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Abstract: In this paper, we discuss hybrid decision support to monitor atrial fibrillation for stroke1

prevention. Hybrid decision support takes the form of human experts and machine algorithm2

working cooperatively on a diagnosis. The link to stroke prevention comes from the fact that3

patients with Atrial Fibrillation (AF) have a fivefold increased stroke risk. Early diagnosis, which4

leads to adequate AF treatment, can decrease the stroke risk by 66% and thereby prevent stroke.5

The monitoring service is based on Heart Rate (HR) measurements. The resulting signals are6

communicated and stored with Internet of Things (IoT) technology. A Deep Learning (DL) algorithm7

automatically estimates the AF probability. Based on this technology, we can offer four distinct8

services to healthcare providers: 1) universal access to patient data; 2) automated AF detection and9

alarm; 3) physician support; and 4) feedback channels. These four services create an environment10

where physicians can work symbiotically with machine algorithms to establish and communicate a11

high quality AF diagnosis.12

Keywords: Human and AI collaboration; Medical diagnosis support; Deep learning; Symbiotic13

analysis process; human controlled machine work14

1. Introduction15

Cerebrovascular accidents, commonly known as strokes, are the second most deadly disease and16

a leading cause of disability [1]. Ischemic stroke is the most common type of stroke, which accounts17

for ≈80% of all strokes [2]. This type of stroke occurs when the bloodstream, to any part of the brain,18

is blocked by blood clots [3]. When this occurs, brain tissue might get damaged, because the oxygen19

supply is interrupted. That damage can result in death or disability. Around 75% of all strokes happen20

in people aged 65 years or older. A meta study from 2009 shows that, within one year, 20000 UK21

citizens, aged 45 years and below, had a stroke [4]. Worldwide stroke causes around 5.7 million deaths22

annually, while in the UK around 150,000 people suffer a stroke per year out of which 53,000 people23

died [5]. The incidence rate of stroke in males is about 9% of the overall deaths in the UK, the same24
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measure for woman is around 13% [6]. The Framingham Heart Study showed a connection between25

Atrial Fibrillation (AF) and ischemic stroke [7]. To be specific, the severity of strokes, in people with26

AF, is higher and a stroke has worse outcome for people with AF when compared to people without27

AF. AF increases the probability of having a stroke fivefold, when compared to subjects without AF28

[7]. The link between AF and stroke is significant, because AF is the most common heart rhythm29

(arrhythmia) disorder which affects about 1% of the population [8]. The prevalence of AF increases30

with age [9,10]. NHS England estimates that only about 79% of all AF cases are diagnosed [11]. One31

reason for this low detection rate comes from the fact that AF is diagnosed based on heart rhythm32

irregularities and these irregularities might be intermittent (paroxysmal) [12] and some forms of AF33

are even asymptomatic [13]. If an observation coincides with a symptom-free period, then the disease34

cannot be diagnosed. Hence, a reliable AF diagnosis requires long-term monitoring of the human35

heart [14,15].36

Long-term AF monitoring can be done by measuring the electrical activity of the human heart37

via a non-invasive Electrocardiogram (ECG). So-called Holter monitors are used for this task and the38

resulting ECG measurements are most often used for AF detection [16]. However, the measurement39

setup is complex because electrical signals are susceptible to noise. Twelve electrodes are routinely40

deployed by specialized technicians during ECG measurements [17]. Furthermore, ECG signals have a41

high data rate, which makes them difficult and expensive to distribute and process in real-time. Using42

Heart Rate (HR), instead of ECG signals, can help to overcome these difficulties [18]. As such, HR43

signals are composed of beat-to-beat (RR) intervals. Detecting only the R peak makes the measurement44

setup less susceptible to noise and hence less complex. Furthermore, a heartbeat occurs about once45

every second, hence a HR signal communicates around one sample per second. Compared to the46

256 samples a second, used to represent ECG signals, HR signals have a significantly lower data47

rate. Therefore, HR signals can be communicated easily and cheaply via mobile networks. There is48

a large body of literature which establishes that HR signals can be used for AF detection [14,19–22].49

However, the interpretation of the noise-like HR signals is difficult. Even physicians struggle to detect50

AF through visual inspection of the HR waveform. Furthermore, manual HR interpretation results in51

inter- and intra-operator variability, which deteriorates the diagnosis quality. Hence, computer-based52

diagnosis support systems are compulsory for long-term cardiac monitoring [23]. Currently, the53

most promising approach for manual interpretation of HR signals is to extract diagnostically relevant54

information, in the form of digital bio-markers, from the waveform. Even with the support of digital55

bio-markers, physicians can only analyze short HR traces and the analysis can take longer than the56

heart takes to produce the trace. That makes real-time assessment impossible in a practical setting.57

In this paper we propose hybrid decision support to monitor atrial fibrillation for stroke58

prevention. The monitoring service offers universal access to patient HR data, automated AF detection59

and alarm, physician support and a feedback channel to the patients. The service duration is not60

restricted. That means our service supports arbitrarily long observation duration, which might help to61

detect paroxysmal AF cases. The value proposition for the healthcare providers is twofold. From the62

medical perspective, a long observation duration has the potential to establish a higher AF detection63

rate in patients who use the service. Furthermore, the unrestricted observation duration allows a64

physician to monitor the AF treatment efficacy indefinitely. The second value proposition comes from65

hybrid decision support which leads to efficiency in terms of both time and cost. The reading physician66

gets involved only if a Deep Learning (DL) algorithm detected a sequence of AF beats in the HR67

data; at all other times human intervention is not required. Hence, the AF detection service reduces68

the time a physician spends on routine screening tasks. Once AF is detected, the service provides69

information extraction tools to analyze critical sections of the HR trace effectively. The physician70

can combine the extracted information with other information sources, such as patient records and71

personal interaction with the patient, to reach a safe and reliable diagnosis. This diagnosis can be72

communicated via a feedback channel to the patient. The combination of continuous machine analysis73

and human oversight creates a cost-effective system for hybrid decision support. Executing the AF74
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detection algorithm for real-time monitoring loads a current Central Process Unit (CPU) core about75

50%. This translates into low processing cost if the algorithm runs on a cloud server. Furthermore, the76

low-data rate implies that the wireless heart rate sensors have a low energy consumption, which keeps77

both size and cost down. The value propositions focus on the healthcare provider. The patient benefits78

from the AF detection service through patient-led signal acquisition, unobtrusive HR measurement,79

and peace of mind through real-time HR monitoring and diagnosis.80

To support our value propositions, we have structured the remainder of the paper as follows. The81

next section presents the design steps which led to a prototype implementation. Specific emphasis82

was placed on Internet of Things (IoT) and advanced Artificial Intelligence (AI) techniques. The result83

section details the service prototype implementation. The discussion section provides a comparison84

between the proposed service and existing solutions in the market. The conclusion section summarizes85

our method and highlights the major points of the discussion.86

2. Materials and Methods87

We have used service design principles to analyze and structure the AF detection problem88

[24,25]. First, we considered the needs of all stakeholders affected by the proposed service [26]. This89

understanding shapes the requirements for the AF detection service. The next step is to translate the90

stakeholders’ requirements to system specification for a successful implementation. The validity of91

this specification was tested with a prototype implementation, which incorporates hybrid decision92

support. The following sections provide further details on the individual steps which led to the AF93

detection service creation.94

2.1. Need definition95

To establish a need definition it is necessary to introduce the link between AF detection and stroke96

prevention in more detail. A stroke occurs when there is a lack of oxygen that causes brain tissue97

to die suddenly [27]. For Ischemic stroke, the lack of oxygen is due to a blockage of arteries which98

supply oxygen rich blood to the brain. In most cases, that blockage is caused by plaque debris in the99

bloodstream. The heart pumps blood, and indeed the debris, towards the brain tissue through arteries100

with a decreasing diameter. At one point, the debris will block the artery and that will prevent oxygen101

supply to the connected brain tissue. The occurrence of plaque debris is linked to the fluid dynamics of102

the blood flow which is governed by the beat to beat variability of the human heart. The Framingham103

Heart Study showed that rhythm irregularities, which change the heartbeat variability, increase the104

stroke risk [28]. In particular, the study found that a rhythm irregularity (arrhythmia) known as AF105

increases the stroke risk fivefold.106

With that background, the first service design step was to identify the key stakeholders and their107

needs. We found that there are four key stakeholders in the AF detection service. The sole reason108

for creating the service is the fact that AF exists in patients. Hence, this group has the primary need109

when it comes to AF detection for stroke prevention. Healthcare providers aim to address that need110

by creating an appropriate infrastructure. That infrastructure requires investment based on cost and111

benefits. From an abstract point of view, physicians are part of the infrastructure. Their input is crucial112

when it comes to establishing the benefits of a proposed service. Hence, innovators who create AF113

detection services for stroke prevention must address the need of physicians to establish the benefits of114

their method. However, the effort spent in addressing these needs must be balanced with the required115

profitability for a practical problem solution. Table 1 details the need definition results.116

2.2. Requirements analysis117

Based on the need definition, we have captured the required functionality and the associated118

value proposition. Table 2 summarizes both the requirements and value proposition. Cost efficiency119

and decision support quality are the two most important requirements, because they determine if120

the proposed service can be used to improve and extend existing infrastructure. All subsequent121
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Table 1. Stakeholders AF detection service with hybrid decision support.

Stakeholders Needs and wants

Patients Reduced stroke risk, less clinical
visits, mobility, safety

Physicians
Improved clinical outcomes, high
quality diagnosis, safety, reduced
workload

Healthcare providers
High efficiency and quality,
improved productivity and
outcomes, cost effectiveness

Stroke risk
monitoring service
innovators

Profitability, improved outcome

Table 2. Service requirements and their associated value propositions.

Service Requirement Value proposition

A Cost efficient and decision support
quality

More infrastructure to help a larger number of patients

B Raise an alarm when AF is detected Establishing and communicating a suspicion that AF is
present in real-time

C Present the evidence for raising the
alarm

Providing an overview of the estimated AF probability.
This can be used to review the DL results which established
a suspicion and triggered an alarm message.

D Allow to select a time interval
of interest. Subsequently, the
corresponding HR trace can be
analyzed

Download the HR trace which corresponds to the selected
time interval of interest and calculate features from that
HR trace.

E Provide a feedback channel to the
patient

Act on the diagnosis by providing appropriate and timely
feedback to the patient. Act on meta data, such as data
stream interruptions, to ensure patient compliance.

requirements are functional requirements which answer the question: What service do we build? An122

alarm message should only be sent when AF is detected. This requirement reflects the information123

refinement and management nature of the service. An alarm message has a high information content,124

but a low data rate. This functional specification addresses the requirement for reducing the physician125

workload. To be specific, the work to establish a suspicion that AF is present has shifted from humans126

to machines. The AF detection service is a diagnosis support tool, that means all diagnostic decisions127

lie with the physician. To support that decision, the AF detection service must provide evidence which128

lead to the suspicion that there is a disease present. This can help to ensure both functional safety and129

quality of the diagnosis. It should be possible to provide evidence even if there is no alarm message.130

This can help during root cause analysis, and to improve the service. For example, the proposed131

service failed to detect AF in a specific patient. Having the ability to retrieve evidence in the form of132

raw signals might help to establish what caused that fault. That root cause analysis result is the first133

step to improve the algorithms which provide hybrid decision support. The proposed service should134

also provide a feedback channel which allows the service provider to communicate with the patient.135

That channel can be used to disseminate diagnosis results and send messages which help with patient136

compliance.137

To get a better understanding about the functional requirements of the proposed service, we have138

visualized the service requirements as a sequence of interrelated actions, see Figure 1. These actions139

were orchestrated along a timeline to create a relatable structure which orders the individual events.140

The timeline starts with the healthcare provider, represented by a nurse, registering a patient with141

the AF detection service. Once registered, the patient captures heart rate measurements which are142

relayed via a smartphone to a cloud server [29]. In the cloud server the data is stored and analyzed143

by a DL model [30]. When the analysis results indicate that symptoms of AF were found in the HR144
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Figure 1. Required service functionality over time.

data, the cloud logic will send an alarm message to the assigned physician. That message is sent145

within 5 minutes of the AF event. In response to the alarm message, the physician will review the146

evidence contained in the HR trace and fuse this information with further knowledge and experience147

concerning the patient, in order to reach a diagnosis. If the diagnosis is negative, i.e. the physician148

decides the patient does not have AF, monitoring for AF continues. Once AF is diagnosed, treatment149

can be initiated. The treatment efficacy can now be monitored with the same system setup. If AF is150

diagnosed again, treatment can be adjusted, and the monitoring continues. The next section details the151

functional specification which was created to meet the system requirements.152

2.3. Specification refinement153

The specification establishes how the AF detection service is built. This is done by refining the154

requirements and thereby increasing both clarity and rigor of the documentation. The AF monitoring155

is done by detecting disease related changes in HR signals. These signals are easy to measure, cost156

efficient to communicate, as well as resource efficient to store and process. Hence, this refinement157

addresses the cost efficiency requirement for the proposed service [31]. Using HR signals provides the158

foundation for the functional specification. We have structured the functional specification into six159

service components. The following list details how to build these service components:160

(i) Smart device activation161

The smart device activation service enables a patient’s device to activate and establish an account162

with the healthcare provider. At the start of the service subscription, the healthcare provider163

registers the patient with the database on a cloud server. The unique account contains patient164

information. Necessary fields are: Patient ID, assigned physician, service start date, service end165

date. The registration will provide the cloud server login key. This login key is used for both166

user authentication and data acquisition setup.167

(ii) Cloud server storage168

The patient’s HR data and the DL classification results are stored in the cloud server. This service169

allows the authorized users to retrieve the data anytime and anywhere.170

(iii) Real time HR monitoring service171

The patient wears a breast strap with an embedded HR sensor. The sensor picks up the HR172

signals. These real-time data are displayed on patient smart devices. The patient co-creates value173

by providing and integrating the data into the AF detection service.174

(iv) Automated AF detection and alarm service175

The DL algorithm analyzes patient real time HR data, and classifies the data as AF or non-AF.176
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Figure 2. Architecture of the AF detection system for hybrid decision support.

Once an AF sequence is detected, the system will send an alarm message to the assigned177

physician. The DL algorithm creates the core value for the system.178

(v) Physician diagnosis support service179

The physician support service incorporates algorithm support in the form of DL results and180

diagnosis support tools. It helps the physician to verify the DL results, and to reach a diagnosis.181

The value of this diagnosis is twofold. First and foremost, it helps to initiate treatment which182

might improve outcomes for the patient. A secondary use for an established diagnosis arises183

when we consider improving the DL algorithm. To be specific, a diagnosis becomes ground184

truth which can be used to continuously retrain the DL model. That continued retraining has the185

potential to improve the detection quality of the algorithm.186

(vi) Feedback and intervention service187

Once the physician has reached a diagnosis, the feedback service can be used to communicate188

the result to the patient. Social media, email and personal phone calls can be used to provide189

feedback. Timely appropriate intervention can be carried out to boost the outcomes for patients.190

Another use for the feedback service is the dissemination of patient compliance messages. For191

example, through data analytics it is possible to establish if there is a signal interruption. A192

compliance message over the feedback channel might help to re-establish the data flow.193

3. Results194

This section describes how we translated the specification into an implementation. The service195

components were translated into software processes, executed by standard machine architectures,196

and communicating over available infrastructure. Figure 2 visualizes the data flow between different197

functional entities of the service. The arrangement of the data flow diagram indicates the central role198

of the cloud storage. The HealthCare app relays the sensor data to the cloud storage. The cluster199

computing sources the data from the cloud server and, once the data is analyzed, puts the result back.200

The processes are managed based on information from the real-time database. This information is201

particularly useful to establish the conditions when and to whom an alarm message is sent. This202

functionality is essential to create the hybrid decision support which allows medical experts to work203

efficiently with smart machines. The following sections introduce the functional entities in more detail.204

205
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Figure 3. HeartCare app login screenshot.

Figure 4. Thingspeak data visualization.

3.1. Real-time database206

The patient information management is based on real-time database entries. During the initial207

registration process, a representative of the healthcare provider creates a patient record. That record208

contains patient-specific information, such as username and password as well as system-specific209

information like a cloud server key which unlocks dedicated data channels. After the initial registration,210

a patient can use the username and password to login to the HeartCare app. This authentication211

ensures that the HR measurements are relayed into the patient specific cloud server channels. The212

controller node in the cluster uses the patient records to set up the patient monitors, which analyze the213

HR data in real time. The patient information is also used to manage the alarm message distribution.214

3.2. HeartCare mobile app215

The AF detection service facilitates patient-led data acquisition. Figure 3 shows a screenshot of216

the HeartCare app log in. The background depicts an averaged HR trace measured with a polar H10217

sensor. The dialogue in the foreground requests the user to enter the login data for the Thingspeak218

cloud server [32]. Each patient has a unique API key. Once logged in, the HeartCare app relays the219

HR data from the sensor to the patient-specific RR_interval_data channel on the cloud server. Both220

patient and authorized physicians can access the patient’s data anywhere using the same API key.221

3.3. Cloud storage222

Each patient account has two cloud storage channels. The first channel, called RR_interval_data,223

holds the HR measurements. The content is updated when the HeartCare app relays HR signals to224

the cloud server. The second channel, called AF_detection_result, holds the DL classification results.225

The result channel content is updated when the patient monitor produces a new result. Figure 4 shows226

a patient’s HR data on the Thingspeak cloud server.227
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Figure 5. Flowchart of the classification system.

Once an AF episode is detected by the DL algorithm, the cloud logic will send an alert to the228

assigned physician. Sending the alert message can be facilitated with a range of communication229

channels, such as email, twitter, and instant messages. The message alerts the physician that a230

dangerous condition has occurred, i.e. AF was detected. The physician decision support and diagnosis231

service can be used to review the available evidence and to reach a diagnosis.232

3.4. Patient HR data processing in the cluster233

The cluster executes a patient monitor process for each patient. That process network facilitates a234

real-time data analysis [33]. To accomplish that task, each patient monitor consists of three processes.235

The first process checks if there is new HR data in the RR_interval_data channel on the cloud. The236

new data is passed on to the second node, which executes a DL model. The DL results are passed to237

the third process which relays them to the AF_detection_result channel on the cloud server.238

Processes one and two of the patient monitor handle the data exchange between the cluster and239

the cloud server. The main task for the patient monitor and indeed for the AF detection service is240

real-time HR analysis. We have realized this functionality with an Long Short-Term Memory (LSTM)241

Recurrent Neural Network (RNN) DL model. The model was trained with benchmark data from 20242

patients. The data is available from PhysioNet’s [34] Atrial Fibrillation Database (AFDB) [35]. 10-fold243

cross validation established an accuracy of 98.51%, a specificity of 98.67% and a sensitivity of 98.32%,244

as reported by Faust et al. [14]. A hold-out [36] accuracy of 99% was established with data from245

three patients. Further hold-out tests established that the DL model could detect AF in unknown HR246

data with 92% and 94% accuracy for data from LTAFDB and NDSDB respectively [37]. The physician247

support module makes the DL results available for physicians in the form of a value ranging from 0 to248

1, which indicates the estimated AF probability. Figure 5 shows the design structure of the proposed249

DL system. The DL algorithm is composed of three layers, namely bidirectional LSTM, Global max250

Pooling, and Fully connected; for more information about the algorithm see Faust et al. [14]. The251

simple structure leaves little space for design errors [38]. Furthermore, the implemented DL algorithm252

does not require feature engineering. Hence, there is no information reduction due to feature selection,253

which improves both accuracy and robustness of the performance results [16].254

3.5. Physician support255

Physician diagnosis support is a major service component, which was specified in Section 2.3. The256

implementation of this service component manages the data available on the cloud server. The service257
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component establishes an interface which allows a physician to verify the automated diagnosis results.258

In other words, the physician can analyze the data and either accept or reject the decision reached by259

the AI system. We implemented that service component by extending an existing HR analysis and260

visualization tool. The tool is called the Heart Rate Variability Analysis Software (HRVAS) program,261

originally developed by Ramshur [39] and published under the GNU public license1. We extended262

the program with the ability to download both HR data and the estimated AF probability from the263

cloud server. Having both, the raw data and the DL results, allows a reading physician to review264

the available evidence either through visual inspection or through the use of digital biomarkers. For265

example, visual inspection might reveal fundamental data problems, such as all RR samples having266

the same value. Digital biomarkers can help to confirm the DL decision result. The ability to establish267

independent human verification of the machine learning results is a main component for the proposed268

hybrid decision making process [40].269

Figure 6 shows a screenshot of the extended HRVAS program. A drop-down menu allows the270

user to select the HR signal from a specific patient. The screenshot shows that the signal from patient271

08455 was selected. As such, the signal from that patient was originally downloaded from the AFDB272

on PhysioNet, and subsequently it was uploaded to the cloud server [34,41]. The benchmark data273

allowed us to test the physician diagnosis support service component implementation. The HRVAS274

Graphical User Interface (GUI) displays the DL results in the upper graph on the left. Displaying the275

DL results gives an overview of the estimated AF probability, i.e. the reading physician can determine276

at what time the patient had an increased AF probability. Based on that reading, the physician can277

select a region of interest and view the HR signal, which corresponds to that region, in the second278

window. The HR signals trace is colored in accordance with the estimated AF probability.279

Apart from visual signal inspection, the main purpose of the HRVAS program is to visualize280

digital biomarkers. The workflow unfolds as follows. The physician selects a region of interest on the281

estimated AF probability graph. Once the region is selected, the corresponding HR trace is displayed282

and the digital biomarkers for this region are calculated. The biomarker values are displayed in the283

right part of the HRVAS GUI. The screenshot in Figure 6 shows time domain biomarkers. The HRVAS284

documentation provides more details on the available digital biomarkers [39]. These biomarkers285

are designed to help physicians during the process of validating the DL results and establishing a286

diagnosis.287

3.6. Feedback and intervention288

Once the physician has reached a diagnosis, the feedback and intervention service communicates289

with the concerned patient. Social media, email and personal phone calls can be used to provide290

feedback. One way to structure the feedback content is a simple traffic light system: Green – all is well.291

Orange – take predetermined precautionary action. Red – see your physician immediately.292

4. Discussion293

The system reaches a diagnosis through a hybrid decision-making process [42]. The hybrid294

process offers three main advantages: 1) safety through human checks and balances, 2) significantly295

reduced physician workload, and 3) increased efficiency, which enables real-time diagnosis. The296

hybrid decision-making process is based on analysis results which are condensed to an independent297

first opinion on the data [43]. To be specific, we propose a system where an AI algorithm analyzes298

the available data in real time and a human practitioner only becomes involved if a suspicion is299

established. However, that design choice is only valid if the AI algorithm is very sensitive when it300

comes to the detection of AF in HR signals. Another central requirement is cost efficiency. Furthermore,301

unspecific decision making is not cost effective, because a human expert gets alarmed often and the302

1 https://github.com/jramshur/HRVAS

https://github.com/jramshur/HRVAS
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Figure 6. Screenshot of the modified HRVAS program.

machine decisions are routinely overruled. Such unnecessary involvement of human expertise would303

be inefficient, and indeed it would be wasteful in terms of time spent rejecting the machine decision,304

which translates into additional cost for the healthcare provider. Hence, we require the decision305

support algorithm to have both high Specificity (SPE) and high Sensitivity (SEN). In effect that leads306

to a high Accuracy (ACC). Table 3 summarizes research work for the automated detection of AF in307

ECG and HR signals. The performance measures, reported in the three columns at the right of the308

table, indicate two points: 1) there is no performance difference between studies based on ECG and309

HR signals 2) both SEN and SPE values are very high. Hence, these algorithms are sufficiently potent310

to justify large-scale AF detection in a practical service environment.311

The proposed AF detection service is based on hybrid decision support which uses advanced AI312

for automated AF detection. The high accuracy of this algorithm sets it apart from other solutions313

currently on the market. The following paragraphs provide some background on current solutions.314

An Apple Watch and iPhone combination can be used to detect irregular pulse. The Apple315

watch measures the pulse. Once the signal is captured, an algorithm chain analyses the data. The316

user receives an alarm message if an irregular pulse is detected. During hold-out validation with317

benchmark data, that system achieved a positive predictive value of 71% (i.e. only 71% of AF detection318

by the Apple Watch were actual AF detection; the remaining 28% AF were not). Based on the same319

measurements, researchers found that 84% of the participants that received irregular pulse messages320

had AF. In a subsequent open study 400,000 users were enrolled. 0.5% of the participants received321

irregular pulse messages. Apart from that pulse-based studies, the Apple watch also features a finger322

ECG sensor with an AF detection function. However, this only works for as long as the user holds323

their fingers on the sensor. This may not be long enough to detect AF.324

All Apple Watch-based health applications are consumer gadgets, which can establish a suspicion325

that AF might be present. This suspicion would need to be confirmed by a physician using a heart rate326

monitoring system.327
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Table 3. Selected arrhythmia detection studies using HR and ECG. Database (DB) used were: MIT-BIH
Atrial Fibrillation Database (afdb), MIT-BIH Arrhythmia Database (mitdb), MIT-BIH Malignant
Ventricular Arrhythmia Database (vfdb), Creighton University Ventricular Tachyarrhythmia Database
(cudb), MIT-BIH Normal Sinus Rhythm Database (nsrdb), MIT-BIH Long Term Database (ltdb),
European ST-T Database (edb), and ecgdb. Hospital data comes from non-publicly accessible databases.

Author year Method Data Performance
Type DB Rhythm ACC SPE SEN

Faust et al. 2020 [44] Detrending, ResNet HR ecgdb

AF Atrial
Flutter (AFL)
Normal Sinus
Rhythm
(NSR)

99.98 100.00 99.94

Ivanovic et al., 2019
[45] CNN, LSTM HR Hospital NSR, AF AFL 88 87.09

Fujita and Cimr, 2019
[46]

CNN with
normalization ECG afdb, mitdb,

vfdb
AF, AFL,
VFIB, NSR 98.45 99.87 99.27

Faust et al., 2018 [14] LSTM HR afdb AF NSR 98.39 98.32 98.51
Acharya et al., 2017
[47] CNN with Z-score ECG afdb, mitdb,

vfdb
AF, AFL,
VFIB, NSR 92.50 98.09 93.13

Henzel et al., 2017
[48]

Statistical features
with generalized
Linear Model

HR afdb AF NSR 93 95 90

Desai et al., 2016 [49]

RQA with
DecisionTree,
RandomForest,
RotationForest

ECG afdb, mitdb,
vfdb

AF, AFL,
VFIB, NSR 98.37

Acharya et al., 2016
[50]

Thirteen nonlinear
features with
ANOVA with KNN
and DT

ECG afdb, mitdb,
vfdb

AF, AFL,
VFIB, NSR 97.78 99.76 98.82

Hamed and Owis,
2016 [51] DWT, PCA and SVM ECG afdb AF, AFL, NSR 98.43 96.89 98.96

Xia et al., 2018 [52] STFT/SWT with
CNN ECG afdb AF 98.63 98.79 97.87

Petrėnas et al., 2015
[53]

Median filter with
threshold HR nsrdb, afdb AF NSR 98.3 97.1

Zhou et al., 2014 [54]
Median filter &
Shannon entropy
with threshold

HR ltafdb, afdb,
nsrdb AF NSR 96.05 95.07 96.72

Muthuchudar and
Baboo, 2013 [55] UWT NN ECG afdb AF, VFIB,

NSR 96

Yuanet al., 2016 [56]
Unsupervised
autoencoder NN
Softmax regression

ECG afdb, nsrdb,
ltdb, hospital AF 98.18 98.22 98.11

Pudukotai
Dinakarrao and
Jantsch, 2018 [57]

Daubechies-6 with
counters Anomaly
detector

ECG mitdb AF, VFIB 99.19 98.25 78.70

Salem et al., 2018 [58] Spectogram with
CNN ECG afdb nsrdb

vfdb edb
AF, AFL VFIB
NSR 97.23
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KardiaMobile with KardiaPro can be used to detect AF at home. The system is based on two328

electrodes which measure finger ECG. Based on these signals, the device decides if AF is present. In a329

study with 51 participants, the device had 8% AF yield, i.e. 4 people were subsequently diagnosed330

with AF.331

Like the Apple watch iPhone combination, KardiaMobile is a gadget which establishes a suspicion332

that AF is present. For a subscription fee of £58/mo, it is possible to store the ECG data on a cloud333

service. However, the measurement is not continuous, 30 second ECG snippets are acquired whenever334

a patient activates the device. Based on such ad hoc measurements, the AF detection algorithm might335

miss an AF period. If an AF period is detected the device raises an alarm and it is up to the patient to336

interpret that information.337

Holter monitor with software, such as CardioScan, is the gold standard for AF diagnosis and is338

the standard measurement device used by clinicians. Before a Holter monitor is used, a suspicion is339

established through the experience of a physician or a gadget. In response to this suspicion, a trained340

technician will set up the Holter-monitor (place electrodes on the patient’s chest etc.). Once the setup341

is completed, the patient wears the device for up to 48h. The recorded ECG signal is analyzed once the342

device is returned to the issuing clinic. The Holter service costs £50 for a 10h recording. Apart from the343

cost, Holter monitors have significant drawbacks. The AF detection rate is positively correlated with344

the observation interval, i.e. a longer observation interval increases the probability of detecting AF. The345

data analysis can only start once the Holter monitor is returned; this lack of real-time responsiveness346

becomes a problem should one choose to increase the observation interval significantly. Wearing a347

Holter monitor restricts patients’ mobility. If the electrodes detach, the patient must visit the clinic.348

Our AF detection service offers long observation intervals and real-time computer aided diagnosis.349

The data handling cost is about £30/mo. We envisage that it would replace the Holter system as350

the clinical gold standard for AF diagnosis. With a positive predictive value of 95.40%, our system351

achieved a higher AF detection quality when compared to the competitors. The physician support352

module helps physicians to reach a diagnosis. Establishing a diagnosis and not only a suspicion makes353

timely intervention possible. Table 4 summarizes the comparison of the AF detection service with354

three main competitors.355

4.1. Limitations356

In this paper we outline the design process for a proof of concept AF detection service which357

incorporates hybrid decision support. As such, this does not yet meet all the stakeholder needs. Before358

we can offer a complete service monitoring service to patients, the following problems need to be359

addressed:360

(i) An alarm message is sent when a dangerous situation arises. Initially what constitutes a361

dangerous condition could follow Holter monitoring protocols. For example, an AF event362

is detected when the estimated AF probability is above 0.5 for at least 30 s [59]. However, it is363

not known if such an approach is sensitive and indeed specific enough to capture the stroke risk364

for patients.365

(ii) Obtaining necessary regulatory approvals (not just UK & EU) especially as regulatory366

requirements are increasing significantly with the transition to the much more demanding367

Medical Device Regulations. This can be a long and iterative process.368

(iii) Negotiating and executing mutually beneficial and sustainable agreements with appropriate369

commercial partners.370

(iv) Speed to market. Alternative less sophisticated solutions are already available and new solutions371

are in development.372

4.2. Future work373

Addressing the limitations should start with formulating research questions for future work.374

The proposed hybrid decision support to monitor AF for stroke prevention can help to manage and375
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Table 4. Comparison of the AF detection service with three main competitors.

Service Apple watch and
iPhone

KardiaMobile with
KardiaPro

Holter monitor with
CardioScan

Performance evaluation
Quality PPV: 95.40% PPV: 71% (Pulse) 8% AF yield N/R
No. patients 82 N/R 50 N/R
Dataset AFDB & LTAFDB Measurement data Measurement data Measurement data

System properties
Signal Heart Rate ECG Finger ECG ECG
Processing Cloud server Local Cloud server Local
Real-time Yes Yes Yes No

Diagnosis Symbiosis between
physician and DL None None Feature support

Data storage Unlimited None Snippets Limited

Model update
Retraining the DL
model with
cloud-data

None None None

Use case scenario
Customer Healthcare provider Patient Patient Healthcare provider
Physical
equipment

Heart rate sensor and
android phone

Apple watch and
iPhone KardiaMobile device Holter monitor

Measurement Patient led Patient led Patient led Expert led

Result
Diagnosis DL
decision validated by
a physician

Suspicion BlackBox
decision. Follow-up
with Holter recording
for diagnosis

Suspicion BlackBox
decision. No clear
follow-up.

Diagnosis
Established by a
physician with
analysis support.

Limitations

Diagnosis
HR for diagnosis
support is a new
paradigm.

No diagnosis.
Diagnosis is
established through
Holter recordings.

No diagnosis.

Inter- and
intra-observer
variability. Labour
intense.

Safety Human and machine Not critical Not critical Human
Cost

Hardware £ 300 £ 1000 £ 99 and mobile cost £ 1,885.00
Service £ 30 / month Free £ 9.99 / month £ 50 for 10h
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indeed utilize the real time information flow that results from extending the observation duration. The376

prolonged observation duration might lead to new insights about the way in which AF develops in377

the human body. These new insights should be used to improve and adjust the service functionality. It378

might be possible to learn and indeed to formulate how human experts interpret the results which lead379

to a diagnosis. For example, the process generating the alarm message might take into consideration380

patient age, disease history, and severity as well as duration of the AF event.381

For future work, we propose two clinical studies. The first clinical study is designed to build382

trust in the technologies which enable the service functionality. We plan to measure HR and ECG383

from 20 patients at the same time. These measurements will be stored in buffers within the sensors.384

The ECG analysis results will be considered as ground truth with which the automated HR analysis385

results are compared. That will allow us to establish accuracy, sensitivity, and specificity in a practical386

setting. During the second study, we will focus on fine tuning the clinical processes necessary to deal387

with real time HR data. We plan to involve three clinical sites with 20 patients each. We will recruit388

participants with both known and unknown etiology to get deeper insights into the link between HR389

and the nature of embolisms which might lead to stroke [60]. During that study, a patient is only fitted390

with one sensor which communicates HR with a wireless uplink. The wireless uplink will generate391

a real time data stream which is analyzed automatically with a DL algorithm. That implies data is392

transmitted from the patient environment to a medical cloud server. This will require considerable393

planning to safeguard the medical infrastructure.394

Another aspect for future work is reviewing and potentially influencing the regulatory framework395

that governs medical decision support systems. Currently, the UK2 classifies diagnosis support396

algorithms as medical devices for which certification is required. More work is needed to capture the397

learning nature of AI algorithms. To be specific, it is not clear how to establish device safety when398

the functionality changes based on the availability of more data. This is a challenge, not only for the399

medical device regulation agencies, because retraining the algorithm means changing the decision400

support model and hence the device is not the same as the one which was approved. Initially, a service401

provider might train new models and have them certified when they show a measurable improvement402

over the deployed decision support models. In the future, it might be possible to certify the method403

which retrains the learning algorithm. That would shorten the time for patients to benefit from new404

decision support models and it would reduce the administrative effort.405

Using the proposed AF detection service for many patients over long time periods leads to big406

data with reliable labels. With these datasets it might be possible to gain knowledge about deeper407

structural properties of AF, such as the relationship with long-term beat patterns and arrhythmias.408

These structural properties can help to predict and eventually prevent AF for many patients. One409

prerequisite for this ambitious vision is to create an environment which allows for a continuous410

retraining of the DL network. Retraining will gradually improve the DL models in terms of detection411

performance. This will lead to earlier detection of less severe forms of AF. During the retraining412

process it might be possible to identify the beat irregularities which indicate AF onset. We might413

discover AF background, which indicates the presence of the disease, without observing the rhythm414

irregularities.415

The AF detection service success depends on the hybrid decision support functionality which416

establishes the cooperation among human experts and machines. For the proposed setup, the human417

expert is firmly in control. Digital biomarkers allow us to establish the validity of the DL result.418

However, as we move from inference, i.e. detecting AF, to predicting AF these digital biomarkers419

and indeed human expertise are less able to carry out that validation task. There might be no human420

detectable patterns which foreshadow the onset of AF. Hence, the responsibility for the diagnosis shifts421

2 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/
Software_flow_chart_Ed_1-06_FINAL.pdf

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/Software_flow_chart_Ed_1-06_FINAL.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/890025/Software_flow_chart_Ed_1-06_FINAL.pdf
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towards the machine results. This might be ethically acceptable, because predicting AF implies that422

we are dealing with a mild form of the disease which requires only a gentle intervention and results423

in mild or no side effects. Hence, the role of human oversight might vary depending on the severity424

of the intervention. For example, a decision to initiate a treatment through anticoagulation should425

be supported by evidence in the form of physiological signal measurements together with adequate426

human analysis, because the intervention carries the risk of death. If the intervention consists of a427

suggestion to change lifestyle choices such that AF can be avoided, then the requirement for human428

verification might be minimal. We predict that future hybrid decision support structures will offer429

such a nuanced validation approach.430

5. Conclusion431

In this paper we propose hybrid decision support for stroke prevention based on automated AF432

detection in HR signals. Commercial HR sensors are used for data acquisition. The sensor data is433

relayed via mobile phone to a cloud server for data storage. A DL model evaluates the HR data in real434

time. The real-time evaluation results take the form of an estimated AF probability. The physician can435

use that result as a second opinion which might improve the AF diagnosis, which ultimately leads to a436

stroke risk stratification. To support physicians during the diagnosis, we have incorporated DL results437

and digital biomarkers in the proposed GUI to provide two independent analysis results. Having two438

independent results has the advantage that there is no single point of failure and the digital biomarkers439

can be used to validate the DL results.440

Real-time AF monitoring and diagnosis systems are of great interest because they allow an441

early diagnosis, which might improve patient quality of life, and provide a promising alternative to442

current healthcare processes. The value propositions focus on the healthcare provider. The patient443

benefits from the stroke risk monitoring service through patient-led signal acquisition, unobtrusive444

HR measurement, and peace of mind through real-time HR monitoring and diagnosis.445

The proposed real-time stroke risk monitoring service has the potential to provide benefits for446

patients who suffer from heart conditions via accurate automated diagnosis as well as non-intrusive447

and uninterrupted treatment monitoring. It also reduces the healthcare cost by replacing expert with448

machine work. Furthermore, the number of visits to specialized care facilities is kept to a minimum,449

which benefits the patient and keeps costs low.450
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CPU Central Process Unit471
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DL Deep Learning473

ECG Electrocardiogram474

GUI Graphical User Interface475

HR Heart Rate476

HRVAS Heart Rate Variability Analysis Software477

IoT Internet of Things478

LSTM Long Short-Term Memory479
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RNN Recurrent Neural Network481

SEN Sensitivity482
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