

Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation

JI, Hongfen, WANG, Dawei, BAO, Weichao, LU, Zhilun, WANG, Ge, YANG, Huijing, MOSTAED, Ali, LI, Linhao, FETEIRA, Antonio http://orcid.org/0000-0001-8151-7009, SUN, Shikuan, XU, Fangfang, LI, Dejun, MA, Chao-Jie, LIU, Shu-Yu and REANEY, Ian

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/28030/

This document is the Supplemental Material

Citation:

JI, Hongfen, WANG, Dawei, BAO, Weichao, LU, Zhilun, WANG, Ge, YANG, Huijing, MOSTAED, Ali, LI, Linhao, FETEIRA, Antonio, SUN, Shikuan, XU, Fangfang, LI, Dejun, MA, Chao-Jie, LIU, Shu-Yu and REANEY, Ian (2021). Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Materials. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Electronic Supplementary Information for Ultrahigh energy density in short-range tilted lead-free multilayer

ceramic capacitors by nanodomain percolation

Hongfen Ji^{a,b#}, Dawei Wang^{a*}, Weichao Bao^{c#}, Zhilun Lu^{a,d#}, Ge Wang^{a#}, Huijing Yang^{a,e}, Ali Mostaed^{a.f}, Linhao Li^a, Antonio Feteira^g, Shikuan Sun^a, Fangfang Xu^c, Dejun Li^h, Chao-Jie Maⁱ, Shi-Yu Liu^{h*}, Ian M. Reaney^{a*}

^aDepartment of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK ^bLaboratory of Thin Film Techniques and Optical Test, Xi'an Technological University, Xi'an 710032, China

^cState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Shanghai, 200050, China

^dThe Henry Royce Institute, Sir Robert Hadfield Building, Sheffield, S1 3JD, UK

^eDepartment of Physics, Tangshan Normal University, Tangshan 063000, China

^fDepartment of Materials, University of Oxford, Oxford OX1 3PH, UK

^gMaterials and Engineering Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, UK ^hCollege of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China ⁱSchool of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China. *Corresponding authors. E-mail addresses:

dawei.wang@sheffield.ac.uk, buaasyliu@gmail.com, i.m.reaney@sheffield.ac.uk

[#]Author contributions:

H. Ji, D. Wang, W. Bao, Z. Lu, and G. Wang contributed equally to this work.

Composition	tolerance factor (<i>t</i>)	average ionic polarizability (α , Å ³)
0	0.9756	9.0440
0.02	0.9748	9.0727
0.04	0.9739	9.1013
0.06	0.9730	9.1300
0.08	0.9722	9.1587
0.10	0.9713	9.1873

Table S1. Tolerance factor (t) and average ionic polarizability (α) for NBT-SBT-xBMN.

Figure S1. (a) XRD patterns of NBT-SBT-*x*BMN ceramics ($0 \le x \le 0.1$) and enlarged region

from 32° to $33^{\circ} 2\theta$.

Figure S2. Z"-M" spectroscopic plots for NBT-BT-xBMN ceramics

Figure S3. The comparison of P_m , P_r and ΔP studied in this work with other reported energy storage ceramics

Figure S4. SEM of NBT-SBT-xBMN ceramics

Figure S5. Room-temperature Raman data for NBT-SBT-xBMN ceramics

Figure S6. Temperature-dependent dielectric permittivity and loss curves for NBT-0.3SBT-

xBMN ceramics with different frequencies

Figure S7. Temperature-dependent dielectric permittivity and loss curves for NBT-BT-*x*BMN ceramics

Figure S8. <110> zone axis diffraction patterns of NBT-SBT-0.08BMN, showing ½{hkl} superstructure reflections attributed to antiphase rotations of the O octahedra.

Figure S9. The *ε*_r/P-E loops for NBT-BT-*x*BMN ceramics

Figure S10. Cross-sectional (a) SEM image, (b) EDX element line element and mapping of (c) Pt and (d) Bi for NBT-SBT-0.08BMN MLCCs.

Figure S11. Bright field STEM image and corresponding chemical EDX mapping obtained from an interface between a ceramic grain and a Pt grain (electrode).

Figure S12. (a) Unipolar P-E loops for NBT-SBT-0.08BMN MLCCs at room temperature; (b) Temperature dependent unipolar P-E loops; (c) Frequency-dependent unipolar P-E loops; (d) AC cycling unipolar P-E loops.

Figure S13. Unipolar strain versus E-field (S-E) loops for NBT-SBT, $S_{max} \sim 0.17\%$,

hysteresis ~ 12%, and NBT-SBT-8BMN, $S_{max} \sim 0.065\%$, hysteresis ~ 2.9%

