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Abstract: The food manufacturing sector is one of the most dominant consumers of energy across the
globe. Food processing methods such as drying, baking, frying, malting, roasting, etc. rely heavily
on the heat released from burning fossil fuels, mainly natural gas or propane. Less than half of
this heat contributes to the actual processing of the product and the remaining is released to the
surroundings as waste heat, primarily through exhaust gases at 150 to 250 �C. Recovering this waste
heat can deliver signi�cant fuel, cost and CO2 savings. However, selecting an appropriate sink for
this waste heat is challenging due to the relatively low source temperature. This study investigates a
novel application of gas-to-air low temperature waste heat recovery technology for a confectionary
manufacturing process, through a range of experiments. The recovered heat is used to preheat a
baking oven’s combustion air at inlet before it enters the fuel-air mixture. The investigated technology
is compared with other waste heat recovery schemes involving Regenerative Organic Rankine Cycles
(RORC), Vapour Absorption Refrigeration (VAR) and hot water production. The �ndings indicate
that utilising an oven’s exhaust gases to preheat combustion air can deliver up to 33% fuel savings,
provided a su�ciently large heat sink in the form of oven combustion air is available. Due to a
lower investment cost, the technology also o�ers a payback period of only 1.57 years, which makes it
�nancially attractive when compared to others. The studied waste heat recovery technologies can
deliver a CO2 savings of 28�356 tonnes per year from a single manufacturing site. The modelling and
comparison methodology, observations and outcomes of this study can be extended to a variety of
low temperature food manufacturing processes.

Keywords: waste heat recovery; baking; energy e�ciency; food manufacturing; organic rankine
cycle; vapour absorption cooling

1. Introduction

The food and drink sector involving processing, packaging, transportation, retail, consumption
and disposal is heavily reliant on fossil fuel consumption, thereby making it one of the largest consumers
of fossil fuels worldwide [1�4]. In the EU, the food sector accounted for 17% of the gross energy
consumption in 2013, and around 79% of that energy came from fossil fuels [5]. A study on the US
food system reported 13.8% energy consumption by the food sector of the total in the country from
2000 to 2010 [6]. It also indicated an average growth of 34% in energy consumption of the US food
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system in the last 60 years. With the rapid increase in the world population and consequent rising
food demands, the energy consumption in the food manufacturing sector is expected to continue to
rise in the future [3,7�9]. A study conducted by Paolo et al. [10] showed a 3- and 2.5-fold increase in
global crop and animal production, respectively, in the past 50 years. The processing/manufacturing
phase in the food chain has considerably higher fossil fuel consumption rates [11]. In the UK, the food
and drink manufacturing sector consumed 60.5 TWh of energy compared to 12 TWh by agriculture
and 12 TWh by retail in 2011 [12]. An article published by the European Commission [5] reported that
6.6 GJ of energy was consumed by the processing phase alone in the EU, which is 28% of the total
energy consumption by the entire food chain.

The processing phase consists of food manufacturing operations such as baking, drying, frying,
roasting, general heating, etc. These manufacturing processes rely on the direct heat released from
burning fossil fuels, usually natural gas or propane, in specially designed equipment. A proportion of
the heat supplied to these ovens contributes to the actual product processing and the rest is vented
to the surrounding area with the exhaust gases as waste heat at 150 to 250 �C. In the UK alone,
the food and drink manufacturing sector releases circa 2.8 TWh of recoverable waste heat into the
atmosphere, annually [13]. Increasing the energy e�ciency of modern manufacturing machinery
by design improvement is extremely challenging, as it may already be operating at high e�ciency
according to the original design. However, an alternative option is to capture and recycle the waste
heat back into the system to reduce the overall energy footprint of the manufacturing site. It is
estimated that recovering waste heat from the UK food and drink manufacturing sector can potentially
save £70 million and 500,000 tonnes of CO2 emissions, annually [13]. In order to realise this huge
opportunity for energy e�ciency and carbon reduction, the Department for Business, Energy and
Industrial Strategy (BEIS) of the UK government has launched several ambitious grant programmes
for industry such the £18 million Industrial Heat Recovery Support (IHRS) [14] programme in 2018
and £315 million Industrial Energy Transformation Fund (IETF) [15] in 2020, especially targeting waste
heat recovery from industrial processes.

Many mature technologies for waste heat recovery and utilisation are commercially available
on the market, such as the Organic Rankine Cycle (ORC), to convert waste heat into electricity,
Vapour Absorption Refrigeration (VAR), to produce a cooling e�ect, production of hot water or
steam through an economiser, pre-heating combustion air through a recuperator and pre-heating the
feedstock using a regenerator. Numerous studies on the application of ORC and VAR for waste heat
recovery are available [16�28] in various industrial sectors. A few studies comparing ORC with VAR
are available [29]. However, there is little information on the process of systematically selecting the
best technical and economic solution from all the choices available, especially in food manufacturing
processes where the waste heat leaves through the exhaust air at relatively low temperatures [29�31].
The quantity and quality of heat source available from a food manufacturing process determine
the design operating conditions for ORC and VAR systems and have a direct in�uence on their
performances. Therefore, the existing ORC and VAR models in the literature cannot be directly used
for estimating their techno-economic feasibility against any other waste heat recovery solution such as
combustion air preheating for food manufacturing processes. Additionally, the option of air-to-air heat
recovery has not been adequately explored, especially for the food industry. Although the air-to-air
heat recovery technology is fairly established for power generation cycles where the temperatures
are comparatively higher, it is essential to assess its suitability for industrial baking, as the baking
mechanism, machinery and conditions are di�erent [32�36].

The focus of this work is not on the development of new technology or improving existing
technology. Rather, the focus is on the development of a systematic approach for determining the best
heat recovery solution based on technical, environmental and economic considerations. This work
develops a systematic methodology for comparing various low grade waste heat recovery solutions
for the industrial baking process based on fuel savings, operational cost savings, CO2 savings and
return on investment (ROI) using analytical and numerical models. It also carries out actual design,



Energies 2020, 13, 6446 3 of 26

development and experimental testing of a novel low-grade gas-to-gas waste heat recovery solution for
the baking sector for pre-heating the combustion air. The recovered waste heat from an industrial-scale
baking oven at a UK-based confectionary manufacturing site was recycled to pre-heat the oven’s
combustion air. These experimental results were compared with analytical and modelling results for
other heat recovery technologies mentioned above to develop the methodology of arriving at the most
rewarding solution for heat recovery.

Not only the baking industry, but a variety of similar low temperature and energy-intensive food
manufacturing processes can bene�t from the observations and �ndings presented in this work.

2. Methodology

Six di�erent types of waste heat recovery solution involving direct fuel/gas saving, electricity
generation, cooling and hot water production have been investigated through modelling and
experiments. A detailed description of the industrial baking machinery used for analysis is given in
Section 2.1. A gas-to-gas low-grade waste heat recovery technology to preheat oven’s combustion
air using heat from exhaust gases was designed, developed and tested through experiments and
modelling. Its performance was compared with other existing waste heat recovery technologies,
ORC, VAR and gas-to-liquid heat recovery. Simulation models for ORC, VAR and gas-to-liquid heat
recovery technologies were developed using experimentally derived inputs and existing literature.
Sections 2.2�2.6 describe the experimental, modelling and techno-economic assessment methodology
followed for the comparisons.

2.1. Baking Oven

A fully automatic wafer baking oven, shown in Figure 1, producing �at rectangular wafer sheets,
was used for the experiments and analysis. A mixture of water, �our and �avouring ingredients was
used to prepare the batter, which was then poured onto the baking plates �xed in tong frames. The tongs
are �xed with graphite bearings and are revolved across the length of the oven using long chain drive
powered by a 5 kW electric motor. The baking plates are heated to the desired temperatures as they
are transported through the oven by burning a mixture of natural gas and ambient air (also called
combustion or primary air) in the triangular burners located below the tong chains. The baking plate
surface temperature, measured using a pyrometer, regulates the burner blower frequency and the
fuel-air mix �ow through a Zero Pressure Regulator.
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Figure 1. Schematic of a pilot-scale wafer baking oven highlighting the key components of the oven [37].

The Automatic Wafer Baking Machine consists of: 1. Service door. 2. Emission extraction unit. 3.
Burner device. 4. Baking space. 5. Batter depositing station. 6. Wafer take-o� station. 7. Control pane.
8. Waste scraper. 9. Wafer inspection device.
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The batter is baked into wafer sheets in one revolution. These wafer sheets are carefully collected
in the wafer sheet take-o� station and sent to the processing line. The oven is also supplied with a
cooling or secondary air �ow through the sidewalls to protect the bearings from any damage resulting
from overheating. The products of combustion, cooling air and moisture from the batter are extracted
using an extractor fan operating at 40 Hz (1160 rpm). The fan speed is monitored using a di�erential
pressure control device. The overall exhaust gases from the oven are vented through a rooftop exhaust
duct. The temperature of the exhaust gases could vary from 130�205 �C depending on the batter recipe,
oven design, ambient conditions, operative regime, fuel used, etc. The heat lost in the exhaust gas is
not used in any other process downstream and is, hence, considered waste heat. The performance of
the wafer baking oven is measured in terms of fuel consumption to produce the unit weight of the
wafer product. This is also known as the oven productivity and is determined by Equation (1):

�baking =

.
Q f uel
.
!wa f er

(1)

where
.

Q f uel is the energy supplied (in kWh) to the oven over a unit time and
.
!wa f er is the wafer

produced (in kilograms) in the same amount of time.

2.2. Combustion Air Preheating Experiments

The e�ect of combustion air temperature on the overall oven performance was determined through
conducting a series of experiments on pilot-scale baking oven, which is a scaled-down version of
the industrial oven explained in Section 2.1. At normal operating regime, combustion air is taken
directly from inside the factory building, which is at around 30 �C, and is supplied to the oven’s fuel-air
mixer. However, in the preheating experiments, the combustion air supply was gradually heated up
to 105 �C using a 25 kW electric resistance heater, shown in Figure 2a, to replicate the heat exchange
with hot air recovered from the oven. In an actual heat recovery system, the combustion air will be
preheated using the oven’s hot exhaust gases through a gas-to-gas heat exchanger. A bespoke control
system, shown in Figure 2b, was installed to control the electric heater, and hence, the combustion air
temperature. The control system provides the upper limit cut out for the electric heater and ensures
safe limits for di�erential pressure sensing for the extractor fan. The selection of the resistance heater
was based on the design parameters shown in Table 1.
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Table 1. Design parameters for a combustion air resistance heater.

Parameters Unit Value

Fuel (natural gas) consumption Nm3/hr 27
Primary air �ow m3/s 0.14

Maximum temperature increase from ambient �C 105
Combustion air connection duct diameter mm 90

Pre-heating the combustion air would reduce the density of �ow, thus, reducing the molar �ow
rate of oxygen per unit volumetric �ow of combustion air causing incomplete combustion of the fuel.
Therefore, the air regulator in the multi-�ow valve of the fuel-air mixer needs resetting to maintain a
suitable air-fuel ratio. The burner �ame colour and quality were observed for every increment made
in the combustion air temperature to ensure complete combustion of fuel. The parameters used to
analyse the oven performance are fuel consumption rate, wafer quality (moisture, weight, size, colour),
fuel conversion and temperatures in the oven. The e�ectiveness of the actual (with heat recovery)
combustion air preheating system is determined by Equation (2):

ncombustion air preheating =

.
Qgas saved, Oven

.
Qexhaust

(2)

where
.

Qgas saved, Oven is the reduction in oven’s gas consumption rate in kW, and
.

Qexhaust is the rate at
which the recoverable waste heat is released (in kW) from the exhaust of a single oven. Figure 3 shows
a schematic of a baking oven with combustion air preheating process using the oven’s exhaust gases.
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Figure 3. Schematic of combustion air preheating process using oven exhaust.

The combustion air preheating technology developed and discussed in this work can be applied
to any other food manufacturing processes involving pre-mixed air-fuel combustion.
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2.3. Hot Water Production System

Hot water is one of the key utilities in any industrial manufacturing process for a variety of
applications, such as space heating, cleaning, showers, etc. The temperature requirements of hot water
for the di�erent types of applications are shown in Table 2.

Table 2. Hot water temperatures for industrial applications.

Parameters Unit Value

Industrial Processes �C 70�95
Domestic or Industrial Space Heating �C 55�65

Dish washing and Laundry �C 40�60
Shower and Hand Wash �C 40

Surgical Scrubbing �C 43

The waste heat from the baking oven can be utilised in decentralised water heaters to heat the
returning process waters. A schematic diagram of such a system is shown in Figure 4. Simulations
of �owsheet models developed in Aspen Plus were conducted to analyse the system performance.
A counter-current heat exchanger was used to recover the waste heat in the oven exhaust. The overall
e�ectiveness of the heat recovery system reheating process water is determined by Equation (3):

nreheat process water =

.
Qboiler gas saved

.
Qexhaust

(3)

where
.

Qboiler gas saved is the rate of gas saving in a centralised hot water boiler system by o�setting the

heating load by the recoverable waste heat from the oven,
.

Qexhaust.
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2.4. Organic Rankine Cycle (ORC) Model

The ORC system works on the same principle as the steam Rankine cycle; however, it operates
at comparatively lower source temperatures and uses organic �uids such as alkanes as the working
�uid instead of water [39]. The organic �uids have lower boiling temperatures and higher molecular
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weights that create higher vapour pressures using low-grade heat (100�400 �C) and provide higher
thermodynamic e�ciencies than steam cycles [20]. The selection of organic �uid primarily depends
on the operating temperatures and is very critical to the ORC performance. Many research activities
on ORC have been carried out in the past to improve the performance by reducing complexity,
selecting appropriate working �uid, improving system con�guration, optimising operating conditions,
etc. [40�45]. A two-loop Regenerative Organic Rankine Cycle (RORC), shown in Figure 5, has been
modelled in this study after a thorough literature search [20,46�49].Energies 2020, 13, x FOR PEER REVIEW 7 of 26 
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Figure 5. Schematic of a baking oven waste heat recovery system to produce electricity using the
Regenerative Organic Rankine Cycle.

The primary loop circulates a coolant (water) that recovers waste heat from the oven exhaust
gases and releases this heat into the evaporator of the RORC. In the secondary loop, an organic
refrigerant R245fa (also called working �uid) is pressurised in the feed pump and fed to the regenerator,
where it is preheated by the turbine exhaust [50]. It is then passed through the evaporator where it
turns into superheated vapour after absorbing the heat released by the coolant, which is at 100 �C.
The saturated pressurised refrigerant vapour is expanded in a turbine, which produces electricity
through the generator unit. The vapour refrigerant, after preheating the liquid refrigerant in the
regenerator, goes through a condenser, where it is re-condensed to liquid state. An Aspen Plus model
of the heat recovery system using RORC was developed for simulations and performance analysis.
The Peng-Robinson equation of state was selected to calculate the thermodynamic properties of the
refrigerant [49,51]. The operating parameters and inputs, as shown in Table 3, were used to model
RORC in Aspen Plus were obtained from literature [39,51�58]. The electrical e�ciency of the RORC is
determined by Equation (4):

nelectrical, RORC =
.

Wnet, RORC
.

Qsupply

=
.

WT �
.

Waux
.

Qexhaust

(4)

where
.

Wnet, RORC is the net electrical output from the RORC system,
.

WT is the electrical power output
of the ORC turbine and

.
Waux is the electrical power consumption by auxiliary equipment.
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The e�ectiveness of the heat recovery system involving RORC is determined by Equation (5):

nORC =

.
Qgas saved, ORC

.
Qexhaust

(5)

where
.

Qgas saved, ORC is the rate of gas used by a typical gas engine to produce same amount of electricity

as produced by the RORC system using the recoverable oven waste heat
.

Qexhaust.

Table 3. List of operating parameters to the Regenerative Organic Rankine Cycle (RORC) Aspen
Plus model.

Parameter Unit Value

Oven exhaust temperature �C 165
Evaporator pressure bar 1.1
Condenser pressure bar 10

Oven exhaust volumetric �ow rate m3/s 3.72
Oven exhaust gas outlet temperature (after heat transfer) �C 110

Refrigerant �ow rate L/min 30.9
Coolant �ow rate L/min 233.2
Turbine e�ciency % 85
Pump e�ciency % 80

2.5. Vapour Absorption Refrigeration (VAR) System Model

A VAR system, shown in Figure 6, is a closed loop cycle that produces a refrigeration or cooling
e�ect using heat as primary energy input instead of electrical power, which is used for driving a vapour
compression cycle [22]. The evaporation, expansion and condensation stages in a VAR system are the
same as the vapour compression refrigeration (VCR) system. However, an absorber, generator and
pump replace the compressor in a VCR system. A VAR model was developed in Aspen Plus using a
mixture of ammonia and water as the working �uid [59�61]. In the generator, the rich ammonia/water
mixture is heated to desorb the refrigerant. Hot water produced by extracting the waste heat from the
oven exhaust gases is used as a thermal energy input to the generator. The refrigerant vapour then
enters the recti�er, where it is cooled by the ammonia-rich solution. This preheats the ammonia-rich
solution before it is sent to the generator. The refrigerant vapour �ows to the water-cooled condenser,
where it is completely lique�ed. The lique�ed refrigerant is further cooled in a refrigerant heat
exchanger and �ows through the expansion valve. After pressure reduction, the refrigerant �ows to
the evaporator unit, where heat from the chilled water evaporates the refrigerant. The refrigerant then
moves to the absorber, where it mixes with the lean ammonia solution and forms a rich solution. This
rich solution is then pumped back to the generator after some preheating in the recti�er.

Table 4 provides the detailed operating parameters and inputs used to model the VAR in Aspen
Plus. A Peng-Robinson equation of the state property method was used in the Aspen model to calculate
the thermodynamic properties of the working �uid.
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Table 4. List of input parameters of the Vapour Absorption Refrigeration (VAR) system in the Aspen
Plus model.

Parameter Unit Value

Evaporator pressure bar 2.75
Generator pressure bar 10
Turbine e�ciency % 85
Pump e�ciency % 80

Generator e�ciency % 98
Exhaust gas inlet temperature �C 165

Minimum exhaust gas outlet temperature �C 110
Exhaust gas volumetric �ow rate m3/s 3.72
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Figure 6. Schematic of a baking oven waste heat recovery system top produce chilled water using a
vapour absorption system.

The cooling e�ciency of the VAR system is determined by Equation (6):

ncooling, VAR =

.
Qcooling, VAR

.
Qexhaust

(6)

where
.

Qcooling, VAR is the cooling generation rate by the VAR system using the recoverable oven waste

heat
.

Qexhaust. The electrical e�ciency of the VAR system is determined by Equation (7):

nelectrical, VAR =
.

WVCR
.

Qexhaust

(7)

where
.

WVCR is the electrical power required by a VCR system to produce the same amount of cooling
as produced by the VAR system using the waste heat from the oven

.
Qexhaust.
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The e�ectiveness of the heat recovery system involving VAR is determined by Equation (8):

nVAR =

.
Qgas saved, VAR

.
Qexhaust

(8)

where
.

Qgas saved, VAR is the rate of gas used by a gas engine to produce electricity
.

WVCR. The VAR

system produces the same amount of cooling as a VCR system would produce by consuming
.

WVCR

amount of electrical power. Thus, the VAR system saves electrical power equal to
.

WVCR.

2.6. Parameters for Economic Assessment

Detailed economic models for di�erent waste heat recovery options investigated in this paper
are developed. The economic model of each option comprises of capital costs and operation and
maintenance costs of individual and overall system components such as pumps, heat exchangers,
turbines, etc. A set of correlations established by Turton et al. [62] for estimating the equipment
costs is used in this paper. The investment models are shown in Table 5. These are the standard
economic models that are widely used for calculating capital and manufacturing costs, and predicting
or assessing pro�tability or payback of chemical and process plant equipment. Firstly, we calculated
the purchase cost of each component Cp, assuming the base conditions such as ambient operating
pressure and carbon steel construction. However, in actual cases, the operating pressure and material
types for the construction of components may not be the same as base conditions; rather, it can vary.
Additionally, there are direct and indirect costs, which we need to consider. Hence, to calculate actual
cost of a component, we calculated �bare module cost� CBM, which represents the actual capital cost
including both direct and indirect costs and material and pressure correction factors. The direct costs
include labour, materials needed for installation such as piping, control management, insulations,
structural supports, electrical work, etc., while the indirect costs comprise shipping of components,
engineers and technicians salaries, etc. [63]. All the direct and indirect costs along with material
and pressure corrections of a component are represented by a bare module cost factor, FBM, which is
multiplied with the purchase cost of a component.

Table 5. Investment model of each component in waste heat recovery options and their coe�cient
values (obtained from [64,65]).

Components Investment Model * Coe�cient Values *

Pump
(Centrifugal)

log Cp,P = K1,P + K2,P log WP + K3,P(log WP)2

log Fp,P = C1,P + C2,P log PP + C3,P(log PP)2

FBM,P = B1,P + B2,PFm,PFp,P
CBM,P = Cp,P � FBM,P

K1,P = 3.3892, K2,P = 0.0536, K3,P = 0.1538
C1,P = 0 C2,P = 0 C3,P = 0

B1,P = 1.89, B2,P = 1.35
Fm,P = 1.6 for carbon steel construction

Heat exchanger
(Double pipe and

spiral tube)

log Cp,HE = K1,HE + K2,HE log AHE + K3,HE(log AHE)2

log Fp,HE = C1,HE + C2,HE log PHE + C3,HE(log PHE)2

FBM,P = B1,HE + B2,HEFm,HEFp,HE
CBM,HE = Cp,P � FBM,HE

Double pipe (liquid to liquid), carbon steel :
K1,HE = 3.3444, K2,HE = 0.2745, K3,HE = �0.0472

C1,HE = 0, C2,HE = 0, C3,HE = 0 for pressure < 40 barg
B1,HE = 1.74, B2,HE = 1.55, Fm,HE = 1

Spiral tube (gas to liquid), carbon steel :
K1,HE = 3.9912, K2,HE = 0.0668, K3,HE = 0.2430

C1,HE = 0, C2,HE = 0, C3,HE = 0 for pressure < 150 barg
B1,HE = 1.74, B2,HE = 1.55, Fm,HE =1

Turbine
(Radial)

log Cp,T = K1,T + K2,T log WT + K3,T(log WT)2

CBM,T = Cp,T � FBM,T

K1,T = 2.2476K2,T = 1.4965K3,T = �0.1618
FBM,T =3.5 for carbon steel construction

Process vessels

logCp,Ve = K1,Ve + K2,VelogVVe + K3,V(logVVe)2

FP,Ve = 1
FBM,Ve = B1,Ve + B2,VeFm,VeFP,Ve

CBM,Ve = Cp,Ve � FBM,Ve

Horizontal vessels, carbon steel;
K1,Ve = 3.5565, K2,Ve = 0.3776, K3,Ve = 0.0905

FP,Ve = 1 for vessel thickness t < 6.3 mm
B1,Ve = 1.49, B2,Ve = 1.52, Fm,Ve = 1

* where K1, K2, K3,C1, C2, B1 and B2 are coe�cients in investment model, Fp and Fm are the pressure and material
factor, respectively, W is the power of turbine in kW, V is the volume of pressure vessel in m3, A is the area of a
heat exchanger in m2, P is the pump or pressure in bar, HE is the heat exchanger, T is the turbine and Ve is the
pressure vessel.
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All the correlations shown in Table 5 are for the base year 2001, and hence, we need to update the
economic cost by taking the in�ation into account for the year of investment, which is 2017 in this
study. The CEPCI (Chemical Engineering Plant Cost Index) [4] is responsible for updating the cost
index yearly. The CEPCI is an important tool for chemical-process-industry (CPI) professionals when
adjusting process plant costs from one period to another. Based on the cost indexes for two di�erent
years, the bare module cost for the year 2017 is estimated as follows:

CBM,2017 = CBM,2001 �
 

CEPCI2017
CEPCI2001

!

where CBM, 2017 and CBM, 2001 are the bare module cost for the year 2017 and 2001, respectively.
CEPCI2017 and CEPCI2001 are the cost index in 2017 and 2001 which are 567.5 and 397, respectively.

Total capital investment costs (CCI) for investigated heat recovery options are calculated as follows:
Air preheater with one oven (AP1):

CCI,AP1 = CHE,BM, 2017

Air preheater with �ve ovens (AP5):

CCI,AP5 = CHE,BM, 2017

Water preheater (HW):
CCI,AP5 = CHE,BM, 2017

Air preheater + hot water (APHW):

CCI,APHW = CHE, BM, 2017 + CP, BM, 2017

Organic Rankine Cycle (ORC):

CCI,ORC = CHE, BM, 2017 + CP, BM, 2017 + CT, BM, 2017

Vapour absorption refrigeration cycle (VARC):

CCI,VARC = CHE, BM, 2017 + CP, BM, 2017 + CVe, BM, 2017

where CHE, BM, 2017, CP, BM, 2017, CT, BM, 2017 and CVe, BM, 2017 are the bare module cost for heat
exchangers, pumps, turbines and process vessels in the year 2017, respectively.

Total investment cost (Cn) for di�erent waste heat recovery options is the summation of capital
cost and operation and maintenance cost:

Cn = CCI,n + C fOM �CCI,n

where CfOM. is the operation and maintenance cost factor, which was assumed to be 1.5% of the total
investment cost [62], n is the di�erent waste heat recovery options.

The payback period is calculated by dividing the total cost by the fuel saving or cost avoided, CSn,
with a di�erent option for one year as follows:

PBn =
Cn

CSn
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3. Results and Discussions

3.1. Pilot-Scale Combustion Air Preheating Experiments

The pilot-scale wafer baking oven was operated at normal conditions, as described in Table 5,
at the beginning of the experiments to collect baseline data on key performance parameters such as
fuel and energy consumption, exhaust temperatures and �ow rate, wafer quality and fuel conversion,
shown in Table 6. The average hourly fuel consumption without combustion air preheating was
recorded as 27.69 Nm3, indicating an energy consumption rate of 306.12 kW by the pilot oven. The oven
produced 90 kg of wafer per hour with an energy consumption of 3.4 kWh per kg of wafer produced.
The exhaust gases were released at 133 �C and 2.82 m3/s.

Table 6. Baseline key performance indicators of pilot-scale baking oven.

Parameter Units Value

Gas consumption per hour Nm3/h 27.69
Calori�c value of gas kWh/m3 11.0556

Load kW 306.12
Combustion air inlet temperature �C 30

Exhaust temperature �C 133
Exhaust �owrate m3/s 2.82

Oven productivity kWh/kg of wafer 3.40

After this, the combustion air was preheated from 30 �C to 105 �C with incremental steps of 20 �C,
using the industrial electrical resistance heater described in Section 2.2. For every increment made,
the key performance parameters were recorded. The e�ect of combustion air temperature on fuel
consumption rate is shown in Figure 7. Preheating the combustion air increases the burner �ame
temperature, and consequently, also the baking oven plate temperature. The oven’s control system that
regulates the plate temperature responds instantly and brings down the temperature to the set point
condition by reducing the fuel supply to the oven burners. It was observed from the experiments that
the oven fuel consumption dropped by 1% for every 18.5�20 �C rise in combustion air temperature.
An overall drop in average fuel consumption by the oven of circa 4% was obtained by raising the
combustion air temperature by 75 �C (from 30 �C to 105 �C).
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Figure 7. E�ect of combustion air temperature on the oven fuel consumption rate.
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Preheating the combustion air to higher temperatures reduces the air density, and hence, the oxygen
mass �ow rate. Any failure of the oven’s control system to adjust to the preheated combustion air
conditions could cause incomplete combustion of the gaseous fuel in the oven burners. This will lead
to fuel wastage and formation of carbon monoxide (CO) and can negatively impact the wafer quality.
Therefore, the burner �ame colours were regularly observed during the experiments to check if the
oven’s control mechanism can precisely handle the variations in the operating conditions and if the
fuel is being completely burned in the burners. A bluish �ame with a yellow tip, as can be seen in
Figure 8, indicates complete combustion of fuel in the burners. Moreover, the quality (moisture, weight,
size, colour) checks performed on the wafer samples produced and collected during the experiments
showed no negative impact on the wafer quality.Energies 2020, 13, x FOR PEER REVIEW 13 of 26 
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3.2. Savings for an Industrial-Scale Baking Oven

The observations and �ndings from the pilot-scale experiments were applied on an industrial-scale
baking oven, which is a scaled-up version of the pilot oven used in the experiments and has a
similar design, construction and working principle. The baseline key performance parameters of the
industrial-scale oven and the estimated changes after heat recovery are listed in Table 7. The average
baseline fuel consumption of the industrial oven was 75.55 Nm3/h, equating to an energy consumption
rate of 835.25 kW. The oven produces 251.58 kg of wafer with a baseline productivity of 3.32 kWh per
kg of wafer. The exhaust gases were released at 165 �C and 3.72 m3/s.

Table 7. Key performance indicators of the industrial-scale baking oven before and after heat recovery
to preheat combustion air of a single oven.

Parameter Units Baseline After Heat Recovery

Gas usage Nm3/h 75.55 70.57
Load kW 835 780

Exhaust temperature �C 165 165
Combustion air inlet temperature �C 30 155

E�ectiveness of heat recovery system % - 32.96
Oven productivity kWh/kg of wafer 3.32 3.10
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The combustion air of the industrial oven can be preheated up to a temperature 10 �C below the
exhaust temperature. Thus, in the current scenario where the exhaust is at 165 �C, the combustion
air could be preheated up to 155 �C; 125 �C higher than the baseline temperature of 30 �C. Using
the relation between the combustion air temperature and oven fuel consumption obtained from the
pilot-scale experiments, it was estimated that a maximum fuel saving of ~6.6% i.e., 4.98 Nm3/h or
55.05 kWh could be achieved for the industrial baking oven by preheating its combustion air. The new
gas usage for the oven is calculated by subtracting the gas savings obtained due to heat recovery
from the baseline gas consumption of 75.55 Nm3/h. A 6.6% of fuel savings will reduce the energy
consumption per kilogram of wafer production from 3.32 kWh to 3.10 kWh, thus making the oven
more e�cient.

Contamination of the product is one of the greatest risks in a food manufacturing plant. The exhaust
gases contain moisture released from the batter and trace amount of sulphur oxides if the fuel used in
the oven (natural gas) contains sulphur. In this study, the lowest possible temperature of the oven
exhaust gas after heat recovery was set at 110 �C for all the heat recovery technologies, to avoid
moisture and acidic vapour condensation in the heat recovery unit. However, using this condition
limits the available heat for recovery per unit time in the exhaust to 167 kW. This is because most of
the vapour in the exhaust gas does not condense thus losing the latent heat of vaporisation of water.
This yields an e�ectiveness of 33%.

3.3. Heat Recovery for Hot Water Production

The industrial baking oven exhaust gases released at 165 �C and 3.72 m3/s are a lucrative source
of free waste heat that can be utilised to reheat process hot water streams. An Aspen Plus model was
developed to reheat a returning process water using exhaust’s heat. The simulation results indicate
that heat can be recovered at a rate of 167 kWh from the exhaust gases by reheating 13.1 t/h of process
hot water from 80 �C to 90 �C. To attain a similar output from an industrial gas boiler, 18.8 Nm3/h
or 207.84 kWh of natural gas will be required to burn, assuming an 80% e�ciency for the overall
gas-based hot water generation system involving boiler, pressure valves, calori�er, etc. [66,67]. This gas
saving does not directly occur in the baking oven, but the overall energy consumption of factory can
be saved. However, the factory’s energy consumption savings were deducted from the oven’s energy
consumption for simplicity of the comparison with other heat recovery options. Table 8 provides
a comparison of the oven’s performance parameters before and after heat recovery. The new gas
usage for the oven is obtained by subtracting the boiler gas savings of 18.8 Nm3/h, achieved due to
heat recovery, from the baseline gas consumption. The e�ectiveness (ratio of fuel consumed by an
industrial boiler to generate a similar result as the heat recovery system and the recoverable heat from
a single oven exhaust) achieved by the heat recovery system reheating the process water is 124.4%.
Incorporating the savings accomplished from heat recovery into the baseline parameters indicates a
25% improvement in the oven productivity.

Table 8. Key performance indicators of the industrial-scale baking oven before and after heat recovery
to reheat returning process water.

Parameter Units Baseline After Heat Recovery

Gas usage Nm3/h 75.55 56.75
Load kW 835.25 627.40

E�ectiveness of heat recovery system % - 124.4
Oven productivity kWh/kg of wafer 3.32 2.49

3.4. Preheating Combustion Air and Reheating Process Water

The experiments revealed that preheating the combustion air �ow from 30 �C to 155 �C provides
a relatively small heat sink due to a much lower �owrate of combustion air compared to the oven’s
exhaust gases. Hence, the waste heat in the exhaust gases are not recovered to the full potential due to
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the unavailability of su�cient heat sink or, in other words, a demand for the recovered heat in the
form of oven’s combustion air. This limitation of the combustion air preheating technology can be
overcome by adding an additional heat exchanger downstream of the combustion air preheater to
reheat the returning process water, as shown in Figure 9.Energies 2020, 13, x FOR PEER REVIEW 15 of 26 
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Figure 9. Schematic of combustion air preheating combined with reheating process water using oven
exhaust gases.

An Aspen Plus model of a heat recovery system combining preheating combustion air and
reheating returning process water was developed to evaluate the system performance. The simulation
results indicate that the combustion air preheating technology utilises only 19.08% of the total
recoverable heat from the exhaust that is available by cooling the exhaust to 110 �C. The remaining
heat is recovered by integrating an additional heat sink in the form of returning process water, after the
combustion air preheating system. The exhaust gases, after preheating combustion air, reheat a
returning process hot water stream �owing at 10.6 tonnes/h from 80 �C to 90 �C. The heat recovery
rate obtained by the process water reheating system from the oven’s exhaust gases is 135.02 kW.
A typical industrial gas boiler with an e�ciency of 80% would require burning 15.26 Nm3 or 168.7 kW
of natural gas to achieve a similar output. The fuel savings by the combined preheating and reheating
system is 20.24 Nm3/h or 223.76 kW. The new gas usage for the oven is obtained by subtracting the
overall gas savings of 20.24 Nm3, delivered after heat recovery in one hour, from the baseline gas
consumption. The overall system combining preheating combustion air and reheating process water
achieves an e�ectiveness of 134%. Incorporating the savings as shown in Table 9, accomplished from
the combined heat recovery technologies into the baseline parameters delivers a 26.8% improvement
in the oven productivity.
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Table 9. Key performance indicators of the industrial-scale baking oven before and after heat recovery
to preheat combustion air and reheat returning process water.

Parameter Units Baseline Savings/Preheating
Air Savings/Reheating Combined

Savings

Gas usage Nm3/h 75.55 70.57 60.29 55.3
Load kW 835.25 780.19 666.54 611.37

E�ectiveness of heat
recovery unit % - 32.96 101 134

Oven productivity kWh/kg of wafer 3.32 3.10 2.65 2.43

3.5. Preheating Combustion Air of Multiple Ovens

As discussed in Section 3.4, the heat recovery system with preheating combustion air does not
fully recover the heat available in the exhaust due to having a smaller heat sink than the available heat.
An alternative solution for maximising the heat recovery is preheating combustion air of multiple
ovens by using exhaust heat from a single oven. Large confectionary manufacturing sites typically
operate more than one baking ovens simultaneously. These ovens are placed in parallel and close to
each other to facilitate batter supply from a common batter preparation unit, thus avoiding additional
equipment costs. Aspen Plus models of preheating combustion air were developed with gradual
increments in the number of combustion air streams with each stream representing a di�erent oven.
It was assumed that all ovens have identical designs, sizes and operational parameters. The �ndings
from the Aspen Plus simulation models are shown in Figure 10.
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Figure 10. Savings obtained by preheating combustion air of multiple ovens.

It can be seen from the �gure that a total of �ve combustion air streams or �ve baking ovens are
required to extract maximum recoverable heat from exhaust of a single oven. The �ve combustion
air streams manage to extract 95.4% of the 167 kW of recoverable heat available in the exhaust.
The cumulative gas savings achieved from all �ve ovens is 24.9 Nm3/h or 275.28 kW. This cumulative
gas saving has been transferred to a single oven for the simplicity of performance evaluation. Table 10
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provides a comparison of the oven’s key performance parameters before and after the heat recovery.
An overall system e�ectiveness, which is the ratio of gas savings from all �ve ovens and recoverable
heat from a single oven exhaust, of 164.8% was achieved by the heat recovery system. A 33.1%
improvement in the productivity of the oven used as heat source (exhaust gas) has been achieved after
the heat recovery.

Table 10. Key performance indicators of the industrial-scale baking oven before and after heat recovery
to preheat combustion air of �ve ovens.

Parameter Units Baseline After Heat Recovery

Gas usage Nm3/h 75.55 50.65
Load kW 835.25 559.96

E�ectiveness of heat recovery system % - 164.8
Oven productivity kWh/kg of wafer 3.32 2.22

3.6. RORC for Oven Heat Recovery

The key performance parameters obtained from Aspen Plus simulation model for the proposed
RORC system generating electricity using the heat extracted from baking oven’s exhaust gases are
summarised in Table 11. A hot water stream at 2 bars and 90 �C is fed to a heat exchanger, where it
is heated to 100 �C by cooling the oven’s exhaust gases down to 110 �C and extracting 167 kW of
heat. This hot water, at 100 �C, is used in the evaporator to vaporise 3.9 litres of liquid refrigerant
every minute. The vapourised refrigerant at 90 �C and 10 bars is expanded to 1.1 bar in an expander,
producing 23.99 kW of electricity. The refrigerant stream exiting the expander at 38 �C and 1.1 bar
is sent to the regenerator to extract heat by preheating the liquid refrigerant before the refrigerant
is fed to the evaporator. The parasitic power consumed by the three pumps (refrigerant, condenser
cooling water and coolant; see Figure 5) is 0.97 kW. The RORC system delivers a net electrical output of
23.02 kW with a net thermal e�ciency of 13.78%, which is comparable to the e�ciency range reported
in literature [20,24�26,56].

Table 11. Results of the RORC Aspen Plus simulation.

Parameter Units Value

Heat available in the exhaust kW 167
Gross electricity generated by the turbine kW 23.99

Parasitic electrical power consumption kW 0.97
Net electrical output kW 23.02

RORC system e�ciency (electrical) % 13.78

The key performance parameters of the oven before and after the heat recovery involving RORC
are summarised in Table 12. The RORC system converts waste heat into electrical output. However,
to maintain uniformity and continuity in the key performance parameters used for evaluation of the
studied heat recovery technologies, the electrical output was converted or represented in the form of
gas savings. A gas engine with an e�ciency of 45% would require to burn 4.62 Nm3/h or 51.15 kWh of
natural gas to generate 23.02 kW of electricity [68]. Therefore, the e�ectiveness achieved by the heat
recovery system involving RORC is 30.6%. A 6% improvement in the oven productivity was achieved
after the heat recovery using the RORC system.
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Table 12. Key performance indicators of the industrial-scale baking oven before and after heat recovery.

Parameter Units Baseline After Heat Recovery

Gas usage Nm3/h 75.55 70.93
Load kW 835.25 784.17

E�ectiveness of heat recovery system % - 30.6
Oven productivity kWh/kg of wafer 3.32 3.11

3.7. VARC for Oven Heat Recovery

The simulation results summarised in Table 13 for the proposed heat recovery system involving
VAR indicates that cooling can be generated at a rate of 55.5 kW by recovering 167 kW of waste
heat available from the oven exhaust. The heat recovery system attains a cooling e�ciency of 33.2%.
The parasitic power consumed by the auxiliary equipment is 1.03 kW. A VCR system with a coe�cient
of performance (COP) of 3.5 [69,70] will consume 15.85 kW of electricity to produce the same cooling
e�ect as produced by the VAR. Thus, the VAR system saves 15.85 kW of electricity by recovering waste
heat and yields a net thermal e�ciency of 9.49%.

Table 13. Aspen Plus simulation results of heat recovery system using VAR.

Parameter Units Value

Heat available in the exhaust kW 167
Cooling produced by the system kW 55.5

Cooling e�ciency % 33.2
Parasitic power consumption kW 1.03

Net electricity saved kW 15.85
Electrical e�ciency of VAR % 9.49

The cooling e�ect produced by VAR is �rst converted into electrical savings and then to gas
savings to maintain uniformity in comparison to the key performance parameters of the heat recovery
systems studied. A typical gas engine with an e�ciency of 45% would require to burn 3.18 Nm3/h or
35.22 kW of natural gas to generate 15.85 kW of electricity. The key performance parameters of the
oven before and after the heat recovery involving VAR are summarised in Table 14. The e�ectiveness
achieved by the heat recovery system is 21.08%. The results also indicate an improvement of 4.2% in
the oven productivity.

Table 14. Key performance indicators of the industrial-scale baking oven before and after heat recovery.

Parameter Units Baseline After Heat Recovery

Gas usage Nm3/h 75.55 72.37
Load kW 835.25 800.09

E�ectiveness of heat recovery system % - 21.08
Oven productivity kWh/kg of wafer 3.32 3.18

3.8. Comparison of Heat Recovery Technologies

The performances of the heat recovery technologies discussed in Sections 3.1�3.7 are evaluated
against each other based on four key criteria: (i) oven gas consumption, (ii) oven productivity,
(iii) e�ectiveness of heat recovery system and (iv) cost savings payback period. Figure 11 illustrates the
graphical comparison of the heat recovery technologies based on the �rst three criteria, whereas the
fourth criteria is compared in Tables 15 and 16. The heat recovery system involving VAR technology
incurs the least gas savings of 4.2%, yielding a gas consumption rate of 72.37 Nm3/h against the baseline
consumption of 75.55 Nm3/h. The VAR technology is followed by RORC technology and preheating
technology for single oven with a gas consumption reduction by 6.11% and 6.59%, respectively.
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The heat recovery technology involving preheating combustion air of multiple ovens shows the most
promising outputs, with a 33% reduction in hourly gas consumption followed by combined preheating
and reheating technology with a 26.8% reduction. The process water reheating technology stands third
with fuel savings of 24.88%. A similar performance trend was observed for the other two comparison
criteria�productivity and e�ectiveness.Energies 2020, 13, x FOR PEER REVIEW 19 of 26 
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Table 15. Annual energy, operational cost and CO2 savings for the studied heat recovery technologies
based on 7000 h of operation per year.

Recovery Technology

Parameters
Fuel Saved

Energy
Savings

(MWh/yr)

Operational
Cost Savings

(£/yr)

CO2 Emissions
Reduction

(t/yr)
Preheating for single oven Gas 385 6938 71
Preheating for multiple oven Gas 1927 34,687 356
Reheating process water Gas 1455 26,189 269
Combined preheating and
reheating process water

Gas 1567 28,209 290

RORC * Electricity 161 # 9668 41
VAR Electricity 111 # 6657 28

* Feed in Tari�s for exporting the electricity to the grid have not been considered here. # MWH Electrical.
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Table 16. Annual energy, operational cost and CO2 savings for the studied heat recovery technologies
based on 7000 h of operation per year.

Components Component Parameters Value
Cost of

Investment
(£)

Fuel/Electricity
Saving
(£/Year)

Payback
Period (Years)

Preheating for
single oven

One heat
exchanger

A = 0.8261 m2,
P = ambient 35,616 6938 5.13

Preheating for
multiple oven

One heat
exchanger

A = 5.461 m2,
P = ambient 54,557 34,687 1.57

Reheating
process water

One heat
exchanger,
one pump

A = 3.99 m2,
P = 2 bar

WP = 0.023 kW
59,346 26,189 2.26

Combined
preheating and

reheating
process water

Two heat
exchangers,
one pump

AHE, 1 = 0.8261 m2,
AHE,2 = 3.52 m2

PHE,1 = ambient,
PHE,2 = 2 bar ,

PP,1 = 2 bar
WP = 0.0188 kW

92,914 28,209 3.25

RORC

Four heat
exchangers,

three pumps,
one turbine

AHE, 1 = 5 m2,
AHE,2 = 0.674 m2,
AHE, 3 = 0.657 m2,
AHE,4 = 5.14 m2

PHE,1 = 10 bar,
PHE,2 = 10 bar ,

PHE,3 = 1.5 bar, PHE,4 = 2 bar
PP,1 = 10 bar,
PP,2 = 1.5 bar,
PP,3 = 2 bar

WP,1 = 0.584 kW,
WP,2 = 0.35 kW,

WP,1 = 0.0247 kW
PT = 10 bar,

WT = 23.02 kW

152,335 9668 15.75

VARC

Three pumps,
�ve heat

exchangers
(including two air
coolers with fans),

two process vessels
(generator and

absorber)

PP,1 = 2 bar,
PP,2 = 10 bar,
PP,3 = 4 bar

WP,1 = 0.27 kW,
WP,2 = 0.38 kW,
WP,3 = 0.22 kW

AHE, 1 = 5.15 m2,
AHE,2 = 9.26 m2,
AHE, 3 = 3.6 m2,
AHE,4 = 7.8 m2,

AHE,5 = 12.56 m2

PHE,1 = 2 bar,
PHE,2 = 10 bar ,

PHE,3 = 10 bar, PHE,4 = 4 bar ,
PHE,5 = 1 bar
PG = 10 bar,
PA = 1 bar ,

VVe,G = 0.1 m3,
VVe,A = 0.1 m3

217,824 6657 32.72

Although some technologies provide higher savings than other, all the technologies discussed
in this work can be used for waste heat recovery in a food manufacturing site in a certain scenario.
The performances of all these technologies could vary with the production scales and the seasonal
variations. For instance, the heat recovery potential of the gas-to-liquid heat recovery technology
producing hot water highly depends on the hot water demand in the factory. The hot water demand
may �uctuate or drop due to changes in production level, thus, varying or reducing the heat recovery
system’s output. The system output will also vary with the ambient temperature if the hot water
produced is used for space heating. These irregularities in production level and ambient temperatures
can make the design of heat recovery system producing hot water challenging. In addition to that,
the distance between the heat source (ovens) and sink (processes with hot water demand) is also an
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important factor for consideration. This is because the capital cost of the heat recovery system and
operational heat losses are directly proportional to the distance. Moreover, in some factories, the whole
hot water demand is supplied by Combined Heat and Power systems. Therefore, there may be no
requirement for installing an additional hot water generation system.

On the other hand, the heat recovery technology involving preheating of combustion air is
independent of the hot water demand of the manufacturing site. However, for the preheating
technology to perform better than others, there should be adequate heat sinks (combustion air �ow rate
or multiple ovens) available in the factory. This technology will deliver the best possible results if there
is more than one oven in the factory. In the absence of hot water demand and su�cient combustion air
sink, an RORC or VAR system can be considered to generate direct electrical savings, perhaps more
valuable form of energy than natural gas and can be exported to the grid.

Some heat recovery technologies perform notably better than others. However, in general,
all exhibit their own merits when energy and operating cost savings are considered, as shown in
Table 15. A wholesale price of £1.8 per MWh of gas and £6 per MWh of electricity taken from Ofgem
UK has been considered to calculate operational cost savings. While the electricity price is three times
more than the gas price, the RORC and VAR does not save enough electricity to be an attractive
option for operational (fuel) cost saving compared to gas saving cases. Implementing these heat
recovery technologies in food manufacturing will also reduce considerable amount of CO2 emissions
(see Table 15), thus, making the food producers more complacent with the legislation.

A comparison of payback period for all the heat recovery options are given in Table 16.
The combustion air preheating technologies with single and multiple ovens used only one heat
exchanger, and therefore, were found to have the lowest investment cost of £35,616 and £54,557,
respectively. The reheating process water technology requiring a heat exchanger and a pump has
the third lowest investment cost of £59,346. The investment calculations considered that the heat
sink (water to be heated) is close to the oven. Hence, the cost of laying out long piping is not taken
into account. The same assumption is taken for the combined preheating and reheating process
water technology. It is found that air preheating using multiple ovens has the lowest payback period,
of 1.57 years, followed by reheating process water technology with 2.26 years and combined preheating
combustion air and reheating process water technology with 3.25 years. This is mainly because a high
operational saving was obtained on a nominal investment from these three technologies. The RORC
and VAR has a payback period of 15.75 and 32.72 years, respectively. Both these processes use several
units, such as heat exchangers, pumps, turbine and process vessels, and hence, have a signi�cantly high
investment cost. In addition to that, the operational/fuel cost savings were also low, which ultimately
resulted in high payback periods.

3.9. Route to Election of Heat Recovery Technology

Figure 12 shows the systematic methodology or the process map for selecting a suitable waste
heat recovery technology for the baking process discussed in this work. It is recommended to operate
the baking oven at a fully optimised condition ahead of selecting a heat recovery system. This will
provide an accurate estimation of the available waste heat from the oven exhaust. Therefore, initially,
an optimisation study should be conducted to investigate the scope of the operational improvements.
Additionally, historical data on the oven performance accounting for the changes in production
scales, operational hours, cleaning and maintenance schedules should be obtained. This will help in
understanding the variations in the waste heat production by the oven and selecting a suitable heat
sink. Once the technical feasibility of a heat recovery solution is a�rmed, it should be investigated
further for economic viability before proceeding with the construction and installation of the heat
recovery system. As understood from the results discussed above and indicated by the process map in
Figure 12, the heat recovery solution involving combustion air preheating is investigated �rst, followed
by hot water production (or combined hot water and combustion air preheating). The process map
recommends investigating VAR before ORC, although the results shown in Figure 11 and Table 14
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indicate higher energy savings for ORC compared to VAR. This is because a single VAR system can
ful�l two purposes, i.e., produce cooling and recover waste heat. On the other hand, an ORC system
will only recover waste and a separate VCR system will still be required to produce cooling. This may
increase the capital investment and require more installation space.
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Figure 12. Process map for the selection of suitable heat recovery technology.

4. Conclusions

Worldwide, the food manufacturing sector is an energy-intensive sector using fossil fuels which
is expected to grow in line with population growth. More than half of the heat supplied to food
manufacturing processes, such as baking, drying, frying, roasting, heating, etc. is vented to the
surroundings, with the exhaust gases as waste heat, without contributing to the processing of the
product. The UK food and drink manufacturing sector emits circa 2.8 TWh of recoverable waste heat
into the environment annually. This represents a signi�cant opportunity for waste heat recovery.

This study investigated the performance of a novel low-grade gas-to-gas waste heat recovery
technology, to preheat combustion air, applied to wafer baking ovens. It also compared the newly
developed technology with other existing technologies, such as waste heat to hot water, organic Rankine
cycle and vapour absorption refrigeration, based on technical feasibility and energy savings. The work
presents a systematic methodology for developing and comparing low grade waste heat recovery
models for the food manufacturing sector. It also highlighted the key parameters that should be used
to evaluate the performance of manufacturing processes with integrated heat recovery systems.
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The �ndings revealed that the energy e�ciencies of existing wafer baking processes and equipment
used in industry can be improved by ~33% by integrating them with a waste heat recovery unit.
The most promising results were obtained by recycling the waste heat back into the baking process,
i.e., by preheating the oven’s combustion air, which reduces the oven fuel consumption rate. Factors
such as production scales and �uctuations in heat sink should be carefully monitored and considered
while designing heat recovery systems. Apart from these two factors, the capital and installation costs
also have a signi�cant role in the selection of an appropriate heat recovery technology. The study found
that the preheating combustion air technology has a payback period of 1.57 years, which is the lowest
among all by a fair margin, making it a �nancially attractive option. To conclude, the heat recovery
technology involving preheating combustion air is the most advantageous, provided a su�ciently
large heat sink is available.
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