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The gut microbiome: a key player in the
complexity of amyotrophic lateral sclerosis
(ALS)
Sarah L. Boddy1†, Ilaria Giovannelli1†, Matilde Sassani1†, Johnathan Cooper-Knock1, Michael P. Snyder2, Eran Segal3,
Eran Elinav4,5, Lynne A. Barker6, Pamela J. Shaw1 and Christopher J. McDermott1*

Abstract

Background: Much progress has been made in mapping genetic abnormalities linked to amyotrophic lateral
sclerosis (ALS), but the majority of cases still present with no known underlying cause. Furthermore, even in families
with a shared genetic abnormality there is significant phenotypic variability, suggesting that non-genetic elements
may modify pathogenesis. Identification of such disease-modifiers is important as they might represent new
therapeutic targets. A growing body of research has begun to shed light on the role played by the gut microbiome
in health and disease with a number of studies linking abnormalities to ALS.

Main body: The microbiome refers to the genes belonging to the myriad different microorganisms that live within
and upon us, collectively known as the microbiota. Most of these microbes are found in the intestines, where they
play important roles in digestion and the generation of key metabolites including neurotransmitters. The gut
microbiota is an important aspect of the environment in which our bodies operate and inter-individual differences
may be key to explaining the different disease outcomes seen in ALS. Work has begun to investigate animal
models of the disease, and the gut microbiomes of people living with ALS, revealing changes in the microbial
communities of these groups. The current body of knowledge will be summarised in this review. Advances in
microbiome sequencing methods will be highlighted, as their improved resolution now enables researchers to
further explore differences at a functional level. Proposed mechanisms connecting the gut microbiome to
neurodegeneration will also be considered, including direct effects via metabolites released into the host circulation
and indirect effects on bioavailability of nutrients and even medications.

Conclusion: Profiling of the gut microbiome has the potential to add an environmental component to rapidly
advancing studies of ALS genetics and move research a step further towards personalised medicine for this disease.
Moreover, should compelling evidence of upstream neurotoxicity or neuroprotection initiated by gut microbiota
emerge, modification of the microbiome will represent a potential new avenue for disease modifying therapies. For
an intractable condition with few current therapeutic options, further research into the ALS microbiome is of crucial
importance.
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Background
Amyotrophic lateral sclerosis (ALS) is a fatal neurode-
generative condition characterised by progressive loss of
motor neurons. No effective neuroprotective therapy ex-
ists; median survival is 2 to 3 years from symptom onset,
but there is considerable variation in individual out-
comes [1]. Current understanding does not explain the
observed heterogeneity in those affected.
In recent years, much progress has been made in elu-

cidating genetic mutations (e.g. within C9ORF72 and
SOD1) associated with ALS [2–6]. In certain cases, par-
ticular phenotypes are associated with specific genetic
variants, including young age of onset [7] and cognitive
impairment [8]. However, significant heterogeneity, even
within families of patients suffering monogenic disease,
suggests that environmental risk factors play a role. In-
deed, both sporadic and monogenic ALS are thought to
result from a multi-step process based on age-related in-
cidence [9].
Some evidence for a role of specific environmental risk

factors (e.g. military service) has been found [10–16].
However, most of those exposed do not develop ALS,
and therefore, individual environmental factors likely
contribute little to overall disease risk. Interestingly, all
proposed environmental factors could potentially impact
the gut microbiota and its collective functions. There-
fore, the gut microbiome could represent an integrator
of the overall environmental contribution to neurode-
generation development.
The most recent studies in SOD1 and C9ORF72 model

mice have indicated a disease-modifying role for the gut
microbiome, with disease severity correlated to particu-
lar gut microbe communities [17, 18]. In addition to
modifying the risk of developing ALS, it is also possible
that a patient’s microbiota can offer protective or dele-
terious effects, slowing or hastening disease progression,
e.g. by impacting systemic inflammation.
The human microbiome refers to the collective ge-

nomes of all microbes (i.e. bacteria, archaea, viruses and
fungi) that live upon or within the human body, with the
community of microbes themselves known as the micro-
biota. A person’s microbiome contains ~ 150-fold more
genes than their human genome [19], so probing the
microbiome in a meaningful way poses technical chal-
lenges. Nonetheless, recent advances in DNA sequencing
technologies have allowed scientists to explore roles of
resident microbial communities in health and disease.
Since most of the human microbiome resides within

the intestine, several studies in common neurological
conditions have focussed on the microbiome of the
gastrointestinal tract. Intestinal microbial composition
can impact development and progression of disease. For
example, gut microbes produce biologically active me-
tabolites and may also modify the absorption of

nutrients and drug bioavailability. Particular focus has
been given to a proposed bidirectional gut-brain-axis in
which the gut microbiome and the CNS engage in bio-
chemical signalling, and the role that the microbiome
may play in neurodegenerative diseases such as Alzhei-
mer’s and Parkinson’s diseases [20]. Most recently, in-
vestigations have begun to seek links between the gut
microbiome and ALS. Small cohorts and methodology
limit many of these studies. Nonetheless, differences
have been identified between the gut microbiome of
ALS patients and controls, supporting further research
in this area.
The aim of this article is to review current literature

on the microbiome and ALS, and to outline putative
mechanisms by which the gut microbiome may impact
on the condition. The primary research studies reviewed
were selected using the following search terms: “amyo-
trophic lateral sclerosis” and “microbiome”, “amyo-
trophic lateral sclerosis” and “microbial”, “motor neuron
disease” and “microbiome” in PubMed, up to 26 July
2020 (no lower date limit).

Main text
The gut microbiome is linked to ALS, current evidence:
mouse models
The first study of an ALS mouse model identified
disease-specific damage to intestinal tight junctions, in-
creased gut permeability and reduced levels of the
butyrate-producing bacteria Butyrivibrio fibrisolvens, in
the SOD1G93A mouse [21]. Butyrate is implicated in
modulating the immune response, as illustrated in the
neuroinflammation section below. In 2017, the same
group performed an interventional study attempting to
alleviate symptoms through treatment with sodium bu-
tyrate [22]: SOD1G93A mice receiving butyrate supple-
mentation developed improved intestinal barrier
function and showed delayed weight loss and death
compared to untreated controls.
A recent longitudinal study of the SOD1G93A model

identified dysbiosis in the pre-symptomatic stage with
increased within-sample variance in faecal pellets, but
not in ileocolic content [23]. In contrast, an investigation
into the impact of short-term vagus nerve stimulation
(VNS) on the microbiome of a milder SOD1 mutant
model revealed no difference between disease and WT
mice at the timepoint investigated, 1 month before
symptom onset [24]. No effect on the gut microbiome
was seen post VNS.
A 2019 study of the gut microbiome in the SOD1G93A

mouse model and in ALS patients represents a major
step forward for the field. This is the first study to probe
the functional signature of gut microbiome in ALS using
shotgun metagenomics. This study identified changes in
gut microbiome correlating with biological activity of a
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microbial metabolite, nicotinamide, possibly modulating
the expression of mitochondrial genes in the spinal cord.
Notably, detected changes correlated with disease sever-
ity in both transgenic mice and human patients [17].
Recently, a study of C9ORF72-null mice showed that

loss of C9ORF72 resulted in a pro-inflammatory pheno-
type which was ameliorated when the gut microbial bur-
den was reduced [18]. The GGGGCC-repeat expansion
of C9ORF72 is the most common genetic cause of ALS
[5, 6], and although this genetic change is not thought to
be a pure loss-of-function mutation, reduced expression
of endogenous C9ORF72 is also a feature of the human
disease [25]. Nonetheless, the murine model used in this
study is much less well characterised than the SOD1G93A

transgenic mouse model and questions have been raised
on its relevance to human ALS.
Studies investigating the microbiome in mouse models

of ALS are summarised in Table 1. There are key limita-
tions to these studies, often involving small numbers of
animals and 16S rRNA gene sequencing (discussed
later). Caution should be drawn before extrapolating
findings in mice to the human ALS due to specific limi-
tations of the models [26] and more generally the poor
translation rates of findings in rodents to humans to
date [27, 28]. Regarding microbial communities, the
highly controlled environments of animal facilities
poorly replicate those people with ALS reside in, diver-
ging models still further from the human situation.

The gut microbiome is linked to ALS, current evidence:
human studies
Human studies of the gut microbiome in ALS have
yielded equivocal findings. Two identified a reduced Fir-
micutes/Bacteroidetes ratio in patients [29, 30], whilst a
third reported the opposite [31]. Nonetheless, those
studies detected evidence of dysbiosis in ALS, although
they utilised small cohorts (6, 5 and 8 ALS patients, re-
spectively) and one [30] was confined to a specific sub-
group of patients with gastrointestinal symptoms. In
contrast, a larger 2018 study comparing 25 patients with
32 controls discovered no substantial changes in the gut
microbiome including no changes in the Firmicutes/Bac-
teroidetes ratio [32], though slightly higher diversity was
found in ALS samples.
The largest study to date compared 50 patients and 50

age- and sex-matched controls. The abundance of vari-
ous microbial genera was significantly altered in ALS
compared to controls [33] and disease progression coin-
cided with reduced microbial diversity, possibly second-
ary to dietary changes caused by increased disability.
This highlights the importance of monitoring diet in
study design. The group also trialled a 6-month pro-
biotic intervention and found no observable benefits.

This year, one study comparing 49 probable/definite
ALS cases and 50 controls found no change in the Fir-
micutes/Bacteroidetes ratio in ALS patients compared to
controls [34]. In contrast, the most recent study found a
reduced Firmicutes/Bacteroidetes ratio and increased
species diversity associated with ALS samples compared
to healthy controls (n = 20, both groups) [35]. Despite
finding no differences between the disease and control
groups, the larger study did report that within the ALS
group, a higher Firmicutes/Bacteroidetes ratio was asso-
ciated with increased risk of death, as was higher species
diversity [34].
Antibiotics significantly modify the balance of gut mi-

crobial species [36]; hence, correlations between anti-
biotic usage and seemingly unrelated diseases are of
interest. A 2019 study demonstrated that the use of anti-
biotics, especially repeatedly, was associated with in-
creased risk of developing ALS [37]. The study was
based on whole-population data for Sweden (2006–2013
period), but limited by the retrospective design and the
lack of associated microbiome data to probe for evidence
of dysbiosis. Similarly, experiments using the SOD1G93A

mouse model showed that repeated exposure to antibi-
otics was associated with development of a more severe
motor phenotype and increased neuronal loss [17]; this
effect was specific to the diseased mice and no motor ef-
fect was observed in WT mice.
All published human ALS microbiome studies are

summarised in Table 2, including two studies investigat-
ing microbes residing within the CNS [38, 39]. As those
do not explore the gut microbiota, they are not dis-
cussed further in the text.
Whilst data are accumulating, many results are dis-

cordant. Studies are largely exploratory and cohort num-
bers have been relatively small which, in view of
significant interindividual variability, may preclude iden-
tification of relevant microbiome features. These find-
ings, alongside those reported in animal studies,
demonstrate the importance of considering within-group
differences across the ALS population as well as
between-group changes between ALS and controls. It is
possible that specific microbiome signatures may be ei-
ther protective or toxic in different individuals. Future
studies will need to significantly increase sample size
and combine the microbiome profile with detailed meas-
urement of interacting partners such as the host gen-
ome, nutrition and medication.

A note on methodologies
We have reviewed all published studies on the gut
microbiome in ALS. Most utilised 16S rRNA gene se-
quencing. However, recent technological developments
have made more in-depth microbiome sequencing feas-
ible and affordable. Shotgun metagenomic sequencing is
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becoming the standard due to its increased resolution,
enabling not only identification of microbes at species
levels, but also discovery of novel microbes. Further-
more, this technology facilitates functional analyses and
critically is able to account for horizontal gene-transfer
events, which inferred functional analyses from 16S-
derived data cannot do [40–44]. When it is considered
that microbes often share functional enzymes, then a
functional measure is clearly more informative than
identifying specific species. We do accept that some-
times, due to cost or sample quality, 16S rRNA sequen-
cing may be the only option and it is important to note
that efforts have been made to predict function from
16S data with some success [45]. The advantages offered
by shotgun metagenomic sequencing are reviewed else-
where [44, 46], but it is appropriate to highlight the dif-
ferent analytical techniques used in studies (Tables 1
and 2). Thus far, only Blacher et al. [17] have reported
data based on metagenomic sequencing.
Beyond metagenomics, other methods are being devel-

oped to measure function of gut microbes including
metabolomics, metatranscriptomics and metaproteomics
[47]. A multi-omic approach to the microbiome is likely
to improve power for detection of biology just as a
multi-omic approach to the host is becoming increas-
ingly important; this is illustrated by the use of metabo-
lomics in the study described above [17]. Significant
innovation is also occurring in analysis methods. Mi-
crobes can interact functionally even without gene-
transfer for example, if a collection of microbes each en-
codes an enzyme which produces a substrate for another
enzyme carried by a different microbe. It is possible to
predict the presence and effect of the so-called biosyn-
thetic gene clusters using ClusterFinder [48].

The gut microbiome may contribute to ALS
heterogeneity: putative roles
Various ways in which the gut microbiota and CNS may
interact have been proposed, with communication routes
referred to as the gut-brain-axis (Fig. 1). It has been sug-
gested that microbes might influence the CNS directly,
through production of neuroactive metabolites released
into the systemic circulation or via the enteric nervous
system [49, 50]. Possible indirect connections include
modulation of CNS inflammation [51, 52], alteration of
nutrient absorption [53, 54] and modification of the me-
tabolism of exogenous drugs [55]. Evidence supporting
two of these putative mechanisms has emerged from re-
cent literature: Blacher et al. [17] provided data support-
ing the role of microbial neuroactive metabolites in ALS,
whereas others have found links between gut microbiota,
the immune system and ALS [18, 21–23]. Notably, al-
though these mechanisms are not mutually exclusive, no
consensus has yet been reached and, in addition to

limitations highlighted above, studies are not directly
comparable primarily because of differences in analysis
methodologies. The last section will detail these two
mechanisms and suggest other promising avenues yet to
be explored in the field.

Metabolite modulation of neuronal function
The strongest evidence for microbe-derived neuroactive
metabolites modifying ALS comes from the study of Bla-
cher et al. [17] which focused on the protective effect of
nicotinamide released by Akkermansia muciniphila
(Fig. 2a). The authors argued for the role of bacterial
metabolites in modulating neurodegeneration; they were
able to manipulate disease severity in SOD1G93A mice
via supplementation with gut microbial species. Rumino-
coccus torques and Parabacteroides distasonis were asso-
ciated with increased severity, whereas Akkermansia
muciniphila improved outcomes. Mechanistic links were
explored through untargeted serum metabolomic-
profiling, which identified changes in biological pathways
featuring nicotinamide in mice receiving Akkermansia
muciniphila supplementation. Importantly, direct nico-
tinamide administration replicated the beneficial effects
of Akkermansia muciniphila. Bulk RNA-sequencing of
spinal cord tissue from SOD1G93A mice treated with
nicotinamide or Akkermansia muciniphila revealed
changes in mitochondrial function and oxidative stress
pathways. These observations were corroborated in ALS
patients: bacterial genes associated with tryptophan and
nicotinamide synthesis were decreased in patients’ stool
samples, and targeted metabolomic profiling revealed a
lower nicotinamide concentration in serum and CSF
compared to controls.
The study authors argued for a pathway from gut

microbiome function to motor neuron death via metab-
olites secreted into the host circulation. Nicotinamide is
the precursor of NAD and NADP, coenzymes necessary
for appropriate functioning of energy transducing and
antioxidant pathways as well as other cellular signalling
mechanisms [67], many of which have been implicated
in ALS-related neurodegeneration [15, 68].

Modulation of CNS inflammation
Neuro-inflammation is a well-characterised ALS patho-
logical mechanism, defined as a complex dysregulation
amongst both resident and peripheral immunological
cells [15]. Its main features are activation of microglia
and astrocytes, infiltration of T cells and upregulation of
pro-inflammatory cytokines. The human microbiome
exerts a considerable influence on the immune system:
in development when immune cells begin to discrimin-
ate between necessary commensals and harmful patho-
gens, but also in adulthood, as microbes contribute to
immune homeostasis [69, 70]. In fact, germ-free (GF)
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mice display a broad range of immunological abnormal-
ities [69, 71]. To date, the underlying mechanisms re-
sponsible for crosstalk between microbiome and the
immune system are not fully understood. Several
bacterial-derived molecules are thought to be immuno-
logical modulators (Fig. 2b-d) including short chain fatty
acid (SCFAs), aryl hydrocarbon receptor (AHR) ligands,
polyamines and polysaccharides [72]. SCFAs such as bu-
tyric acid, propionic acid and acetic acid are products of
dietary fibre metabolism by the gut microbiome, mainly
from Bacteroides and Firmicutes [73]. SCFAs are known
to mediate regulatory T cell (Treg) induction through
histone deacetylase inhibition (see Fig. 2). The inverse is
also seen in mice where depletion of the Treg subset is
associated with a significant increase in gut Firmicutes
[74]. Although few studies have investigated changes in
ALS microbiota compared to healthy individuals, dis-
equilibrium of the Firmicutes/Bacteroides ratio has been
reported [29–31, 33]. As these bacteria are the main
producers of SCFAs, it could be speculated that alter-
ations of these metabolites may affect ALS patients by
directly acting on CNS cells and/or indirectly through
immune system modulation. One of the SOD1G93A stud-
ies is consistent with this, where butyrate supplementa-
tion appeared to alleviate the clinical features of ALS
[22]. The same group reported earlier that, prior to
symptom onset, this mouse model is characterised by a

leaky intestine, increased intestinal permeability and re-
duced abundance of butyrate-producing bacteria [21].
This is associated with increased levels of inflammatory
IL-17 and abnormalities in Paneth cells, which are cru-
cial for host-microbiome interaction and immunity [21].
Butyrate supplementation in SOD1G93A mice signifi-
cantly decreased intestinal permeability, reduced the
number of abnormal Paneth cells and increased life span
[22]. Moreover, a longitudinal study showed evidence of
dysbiosis (in particular alterations in Bacteroides and
Firmicutes) in SOD1G93A mice beginning before disease
onset (37 days) and persisting until end-stage (~ 150
days). Concomitantly, alterations in the immune system
were reported. These were limited to the peripheral sys-
tem in early disease stages but affected the CNS later
during disease course. They also documented both posi-
tive and negative correlations between microbiome dys-
regulation and spinal cord inflammation [23].
Microbiota-deficient mice also provide evidence linking

the gut microbiome to the CNS through the immune sys-
tem. Germ-free (GF) and antibiotic-treated mouse models
develop immunological abnormalities and neurodegenera-
tion [75]. In this context, microglia functions appear to be
strictly connected to the gut microbiome [51] as GF or
antibiotic-treated mice exhibit aberrant microglia matur-
ation and functional impairments [76], characterised by im-
mature phenotype, morphology alterations, diminished

Fig. 1 Pathways linking gut microbial function to changes in the CNS. a Macro-scale pathways: The enteric nervous system (ENS) intrinsic to the
gut is connected to the central nervous system directly via the vagus nerve. As such, any microbe-derived metabolite that accesses the ENS has
the potential to travel to and impact the brain and spinal cord. Likewise, an extensive network of blood capillaries collects nutrients absorbed
from the gut for transfer around the body. Microbial metabolites that access the bloodstream can impact any part of the body, though still need
to breach the blood-brain-barrier (BBB) to access the CNS. b Transit across the intestinal epithelium: In a healthy gut with functional tight
junctions, selective uptake of contents of the intestinal lumen occurs across the epithelial cells (route “i”). Dysbiosis of the gut microbiota can
damage the structural integrity of the epithelial barrier allowing uncontrolled transit of metabolites and other luminal contents to pass into the
body (route “ii”)
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responsiveness to lipopolysaccharides and overall attenuated
immune activation. A C9ORF72-null mouse study suggests
that dysregulated microflora, characterised by immune-
stimulating bacteria, reduce mice survival by inducing

detrimental peripheral inflammation and microglia activa-
tion. However, antibiotic treatment or the transplantation of
protective microbiota improved symptoms [18]. Astrocyte
activity is also regulated by the gut microbiome through an

Fig. 2 Metabolites produced by microbes found within the gut can influence neuronal health either directly or indirectly via CNS inflammation. a
Metabolites released by the gut microbiome can enter the system circulation where they can access the CNS; in the case of nicotinamide
released by Akkermansia muciniphila, this potentially modifies energy homeostasis and oxidative stress [17]. b–d A number of proposed
mechanisms exist by which metabolites produced by microbes found within the gut can influence the immune response and have an effect of
the CNS inflammatory state. b Short-chain fatty acids (SCFAs) can reduce inflammation by inhibiting HDACs within microglial cells, leading to the
downregulation of pro-inflammatory (IL1ß, IL6 and TNFα) and upregulation of anti-inflammatory markers (TGFβ and IL4) [56, 57]. SCFA-mediated
HDAC inhibition can also impact Tregs increasing their activity via upregulation of FOXP3 [58, 59]. SCFAs also influence astrocytes, reducing their
inflammatory impact through downregulation of IL1ß, IL6 and TNFα [60]. Lastly, SCFAs exert anti-inflammatory effects on different peripheral
blood mononuclear cells: they inhibit NF-kB leading to reduced pro-inflammatory cytokine production and immune cell recruitment and
activation [61–63]. c Aryl hydrocarbon receptor (AHR) ligands can modulate astrocyte activities and give rise to anti-inflammatory properties [64].
d Polyamines induce FOXP3 expression in Treg cells promoting their differentiation and activation [65]. These molecules can also inhibit
inflammatory macrophages (M1) thereby preventing macrophage-induced inflammation [66]
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aryl hydrocarbon receptor (AHR)-mediated mechanism in-
volving type I interferon signalling [64]. This leads to a dif-
ferent hypothesis: that proinflammatory signals driven by
gut microbiota may be key for physiological functioning of
glia, which in turn maintain neuronal health. Abnormal
function of microglia [77] and astrocytes [78] has been
linked to motor neuron death. Confirmation of this hypoth-
esis will depend on identification of direct correlations be-
tween gut microbiome features, disease severity and CNS
inflammation in a single model system; it should be noted
that an unbiased metabolomic study did not identify a sig-
nificant inflammatory signal [17].
Given the potential link between the microbiome, the

immune system and ALS, a clinical trial is currently
ongoing to evaluate the effects of faecal microbial trans-
plantation in 42 patients (NCT03766321). The investiga-
tors anticipate that microbiome modulation will increase
the proportion and suppressive abilities of immune-
suppressive Treg cells leading to the establishment of a
neuroprotective anti-inflammatory environment [79].
Moreover, several experimental medicine trials are on-
going with the aim of modulating the immune response
using small molecules (e.g. MIROCALS (NCT03039673))
[80]. Should analogous results be achieved by altering the
composition of the gut microbiome, this would be an
attractive alternative approach.

Impact on nutrition
Much research has focused on the role of the gut micro-
biome in human nutrition [81]. Microbes resident in the
gut can alter the quantity of nutrients extracted from
food and even synthesise key nutrients themselves, in-
cluding vitamin K and various B vitamins [82]. Experi-
ments transplanting the gut microbiota of obese mice or
humans into germ-free animals of a healthy weight pro-
duced weight-gain demonstrating that metabolic pheno-
types can be transmitted via the gut microbiome [83,
84]. Weight maintenance has been highlighted as critical
to the clinical outcome in ALS, with rapid weight loss
associated with faster disease progression [85]. Ongoing
work is focused on modifying the diet in patients with a
view to slowing disease progression. It is possible that,
ultimately, this work will need to investigate both diet
and the modulating effect of the gut microbiome on nu-
trition. Furthermore, Di Gioia et al. showed a decline in
microbial diversity in ALS samples over the course of a
probiotic study, the only longitudinal microbiome data
reported in this disease group to date [33]. This is not
surprising as the progression of ALS is associated with
declining chewing, swallowing and self-feeding func-
tions, all of which are likely to impact the gut micro-
biota, in addition to reduced physical activity and likely
environmental changes e.g. associated with leaving the
workplace and/or becoming increasingly house-bound.

Indeed, during the later stages of the disease, many pa-
tients opt to be fed enterally through formulated foods, a
dramatic dietary change likely to impact the microbial
communities of the gut. Therefore, it is also important
to consider the impact disease progression has on the
gut microbiota. This is critical when considering differ-
ences seen between ALS and control samples, with cau-
tion necessary when inferring aspects of the microbiota
may play a role in disease development.

Impact on drug efficacy
The gut microbiome can also impact disease via metab-
olism of enterally delivered drugs. A recent study re-
vealed that the primary treatment for Parkinson’s
disease, L-DOPA, is metabolised by gut microbial spe-
cies which vary in abundance between individuals [55].
Prevalence of a microbial gene encoding an enzyme pro-
ficient in decarboxylating L-DOPA correlated positively
with the drug dosage required to provide symptomatic
relief and with L-DOPA concentration in the systemic
circulation. In 2019, a study assessed the capacity of a
panel of gut bacteria to metabolise a selection of com-
monly prescribed drugs including Riluzole, the only drug
that has shown to confer a survival benefit in ALS [86].
Riluzole was significantly metabolised by 40 of the bac-
teria screened [87] many of which are known to vary in
prevalence in the human population. The plasma con-
centration of Riluzole reportedly shows low within-
patient variability compared to relatively high interpati-
ent variability [88], which is not explained by differences
in metabolism after gut absorption [89]. Modification of
Riluzole bioavailability by the gut microbiome may ex-
plain the observed interpatient variability in plasma
levels.

Impact on non-motor ALS symptoms
Finally, the microbiome has been linked to other symp-
toms known to impact subgroups of ALS patients, such
as depression, anxiety and constipation [90]. The gut
microbiota can produce various peptides and neuro-
transmitters that could directly impact mood [49, 90]
whilst the brain affects the gut through a variety of
mechanisms including stress responses [91]. Unravelling
the role the gut microbiota play in regulating brain func-
tion relating to neuropsychiatric conditions has only just
begun [90, 92], but there is potential for this to be a
means of improving quality of life for ALS patients.
Regarding constipation, another symptom often re-

ported by ALS patients [93], roles for the microbiome in
luminal fluid (metabolism of bile acids [94], generation
of short chain fatty acids [95, 96] and methane produc-
tion [97]) as well as mucosal layer of the colon [98] in
regulating the absorption of fluids into the bloodstream
have all been proposed. Improved management of these
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symptoms would improve quality of life [99] irrespective
of disease progression.

Integration of microbiome with host genomics
Notably, the gut microbiome is affected by environment,
and evidence suggests almost complete independence
from host genetics [100]; therefore, the two measures
may be usefully combined to describe gene-environment
interaction. This could be a powerful tool to approach
diseases resulting from a complex interaction of genes
and environment. Approaches such as deep learning or
other machine learning methodologies may be required
to overcome non-linearity. There is potential to provide
a personalised medicine approach whereby interventions
targeted at the microbiome are tailored to the host’s
genome.

Conclusion
The missing piece of the puzzle?
It is well established that people with ALS exhibit a wide
range of disease severity and whilst some risk factors
have been identified, they remain insufficient to fully ex-
plain this heterogeneity. The gut microbiome may be
crucial in resolving some of these differences due to the
variety of ways it could affect disease, both directly and
indirectly. Further research is essential to identify rele-
vant microbial players in ALS so that they may be tar-
geted in future therapies seeking to modify gut
microbiota to modulate disease progression and improve
quality of life. It is likely that such interventions will be
personally tailored to patients from different environ-
ments and with different genotypes.
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