature, there are only very few examples that explore such an
extension. Recently, Cangelosi and Stramandinoli [16••] of-
fered a review of two main strategies for grounding concepts
without the sensorimotor experience of direct physical
referents.

Paul et al. [17] studied models that allow a robot to “un-
derstand” spatial language instructions by efficiently ground
them in the context of its world representation. The central
contribution of this work is an improvement in computational
efficiency rather than looking into the modeling of human
learning behavior. The efficiency is achieved via adaptive
probabilistic models that form a Markov boundary between
abstract variables and concrete groundings, effectively de-
correlating them from the remaining variables in the graph.
The architecture includes two stages; in the second stage, there
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is a secondmodel that utilizes the abstractions of the first stage
but infers a coarse symbolic structure from the word and the
environment model and then performs fine-grained inference
over the reduced graphical model, further improving the effi-
ciency of inference. Empirical evaluation of the proposed sys-
tem with a fixed and a mobile robot demonstrated accurate
grounding of abstract concepts embedded in complex natural
language instructions.

In the connectionist domain, recurrent neural networks
(RNNs) are particularly suitable structures for modeling ab-
stract concept learning behavior because the recurrent links
allow the network to manage the sequence of progressive
abstraction. Historically, two main types of RNN were pro-
posed: the Jordan type, with a recursion from the output to the
input [18], and the Elman type, with recursion on the hidden
layer [19].

Following the “grounding transfer” view, Stramandinoli,
Marocco, and Cangelosi [20, 21] investigated the problem of
grounding intermediate abstract concepts, i.e., higher-order
actions that can be obtained by combining concrete motor
concepts. Stramandinoli et al. [20] have performed experi-
ments on a cognitive model based for the humanoid robot
iCub on an RNN of the Elman type, which permits the learn-
ing of higher-order concepts based on temporal sequences of
action primitives and word sentences. The training of the
model is incremental. The mechanism includes two stages:
(i) the basic grounding (BG) and (ii) higher grounding (HG)
transfer mechanisms. During the BG, the robot learns a set of
action primitives (e.g., “PULL,” “PUSH,” or “GRASP”)
using embodied and situated strategies. Two different stages
were implemented for the HG training to enable different
levels of the combination between basic and complex actions.
In the first HG stage (i.e., HG-1), a sequence of previously
learned words (e.g., “RECEIVE [is] PUSH [and] GRASP
[and] PULL”) are provided to guide the hierarchical organi-
zation of the basic concepts to learn novel concepts (e.g.,
“GIVE”). During the second HG stage (i.e. HG-2), the robot
learns three new higher-order words (“accept,” “reject,”
“keep”) consisting of the combination of basic action primi-
tives and higher-order words acquired during the previous
HG-1 stage (e.g., “KEEP [is] PICK [and] NEUTRAL”).
HG-2 adds a further hierarchical combination of words from
both concrete concepts (BG) and the first level of abstraction
words (HG-1). This training methodology is extremely flexi-
ble and permits to freely add novel words to the known vo-
cabulary of the robot or to completely rearrange the word-
meaning associations.

In a follow-up work, Stramandinoli et al. [21] proposed a
partially RNN (Jordan type) for learning the relationships be-
tween motor primitives and objects and performed experi-
ments on the iCub robot for investigating the grounding of
more abstract action words, such as “utilize” or “create.” In
this case, the grounding of abstract action words is achieved

through the integration of the linguistic, perceptual, and motor
input modalities, recorded from the iCub sensors, into a three-
layer RNNmodel (Fig. 1). The iCub robot first develops some
basic perceptual and motor skills, such as “PUSH,” “PULL,”
and “LIFT,” necessary for initiating the physical interaction
with the environment, and then it can use such knowledge to
ground language. The training of the model is incremental and
consists of three stages: (i) pre-linguistic, the robot is trained to
recognize a set of objects (e.g., BRUSH, KNIFE, HAMMER)
and learn object-related actions primitives (e.g., PAINT, HIT,
CUT) by combining low-level motor primitives together. (ii)
Linguistic-perceptual training—this is the first stage of lan-
guage acquisition. The model is trained to associate labels to
the corresponding object and actions (two-word sentences
consisting of a verb followed by a noun e.g., SCRUB [with]
BRUSH); these words are directly grounded in perception and
motor experience. (iii) Linguistic abstract training—abstract
action words (i.e., UTILIZE, MAKE) are grounded by com-
bining and recalling the perceptual and motor knowledge pre-
viously linked to basic words (i.e., the previous linguistic-
perceptual training). To derive the meaning of abstract action
words the robot, guided by linguistic instructions (e.g.,
“UTILIZE a KNIFE”), organizes the knowledge directly
grounded in perception and motor knowledge. This phase of
the training represents the abstract stage of language acquisi-
tion when new concepts are formed by combining the mean-
ing of terms acquired during the previous stages of the
training.

Cognitive Robotics Models of Numerical
Concepts—Development and Representation

This section concisely reviews some of the major computa-
tional models that were created to simulate the development of
numerical cognition in artificial cognitive systems and robots.
A more detailed review of the topic can be found in [22••].

Recently, Di Nuovo et al. conducted several experiments
[23–29] with the iCub humanoid robot to explore whether the
association of finger counting with number words and/or vi-
sual digits could serve to bootstrap numerical cognition in a
cognitive robot. The models are summarized in Fig. 2. These
were created merging three RNNs of the Elman type, which
were trained separately and then merged to learn the classifi-
cation of the three inputs: finger counting (motor), digit rec-
ognition (visual), and number words (auditory), i.e., the triple-
code model [30]. Also, the model mimics the two-hemisphere
organization of the brain. Results of the various robotic exper-
iments show that learning finger sequencing together with the
number word sequences speeds up the building of the neural
network’s internal links resulting in a qualitatively better un-
derstanding (higher likelihood of the correct classification) of
the real number representations. Cluster analysis with an op-
timal strategy confirmed that internal representations of the
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finger configurations can be an ideal basis for building an
embodied representation of digits in the robot.

Further investigation focused on increasing biological ad-
herence of the models with deep learning approaches, which
are inspired by the complex layered organization and the func-
tioning of the cerebral cortex [31]. Indeed, follow-up studies
[26, 27] presented an extended simulation that incorporated
the neural link between visual and motor areas observed in
several neuroscientific studies. Particularly, Di Nuovo [27]
investigated the long short-term memory architecture [32]
for learning to perform addition with the support of the robot’s
finger counting. Interestingly, the model showed similarities
with studies with humans (children and adults) by performing
an unusual number of split-five errors, which can be linked to
the five finger representations [33].

Di Nuovo and McClelland [28••] investigated the percep-
tual process of recognizing spoken digits in deep,
convolutional neural networks embodied in the iCub robot.
Simulation results showed that the robot’s fingers boost the
performance by setting up the network and augmenting the
training examples when these were numerically limited. This
is a common scenario in robotics, where robots will likely
learn from a small amount of data. The embodied representa-
tion (fingers encoder values) was compared to other represen-
tations, showing that fingers can represent the real counterpart
of that artificial representation and they can maximize the
learning performance. Results are associated with some be-
havior also observed in several human studies in developmen-
tal psychology and neuroimaging. Overall, the hand-based

representation provided our artificial system information
about magnitude representations that improved the creation
of a more uniform number line, as seen in children [34].

Cognitive Robotics Models of Emotions

The idea that robots may have emotions has captured the
imagination of many researchers in the field of artificial intel-
ligence who have identified the crucial importance of emo-
tions in the design of more intelligent and sociable robots [35].

Despite that there is a general agreement that the next gener-
ation of cognitive architectures must integrate emotion and cog-
nition to build realistic models of human-machine interaction, in
practice, the computational modeling of emotion has been often
been underrated in cognitive architecture research. Instead, com-
putational modeling of emotion is frequently considered later
with the addition of an emotion module that can influence some
of the components of the general cognitive architecture (for a
review, see [36]). Models account for emotion as well as some
other aspects of cognition, but usually, they are not aiming to be
comprehensive architectures (for a review, see [37]).

Pessoa [38] identified two main categories of applications
for emotions models in robotics: (i) as an add-on to general
architectures to provide robots urgency to action and decisions
and (ii) to aid understanding emotion in humans, or to gener-
ate human-like expressions.

An example of the first category can be found in
eMODUL, a perceptual system of the emotion-cognition in-
teraction specifically designed for robotics by [39]. The

Fig. 1 A partially recurrent neural
network model for language
abstraction
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eMODUL system is situated in its physical and social envi-
ronment, and its components constantly appraise events from
the body and the world with a particular interest in emotion-
ally relevant stimuli that affect other computational/cognitive
processes (e.g., allocation of resources, organization of behav-
ior). The system continuously receives and integrates emo-
tionally modulated signals into the information processing
flow for higher-order processing. Thereby, the system sensa-
tions and actions are emotionally biased. In terms of the sys-
tem autonomy, emotional modulations have an impact on the
allocation of cognitive/computational resources and the orga-
nization of behavior appropriately with regard to the system’s
interaction and task/goal demands. The authors provide two
experimental examples of the application of the eMODUL
system with artificial neural networks, in which emotional
modulation consists in increasing or decreasing the synaptic
efficacy of targeted populations of neurons involved in these
processes. The first experiment is in the context of a survival
problem, where the hunger modulation makes the robots more
determined to access the resource and feed. The second is
visual search task, designed similarly to the common

experimental paradigm in psychology, whereas the emotional
(frustration or boredom) modulation of attention increases the
robot performance and fosters the exploratory behavior to
avoid deadlocks.

As an example of the second category, Prescott et al. [40]
included emotional signals in a neuroscience-inspired multimod-
al computational architecture for the autobiographical memory
system, named the Mental Time Travel Model (MTTM), imple-
mented to control the iCub robot. TheMTTM allows for retriev-
ing past events, including the related emotional associations, and
their projection into an imagined future by using the same sys-
tem. This architecture proved useful for the social capabilities of
robots by enabling recognition of face, voice (including emo-
tion), action, and touch gesture when interacting with humans.
The authors propose using this system for abstract reasoning like
imagining future events, simulating and visualizing actions, as
well as planning actions before actual execution. This work is
still at an early stage; however, experiments show that deploying
emotionally mediated memory models into a brain-inspired con-
trol architecture for the iCub robot has enhanced the robot’s
capability for recognizing social actors and actions.

Fig. 2 A deep architecture for number cognition, based on an integration of the various models proposed by Di Nuovo et al. [23–29]
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Conclusions

All the studies presented provided valuable information about the
simulation of artificial learning and demonstrated the value of the
embodied approach to cognitive robotics when studying crucial
aspects of cognition like learning abstract concepts. However,
most neuro-psychological contributions recognize that an exten-
sion beyond a purely grounded approach is needed to fully ac-
count for the representation of abstract concepts. Another open
issue is that so far, proposals for grounding abstract concepts are
yet to be tested in studies with children. It will be important to
investigate whether children’s early abstract concepts’ acquisi-
tion is grounded through metaphors, language co-occurrence,
and/or emotion [4]. To this end, developmental robotics model-
ing can provide a powerful tool to collect preliminary informa-
tion to evaluate or compare existing theories and to make novel
experimental predictions that can be tested on humans [41•].
They could provide computational evidence in the debate on
language development between “nativists” and “empiricists” by
modeling the alternate theories and analyzing the resulting robot
behavior in comparison to children’s behavior.

Still, the cognitive robotics models proposed so far are rela-
tively naïve because they are focused on simulating only a single
aspect, verified with dummy tasks in simplified scenarios, and
provided limited evidence of their generalization ability in the
alternative, realistic settings. They have considered only concepts
(e.g., metaphorical concepts such as “to grasp an idea”) that have
been empirically investigated in humans and have been already
found grounded in action and perception systems. Thus, we are
yet to see if we might extend these conclusions to other kinds of
abstract concepts such as “politics” or “metaphysics.”This is also
the case of emotion modeling, which was predominantly studied
in terms of replicating human social behavior, while very little
has been done for improving robots’ abstract thinking.
Significant improvement in the complexity of the models and,
moreover, the test scenarios are needed before cognitive robotics
modeling can be considered a reliable tool in education, neuro-
science, and psychology research.

The reason for this lack of reality can be attributed to the
limitations of the current robotic platforms, but also it is partially
due to the unavailability of raw data from children’s experiments.
Indeed, there are no open “benchmark” databases for cognitive
robotics, unlike the typical open data behavior in machine learn-
ing. Robotic modelers can use only the post-processed data and
statistical analyses for designing and validating models.

Further multidisciplinary research is required to gather data
from children and get a better understanding of the underlining
processes and strategies for abstract thinking and reasoning. It
seems likely that there are developmental differences in the ac-
quisition of the different types of concepts; therefore, hybrid
models that combine sensory-motor experience and language
appear as a viable option that should be investigated. In this
respect, cognitive robotics can contribute both to the theoretical

development of abstract concepts acquisition and use in humans,
i.e., providing a simulated environment for testing hypotheses,
and benefit from the discoveries to create innovative models of
human-like learning and social interaction.

To advance the knowledge in this interdisciplinary field,
we remark that closer collaboration among researchers of the
multiple disciplines involved is required to share expertise and
co-design joint studies. Importantly, we see the need for well-
matched artificial simulations and real experiments to have
well-matched data between robots and children’s tasks.
Crucially, open databases should be made available to facili-
tate the machine learning community to engage with this field
and replicate the success obtained in other fields of applica-
tion, like speech recognition, computer vision, and autono-
mous driving of cars.
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