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Abstract 

 

Many laboratories are engaged in the measurement of persistent organic pollutants, 

particularly polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzo-furans 

(PCDFs) and polychlorinated biphenyls (PCBs), to satisfy various investigative needs and 

compliance requirements worldwide.  However, from a mass spectrometry perspective, 

the current mandated methods have changed little since their origins in the 1980s and 

1990s and fail to address certain issues that can lead to the erroneous rejection or 

filtering of data, and conversely, to the acceptance of data that may be considered 

questionable. 

Notwithstanding any legislative requirements, since the goal of these analyses is 

ultimately related to human or animal health, producing accurate and reliable data is of 

the utmost importance.  This research highlights various areas of concern and aims to 

improve upon the current peak identification and measurement practices that can lead 

to such false negatives, false positives and other errors.  A key contribution made by this 

thesis concerns the role of ion statistics in peak area measurement and its subsequent 

effect on isotope ratio determination – a primary parameter (together with 

chromatographic retention time) for compound identification in both high-resolution 

mass spectrometry (HRMS) and tandem mass spectrometry (MS/MS) methods. 

In an allied area of research, a comprehensive study of all mono- to deca-chlorinated 

biphenyls using atmospheric pressure chemical ionisation, both for fragmentation 

analysis and in conjunction with ion mobility spectrometry (IMS), was undertaken.  An 

additional original contribution described in this thesis shows that, in addition to certain 

structural information – especially in relation to the degree of chlorine ortho 

substitution – there are some unusual shifts in the measured IMS arrival time 

distributions of certain PCB isotopologues and isotopomers suggesting the occurrence 

of isomerisation in the gas phase.  Other patterns emerging from these data are 

indicative of the toxicity of certain PCBs, both correlating with known toxic congeners 

and others that are currently classified as non-toxic. 
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Chapter 1  

 

Thesis Overview, Aims and Objectives 

 

1.1 Introduction 

Concern surrounding the adverse health effects associated with exposure to persistent 

organic pollutants (POPs) now spans many decades of growing scientific knowledge 

together with several landmark incidents that have also highlighted the problems in the 

eyes of the public. 

The term “POPs” is used to include several organic chemical classes that: 

• Are persistent, i.e. stable in the environment over many years – and also 

therefore able to be transported both locally and over long distances, 

principally by water (often bound to sediments) and atmospheric mechanisms 

• Are toxic to both humans and animals 

• Are bioaccumulative (lipophilic) 

The POPs focussed upon in this thesis are those of greatest concern to health due to 

their high toxicity, e.g. through their binding ability to the cellular aryl hydrocarbon 

receptor (AhR) (Safe et al., 1985; Sorg, 2014) and their known carcinogenicity (IARC, 

2012): specifically certain polychlorinated dibenzo-p-dioxins (PCDDs) and poly-

chlorinated dibenzofurans (PCDFs) – often termed simply (if not entirely accurately) as 

“dioxins” and “furans” by many working in this field* – and certain polychlorinated 

biphenyls (PCBs).  The principles discussed can however be directly applied to many 

other POPs such as polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls 

(PBBs) and organochlorine pesticides (OCPs). 

It was concern on the observed adverse effects of exposure to OCPs, together with other 

pesticides and herbicides, that perhaps first caught mainstream attention following the 

publication of Rachel Carson’s seminal book, “Silent Spring” (Carson, 1962).  This has 

often been credited as signalling the beginnings of wider environmental awareness and 

 
* Furthermore, the term “dioxins” is often used to reference both PCDDs and PCDFs – as is the 
case with the European Food Safety Authority (EFSA). 
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ultimately to the foundation of the United States Environmental Protection Agency in 

1970. 

PCDDs, PCDFs and PCBs were also amongst the 12 initial POPs* listed in the Stockholm 

Convention (UNEP, 2001).  They comprise aldrin[A], chlordane[A], DDT[B], dieldrin[A], 

endrin[A], heptachlor[A], hexachlorobenzene[A,C], mirex[A], toxaphene[A], PCBs[A,C], 

PCDDs[C] and PCDFs[C], where the superscript(s) indicate the Convention’s annex(es) to 

which the compounds belong. 

The international convention requires its signatories† to agree to: 

• Eliminate the production and use of chemicals listed under Annex A 

• Restrict the production and use of those chemicals listed under Annex B‡ 

• Take measures to reduce the unintentional release of chemicals listed under 

Annex C 

It is important to note that PCBs are included in both A and C annexes since, in addition 

to their historical manufacture for industrial purposes, they can also be formed as an 

inadvertent by-product of combustion and other processes. 

In 2017, a further 16 POPs were added to the list including: pesticides, such as lindane 

and endosulfan; fire retardants, such as hexabromocyclododecane, and tetra- and 

penta-bromodiphenyl ethers; industrial chemicals such as pentachlorobenzene, 

polychlorinated naphthalenes, perfluorooctane sulfonic acid and short-chain 

chlorinated paraffins (UNEP, 2017). 

Other chemicals currently under review for inclusion are dicofol [1,1-bis(4-

chlorophenyl)-2,2,2-trichloroethanol], perfluorooctanoic acid and perfluorohexane 

sulfonic acid and their related compounds (UNEP, 2018). 

 
* Also informally known as “the dirty dozen”. 
† As of November 2019, there are 152 signatory countries; notable exceptions are the USA, 
Italy, Israel and Malaysia (UNEP, 2019). 
‡ Certain restricted uses are permitted, e.g. the use of DDT in the control of malaria where 
there is no viable alternative. 
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1.2 The chemical structures of PCDDs, PCDFs and PCBs 

The following figures show the generic structures for PCBs (Figure 1.1), PCDDs (Figure 

1.2) and PCDFs (Figure 1.3) with the chlorine substitution numbering used throughout 

this thesis, and specific structures of the most toxic compound in each class: 

3,3’,4,4’,5-pentachlorobiphenyl (PeCB) (Figure 1.4) – more commonly known by its BZ 

number (Ballschmiter and Zell, 1980) as PCB-126; 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD) (Figure 1.5) and 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) (Figure 1.6). 

 

 

Figure 1.1 Generic polychlorinated biphenyl (PCB) structure 

 

 

Figure 1.2 Generic polychlorinated dibenzo-p-dioxin (PCDD) structure 

 

 

Figure 1.3 Generic polychlorinated dibenzofuran (PCDF) structure 

 

  

C12H(8-x-y)Cl(x+y)O2 

where x + y = 1 to 8 

C12H(8-x-y)Cl(x+y)O 

where x + y = 1 to 8 

 

C12H(10-x-y)Cl(x+y) 

where x + y = 1 to 10 
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Figure 1.4 Structure of 3,3’,4,4’,5-pentachlorobiphenyl (PCB-126) 

 

 

Figure 1.5 Structure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) 

 

 

Figure 1.6 Structure of 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) 

 

It is important to note that not all PCDDs, PCDFs or PCBs are currently considered as 

toxic compounds, as defined by the World Health Organization (WHO) (Van den Berg et 

al., 2006); of the 210 possible PCDD and PCDF congeners, there are 17 currently 

classified as being toxic: 7 PCDDs and 10 PCDFs.  These are all tetra- to octa-chlorinated 

with chlorine substitutions in the 2, 3, 7 and 8 positions, and in up to 4 other positions. 

Of the 209 PCB congeners, 12 are currently considered as toxic: these are all tetra to 

hepta-chlorinated with chlorine substitutions in both para (4, 4’) positions, two or more 

meta (3, 3’, 5, 5’) positions and either zero or one ortho (2) position (i.e. non-ortho or 

mono-ortho). 

Complete lists of the toxic (WHO) PCDD/Fs and PCBs can be found in Table 1.4 (p. 27) 

and Table 1.5 (p. 27) respectively. 

C12H4Cl4O2 

C12H3Cl5O 

C12H5Cl5 
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1.3 Sources of PCBs, PCDDs and PCDFs 

PCBs were manufactured from the 1930s to the late 1970s with an estimated global 

yield of more than 1 million tons, with more than half having been produced in the U.S. 

(Erickson, 1997).  Commercial PCB production was usually as mixtures of PCB congeners 

such as the Aroclor series manufactured by Monsanto*.  These were referenced by a 

4-digit number, e.g. Aroclor 1254, where the last 2-digits represented the approximate 

percentage of chlorine by weight†. 

Their excellent electrical insulation, heat transfer, chemical stability and low 

flammability made them ideal for use within power transformers (Takasuga et al., 2006) 

and capacitors ‡  (Erickson, 1997).  These components, mostly used in electrical 

distribution systems at power stations, sub-stations and large buildings, accounted for 

approximately 75% of PCB usage with the remainder being in certain building materials 

such as sealants and caulks (Klosterhaus et al., 2014), in adhesives, paints and printing 

inks, and as lubricants and hydraulic fluids (Erickson and Kaley, 2011). 

Due to the adverse health effects attributed to PCB exposure (as will be discussed in 

section 1.4), they were ultimately banned (or phasing-out procedures begun) from 

manufacture in the USA by the USEPA§ in 1979 (USEPA, 1979), in Europe** in 1985 

(European Council, 1985) and in other countries in accordance with the Stockholm 

Convention of 2001 that came into force in 2004 (UNEP, 2001). 

In contrast, although PCDDs and PCDFs were never intentionally produced, they have 

been, and continue to be, formed as by-products from various industrial activities and 

 
* Monsanto were the primary (>90% by volume) manufacturer of PCBs in the U.S. (and hence 
globally) with their Aroclor product range.  More than 20 other brands existed, including 
Clophen (Germany), Kanechlor (Japan) and Sovol (the former USSR), and although these names 
do appear in the literature, the Aroclor name continues to predominate and is still used in a 
regulatory context within several American States. 
† With the exception of Aroclor 1016 as it was already established in the marketplace before 
the introduction of this naming convention. 
‡ Previously known as “condensers”.  Although this is an obsolete term in electronics (and has 
been so since ca. the 1960s) its use has continued in much PCB related literature. 
§ United States Environmental Protection Agency – henceforth referred to as EPA.  [Although 
many countries have their own EPA (or equivalent body), for the purposes of this thesis, EPA 
will refer to the US Agency.] 
** The European regulation also extends to polychlorinated terphenyls (PCTs). 
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accidental causes.  Although no longer manufactured, PCBs can also be formed by many 

of these same processes.  Some of the principal sources are: combustion, such as in 

(hazardous) waste incineration (Rivera-Austrui et al., 2011), metal smelting or 

reprocessing (Colombo et al., 2011) and some natural processes such as forest fires 

(Salamanca, Chandía and Hernández, 2016). 

Domestic waste burning (often called “barrel burning” in the US) is also a significant 

contributor – due to the uncontrolled conditions (relatively low temperatures and 

incomplete combustion) – where levels can exceed those of municipal waste 

incineration (Lemieux et al., 2000).  Although such burning is less common in many 

European countries, there can be unusual instances: in the UK, every 5th of November, 

“Bonfire Night”, sees PCDD/F emissions that, over the few days around that event, are 

of the same order (30 g vs. 38 g) as those produced annually from iron ore sintering used 

in UK iron and steel manufacturing (Anderson and Fisher, 2002). 

Product contamination due to poor manufacturing processes, negligence or accident 

has also resulted in elevated levels of exposure to these chemicals.  Poisoning due to 

contaminated cooking (rice) oils occurred in the Yusho (Japan, 1968) and the almost 

identical Yucheng (Taiwan, 1979) incidents.  In the Yusho case, a leaking pipe in a heating 

system used to process the oil led to a commercial PCB mix (Kanechlor 400) with ~48% 

chlorine content being introduced into the final product at concentrations up to 3,000 

ppm (Kuratsune et al., 1972). 

PCB contamination also continues to be found in certain pigments used in dyes and 

paints, e.g. PCB-11 (3,3’-DiCB*) in the diarylide “Pigment Yellow 14” (C34H30Cl2N6O4) due 

to synthesis with 3,3’-dichlorobenzidine, PCB-52 (2,2’,5,5’-TeCB†) in “Pigment Red 9” 

(C24H17Cl2N3O3) due to 2,5-dichloroaniline, and PCB-56 (2,3,3’,4’-TeCB) in “Dioxazine 

Violet” (C34H22Cl2N4O2) due to 2,2’,5,5’-tetrachlorobenzidine (Anezaki and Nakano, 

2014; Anezaki, Kannan and Nakano, 2015).  PCB-11 is an additional concern due to its 

ready volatilisation from paint surfaces leading to its presence in ambient air, 

particularly in urban environments (Hu, Martinez and Hornbuckle, 2008). 

 
* Dichlorobiphenyl (C12H8Cl2) 
† Tetrachlorobiphenyl (C12H6Cl4) 



7 

Perhaps the most notorious case of contamination was that of “Agent Orange”.  This 

refers to the spraying of herbicides (used as defoliants) over large areas of South 

Vietnam (as it was then known) during the Vietnam War.  Several different herbicides 

were used – known as the “Rainbow Herbicides” due to the various colour stripes 

marked as identification on their storage drums.  Agent Orange, a mix of 2,4-dichloro- 

and 2,4,5-trichloro-phenoxyacetic acid, was the most predominant of these with ~40 

million litres used between 1962 and 1971; it was however contaminated with ~3 ppm 

of 2,3,7,8-TCDD (Schecter et al., 1995). 

Several industrial accidents have also led to the toxic releases of POPs, as exemplified 

by that in Seveso, Italy in July 1976.  During the manufacturing of 2,4,5-trichlorophenol 

at the ICMESA chemical company, an explosion caused the release of ~30 kg of PCDDs 

into the surrounding (~18 km2) environment (Mocarelli et al., 1986). 

Building fires and disasters are also an on-going source of these compounds – though 

understandably, any environmental impact is often overshadowed by the loss-of-life 

and injury.  The first (known, documented) case was in 1981 when an electrical panel 

failure and the subsequent overheating of a transformer in the basement of an 18-storey 

building in Binghamton (NY, USA) led to the leakage of ~700 litres of transformer fluid.  

This consisted of a mix of PCBs* (Aroclor 1254) and tri- and tetra-chlorobenzenes, and 

the subsequent fire led to the formation of other PCBs and PCDD/Fs at concentrations 

in the parts-per-thousand range in the soot (Schecter and Tiernan, 1985). 

In 2001, the collapse of the twin towers in the 9/11 World Trade Center disaster resulted 

in the release of a dust cloud laden with PCDD/Fs created from the towers’ building 

materials and contents, and the ensuing fires (Rayne et al., 2005).  More than a decade 

later, elevated (> 7x) serum levels of PCDD/Fs in adolescents living or attending school 

in the affected area were observed (Kahn et al., 2018). 

In 2017, a major fire – the deadliest in a UK residential environment since World War II 

– at the Grenfell Tower in London led to a ~50-fold increase in the soil concentration of 

 
* Although this event postdates the ban on PCBs, there was no legislative requirement to 
replace existing equipment. 
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PCDD/Fs in the immediate vicinity of the building relative to urban background 

measurements (Stec et al., 2019). 

Non-anthropogenic sources of PCDD/Fs also exist, e.g. as shown by certain clays.  Ball 

clay (principally kaolinite) and bleaching clay (e.g. bentonite), can be a concern as they 

have multiple uses as fillers and anti-caking materials in animal feed products, and as 

filtration materials in the processing of edible oils and nutritional supplements (Ferrario, 

Byrne and Cleverly, 2000; Tondeur et al., 2012). 

Although, as in the above examples, there can be specific occupational and other 

incidents resulting in exposure to these chemicals, the primary pathway affecting the 

general public is through food – accounting for more than 90% of an adult’s daily intake 

(Weber et al., 2018).  In addition to the chlorinated compounds that are the primary 

focus of this study, mixed poly-brominated/chlorinated biphenyls have been found to 

be widespread contaminants in food (Falandysz, Rose and Fernandes, 2012).  Serious 

food related product contamination incidents are fortunately rare; however, they do 

continue to occur – as shown by the following examples – and stress the importance of 

continual monitoring of food and animal feed supplies. 

Belgium, 1999: a mix of PCBs was accidentally added to recycled fat used in the 

production of animal feed supplied to over 2,500 farms.  The resultant feedstock was 

found to contain PCBs that were primarily due to a mix of Aroclor 1260 and 1254, and 

was also contaminated with PCDD/Fs (Bernard and Fierens, 2002).  Ultimately, ~7 million 

chickens and ~60,000 pigs were culled and the damage to the Belgian economy was 

estimated to be in excess of €1.5 billion (Covaci et al., 2007). 

Ireland, 2008: elevated PCB levels were found in a random sampling of animal kidney fat 

samples by the Irish National Residues Monitoring Programme.  Following analysis of 

the feed material, the source was traced to dried breadcrumbs (from recycled waste 

dough and bread).  A direct drying process had been used with heating fuel found to be 

contaminated with PCBs, primarily Aroclor 1260 – presumed to be from illegal dumping.  

In total, over 5,000 cattle and 170,000 pigs were destroyed – the latter being ~10% of 

the entire pig population (Tlustos et al., 2012). 
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1.4 Health effects from exposure to PCBs, PCDDs and PCDFs 

Concern over the health effects of these compounds is not new: an early report 

associating the skin condition chloracne with industrial exposure to chlorine-based 

chemicals dates to the beginning of the 20th century, however the cause was then 

attributed to chlorine gas rather than to any specific compound (Bettmann, 1901).  In 

1937, a paper reported on the incidence of liver disease in workers in the electrical 

industry where chlorinated naphthalenes and chlorinated diphenyls (as PCBs were 

originally known) were used in the manufacture of wire and cable insulation materials 

(Drinker, Warren and Bennett, 1937). 

Although no human deaths are known to have been directly related to these 

compounds, there have been multiple poisoning and contaminations incidents (Weber, 

Tysklind and Gaus, 2008).  One of the most unusual cases of dioxin poisonings is the 

(allegedly) intentional one of Viktor Yushchenko in 2004.  During his candidacy for 

Ukrainian presidency, Yushchenko suffered acute pancreatitis, and later exhibited facial 

jaundice and severe chloracne – well-known symptoms of high-level dioxin exposure.  

His blood serum levels of 2,3,7,8-TCDD were determined to be some 50,000-fold greater 

than that of the general population (Sorg et al., 2009). 

For many years, cancer has been considered as the primary endpoint for dioxin 

exposure, and this has been exemplified by the studies examining the effects on the 

health of Vietnam Veterans due to Agent Orange (Frumkin, 2003).  In a more 

contemporary study, increased rates of certain cancers affecting those involved in 

rescue and recovery operations following the World Trade Center 9/11 disaster have 

also been reported (Solan et al., 2013). 

PCDD/Fs are currently classified as known human carcinogens by the International 

Agency for Research on Cancer (IARC) (IARC, 2012) and in 2013 this classification was 

extended to include the dioxin-like PCBs (DL-PCBs) (Lauby-Secretan et al., 2013).  It is 

interesting to note the authors’ comment: 

“It is important to note that the evaluation of dioxin-like PCBs as carcinogenic to 

humans (group 1) does not preclude a carcinogenic activity of the other PCB 

congeners.” 
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Certain non-dioxin-like PCBs (NDL-PCBs) have demonstrated in vitro toxicity through 

non-AhR mechanisms such as transthyretin binding (Hamers et al., 2011).  A 2015 

congener-specific meta-analysis study showed that 3 NDL-PCBs (PCB-99, 183 and 187) 

were linked to an increased risk of breast cancer, and which did not correlate with 

exposure to DL-PCBs (Leng et al., 2016). 

The long-term effect of dioxin exposure on the immune system was identified in a 

follow-up study on the Seveso incident where plasma immunoglobulin IgG levels, taken 

20-years after the event from subjects in the highly exposed group, were found to be 

inversely correlated to 2,3,7,8-TCDD blood concentration (Baccarelli et al., 2002).  It has 

been reported that paternal dioxin exposure, also following the Seveso incident, has led 

to a reduced sex-ratio (male-to-female) of their children with rates of less than 0.4 for 

those with the highest 2,3,7,8-TCDD serum levels (Mocarelli et al., 2000). 

The role of dioxin as an endocrine disruptor is evident in multiple adverse reproductive 

health effects including endometriosis, a severe condition affecting the lining of the 

womb and/or uterus in women of reproductive age (Birnbaum and Cummings, 2002). 

Other mechanisms including the ryanodine receptor (Pessah, Cherednichenko and Lein, 

2010; Wayman et al., 2012) and the GABAA receptor (Antunes Fernandes et al., 2010) 

have also been shown to be responsive to NDL-PCBs, particularly in relation to 

neurodevelopmental disorders. 

Neurotoxic disorders and damage to the central nervous system were also identified in 

those – particularly women – affected by the Yucheng poisoning (Lin et al., 2008).  The 

Yucheng cohort also showed links with diabetes and, as with the above neurotoxicity 

study, women were significantly more affected (Wang et al., 2008). 
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1.5 Ultratrace Analysis Methods for Persistent Organic Pollutants 

Knowledge of the levels of POPs in environmental sources, in food – the primary route 

of exposure to humans – and in targets such as serum and tissue, is key to understanding 

the mechanisms involved in formation, transport and effects of these compounds.  To 

fill this gap in knowledge, various methods have been developed for ultratrace analysis, 

i.e. at parts-per-trillion (ppt) and parts-per-quadrillion (ppq) concentrations, and 

quantification of POPs using gas chromatography *  coupled to high-resolution mass 

spectrometry (GC-HRMS).  The focus here is on the mass spectrometry elements of 

PCDD/Fs and PCB analysis, however certain aspects of sample preparation that directly 

relate to the measurement process are also discussed, e.g. the addition of various 

isotopically labelled standards in the sampling, extraction, clean-up and pre-injection 

stages. 

There are multiple methods and variants in use worldwide for GC-HRMS analyses of 

POPs, but they all derive from the prototypical EPA Method 8290, “Polychlorinated 

Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by High Resolution 

Gas Chromatography/High Resolution Mass Spectrometry (HRGC/HRMS)” (Tondeur et 

al., 1989), and its successor, EPA Method 1613, “Tetra- through Octa-chlorinated Dioxins 

and Furans by Isotope Dilution HRGC/HRMS” – first published in 1990, now “1613B” 

(USEPA, 1994). 

Examples of other current methods are: 

• EPA Method 1668C: Chlorinated Biphenyl Congeners in Water, Soil, Sediment, 

Biosolids and Tissue by HRGC/HRMS (USEPA, 2010) 

• EPA Method 1614: Brominated Diphenyl Ethers in Water Soil, Sediment and 

Tissue by HRGC/HRMS (USEPA, 2007a) 

• EPA Method 1699: Pesticides in Water, Soil, Sediment, Biosolids and Tissue by 

HRGC/HRMS (USEPA, 2007b) 

 
* Several methods continue to refer to this as high-resolution gas chromatography (HRGC) 
which originally signified the use of capillary, rather than (their predecessor) packed, columns.  
Since all current GC practice in this field uses capillary columns (and has done so for more than 
30 years) this use of “HR” is effectively redundant. 
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• BS EN 16215:2012: Animal feeding stuffs.  Determination of dioxins and dioxin-

like PCBs by GC/HRMS and of indicator PCBs by GC/HRMS (CEN, 2012) 

 

To meet these methods’ requirements in terms of mass resolution, sensitivity and 

dynamic range, the analyses are still predominately performed on traditional magnetic 

sector GC-HRMS instruments, although, as discussed in section 1.13, recent instrument 

developments now allow for the use of tandem mass spectrometry (GC-MS/MS) for 

certain analyses. 

The principal concepts for discussion are: 

• The need for high-resolution to achieve adequate mass separation between the 

target compounds and other isobaric interferences. 

• Data acquisition using the selected ion monitoring (SIM) mode to achieve the 

required sensitivity with the monitoring of 2 ions for each homologue* group of 

compounds.  (An additional ion pair is also used for the 13C-labelled standards 

associated with each homologue group.) 

• Compound identification and confirmation based on GC retention time and 

isotopic abundance. 

• The role of “isotope dilution”, i.e. using fully-labelled† 13C standards for 

calibration and subsequent sample quantification purposes, and determination 

of congeners’ recoveries. 

  

 
* A homologue group represents all isomers at a particular chlorination level, e.g. the 
tetrachlorodibenzo-p-dioxin (TCDD) group comprises 22 isomers: 1,2,3,4-TCDD, 1,2,3,6-TCDD, 
2,3,7,8-TCDD, etc. 
† Where all 12C atoms in the target compound are substituted by the stable 13C isotope, thus 
forming a standard that accurately mimics the chemical behaviour of the native analyte but 
with each of its isotope peaks displaced to a higher mass according to the number of carbon 
atoms present in the molecule, e.g. 12 Da in the case of dioxins or PCBs, thus allowing separate 
measurement by the mass spectrometer. 
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1.6 The need for high resolution 

The extraction, fractionation and clean-up processes, defined within the above EPA and 

related methods, are designed to concentrate the target compounds and remove, or at 

least minimise, certain interferences.  Such residual interferences may give rise to 

isobaric peaks (i.e. with ions formed at the same nominal mass as those of interest), and 

in some cases, these peaks’ intensities can be several orders of magnitude greater than 

those of interest.  This is often a significant problem with environmental samples due to 

the presence of other chlorinated compounds that would largely prevent any 

meaningful measurements using low-resolution mass spectrometry (LRMS) at the 

ultratrace levels sought for the target compounds.  For this reason, high-resolution, 

i.e. ≥ 10,000 (m/Δm, 10% valley definition*), is specified by these methods for its ability 

to discriminate between the mass of the target compounds’ ions and those due to the 

most common interferences. 

High-resolution is also required to isolate ions from isotopically labelled standards 

(spiked into the samples for quantification purposes), from perfluorokerosene† (PFK), a 

reference compound that is continuously admitted into the ion source for lock-mass 

purposes (i.e. to correct for any mass drift) and to indicate instrument stability, and from 

background ions from GC column bleed or other extraneous sources. 

Figure 1.7 illustrates six potential isobaric interfering peaks from polychlorinated 

compounds in the region of TCDD’s molecular ion base peak at m/z 321.8937; these are 

each annotated with their m/z, mass difference relative to the TCDD peak (in ppm) and 

the resolution required for separation. 

It is important to note that chemical interferences can still be of concern, even at a mass 

resolution that is nominally sufficient for their separation from the target analytes’ ions, 

 
* Magnetic sector HRMS has traditionally used the 10% valley definition for mass resolution – 
defined as m/Δm – and this will be assumed throughout this thesis unless otherwise specified.  
An alternative measure, Full-Width Half-Maximum (FWHM), equivalent to a 50% valley 
definition, is commonly used when expressing resolution for other instruments such as those 
based on Time-Of-Flight (TOF). 
† Other reference compounds such as heptacosafluorotributylamine (commonly “heptacosa” 
or “FC43”) are sometimes used in this application, but PFK remains the most prevalent due to 
its well-spaced peaks and mass range that extends to ca. m/z 1,000 making it also suitable for 
the analysis of polybrominated compounds. 
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due to peak “tails” that can arise from poor abundance sensitivity (Murray et al., 2013).  

Such tails – resulting from instrument tuning artefacts, focussing aberrations or ion 

scattering due to inadequate analyser vacuum – can extend to several peak widths and 

lead to “break-through” interference peaks, particularly from high-level contaminants. 

 

 

Figure 1.7 Illustration showing potential interferences in the region of the m/z 321.8937 
peak of TCDD. 
The peaks are each annotated with their exact m/z, mass difference relative to TCDD (Δm, 
ppm) and the corresponding mass resolution (to 3 significant figures) required for separation. 
The peaks shown (from left) are: 

C12H3
35Cl5 (321.8677) – product ion due to the loss of Cl2 from heptachlorobiphenyl (HpCB) 

C12H4
35Cl337ClS (321.8758) – tetrachlorodibenzothiophene 

C12H4
35Cl337ClO2 (321.8937) – tetrachlorodibenzo-p-dioxin (TCDD) 

C13H6
35Cl237Cl2O (321.9116) – tetrachloroxanthene 

C14H8
35Cl37Cl3 (321.9296) – dichlorodiphenyldichloroethylene (DDE) 

13C12H4
35Cl37Cl3O (321.9331) – 13C-labelled tetrachlorodibenzofuran (TCDF) 

C14H10
35Cl2

37Cl2 (321.9480) – dichlorodiphenyldichloroethane (DDD) 

(Peak intensities are arbitrarily scaled for clarity.) 
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The underlying reasons for the original (EPA-8290) method’s mass resolution 

specification of 10,000 *  are undocumented, but the value would appear to be a 

reasonable compromise given the performance of contemporary †  magnetic sector 

instruments and the 1 ppt detection limit requirement for TCDD and TCDF from a 10 g 

soil/sediment sample.  This corresponds with the ability to detect a low-point, 1 pg/µL, 

calibration standard at a signal-to-noise ratio ≥ 10 whilst simultaneously providing 

sufficient mass separation for routine analyses.  This mass resolution is also well-suited 

to the precision governed by the use of an 18-bit digital-to-analogue converter (DAC) for 

the primary mass selecting electronics, i.e. the electrostatic analyser and accelerating 

voltage references, of ~4 ppm (i.e. from 1 / 218). 

 

1.7 The need for high sensitivity 

To achieve the required sensitivity, and the associated limits of detection and 

quantification, the MS data are acquired using the SIM mode‡ rather than conventional 

full-scan analysis.  Although the latter would, in principle, better characterise the data 

by allowing the use of spectral library searching and/or accurate mass measurements to 

confirm compound identification, its much lower sensitivity (for any one mass) – 

typically 2 to 3 orders of magnitude – precludes its use for these ultratrace analyses. 

This difference in sensitivity is directly related to the number of ions detected for any 

particular m/z which in turn is proportional to the amount of time spent at that m/z.  

This is equally true for any type of scanning instrument§, i.e. one where only a single 

 
* Nevertheless, 10,000 remains the specified resolution in current versions of these methods. 
† The original development of this method having been done on a VG ZAB-3F (VG Analytical, 
Manchester, UK) HRMS from the early 1980s at the EPA (Las Vegas, NV, USA) laboratories. 
‡ Specifically, voltage-SIM (rather than magnet-SIM) to provide the required mass specificity 
and speed of switching between masses. 
§ This is not the case for time-of-flight (TOF) instruments since all ions from any one extraction 
pulse (“push”) reach the detector.  There are nevertheless losses due to duty-cycle limitations 
in TOF analyses since a proportion of ions are effectively lost between pushes since, to avoid 
overlap, it is necessary for all high m/z ions to reach the detector before any low m/z ions from 
the subsequent push arrive.  (This can be ameliorated in certain hybrid Q-TOF instruments 
where the use of a travelling-wave tube can optimise the grouping of ions according to their 
m/z prior to TOF analysis.) 
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mass or mass loss transition can reach the detector at any one time, e.g. magnetic sector 

or quadrupole (in either MS or MS/MS operation). 

The time-per-peak (Tp, seconds) in a magnet scan experiment on a sector HRMS 

instrument at a given mass resolution (Res, m/Δm), scan rate (Rscan, seconds/decade) 

and rate constant* (krate) of 2.3 is approximately: 

𝑇𝑝  ≈ 𝑅𝑠𝑐𝑎𝑛 / (𝑘𝑟𝑎𝑡𝑒 ×  𝑅𝑒𝑠) (1.1) 

 

For example, given that the methods of interest specify a nominal mass resolution of 

10,000, from the above equation (1.1), the Tp at a 1 second/decade (magnet) scan rate 

is: 1 / (2.3 × 10,000) ≈ 43 µs. 

Compared to the SIM experiment, where only a limited number (typically 10 to 20) of 

characteristic m/z for the target compounds and their standards are monitored at any 

one time, with a typical cycle† time of 1 second, 20 m/z channels would result in an 

average channel time of 50 ms and therefore a dwell‡ time of 40–45 ms per channel – 

or about 1,000x greater than that obtained in full-scan mode.  It is important to note 

that, although mass resolution is a key parameter in the calculation of Tp in the full-scan 

acquisition mode, it plays no role in SIM. 

In full-scan acquisition, Tp could be increased by reducing the scan rate, but that would 

have to be done in conjunction with reducing the mass range such that the overall cycle 

time was effectively the same in order to provide sufficient§ data points across each GC 

peak.  For example, a PCB experiment comprising all masses from monochlorobiphenyl 

 
* The rate constant (k) of 2.3 (or more exactly 2.3026) derives from the exponential magnet 
scan law.  This is described in more detail in Appendix C.1. 
† The cycle time is the total time spent recording data for each m/z (dwell time) and the 
switching time between consecutive m/z in any one function.  This is also sometimes used in a 
full-scan experiment to indicate the sum of the scan time and any inter-scan delay. 
‡ The dwell time is the actual time spent recording the ion intensity data at each m/z of 
interest; it is less than the channel time due to the time required to switch between m/z – 
typically, 5-10 ms on a HRMS and < 5 ms on a quadrupole instrument. 
§ At least 7 data points are required to adequately define a peak for integration purposes with 
10 or more preferred.  Given the typical GC peak width in these experiments of approximately 
10 seconds (at the peak’s baseline), the required overall scan or cycle time should therefore be 
no more than 1 second. 
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(MoCB, C12H9Cl) to decachlorobiphenyl (DeCB, C12Cl10) would require a low mass of 

~180 Da and a high mass of ~510 Da (this mass range would also be sufficient to include 

suitable calibration masses); this represents approximately half a decade of mass [i.e. 

log10 (510 / 180)].  Such a change would therefore allow the scan rate to be changed to 

2 seconds/decade and still achieve the same number of data points across a GC peak, 

however, Tp has only increased by a factor of 2, which is negligible compared to the gains 

from using SIM acquisition. 

Further improvements could be made by splitting the acquisition into several functions 

– as is usually done in SIM experiments – such that a limited mass range, covering just 

the masses of interest that elute over a pre-determined retention time window, is 

analysed.  This could give a further 5-fold improvement in some instances but would still 

fall far short of the comparable SIM signal.  Using discrete acquisition functions with 

smaller mass ranges would also permit the use of voltage scanning but this would offer 

no advantage in terms of sensitivity as the average Tp in this mode would be 

approximately equal to that in magnet scanning given the same cycle time.  It is 

important to note that, unlike in magnet scanning where Tp is constant across the mass 

range, Tp varies throughout a voltage scan such that it is proportionately greater at the 

low mass relative to the high mass by a factor of high mass / low mass. 

Another factor affecting instrument sensitivity is the ion source’s electron energy: as 

with the rationale behind the choice of mass resolution in EPA-8290, a requirement for 

this to be between 28 and 40 eV to optimise performance appeared in the 1600-series 

methods without any references or explanation even though this was notably different 

to the 70 eV traditionally used for EI analyses. 

The underpinnings of this low eV range for EI can be traced back to a 1986 ASMS poster 

presentation (Green et al., 1986) showing that the use of lower electron energies gave 

an overall improvement in sensitivity by decreasing the level of helium* ionisation, that 

in turn results in less suppression of analyte ions exiting the source due to reduced 

space-charge effects.  Therefore, although it would have been reasonable to include this 

as a recommendation – or indeed as a historic observation – it seems inappropriate to 

 
* Helium being the preferred choice of GC carrier gas for this application. 
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have it as a mandatory requirement as different source designs and/or configurations 

of the ion extraction optics may result in other optimal values. 

 

1.8 The need for high dynamic range 

The current version of the PCB method, EPA-1668C (USEPA, 2010), specifies a calibration 

range from 0.2 to 2000 pg/µL for each compound thus defining a 104:1 linear, dynamic 

range requirement.  However, this only states the case for PCBs at single chlorination 

level. 

Figure 1.8 shows the modelled molecular ion cluster for monochlorobiphenyl (MoCB) 

with most of the charge distributed over just 4 ions (> 1%) and with ~67% present in the 

base peak; this compares to 12 ions (> 1%) for decachlorobiphenyl (DeCB), with ~25% in 

the base peak as shown in Figure 1.9. 

 

 

Figure 1.8 Modelled molecular ion distribution for monochlorobiphenyl (MoCB, C12H9Cl) 
showing exact m/z and abundances. 
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Figure 1.9 Modelled molecular ion distribution for decachlorobiphenyl (DeCB, C12Cl10) 
showing exact m/z and abundances. 

 

Given the additional factor of the GC peak width of DeCB being ~11 secs, compared to 

~7 secs for MoCB, it would be expected that the MoCB base peak would be ~4.2x more 

intense than that for DeCB (for the same amount).  Experimental data shows this to be 

~6.4x – the difference being likely due to greater fragmentation of DeCB – and therefore 

the required instrument dynamic range should, in practice, be at least ~105:1 to allow 

for this and any other variations in instrument performance.  This is within the 

performance specification of both HRMS (in SIM mode) and quadrupole-based MS/MS 

[in multiple reaction monitoring* (MRM) mode] instruments where up to 106 dynamic 

range is available, but is at, or greater than, the range currently achievable with ion trap 

or time-of-flight (TOF) based instruments†. 

  

 
* MRM (also known as selected reaction monitoring or SRM) follows the same principles as SIM 
in terms of sensitivity vs. scanning acquisition; the key difference being that the data acquired 
are due to product ions from selected precursor ions. 
† Manufacturers’ specifications (as of Sep. 2019): Waters AutoSpec-Ultima (HRMS) – 106:1, 
Agilent 6495 (triple-quadrupole MS) – 106:1, Thermo Scientific Orbitrap – 105:1, Waters Synapt 
Q-TOF > 104:1. 
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1.9 SIM experiment overview 

As referenced in section 1.7, SIM experiments can be optimised by splitting the masses 

to be acquired over several functions (groups) such that a minimum number are 

acquired at any one time, and in the case of magnetic sector HRMS instruments, to limit 

the high m/z to low m/z ratio within any one function to 2:1*.  In PCB analysis, this is 

further constrained by the overlapping GC retention time windows, as shown in Table 

1.1. 

 

Function PCB’s acquired m/z range Magnet m/z 1 Voltage ratio2 

1 Mono, Di 188–236 178 1.33 

2 Di, Tri, Tetra 222–304 216 1.41 

3 Tri, Tetra, Penta 254–340 240 1.42 

4 Tetra, Penta, Hexa, Hepta 290–408 278 1.47 

5 Penta, Hexa, Hepta, Octa 324–442 314 1.41 

6 Hepta, Octa, Nona 394–476 390 1.22 

7 Deca 498–512 490 1.04 

Table 1.1 Acquisition function setup for the HRMS SIM analysis of PCBs. 
For each function, the chlorination levels (Mono–Deca) acquired are shown with their required 
m/z range.  1For each function, the magnet is set ~3 m/z units lower than the PFK reference 
m/z immediately below the lowest acquired m/z.  2The resulting voltage ratio is then 
determined from the acquisition high mass relative to the magnet mass. 

 

During the acquisition of any one function, the m/z channels are cycled through in 

sequence and, as with all magnetic sector HRMS instruments operating in the voltage-

SIM mode, these are selected by proportional changes to the voltages supplied to the 

ion source, electrostatic analysers and other focussing lenses.  Each m/z change requires 

a certain inter-channel delay, typically 5–10 ms – principally limited by the switching 

speed of the ion source’s high-voltage (nominally 8 kV for the AutoSpec-Ultima) power 

supplies – for the instrument to reach and stabilise on each successive m/z peak prior to 

recording its intensity for a specified dwell time. 

The dwell time for each m/z can be the average value determined from the cycle time 

(as discussed in section 1.7), or optimised according to the sensitivity requirement of a 

 
* Although not a hard limit, the 2:1 ratio limit arises from the adverse effects of dropping the 
accelerating voltage (and other focussing elements’ supplies) by that proportion; these include 
loss of resolution and sensitivity. 
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specific m/z, i.e. increasing the dwell times for target analytes’ m/z that require greater 

sensitivity/signal-to-noise, relative to that needed for the 13C-labelled standards that are 

present at (nominally) constant, relatively high, concentrations.  (The underlying theory 

behind this is discussed in depth in Chapter 2.) 

In addition to the analytes’ and standards’ m/z, an additional reference (PFK) m/z 

channel is used for lock-mass purposes.  This is a single-point determination intended to 

compensate for any drift in the magnet’s transmitted m/z (primarily due to drift in its 

control electronics), and it is assumed that the same correction can be applied equally 

to all channels.  Its operation consists of a narrow-range voltage scan, usually 2 peak-

widths (i.e. 200 ppm at a mass resolution of 10,000), over the reference m/z, such that 

its peak centroid, and thus any departure from the centre of the m/z window, can be 

measured and an appropriate correction applied.  A further channel, often at the same 

m/z as the lock-mass channel, is used as a quality-control (QC) check to indicate correct 

lock-mass operation and to signal any variations in the ion source’s response.  Table 1.2 

shows an example of the m/z descriptors used for function 4 of the PCB experiment. 

 

m/z Delay (ms) Dwell (ms) Description Formula 

289.9224 20 60 Tetra-CB M+0 C12H6
35Cl4 

291.9194 6 60 Tetra-CB M+2 C12H6
35Cl337Cl 

301.9626 10 10 13C-labelled Tetra-CB M+0 13C12H6
35Cl4 

303.9597 6 10 13C-labelled Tetra-CB M+2 13C12H6
35Cl337Cl 

323.8834 6 60 Penta-CB M+0 C12H5
35Cl5 

325.8804 6 60 Penta-CB M+2 C12H5
35Cl437Cl 

327.8775 6 40 Penta-CB M+4 C12H5
35Cl337Cl2 

330.9792 6 20 PFK lock-mass QC check  C7F13 

330.9792 5 50 PFK lock-mass C7F13 

337.9207 10 10 13C-labelled Penta-CB M+2 13C12H5
35Cl437Cl 

339.9177 6 10 13C-labelled Penta-CB M+4 13C12H5
35Cl337Cl2 

359.8415 6 50 Hexa-CB M+2 C12H4
35Cl537Cl 

361.8385 6 50 Hexa-CB M+4 C12H4
35Cl437Cl2 

371.8817 10 10 13C-labelled Hexa-CB M+2 13C12H4
35Cl537Cl 

373.8788 6 10 13C-labelled Hexa-CB M+4 13C12H4
35Cl437Cl2 

393.8025 10 50 Hepta-CB M+2 C12H3
35Cl637Cl 

395.7995 6 50 Hepta-CB M+4 C12H3
35Cl537Cl2 

405.8428 10 10 13C-labelled Hepta-CB M+2 13C12H3
35Cl637Cl 

407.8398 6 10 13C-labelled Hepta-CB M+4 13C12H3
35Cl537Cl2 

Table 1.2 Example of the SIM m/z descriptors used for the Tetra to Hepta-CB function of a 
HRMS PCB experiment. 
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1.10 Compound identification: retention time and isotope ratio 

Since the methods examined in this thesis are focussed on chlorinated compounds 

(although the ideas discussed would apply to many other analytical situations, and 

particularly to those used for other, singly or mixed, halogenated compounds) two* ions 

are monitored for each compound, or group of isomers, of interest.  The ions chosen are 

usually †  the two most intense found in the molecular ion cluster and which are 

principally formed due to the varying contributions of the two naturally occurring 

chlorine isotopes‡, 35Cl and 37Cl.  An example of the calculated molecular ion cluster of 

octachlorobiphenyl (OcCB) is shown in Figure 1.10 with the two major ions at m/z 427.76 

and 429.76. 

During GC-HRMS or GC-MS/MS analysis, the elution of a compound of interest will 

produce chromatographic peaks at a known retention time in each ion trace being 

monitored.  The two peaks must coelute within 1 second to be considered valid and 

their peak areas calculated, and summed, for quantification purposes.  In addition, the 

isotope ratios of these compounds – directly calculated from the ratio of the two peak 

areas – can then be compared with their corresponding theoretical values. 

 

 
* With one exception: during PCDD/F analysis, a 37Cl4-2,3,7,8-TCDD labelled standard is used to 
monitor sample clean-up efficiency (in addition to the usual 13C12-labelled standards used for 
extraction/recovery purposes), since this only contains 37Cl isotopes, just one ion is recorded. 
† In certain cases, interferences from reference compounds or other background sources such 
as “bleed” from the GC column or injector septum, necessitate other choices. 
‡ Isobaric contributions due to the naturally occurring isotopes of C, H (and O for dioxins and 
furans) are also present and not separated even at high (≥ 10,000) mass resolution, however 
their intensities are sufficiently lower (< 1%) than the major isotope peaks and therefore do 
not need to be included in the general discussion.  As an example, the most intense peak of 
the OcCB molecular ion cluster discussed in this section is m/z 429.7606 (C12H2

35Cl637Cl2) at 
100%; the next 2 most intense peaks are m/z 429.7702 (12C10

13C2H2
35Cl737Cl) and m/z 429.7732 

(12C11
13CHD35Cl737Cl) with contributions of 0.68% and 0.0027% respectively. 
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Figure 1.10 Modelled molecular ion distribution for octachlorobiphenyl (OcCB, C12H2Cl8) 
showing exact m/z and relative abundances. 

 

In the OcCB example above, this is 89% from the abundances of m/z 427.76 and 429.76.  

The agreement of these values (subject to the method’s ±15% tolerance), typically 

together with the method’s RT criterion (e.g. -1 s to +3 s for a toxic PCB relative to its 

labelled standard) determines whether the compound is considered as being positively 

identified.  It should be stressed that for an ultratrace SIM experiment, the only criteria 

available for positive compound identification are the ion abundance ratio and the 

retention time (or relative retention time). 

To illustrate this, Figure 1.11 shows the mass chromatograms for several OcCB 

congeners: the traces show data for the M+2 (C12H2
35Cl737Cl) and M+4 (C12H2

35Cl637Cl2) 

ions from the molecular ion cluster of the naturally occurring (native) species, and the 

corresponding M+2 (13C12H2
35Cl737Cl) and M+4 (13C12H2

35Cl637Cl2) chromatograms for the 

fully 13C-labelled OcCB standard used for quantification purposes.  The lower trace, m/z 

366.9792 (C10F13), is due to the perfluorokerosene (PFK) reference compound that is 

continuously admitted into the ion source for lock-mass purposes (i.e. to correct for any 

instrument mass drift) and to indicate instrument stability. 
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Figure 1.11 Chromatograms for the native OcCB M+2 (m/z 427.7635) and M+4 (m/z 429.7606) 
ions, 13C-labelled OcCB M+2 (m/z 439.8038) and M+4 (m/z 441.8008) ions, and the QC check 
ion (PFK, m/z 366.9792). 
Data acquired using an AutoSpec-Ultima GC-HRMS instrument (Waters, Wilmslow, UK) using 
the experimental conditions described in section 2.3. 
Peak colour code: blue – native PCB (in-ratio), magenta – native PCB (out-of-ratio), 
yellow – 13C12-labelled PCB standard. 

 

Of the 9 native isomers present – including the peak doublet at RT 41.49 formed from 

the coelution of PCB-198 and PCB-199 – all are within the accepted ion abundance ratio 

with the exception of PCB-197, as indicated by the purple shading.  These data are 

summarised in Table 1.3.  For each peak, the actual (RaAct) and theoretical isotope ratio 

(RaTheo) are shown together with the ratio error (ErrRa), simply calculated as shown in 

equation (1.2). 

𝐸𝑟𝑟𝑅𝑎 =
𝑅𝑎𝐴𝑐𝑡

𝑅𝑎𝑇ℎ𝑒𝑜
− 1 (1.2) 
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The “Ratio OK” flag is set according to the current EPA-1668C method’s ±15% tolerance.  

The errors show a typically random spread centred close to zero (-2.3%) and with no 

evidence of any significant systematic bias. 

 

Congener 
GC 

Retention 
Time 

Measured 
Isotope 

Ratio 

Theoretical 
Isotope 

Ratio 

Measured 
Isotope 

Ratio Error 

Error 
within 
± 15% 

PCB-202 37.51 0.84 0.89 -5.4% Yes 

PCB-201 38.29 0.87 0.89 -2.2% Yes 

PCB-204 38.87 0.80 0.89 -10.3% Yes 

PCB-197 39.06 0.74 0.89 -16.7% No 

PCB-200 39.14 0.88 0.89 -1.7% Yes 

PCB-198/199 41.49 0.92 0.89 2.9% Yes 

PCB-196 42.07 0.96 0.89 8.0% Yes 

PCB-203 42.24 0.95 0.89 7.0% Yes 
   Mean 

error: 

-2.3%  

Table 1.3 Measured vs. theoretical isotope ratios and errors for a set of OcCB congeners 
from the data shown in Figure 1.11. 

 

The above data therefore identify one of the key questions of this thesis: why, given that 

the sample analysed here is a mix of known PCB standards, were not all peaks positively 

identified?  Although, in this case, just a single peak fell outside the (usual) 15% tolerance 

criterion, as discussed in Chapter 2, this is an arbitrary value.  A key proposal outlined is 

that errors introduced into the measurement system due to ion statistics give rise to 

sufficient random variability in the peak areas and are the most predominant cause of 

peaks failing the isotope ratio test. 

The isotope ratio check was originally established to confirm the presence of those 

compounds targeted by the method and reject those from interfering peaks from giving 

rise to false positives, and it might seem that the significance of weak peaks being 

rejected is minor, i.e. that they represent low concentrations; this may be true, but low 

recoveries and other sensitivity considerations can result in peaks that are weaker, and 

hence noisier, than expected given their actual concentration.  In addition, toxicity 

calculations – as discussed in the following section – can lead to further distortion of the 

data. 
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1.11 Toxic equivalency factors and toxic equivalent concentrations 

Regulations concerning PCDD/Fs and PCBs, such as those governing their acceptable 

levels in food products within the European Union (EU) (European Commission, 2006), 

are based on a sample’s overall toxicity.  However, since these compounds have varying 

degrees of toxicity, their concentrations cannot be simply added; instead for each 

compound, its concentration is multiplied by its corresponding toxic equivalency factor 

(TEF) prior to summation into a toxic equivalent concentration (TEQ). 

For n compounds: 

𝑇𝐸𝑄 = ∑ 𝐶𝑜𝑛𝑐𝑖

𝑛

𝑖=1

× 𝑇𝐸𝐹𝑖  (1.3) 

 

Several different sets of TEF values have existed since their origins in the 1980s, from 

the US, Canada, the Scandinavian countries, Germany, and from the North Atlantic 

Treaty Organization* (NATO) and the World Health Organization (WHO) (Bhavsar et al., 

2008).  Certain US States have also developed their own TEFs that were applicable to air 

emission regulations, e.g. Massachusetts, that, unusually, included factors for mono, di 

and tri-chlorinated, and other non-2,3,7,8 substituted dioxins and furans 

(Massachusetts Department of Environmental Protection, 1991). 

The original version of the WHO TEFs, in “Toxic equivalency factors (TEFs) for PCBs, 

PCDDs, PCDFs for humans and wildlife“ (Van den Berg et al., 1998), also considered 

different taxa with separate mammalian, avian and aquatic TEF values.  As a result of 

various revisions and harmonisation of the above schemas, two sets of TEFs remain in 

current, widespread use for both toxicity studies and regulatory work: the International-

TEFs (I-TEFs) (Kutz et al., 1990) and the WHO TEFs† (Van den Berg et al., 2006). 

  

 
* Specifically, its Committee on the Challenges of Modern Society (1988). 
† Also commonly referred to (including within this thesis) as the WHO-2005 TEFs to 
differentiate them from the previous 1998 TEFs. 
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In all cases, the factors are based on the AhR binding activity relative to 2,3,7,8-TCDD – 

as (currently) the most toxic PCDD/F or PCB with its value of 1 – and encompass over 

four orders of magnitude.  Any other PCDD/F or PCB congener not listed is deemed non-

toxic with a TEF of zero.  Table 1.4 lists the I-TEFs and WHO-2005 TEFs for PCDD/F and 

Table 1.5 lists the WHO-2005 TEFs for PCBs. 

 

PCDD/F I-TEFs WHO 2005 TEF 

2,3,7,8-TCDD 1 1 

1,2,3,7,8-PeCDD 0.5 1 

1,2,3,4,7,8-HxCDD 0.1 0.1 

1,2,3,6,7,8-HxCDD 0.1 0.1 

1,2,3,7,8,9-HxCDD 0.1 0.1 

1,2,3,4,6,7,8-HpCDD 0.01 0.01 

OCDD 0.001 0.0003 

2,3,7,8-TCDF 0.1 0.1 

1,2,3,7,8-PeCDF 0.05 0.03 

2,3,4,7,8-PeCDF 0.5 0.3 

1,2,3,4,7,8-HxCDF 0.1 0.1 

1,2,3,6,7,8-HxCDF 0.1 0.1 

1,2,3,7,8,9-HxCDF 0.1 0.1 

2,3,4,6,7,8-HxCDF 0.1 0.1 

1,2,3,4,6,7,8-HpCDF 0.01 0.01 

1,2,3,4,7,8,9-HpCDF 0.01 0.01 

OCDF 0.001 0.0003 

Table 1.4 I-TEFs and WHO-2005 TEFs for PCDDs and PCDFs. 

 

BZ # PCB Type WHO 2005 TEF 

PCB-77 3,3’,4,4’-TetraCB Non-ortho 0.0001 

PCB-81 3,4,4’,5-TetraCB " 0.0003 

PCB-126 3,3’,4,4’,5-PentaCB " 0.1 

PCB-169 3,3’,4,4’,5,5’-HexaCB " 0.03 

PCB-105 2,3,3’,4,4’-PentaCB Mono-ortho 0.00003 

PCB-114 2,3,4,4’,5-PentaCB " 0.00003 

PCB-118 2,3’,4,4’,5-PentaCB " 0.00003 

PCB-123 2,3’,4,4’,5’-PentaCB " 0.00003 

PCB-156 2,3,3’,4,4’,5-HexaCB " 0.00003 

PCB-157 2,3,3’,4,4’,5’-HexaCB " 0.00003 

PCB-167 2,3’,4,4’,5,5’-HexaCB " 0.00003 

PCB-189 2,3,3’,4,4’,5,5’-HeptaCB " 0.00003 

Table 1.5 WHO-2005 TEFs for PCBs. 
(I-TEF values have not been established for PCBs.) 
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Notwithstanding the necessity of the TEF/TEQ methodology in determining a sample’s 

toxicity, it is important to recognise that the effect of any errors in peak measurement 

and/or identification due to weak ion statistics (discussed in Chapter 2) or fragmentation 

effects (discussed in Chapter 4) can be magnified using these factors.  If a peak is 

erroneously included or disregarded, this may be considered of little relevance if it is of 

very low or zero toxicity, but for a highly toxic congener, with its associated high TEF, 

the ‘gearing’ effect on the reported data can be significant.  This not only distorts the 

results for the sample in question – with possible serious compliance implications – but 

can also lead to misleading comparisons with other samples, e.g. using pattern matching 

or other database assessments. 

The TEF/TEQ model’s importance is further established in risk assessment studies.  The 

European Food Safety Authority (EFSA) Panel on Contaminants in the Food Chain, in 

“Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs 

in feed and food” (Knutsen et al., 2018), has established a new* tolerable weekly intake 

(TWI) level of 2 pg TEQWHO-2005/kg (body weight). 

The development of tables for neurotoxic equivalence is also being undertaken where, 

in a complementary approach to the AhR activity used for the above TEQ tables, the PCB 

potencies in respect of (e.g.) ryanodine receptor activity and inhibition of dopamine 

uptake are established; however this work is not considered sufficiently robust at this 

time (Simon, Britt and James, 2007; Pradeep et al., 2019). 

  

 
* The previous EFSA TWI (2001) was 14 pg TEQWHO-1998/kg (body weight). 
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1.12 Isotope dilution: the use of stable isotopically labelled standards 

This concept of “isotope dilution”, in the context of these methods, means that a 

compound’s concentration is primarily* quantified using the ratio of its response (the 

sum of its peak areas) to that of an isotopically labelled standard.  For example, 2,3,7,8-

TCDD would have its concentration determined by reference to the labelled, 

13C12-2,3,7,8-TCDD, standard. 

A key benefit of isotope dilution is that variations in the analytes’ recoveries during the 

sample extraction and/or clean-up processes (which may be unavoidable with certain 

sample matrices) do not lead to incorrect concentration determinations.  Since the 

target analytes and their labelled standards only differ in whether their molecules are 

formed of 12C or 13C atoms, their chemistries are nominally identical and are thus equally 

affected throughout the processing stages. 

It is important to note that this form of true isotope dilution only applies to those 

compounds that have a labelled standard with an identical isomer configuration (i.e. 

isotopologues), however, since the availability of 13C-labelled standards is limited† to the 

toxic compounds and a subset of the remainder (e.g. the first and last eluters at each 

level of chlorination), compromises are invariable needed, e.g. 1,4,6,9-TCDD, in the 

absence of its 13C counterpart, would also be quantified against 13C12-2,3,7,8-TCDD.  

Such approximations are considered acceptable within the methods given the (arguably) 

lesser importance of these compounds. 

These labelled standards are added (spiked) to the sample prior to any extraction or 

other processing – in essence, this spiking event defines “the sample” from the 

laboratory’s perspective, since it is at this point that the relationships between the 

native target compounds and their corresponding standards are first established 

(Tondeur and Hart, 2009).  This distinction can be critical if a sample is split into multiple 

 
* Other factors include the (mean) relative response factor obtained during calibration, spiking 
amounts and sample weight or volume.  However, solvent dilutions are not factored into these 
concentration calculations since, as with analyte recovery calculations, the native and standard 
responses would be equally affected. 
† Even if/as additional 13C-labelled standards become available, it should be noted that they 
add significant cost to the analysis.  E.g. > US$ 5,000 (Aug. 2019) for a set of EPA-1613 PCDD/F 
standards [containing 500 ng per component (i.e. sufficient for ~250 samples)]. 
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aliquots prior to spiking – if these are not homogenous then the subsequent analysis of 

another aliquot could yield significantly different results.  Sediment samples are a case 

in point, where large variations in particle size and other aspects of the material are not 

uncommon.  This can be problematical enough at the typical 10 g sample size, but the 

effect can be further amplified when dealing with heavily contaminated samples and 

the consequent need to work with smaller sample sizes such as 1 g to keep within the 

calibration range of the instrument*. 

Although the most immediate benefits of isotope dilution relate to concentration 

precision and accuracy, e.g. as demonstrated by interlaboratory studies (Eppe et al., 

2008), the use of these labelled standards also allows the (extraction) recoveries of the 

target compounds to be calculated.  For this purpose, the standards’ responses are 

measured relative to an additional labelled standard added at the final stage of sample 

preparation immediately prior to GC-MS analysis, e.g. 13C12-1,2,3,4-TCDD would be used 

to determine the recovery of 13C12-2,3,7,8-TCDD. 

Such recovery information can also help address the issue when there is no (expected) 

response for a certain compound and the question is raised as to whether it is truly 

absent from the sample (or at least below the analytical limit of detection), or, could the 

compound possibly have been present in the original sample, but subsequently lost from 

the sample extract during its processing?  Similarly, other labelled standards can be 

added at intermediate sample preparation stages such that any recovery related 

problems can be isolated to a particular stage of the process, e.g. extraction, aliquot 

splitting, clean-up or concentration. 

The isotope dilution approach also inherently corrects for the effect of certain other 

analytical artefacts: in-source fragmentation at different electron energies within 

electron ionisation (EI) sources or protonated ion formation in atmospheric pressure 

(AP) ion sources; variation in collision cell conditions and subsequent fragmentation in 

MS/MS.  Isotope dilution is therefore at the heart of expanding these existing methods 

beyond their original (EI based) GC-HRMS based scope. 

 
* Sample dilution can be used to reduce peak responses, for example, to bring them into the 
instrument’s operational or linear range, but this does not alter their relationship to the 
calibration curve – although it is often incorrectly assumed to do so in order to bring 
compounds’ responses within the calibration range. 
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Other benefits associated with isotope dilution are that variations in the instrument’s 

detector gain, actual sample injection volume, solvent dilution and certain other 

parameters that would also equally affect both the target compound and its standard, 

can therefore be (correctly) ignored in any concentration calculation.  However, 

although a particular compound’s calculated concentration may be invariant with 

recovery and certain other conditions (since its relative response is unchanged), its 

detection limit, measurement uncertainty, and hence analytical fitness-for-purpose can 

be affected (since its absolute response has changed). 

 

1.13 Alternative technologies: MS/MS 

GC-MS/MS is an alternative to GC-HRMS for the analysis of POPs as it can effectively 

filter isobaric interferences (such as those discussed in section 1.6) which, due to their 

different structures, would not produce the same fragment ions and hence not be 

detected.  E.g. for TCDD analysis, transitions corresponding to the loss of COCl (63 Da) 

would be monitored, e.g. m/z 319.9 > 256.9 and m/z 321.9 > 258.9. 

MS/MS has been previously shown to be a useful alternative to HRMS for the analysis 

of POPs and, in cases where mass resolutions of > 10,000 are required, may be the 

preferred choice (Charles and Tondeur, 1990).  However, this work, based on hybrid 

magnetic sector / quadrupole instrumentation, had been mostly confined to areas of 

fundamental research rather than routine analyses.  More recently, improvements in 

triple-quadrupole instrument stability and sensitivity, including the use of atmospheric 

pressure chemical ionisation (APCI), have shown that this technique is now viable for 

routine analysis of PCDD/Fs (van Bavel et al., 2015; Organtini et al., 2015) and other 

POPs such as halogenated flame retardants (Megson et al., 2016). 

At the time of writing, it remains the case that only magnetic sector HRMS instruments 

operating in the SIM mode can meet the requirement specifications for all ultratrace 

methods (PCDD/F, PCB, PBDE and organochlorine pesticides) for all matrices.  However 

since 2017, considering the above advances and comparative studies with EI/HRMS data 

(ten Dam et al., 2016), GC-MS/MS, using triple-quadrupole mass spectrometry, has been 



32 

approved for use within the EU for confirmatory* analyses of food and animal feed 

products but this is only for measurement of the subset of 17 PCDD/Fs and 12 PCBs for 

which WHO TEFs have been defined, and is not applicable to other sample matrices 

(European Commission, 2017). 

The EU also permits the use of GC-LRMS (e.g. single-quadrupole instruments) for 

analysis of the 6 Indicator PCBs, namely PCB-28, 52, 101, 138, 153 and 180.  This small 

subset of the 209 PCB congeners have been deemed to be representative of a sample’s 

toxicity but are typically present in food/feed products at much higher concentrations 

than the actual (WHO) toxic PCBs, thus enabling their analysis using LRMS.  This 

therefore allows a lower-cost option that can be used for batch screening purposes, 

however any samples exceeding the statutory levels set for those compounds require 

confirmatory analyses using GC-HRMS or GC-MS/MS (European Commission, 2017). 

Other mass spectrometry techniques – e.g. Q-TOF (hybrid quadrupole time-of-flight) 

based MS/MS, high-resolution TOF and high-resolution ion trap MS – will undoubtedly 

enter this analytical sphere as their performance continues to improve, but have yet to 

be shown as viable replacements for GC-HRMS on which the methods, and regulations, 

are currently based.  The latter point on regulations may also hinder the adoption of 

new methodologies for work involving litigation since clients may continue to express a 

preference for, or demand the use of, conventional methods to avoid any uncertainty in 

data presented for scrutiny†. 

  

 
* Confirmatory analyses are required to determine whether a product exceeds its legal limits 
for any particular matrix.  Such testing often follows lower cost screening analyses used to 
tentatively identify problematic samples. 
† Based on the author’s personal discussions with clients of large-scale (> $1M) projects. 
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1.14 Alternative technologies: bioanalytical analysis 

In an area related to TEQ determination, it should be mentioned that immunoassay 

based analyses such as chemical-activated luciferase gene expression (CALUX) (Murk et 

al., 1996) are a commonly used alternative to mass spectrometry based methods for the 

assessment of PCDD/Fs and PCBs in terms of a sample’s bioanalytical equivalent 

concentration (BEQ) (Baston and Denison, 2011).  Such analyses are based on certain 

cell lines having a measurable response to AhR activity – widely thought to be the main 

mechanism of dioxin toxicity, and specifically carcinogenicity, though this remains 

contentious (Sorg, 2014). 

This technique is now accepted as a screening tool within the EU for the analysis of 

PCDD/Fs and PCBs in food and feed (European Commission, 2017), subject to a sufficient 

number of samples being confirmed by GC-MS.  In principle, the BEQs should match the 

TEQs derived from GC-HRMS or GC-MS/MS data (i.e. with the appropriate TEFs applied), 

however many data show variances of up to 3x (both lower and higher) for certain 

matrices.  For the higher BEQ results this is perhaps indicative of the presence of other 

compounds, such as polybrominated biphenyls or polychlorinated naphthalenes that 

were not analysed in the GC-MS data, and for the lower BEQ results, in there being 

inconsistencies between the CALUX data and the WHO TEF model (Croes et al., 2013). 

It is important to note that an important limitation of these bioassay methods is that the 

practice of isotope dilution is implicitly not possible.  This is because any isotopically 

labelled standards would create responses indistinguishable from those of the target 

compounds, therefore any sample extraction or clean-up problems leading to low 

recoveries – and the ensuing measurement errors – would not be apparent. 

Another potential weakness is that current regulations are based on TEQ limits, and 

these could be revised if toxicity via other receptor mechanisms becomes sufficiently 

well understood – and ultimately regulated: e.g. several PCBs have been suggested as 

being neurotoxic, but their mechanisms of action are via the ryanodine receptor (Pessah 

et al., 2010; Wayman et al., 2012) and the GABAA receptor (Antunes Fernandes et al., 

2010), rather than via the AhR, and would therefore not be measured using these 

existing techniques. 
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1.15 Thesis outline, aims and objectives 

Many laboratories are engaged in the measurement of PCDD/Fs and PCBs in food, 

animal feed, environmental (e.g. air, water, soil), industrial and other samples to fulfil 

the needs of various regulatory standards worldwide.  In addition to such compliance 

work, numerous studies are being continually performed to determine the effects and 

fate of these compounds in epidemiological studies and in cases of historical and/or 

ongoing contamination incidents. 

Such programmes can vary considerably in their scope: from small scale projects 

consisting of a few samples, to multi-year investigations involving thousands of samples 

from a wide geographical spread or from epidemiological studies.  For example, projects 

relating to the modelling, and subsequent remediation, of contaminated waterways 

require complementary studies to characterise multiple locations with the analysis of 

the various POPs from multiple matrices: e.g. water, sediments (surface, core), fish, 

benthic, etc.  Such projects inevitably require multiple instruments and personnel, and 

with the work often split across multiple laboratories.  Furthermore, sampling and 

analysis can occur in multiple episodes with wide-ranging timescales from a few days or 

weeks to open-ended projects spanning years.  Even if a project’s initial design specifies 

sampling over a certain period, this can be subject to change due to adverse weather, 

personnel, sampling or laboratory equipment problems, etc.  It is therefore critical to 

have consistent sampling, analytical and reporting criteria for the resultant data to be 

meaningful and comparable. 

The established GC-HRMS methods, for the measurement and quantification of PCDD/Fs 

and PCBs in real-world samples at ultratrace levels (introduced in section 1.5), contain 

the detailed procedures required to fully complete a sample’s analysis – from initial 

preparation (extraction, clean-up, concentration, etc.) through to HRMS analysis and 

data processing with all associated calibration and quality-control.  However, these 

methods, as typified by EPA-1613 (USEPA, 1994) and its derivatives, have changed little 

in principle since their origins in the 1980s and 1990s and fail to address several 

important issues; in certain cases, their prescriptive approach can lead to the erroneous 

rejection or filtering of data, and conversely, to the acceptance of data that may be 

considered dubious. 
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A key example is where the data from a presumptive compound fails the isotope ratio 

test, which, together with GC retention time is just one of 2 criteria required for positive 

identification using the current methods.  Although intended as a means of rejecting 

chemical interferences – since it was assumed that, with HRMS data, any interfering 

compounds would not share the same isotope ratio – false negative results can arise 

from otherwise valid peaks due to the statistical nature of the data giving rise to out-of-

ratio peaks, particularly with low-level* signals.  Similarly, false positives can occur from 

interference peaks – that would otherwise not pass the ratio criterion – but could do so 

if certain measurement errors result in an in-ratio peak assessment. 

Chapter 2 discusses the mass spectrometer’s peak detection process and the ion 

statistics associated with the peak intensity and subsequent area measurements used 

to determine the isotope ratio and other results.  Although this, as mentioned above, is 

a key peak identification parameter, the underlying mechanisms have been completely 

overlooked in the current methods with fixed ratio tolerances being used without any 

supporting rationale. 

An important aspect of this thesis is therefore to explain these processes as such errors 

are direct artefacts related to the number of ions recorded at the instrument’s detector, 

and from which there is a calculable probability as to whether the ratio test will pass or 

fail.  This information could be used to enhance the methods’ identification criteria and 

hence lead to improved data quality. 

As part of the study concerning isotope ratios in Chapter 2, it was necessary to obtain 

published ratios for comparison purposes – this highlighted several inconsistencies 

between values published in the various methods and computed values made using the 

instrument’s software.  As no references were available as to the sources of the masses 

and abundances used, or to the software’s calculation methods, an ab initio program 

was created to allow for known parameters and processes to be used throughout. 

Chapter 3 examines the development of this program and compares its calculated 

masses and abundances with those promulgated in the published methods and those 

 
* Though not necessarily at a low concentration since a low-level signal could also be, for 
example, due to low recovery of the target compound, suppression in the ion source or the 
immediate ion extraction area due to space charge effects from excessive levels of coeluting 
interferences, or from other instrument performance or setup deficiencies. 
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generated using other sources.  An additional benefit from this software development 

is that it allows for isotopically labelled standards of varying purities to be modelled – in 

contrast to the instrument’s and other software that incorrectly assume 100% purity.  

The software also permits the calculation of abundances using modelled Gaussian peaks 

to consider the contribution from the minor isotopologues at specific masses over mass 

windows according to the instrument’s resolution. 

In a related area, errors in the measured isotope abundances and m/z due to mixed 

charge-exchange and protonation during atmospheric pressure ionisation are also 

discussed. 

Another potential source of data errors is due to that of ion fragmentation during PCB 

analysis: as discussed in Chapter 4, because several homologue groups have overlapping 

chromatographic retention time windows, product ions, due to the loss of 1 or 2 chlorine 

atoms or of HCl from higher-chlorinated species, can interfere with various target 

compounds leading to potential false positives, false negatives or incorrect 

concentration determinations.  Although the current version of the PCB method, 

EPA-1668C, cautions as to the possibility of interfering fragment ions being generated, 

it provides no indication as to the scale of any such errors, or of the markedly different 

effects on the target compounds according to the fragment loss involved, e.g. -Cl, -2Cl. 

A further aim of this thesis is therefore to characterise these fragmentation effects with 

focus on the WHO toxic PCB congeners where even small errors can lead to significant 

differences in a sample’s reported overall toxicity.  The references to fragmentation in 

the current method (and its predecessors) were based on the use of GC-HRMS with EI – 

being the only viable technique at the time of the method’s writing.  Given the increasing 

use of APCI and GC-MS/MS, PCB fragmentation with this form of ionisation and at 

various collision energies is also examined in Chapter 4.  An unexpected observation 

made during this work suggested that Cl/H exchange or H2 adduct formation was also 

occurring concurrently with the loss of Cl for certain PCBs. 

A new research area for the analysis of PCBs, ion-mobility separation combined with 

mass spectrometry (IMS-MS), is described in Chapter 5.  This technique provides 

structural information, in terms of an ion’s rotationally averaged collisional cross-section 

(CCS) area, to be determined from its ion-mobility arrival time distribution (ATD) data 
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and related parameters.  Given that a given PCB’s toxicity is related to its ability to bind 

to various cell receptors – itself a function of the compound’s structure – this work 

examines the correlation between the ATDs of the 209 PCBs, their resultant CCS values, 

structures and known toxicities.  Comparisons are also made between the experimental 

and published data, and that derived from molecular modelling. 

An examination of the IMS-MS data of fragment ions also supported the anomalies 

reported in the previous chapter concerning Cl/H exchange or H2 adduct formation.  An 

unusual discovery from this work is that certain PCBs – predominantly those with the 

ortho positions occupied by Cl atoms – exhibit a bi-modal ATD profile for some, but not 

all, isotopologue ions with the data suggesting that partial isomerisation is occurring. 

 

 

Notwithstanding any legislative requirements, since the goal of many of these analyses 

is ultimately related to human or animal health, producing accurate and reliable data is 

of the utmost importance.  The overall aim of this research is to bring a greater 

understanding of the underlying science of mass spectrometry to the world of 

environmental analysis to improve data quality: this entails making the methods truly 

“performance-based” with dynamic rather than fixed criteria for peak identification, and 

that not only allows the appropriate use of newer and alternative technologies but also 

encourages it. 
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Chapter 2  

 

Ion Statistics in Ultratrace Environmental Mass Spectrometry 

 

2.1 Introduction 

The central elements for compound identification and quantification in the ultratrace 

analyses of PCDD/F and PCB data acquired in the SIM mode were introduced in section 

1.10.  This chapter examines the role of ion statistics in those peak intensity 

measurements and the, often unobserved, errors that can ensue. 

For any compound, its peak areas are determined from the chromatographic traces of 

two characteristic m/z in the molecular ion cluster* at a predetermined retention time 

(RT).  As with all MS measurements, these peak areas are subject to a certain statistical 

variance as the production of ions in the instrument’s source can be described by the 

Poisson process (2.1).  This follows since the formation of an ion is a discrete event, its 

average rate – for a constant flux of material within the source – is constant and its 

occurrence is independent of the formation of any previous ions. 

𝑃(𝑘) =
𝜆𝑘𝑒−𝑘

𝑘!
  , 𝑘 = 0, 1, 2 …   (2.1) 

Where P(k) is the Poisson probability of observing k events in each interval and λ (lambda) is 
the rate parameter, i.e. the average number of events per interval. 

 

A fundamental property of a Poisson distribution is that its variance is equal to the mean 

(Rice, 2007); given that the mean is directly proportional to the number of ions in any 

given (chromatographic) peak – which can be derived from the peak’s area 

measurement – its variance can therefore be calculated, and hence its standard 

deviation (σ) and relative standard deviation (RSD). 

 
* This is the case for all PCDD/Fs and PCBs, but for certain compounds, e.g. methoxychlor, 
where significant fragmentation (in EI) of the molecular ion makes this impractical, suitable 
fragment ions are used instead. 
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Although any errors in the peaks’ responses would proportionately affect subsequent 

concentration calculations, a far more significant impact can result from the measured 

isotope ratio and its deviation from the theoretical value*: if this exceeds a specified 

tolerance, such as the 15% value used in current PCDD/F and PCB GC-HRMS methods, 

then whether the compound’s concentration is reported at its calculated value or is 

treated as a non-detect (ND) depends either on the method in use or on the client’s 

requested reporting parameters. 

For example, in EPA-8290 (USEPA, 1998), the concentration would be reported but with 

a qualifying flag indicating that it is a possible candidate due to the ratio error.  However, 

in other commonly used environmental methods, such as those from the EPA-1600 

series†, e.g. EPA-1613 for PCDD/Fs (USEPA, 1994) or EPA-1668C for PCBs (USEPA, 2010), 

an out-of-ratio based value would simply be reported as a ND. 

Clearly that application of a simple tolerance and its binary pass/fail logic can have 

significant impact on the data in cases where affected peaks are of particular significance 

– whether due to their high toxicity, their importance as a key parameter within an 

epidemiological or other study, or their influence on any congener profiling (pattern-

matching) program. 

The problem is not limited to low-level signals: more intense peaks, where random 

variations should be negligible, can have ratio errors that are within, but close to the 

limit and these should be considered with additional scrutiny; in other words, the ratio 

tolerance applied to such peaks may be inappropriately high and therefore allow peaks 

to be considered valid that should possibly be rejected. 

The aim of this chapter is to characterise and document the calculations underlying the 

relevant ion statistics and their effect on data quality, and to suggest refinements to the 

 
* Some methods, e.g. EPA-1613, allow an alternative approach where the isotope ratio errors 
can be calculated from ratios obtained from a recently analysed reference standard (rather 
than comparison to theoretical values), but with a smaller, 10%, acceptance tolerance.  
Although this would provide some mitigation from any systematic biases in the ratio 
measurements it should be used with caution as such errors could be indicative of instrument 
setup issues or fault conditions that would not be addressed by this approach. 
† Some laboratories will report the out-of-ratio concentration separately, even if ostensibly 
following a 1600-series method, thus leaving the decision as to whether it is used to the client. 
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current analytical methods to improve overall data quality, such as the use of dynamic, 

rather than static, isotope ratio tolerances. 

 

2.2 Ion statistics and a Monte Carlo based simulation model 

In many data sets, such as in the trivial example shown in Figure 1.11 (p. 24), peaks are 

observed that are known to be valid but yet fail the isotope ratio criterion.  To investigate 

the theory that these random errors are due to ion statistics, a mathematical model was 

developed to estimate the isotope ratios, and hence the ratio errors, that would be likely 

to occur given peaks of various intensities and sampling (dwell) times. 

A simulation program, “RaStats”, based on Monte Carlo methods (Metropolis and Ulam, 

1949) was developed ab initio to determine the probability of whether the tolerance 

criterion, e.g. the ±15% used in the methods under consideration, would be met based 

on the supplied RSD values of the two peaks being examined.  For the simulations, the 

transforms shown below (Box and Muller, 1958) were used to create two random 

factors, z1 and z2, with normal (Gaussian) distributions: 

𝑧1  = 𝑐𝑜𝑠(2𝜋 × 𝑟1) × √−2.0 × 𝑙𝑛(𝑟2) (2.2) 

𝑧2  = 𝑠𝑖𝑛(2𝜋 × 𝑟1) ×  √−2.0 × 𝑙𝑛(𝑟2) (2.3) 

Where r1 and r2 are uniformly distributed random numbers greater than 0 and less than or 
equal to 1. 

 

For the Poisson distribution, the two factors (z1, z2) were created using iterative 

routines* based on Atkinson’s multiplication and rejection methods (Atkinson, 1979).  

The distributions were tested for normality against the 68.3/95.5/97.7 rule with 

Anscombe’s transformation (Anscombe, 1948) applied to the Poisson data prior to 

testing. 

 
* See Appendix A.4.1 for details of the software procedures. 
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For larger values of λ, that are appropriate for the number of ions being considered, the 

Poisson distribution approximates to a normal distribution, e.g. with a 0.999 correlation 

coefficient at λ = 40, and therefore both models can be used for comparison purposes. 

Using these factors, and given the theoretical areas and standard deviations of the two 

peaks, we can calculate the modelled areas for each peak: 

𝑎𝑟𝑒𝑎(𝑚𝑜𝑑𝑒𝑙)𝑝𝑒𝑎𝑘1 =  𝑎𝑟𝑒𝑎(𝑡ℎ𝑒𝑜. )𝑝𝑒𝑎𝑘1 +  𝑆𝐷𝑝𝑒𝑎𝑘1  ×  𝑧1 (2.4) 

𝑎𝑟𝑒𝑎(𝑚𝑜𝑑𝑒𝑙)𝑝𝑒𝑎𝑘2 =  𝑎𝑟𝑒𝑎(𝑡ℎ𝑒𝑜. )𝑝𝑒𝑎𝑘2 +  𝑆𝐷𝑝𝑒𝑎𝑘2  ×  𝑧2 (2.5) 

 

And hence a sample’s isotope ratio (Ra)* or relative abundance from these two peaks: 

𝑅𝑎𝑠𝑎𝑚𝑝𝑙𝑒  =
𝑎𝑟𝑒𝑎(𝑚𝑜𝑑𝑒𝑙)𝑝𝑒𝑎𝑘1

𝑎𝑟𝑒𝑎(𝑚𝑜𝑑𝑒𝑙)𝑝𝑒𝑎𝑘2
 (2.6) 

 

This calculated ratio is then compared to the theoretical ratio to determine whether it 

lies within the acceptance tolerance: 

𝑅𝑎𝑒𝑟𝑟(%)  = 100
𝑅𝑎𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑅𝑎𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙

𝑅𝑎𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙
 (2.7) 

 

This process is then repeated over many trials (e.g. 106) to ensure adequate convergence 

(< 0.1%) and the results summed to deduce the overall pass/fail rate. 

 

  

 
* Although perhaps considered trivial, neither this formula (2.6) nor that for the error (2.8) are 
shown in the published methods, only the lower and upper ratio limits.  Nevertheless, these 
formulae do follow standard practices e.g. as used in isotope ratio MS [noting its usage of per 
mille (‰) rather than percent] (Muccio and Jackson, 2009). 



42 

To illustrate the Monte Carlo simulation process, Figure 2.1 shows the results from a set 

of trials where two peaks, each with area RSDs* between 0% and 20%, were modelled, 

and the probabilities of their ratios exceeding the 15% tolerance calculated.  E.g. with 

two peaks, each having a 10% RSD measurement error, there is ~29% chance of failing 

the 15% ratio criterion. 

 

 

Figure 2.1 Probability of exceeding the ±15% isotope ratio tolerance as a function of the 
relative standard deviations (RSD) of two (Monte Carlo) simulated peaks’ areas. 

 

It is interesting to note that the chart shows a slight asymmetry (contrary to initial 

expectations); if the two peaks’ RSDs are not equal, then for the probability of failure, Pf 

of the two peaks’ RSDs: 

𝑃𝑓(𝑅𝑆𝐷𝑝𝑒𝑎𝑘#1, 𝑅𝑆𝐷𝑝𝑒𝑎𝑘#2) ≠ 𝑃𝑓(𝑅𝑆𝐷𝑝𝑒𝑎𝑘#2, 𝑅𝑆𝐷𝑝𝑒𝑎𝑘#1) (2.8) 

 

 
* It is often preferred to use the RSD (i.e. σ/mean) in these calculations since σ has limited 
meaning without knowing the mean to which it applies. 

Probability of Exceeding the ±15% Isotope Ratio Tolerance vs. Peak Area RSDs 

 

Peak Area #2 RSD% Peak Area #1 RSD% 
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E.g. from the above chart, using RSDs of 15% and 5%: Pf (15%, 5%) gives 34.3% whereas 

Pf (5%, 15%) gives 33.8%.  This arises from the simple fact that the first peak is always 

treated as the numerator in the ratio calculation.  Consider the hypothetical example of 

two peaks with a theoretical isotope ratio of 1.0 and nominal responses (areas, counts, 

etc.) of 100.  If the first peak is 10% lower than expected, the reported ratio is 90 / 100 

= 0.9 and the ratio error is -10% (as expected); however, if the second peak is 10% lower 

– an equally likely situation – then the ratio is 100 / 90 ≈ 1.11, hence a ratio error of 

+11%. 

To examine this asymmetry in more detail, a probability distribution histogram derived 

from Monte Carlo simulations of 106 ratio estimates is shown in Figure 2.2.  Each peak 

was modelled as a Gaussian with 8.5% RSD to give the probability vs. isotope ratio (black 

line, with the red line scaled x10).  The results show that the proportion of estimates 

giving ratios within the ±15% tolerance is ~80% as shown by the green shading; the 

proportion that fall below -15% is ~8.3% (yellow shading), however the proportion 

above +15% is notably higher at ~11.7% (blue shading). 

 

 

Figure 2.2 Histogram of the probability distribution from the modelled isotope ratio of 2 
peaks generated using a Monte Carlo simulation with 106 iterations. 
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The ratio of two normal (Gaussian) distributions can be represented by the Cauchy* 

distribution (Marsaglia, 1965) as shown by the equation in (2.9).  This can be used to 

examine the modelling process for ratios based on Poisson (Figure 2.3) and normal 

distribution simulations (Figure 2.4) – both yielding good correlations to theoretical with 

r2 values of 0.9996 and 0.9999 respectively.  An unusual property of the Cauchy 

distribution is that it has no mean or variance (although it does possess a median and 

mode, both zero in these examples) since its integral is undefined.  The distribution’s 

heavy tails also lead to non-convergence of the averaged data. 

𝐶(𝑥) =
𝛾

𝜋 [(𝑥 − 𝑥0)2 + 𝛾2]
 (2.9) 

Where x is the ratio (z1/z2) from the 2 distributions, and x0 and γ (gamma) are the location and 
scale parameters respectively (0 and 1 in these examples). 

 

 

Figure 2.3 Histogram showing the occurrence frequency from the ratios of 2 modelled 
Poisson distributions (z1, z2) compared with the theoretical Cauchy distribution. 

 

 
* Also known as the Lorenz distribution. 
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Figure 2.4 Histogram showing the occurrence frequency from the ratios of 2 modelled 
Gaussian (normal) distributions (z1, z2) with the theoretical Cauchy distribution. 

 

2.3 SIM experimental setup 

All magnetic sector HRMS data described in this chapter were acquired using an 

AutoSpec-Ultima (Waters, Wilmslow, UK) instrument operating in positive ion, electron 

ionisation mode at 34 eV electron energy.  The instrument was tuned to a resolution of 

~12,000 at 8 kV accelerating voltage. 

The HRMS instrument was coupled to a 6890 GC (Agilent, Santa Clara, CA, USA), fitted 

with a 30 m (length) x 0.25 mm (internal diameter) x 0.25 µm (film thickness) SPB-Octyl 

column (Supelco, Bellefonte, PA, USA).  Splitless injections were made using a GC-PAL 

auto-sampler (CTC Analytics, Zwingen, Switzerland) with a 1 µl injection volume. 

Data were acquired in the voltage SIM mode using MassLynx V4.1 software (Waters, 

Wilmslow, UK) with post-processing done using UltraTrace-Pro V4.9 (SGS, Wilmington, 

NC, USA).  Further details of the GC-HRMS parameters used are given in Appendix D.1. 
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2.4 SIM operation, ion detection and related calculations 

The rationale for using SIM as the acquisition method was described in Chapter 1.7 

together with an example of a typical function setup (Table 1.2); this section outlines 

the associated ion detection process, and subsequent data acquisition and processing – 

as needed for later statistics calculations.  During a SIM experiment, ions generated in 

the source (from the various compounds eluting from the GC column) are sequentially 

selected by m/z and transmitted through to the instrument’s detector according to the 

function descriptors.  Figure 2.5 shows the basic schematic of the detector system (the 

circled numbers referring to the following stages): 

1. Positive ions, with nominal 8 kV ion energy (from the instrument’s mass 

analyser) impact the negatively charged conversion dynode. 

2. Secondary electrons, liberated from the dynode’s surface, are then accelerated 

towards the positively charged phosphor disc where their impacts produce 

photons. 

3. Photons emanating from the phosphor disc are detected and amplified by the 

photomultiplier (with a typical gain of ~105). 

4. The resultant signal is then passed to the head amplifier for current-to-voltage 

conversion giving an output with a 0 to 10-volt range (the “main beam”). 

 

 

Figure 2.5 HRMS (Waters AutoSpec-Ultima) detector system schematic illustrating positive 
ion operation. 
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The detected main beam signal is then applied to the input of the instrument’s 

acquisition interface where digitisation occurs using a 16-bit analogue-to-digital 

convertor (ADC) operating at 400 kHz.  The ADC’s output values, created throughout a 

m/z channel’s dwell time, are then averaged.  E.g. a typical channel time of 50 ms will 

result in the average from 20,000 digitisations.  This allows average ion currents that 

correspond to less than a single ADC bit to be recorded and extends the dynamic range 

far beyond the ~65,000:1 nominally achievable with a 16-bit system. 

Prior to data storage, the averaged values are then scaled* by a factor of 214 such that 

SIM mass chromatograms have a y-axis maximum of ~1.07 x 109 corresponding to the 

detector’s head amplifier full-scale (10-volt) output.  Since the chromatogram’s x-axis 

represents time, any chromatographic peak area measurements are in units of “bits (or 

counts) seconds”. 

 

2.5 Testing the data modelling theory 

To test the data modelling theory, a sample from a low-level (nominally 0.5 pg/µl) PCB 

calibration standard was analysed using GC-HRMS in the SIM mode and mass 

chromatograms for the pentachlorobiphenyl (PeCB) traces generated.  Following peak 

integration and targeting, the rates of observed and modelled isotope ratio errors were 

compared.  Figure 2.6 shows the chromatographic data: the native PeCB M+0 and M+2 

ions (m/z 323.8834, 325.8804) are displayed in the upper two traces and the labelled 

13C12-PeCB M+2 ion (m/z 337.9207) in the lower trace†.  There are 32 discrete PeCB 

 
* The need for the scaling dates to an earlier design of acquisition interface used on VG 
Analytical’s HRMS instruments in the mid-1980s.  At that time, an instrument’s available 
computing power was insufficient for real-time processing and storage of the acquired data 
using floating-point calculations.  Integer based processing was therefore required, but to 
avoid the loss of precision in peak intensities that would result by limiting the numeric range to 
that of the 16-bit ADC (i.e. 216 - 1 or 65,535), the values were scaled by 214 (16,384) and hence 
the 230 - 1 (~109) range. 

When the HRMS instruments’ acquisition systems were redesigned in the mid-to-late 1990s 
that limitation no longer existed, however, it was decided to retain the scaling so that users – 
especially those with systems from both generations – would benefit from a common, and 
familiar, range of peak intensities. 
† The associated 13C12-PeCB M+4 ion (m/z 339.9177) trace has been omitted from these 
chromatograms for clarity. 
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peaks in the native traces, but these include 5 coeluters, e.g. the peak pair of PCB-100 

and PCB-93 at RT 24.89, and the multiple (6 peak) group at RT 28.12. 

For the initial peak calculations, PCB-114 (RT 31.83) was chosen as a model since it 

represents one of the WHO toxic PCBs, does not coelute and its response is within 10% 

of the average (of the 27 single peaks).  From the peak areas, and the following 

instrument and fundamental parameters, equation (2.10) can be used to calculate the 

ion counts at the detector, as shown in (2.11) and (2.12): 

• Head amplifier input current at full-scale (FS) = 10-6 amps [FSA] 

• Chromatogram y-axis (counts/bits) at FS = 1.07 x 109 [FSB] 

• Head amplifier output* at FS = 10 volts [FSV] 

• Detector† (multiplier) gain = 105 [G] 

• The elementary charge = 1.602 x 10-19 coulombs [e] 

• Peak duty cycle = 6% [DC] 

 

# 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 =
𝑎𝑟𝑒𝑎 (𝑏𝑖𝑡𝑠. 𝑠𝑒𝑐) × 𝐹𝑆𝐴 (𝑎𝑚𝑝𝑠. 𝑣𝑜𝑙𝑡−1) × 𝐷𝐶 (𝑛)

𝐹𝑆𝐵 (𝑏𝑖𝑡𝑠. 𝑣𝑜𝑙𝑡−1) × 𝑒 (𝑎𝑚𝑝𝑠. 𝑠𝑒𝑐) × 𝐺 (𝑛)
 (2.10) 

 

Therefore, for PCB-114 (1st peak), area = 2.79 x 104: 

# 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 =
2.79 × 104 × 10−6 × 0.06

1.07 × 109 × 1.602 × 10−19 × 105
 

= 98 

(2.11) 

 

  

 
* For reference only, this parameter is not used in the calculation since the actual amplifier 
full-scale output voltage would equally apply to the FSA and FSB values and cancel out. 
† Commonly referred to as “multiplier gain” – alluding to earlier HRMS designs where the ion 
detection system consisted of an electron multiplier, typically on-axis to the ion beam (i.e. 
without the use of conversion dynodes). 



49 

Similarly, for PCB-114 (2nd peak), area = 3.78 x 104: 

# 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 =
3.78 × 104 × 10−6 × 0.06

1.07 × 109 × 1.602 × 10−19 × 105
 

= 132 

(2.12) 

 

Since this is a Poisson distribution, the values calculated for the number of charges are 

also equal to their variances, hence the peaks’ σ are √98 and √132, and their RSD*: 

𝑅𝑆𝐷1 =
1

√98
≈ 10% and 𝑅𝑆𝐷2 =

1

√132
≈ 8.7% (2.13) 

 

The RaStats (Monte Carlo) simulation program was then run using these RSD values: 

after 106 trials it was determined that the probability of failing the 15% tolerance was 

~26%.  This compares to 19% in the observed data, i.e. due to 5 of the 27 singly eluting 

peaks being out-of-ratio. 

This was repeated using data from the same sample, and for the same PeCBs, but from 

an alternate pair of m/z (M+2 and M+4 rather than M+0 and M+2).  As shown in Figure 

2.7 a similar proportion (22%, i.e. 6 of 27) of peaks are marked as out-of-ratio: however, 

with two exceptions (PCB-95 at RT 24.7 and PCB-99 at RT 27.7), these are different 

isomers to those identified as being out-of-ratio in the previous example.  Since in both 

cases, these were the same isomers being analysed – and at the same time – any 

changes to their in- or out-of-ratio assessments are solely based on the choice of which 

isotopes are measured: such differences can therefore only be attributed to the 

statistical nature of the data. 

 

 

 
* Since the number of charges (n) is the mean, and the variance is also n, therefore σ = √n and 
the RSD = √n / n, which simplifies to 1 / √n. 



 

  

Figure 2.6 Chromatograms for the native PeCB M+0 (m/z 323.8834) and M+2 (m/z 325.8804) ions and the fully-labelled 13C12-PeCB M+2 (m/z 337.9207) 
ion showing the incidence of peaks passing or failing the isotope ratio criterion. 
Data acquired using an AutoSpec-Ultima GC-HRMS instrument at a mass resolution of 10,000 using the experimental conditions described in section 2.3. 
The arrow marks PCB-114, that here, using the M+0 and M+2 data, exceeds the isotope ratio tolerance; c.f. the opposite result obtained from the 
M+2 and M+4 data shown in Figure 2.7. 
Peak colour code: dark blue - WHO (toxic) PCB; light blue - other (non-toxic) PCB; red - WHO PCB (out-of-ratio); magenta - other PCB (out-of-ratio). 
The pink x-axes markings show the RT ranges over which the background noise levels were calculated (and shown as the 4σ value in the trace headers). 
[The 13C12 labelled PCB M+2 standards (lower trace) are colour-coded according to their function and are shown for completeness but these are not 
referenced in this discussion.  The 13C12 M+4 ion trace is not shown for clarity.] 
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Figure 2.7 Chromatograms for the native PeCB M+2 (m/z 325.8804) and M+4 (m/z 327.8775) ions and the fully-labelled 13C12-PeCB M+2 (m/z 337.9207) 
ion showing the incidence of peaks passing or failing the isotope ratio criterion. 
Data acquired using an AutoSpec-Ultima GC-HRMS instrument at a mass resolution of 10,000 using the experimental conditions described in section 2.3. 
The arrow marks PCB-114, that here, using the M+2 and M+4 data, is within the isotope ratio tolerance; c.f. the opposite result obtained from the 
M+0 and M+2 data shown in Figure 2.6. 
Peak colour code: dark blue - WHO (toxic) PCB; light blue - other (non-toxic) PCB; red - WHO PCB (out-of-ratio); magenta - other PCB (out-of-ratio) 
The pink x-axes markings show the RT ranges over which the background noise levels were calculated (and shown as the 4σ value in the trace headers). 
[The 13C12 labelled PCB M+2 standards (lower trace) are colour-coded according to their function and are shown for completeness but these are not 
referenced in this discussion.  The 13C12 M+4 ion trace is not shown for clarity.] 
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In these examples, the peaks are from a (low-level) calibration standard and are 

therefore unequivocally known to be the PCBs as annotated.  Although both ion-pair 

combinations would not normally be processed, here we would have (amongst other 

examples) the paradoxical case of PCB-114 (highlighted by the arrows in both Figure 2.6 

and Figure 2.7) being simultaneously reported both as a non-detect and as a confirmed 

positive within the same sample. 

In a normal analysis (i.e. per the method) the data would only be acquired and processed 

from a single ion pair, and thus such contradictory results could not occur – or 

alternatively, an analyst would be unaware that such a result could occur given a 

different experiment setup. 

The results from these data, together with those from analyses of tetra- to octa-

chlorinated biphenyls at 4x greater concentration – the higher levels allowing additional 

comparisons at lower 10% and 5% isotope ratio tolerances – are shown in Table 2.1 and 

graphed in Figure 2.8.  The experimental and modelled data would appear to show a 

good correlation with r = 0.94 (r2 = 0.88). 

 

Test Homologues n 
Test ratio 
tolerance 

Modelled 
failure rate 

Experimental 
failure rate 

TeCB (M, M+2) 15 15% 1% 7% 

TeCB (M, M+2) 15 10% 8% 7% 

TeCB (M, M+2) 15 5% 37% 27% 
1PeCB (M, M+2) 27 

 

15% 26% 20% 
2PeCB (M+2, M+4) 27 15% 26% 24% 

PeCB (M, M+2) 27 15% 5% 0% 

PeCB (M, M+2) 27 10% 18% 16% 

PeCB (M, M+2) 27 5% 50% 56% 

HxCB (M+2, M+4) 23 15% 3% 4% 

HxCB (M+2, M+4) 23 10% 14% 22% 

HxCB (M+2, M+4) 23 5% 46% 39% 

HpCB (M+2, M+4) 13 15% 15% 8% 

HpCB (M+2, M+4) 13 10% 33% 46% 

HpCB (M+2, M+4) 13 5% 63% 69% 

OcCB (M+2, M+4) 7 15% 11% 14% 

OcCB (M+2, M+4) 7 10% 28% 43% 

OcCB (M+2, M+4) 7 5% 59% 71% 

Table 2.1 Comparison of isotope ratio failure rates derived from Monte Carlo simulations 
and experimental results. 
1Corresponds to the data shown in Figure 2.6; 2corresponds to the data shown in Figure 2.7. 
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Figure 2.8 Chart showing experimental vs. Monte Carlo simulations of isotope ratio failure 
rates at 15%, 10% and 5% tolerances. 
Pearson’s correlation coefficient, r = 0.94 (r2 = 0.88). 

 

2.6 Determination of the detector gain 

Throughout this chapter, references have been made to detector gain, i.e. the degree of 

amplification applied to the input ion current presented to the detector system to give 

the resultant output ion current provided to the head amplifier (and hence to the 

subsequent detection processing hardware and software).  Its value is a key parameter 

in the calculations relating to the statistical work described and can be determined using 

tools within the instrument’s peak display and tuning software – but is an instantaneous 

on-screen only value and is not recorded. 

Conveniently, during HRMS data acquisition, a reference compound such as PFK is 

continually admitted to the ion source to provide suitable m/z for mass drift correction.  

The signal intensities from these reference ions are nominally at a constant level and 

these data can also be used to estimate multiplier gain.  An example using the PFK ion 

at m/z 366.9292 (C10F13) was previously shown in Figure 1.11 (p. 24) as the trace labelled 

“QC Check”; a 1-minute section of these data was extracted into Excel as shown in Figure 

2.9. 
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Figure 2.9 QC check ion data from PFK, C10F13 (m/z 366.9792), for detector gain calculations. 
σ = 9.98 x 104, mean = 9.51 x 106. 

 

From these statistics, and the ion detection and processing parameters, the detector 

gain can be estimated.  The gain, G, is defined as the ratio of detector’s output current 

to its input current as shown in (2.14): 

𝐺 =
𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
 (2.14) 

 

The output current (Iout, amps) can be determined from the mean intensity (M, bits) and 

the head-amplifier (FSA) and chromatogram (FSB) full-scale parameters (from 

section 2.4): 

𝐼𝑜𝑢𝑡 =
𝑀 × 𝐹𝑆𝐴

𝐹𝑆𝐵
 (2.15) 

 

Therefore: 

𝐼𝑜𝑢𝑡 =
9.51 × 106 × 10−6

1.07 × 109
= 8.89 × 10−9 𝐴 (2.16) 
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The input current can be determined by first estimating the mean number of ions, n, in 

each data point from the set of N measurements.  From the RSD of the observed data, 

and the equivalence of the mean and variance of a Poisson distribution: 

 

Therefore: 

 

Incorporating the elementary charge, e (coulombs), and the dwell time (DT, seconds) (of 

the PFK m/z channel being monitored) into the equation yields the overall input current, 

Iin (amps): 

 

From the above data: 

 

Hence: 

 

It is convenient to merge the two parts into a single equation for detector gain: 

𝐺 =
𝑀 × 𝐹𝑆𝐴 × 𝐷𝑇 × 𝑅𝑆𝐷2

𝐹𝑆𝐵 × 𝑒
 (2.22) 

 

This method is therefore useful in estimating the detector gain if no other record was 

made during instrument setup.  It is unnecessary to know the actual flow rate of PFK 

𝑅𝑆𝐷 =
𝜎

𝑚𝑒𝑎𝑛(𝑁)
=  

√𝑣𝑎𝑟(𝑁)

𝑚𝑒𝑎𝑛(𝑁)
=

√𝑛

𝑛
  (2.17) 

𝑛 =
1

𝑅𝑆𝐷2
 (2.18) 

𝐼𝑖𝑛 =
𝑒

𝑅𝑆𝐷2 × 𝐷𝑇
 (2.19) 

𝐼𝑖𝑛 =
1.602 × 10−19 𝐶

1.10 × 10−4 × 0.020 𝑠
= 7.28 × 10−14 𝐴 (2.20) 

𝐺 =
8.89 × 10−9 𝐴

7.28 × 10−14 𝐴
= 1.2 × 105 (2.21) 
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entering the source to perform these calculations, however a caveat of this approach is 

that the variance in the PFK data, i.e. the peak-to-peak (p/p) noise, must be sufficiently 

greater than any systematic variations in level over the measurement period; if this is 

not the case then the calculated RSD will not accurately reflect the underlying Poisson 

variance and thus lead to elevated estimates of detector gain.  Since the PFK level is 

principally set by the requirements for the instrument’s lock-mass operation, an 

appropriate m/z and/or channel dwell time must be selected – e.g. the p/p noise should 

ideally be 5%–20% of its mean intensity. 

Figure 2.10 shows data from the PFK reference compound with 3 channels concurrently 

recording the signal at m/z 219 (C4F9) with dwell times of 100, 50 and 10 ms.  The RSDs 

of these data are 1.02%, 1.28% and 2.50% respectively (n = 1,000), however the factor 

between the 50 ms and 10 ms RSDs is 1.96, ~13% lower than the expected 2.24 (i.e. √5).  

However, taking a succession of sub-samples (n = 50) from the raw data shows a mean 

(n = 20) ratio (of RSDs) of 2.29, which is close (Δ ~2.3%) to the expected value.  This is 

therefore suggestive of bias in the data that can be observed as a slight (~2%) overall 

positive slope. 

 

 

Figure 2.10 Chromatogram traces of the PFK reference compound at m/z 219 (C4F9) recorded 
using channel dwell times of 100, 50 and 10 ms. 

 

Dwell time = 100 ms 

Dwell time = 50 ms 

Dwell time = 10 ms 
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Comparing the mean σ from the sub-samples with those from the full (n = 1,000) data 

shows differences of ~3%, ~18% and ~23% for the 10, 50 and 100 ms data respectively.  

This indicates that, in the absence of any prior knowledge of bias, the 10 ms data would 

give a truer representation of the noise level for any detector gain* calculations.  This 

matches with the observation that the noise (4 σ) in the 10 ms data, being ~10% of the 

mean trace intensity, better masks the ~2% slope in the data than the 50 ms data with 

its noise level of ~5%.  (The complete table of statistics for these data is shown in 

Appendix B.2) 

 

2.7 Improving the odds: optimisation of acquisition dwell times 

As shown in the previous section, the variance in a peak’s response is reduced with 

increased dwell time: given the different relative intensities of the monitored ions, can 

the probability of being within the isotope ratio tolerance be improved by spending 

proportionately more time on those of lower intensity? 

E.g. the isotope ratio of the monochlorobiphenyl (MoCB) M/M+2 ions (C12H9
35Cl, 

m/z 188 and C12H9
37Cl, m/z 190) is 3.06, so it might be expected that setting the dwell 

times to a 25:75 ratio† would result in fewer failures relative to using the default case of 

equal times.  To test this theory, the data was modelled for MoCB and 4 other 

compounds covering a wide range of theoretical isotope ratios: 

• TCDD and PeCB (both already discussed in this thesis), Ra 0.78 and 0.62. 

• Methoxychlor (an organochlorine insecticide, C16H15Cl3O2, now banned in the 

US and EU): although this is a trichlorinated compound, the molecular ion is 

very weak due to the loss of the CCl3 group and therefore the ions monitored 

are due to C15H15O2 and C14
13CH15O2, with a theoretical isotope ratio of 6.13. 

• Malathion (an organophosphate insecticide, C10H19O6PS2, classified by the IARC 

as a probable, group 2A, carcinogen): as with methoxychlor, the molecular ion 

is weak due because of the loss of C2H6O and therefore the ions monitored are 

due to C8H13O5PS2 and C7
13CH13O5PS2, with a theoretical isotope ratio of 9.51. 

 
* The 50 ms data would have yielded a gain ~30% greater than that from the 10 ms data. 
† From 1/(1+3.06) and 3.06/(1+3.06), i.e. more exactly 24.6% and 75.4%. 
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The results from the isotope ratio modelling using the Gaussian* distribution, with 500 

ions in the molecular ion cluster and a combined dwell time for the 2 ions of 120 ms, 

processed over 105 iterations, is shown in Figure 2.11 and summarised in Table 2.2. 

 

 

Figure 2.11 Modelled data showing the relative number of peaks within 15% of the 
theoretical isotope ratio vs. relative duty cycle for MoCB, Methoxychlor, Malathion, TCDD and 
PeCB.  Also shown are the expected maxima (dotted lines) and actual maxima (dashed lines). 

 

These data show that a small, 2.6%, improvement can be obtained for MoCB with 

primary and secondary ion dwell time proportions of 37.3% and 62.7% (equating to 

45 ms and 75 ms) respectively, though not at the 24.6% and 75.4% that were initially 

expected.  This is due to the greater overall number of ions obtained at the higher 

primary ion dwell time.  At lower ion currents the benefit would increase, e.g. 4.4% at 

100 ions.  For methoxychlor and malathion, with their larger isotope ratios (6.13 and 

9.51) the gains are more significant at 6.6% and 10.1% respectively, whereas for TCDD 

and PeCB with isotope ratios nearer to unity, the gains, at < 1%, are minimal. 

 

* For comparison, data modelled using the Poisson distribution is shown in Appendix B.1. 
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 MoCB 
Methoxy-

chlor 
Malathion TCDD PeCB 

Theoretical isotope ratio 3.06 6.13 9.51 0.78 0.62 

Expected optimum duty 
cycle (ion 1) 

24.6% 14.0% 9.5% 56.3% 61.6% 

Modelled duty cycle for 
maximum pass rate (ion 1) 

37.3% 27.3% 24.5% 49.8% 56.5% 

Pass rate at 50% duty cycle 66.7% 59.1% 49.8% 66.2% 61.9% 

Maximum pass rate 68.4% 63.0% 54.9% 66.4% 62.4% 

Increase 2.6% 6.6% 10.1% 0.3% 0.8% 

Table 2.2 Summary of the data from Figure 2.11 showing the optimum duty cycle and 
increases in the “pass rate” for 5 different compounds. 

 

This modelling process can also be used to indicate optimisation options for low vs. high-

level peaks in the experiment setup.  Figure 2.12 shows the relative variations in pass 

rates for a scenario with peaks at a nominal low-level signal (5 x 104, red trace), 

compared to those at higher level (106, blue trace), as might be encountered for a 

labelled standard.  For the high-level signal, the measurable performance is constant 

until the dwell times are reduced to < 20 ms, with a 1% drop at 10 ms; in contrast, the 

low-level signal shows significant changes as the dwell times are increased, e.g. showing 

44.7% of peaks in ratio with dwell times of 10 ms, and 85.3% in ratio with times of 60 ms. 

To equate the modelled data with real-world concentrations, Figure 2.13 shows the 

probabilities of PeCBs being within the 10%, 15% and 20% tolerances vs. amount 

injected.  The peak areas used for the modelling program were extrapolated from actual 

sample data (50 pg on column, 2.5 x 105 detector gain and 60 ms channel dwell times). 
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Figure 2.12 Relative number of peaks within the 15% isotope ratio tolerance vs. channel dwell 
times of the low- and high-level peaks. 
Low-level (native) peak intensity = 5 x 104; high-level (standard) peak intensity = 106, isotope 
ratio = 1.0; detector gain = 105. 

 

 

Figure 2.13 Modelled probability of PeCB peaks being within the 10%, 15% or 20% isotope 
ratio tolerances vs. injected amount of sample (10 fg to 5 pg). 
Inset shows detail from the low concentration range (10 fg to 0.5 pg). 
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2.8 Implementing the dynamic isotope ratio criterion 

A key theme of this work is that the isotope ratio tolerance defined by the current 

analytical methods is arbitrary and should be progressed from a static parameter to a 

dynamic one that reflects the actual data at the time of analysis.  The chart in Figure 

2.14 shows the 95% probabilities of being within certain ratio tolerances for various peak 

intensities for 4 different isotope ratios.  E.g. using the curve for PeCB (shown in red) 

with its theoretical isotope ratio of 0.62, to achieve 95% of peaks being within a target 

tolerance of 15%, would require the sum of the two peak areas to be ~2.1 x 105 (as 

shown by the dashed purple lines). 

 

 

Figure 2.14 Chart showing the 95% probability of being within a specified ratio tolerance 
against peak intensity for 4 modelled isotope ratios. 
Data modelling based on a detector gain of 105 and peak duty cycles of 6%.  The additional 
solid and dashed purple lines refer to example data referenced in the main text. 

 

The above model can be applied to the PeCB data previously shown in Figure 2.6 (p. 50): 

the average response for a singly eluting peak was ~6.0 x 104, on this basis the 

expectation is that 95% of peaks would fall within 29% of theoretical (as shown by the 
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solid purple lines); this compares favourably with the actual figure of 92% (n = 25).  Given 

these data, a ratio tolerance of 30% or 35% might be considered more appropriate than 

the method’s 15% tolerance. 

In addition to the PeCB curve, the modelled data show the probabilities for MoCB 

(Ra 3.06) and for Ra 1.0 and Ra 10.  In this context, any of these curves would be 

equivalent to that of its reciprocal ratio, e.g. the curve for Ra 10 (blue line) is equally 

applicable to Ra 0.1.  Implicitly, no other data can exist to the left of the curve showing 

Ra 1.0 (green line) under the same conditions (i.e. with a detector gain of 105 and peak 

duty cycles of 6%). 

The formulae from the trend lines produced by Excel are a useful alternative to using 

the chart, e.g. for the Ra 1.0 curve, the expected probability (P) that should encompass 

95% of peaks of intensity (I) can be found from: 

𝑃 = 90.2 × 𝐼−0.523     (𝑟2 = 0.9993) (2.23) 

 

As the power term is close to -0.5, this was simplified (using the curve fitting tool in 

MATLAB version R2018b) to: 

𝑃 =
72.1

√𝐼
     (𝑟2 = 0.995) (2.24) 

 

As a cross-check, applying this approximation (2.24) to the PeCB data from above: 

𝑃 = 72.1/√(6.0 x 104) = 29% , which agrees with the graphical result.  This formula 

can simply be reversed to give the required intensity for a given ratio expectation: 

𝐼 = (
72.1

𝑃
)

2

 (2.25) 

 

Except for MoCB, all other PCBs and PCDD/Fs would fall between the curves of Ra 1.0 

and that of PeCB; since the latter practically overlays the former, the Ra 1.0 curve could 

be considered a good approximation for any of these compounds.  These curves are 
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readily extensible for different instrument or experiment conditions*: e.g. for other 

detector gains (G), the values on the x-axis would be multiplied by G / 105; for other duty 

cycles (DC), the x-axis values would be divided by DC / 0.06.  The formula shown in (2.24) 

can also be revised using the square root of these values, e.g. the numerator would be 

multiplied by √𝐺/105. 

Further testing was performed on some high-level data: Figure 2.15 shows a TeCB 

chromatogram from a 50 pg per component mix.  Using the formula from (2.24), revised 

for a detector gain of 2.5 x 105 and an average summed peak intensity of 4.1 x 107, yields 

the expectation that 95% of the singly† eluting peaks should have ratio errors ≤ 1.8% (i.e. 

𝑃 = 114 √4.1 × 107⁄ ) – which is in good agreement with the actual data where all peak 

ratio errors are ≤ 1.8% (n = 16). 

 

 

Figure 2.15 TeCB chromatograms from a high-level, 50 pg per component, sample showing all 
isotope ratios within 1.8% of theoretical (0.78). 
Mean error = 0.2%, RSD = 0.9%. 

 
* It would, of course, be necessary to adapt the x-axis values for other instrument types with 
different electronics and data processing schemas. 
† The 4-component coelution of PCB-61, 70, 74 and 76 at RT 26.57 is ignored here. 
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An additional set of data, acquired using the same 50 pg sample on the same instrument 

(but on a different day), produced the chromatogram shown in Figure 2.16.  All peak 

ratio errors were within the method’s 15% tolerance but showed an overall bias ranging 

from -9.4% to -7.2% (mean -8.6%, σ = 0.57%). 

However, from (2.24) and the average summed intensities (3.1 x 107), the expectation – 

due to statistical variance – was that the errors should have been no more than ±2%, 

which is clearly not in agreement with the actual data*.  Applying the dynamic ratio in 

this case would have flagged this as a problem – believed to be due to an operational 

error during mass calibration – that could otherwise easily go unnoticed†, potentially 

leading to subsequent identification errors. 

 

 

Figure 2.16 TeCB chromatograms from a high-level, 50 pg per component, sample showing a 
systematic bias of measured isotope ratios relative to the theoretical value. 
Theoretical ratio for TeCB = 0.78, mean error = -8.6%, RSD = 0.63%. 

 

 
* However, the errors relative to the mean (i.e. accounting for its bias) are within the expected 
range. 
† Calibration data often contains only 1 or 2 PCB peaks in any one function (rather than the 16 
in this example), therefore systematic errors such as this may not be as obvious. 
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2.9 A statistical evaluation of signal-to-noise measurement 

A peak’s signal-to-noise (s/n) ratio is an important performance related parameter in 

the various POPs methods; with minimum values required for any peak to be considered 

valid for processing.  In addition to various minimum s/n criteria, the related background 

noise value is also used as the basis for limit-of-detection (LOD) and limit-of-

quantification (LOQ) calculations. 

Figure 2.17 shows a segment of the PeCB trace used earlier in this chapter for the ion 

statistics study, with the peaks annotated with their s/n ratios.  E.g. PCB-114 at RT 31.83 

has a s/n of ~11, based on the background noise taken over 30 data points and 

calculated as 4σ (as shown in the magnified x5 section).  However, we know from 

equation (2.13) that the estimated RSD of this peak is ~10%; this would give an “internal” 

s/n of ~10, based on 1σ, or ~2.5 using 4σ.  Although this is ~4x lower than the 

conventional s/n figure it raises a question of whether this, statistically based, noise 

estimate would be a useful complement to the background-based value? 

 

 

Figure 2.17 Chromatogram extract showing PeCBs annotated with their signal-to-noise ratios, 
peak areas and retention times. 
The x5 magnified region (denoted by the pink marking in the x-axis) indicates the data range 
from which the noise was determined: 4σ = 7.34e2. 
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The current EPA HRMS methods for POPs, e.g. EPA-1668C (USEPA, 2010), specify that 

detected chromatographic peaks must have a minimum s/n ≥ 10 for calibration 

standards and ≥ 2.5 for sample analytes, however there are no references as to how the 

noise is defined, nor whether any data smoothing may be applied. 

More recently, the EU’s “Guidance Document on the Estimation of LOD and LOQ for 

Measurements in the Field of Contaminants in Feed and Food” (Wenzl et al., 2016) and 

“Estimation of LOQ for the Analysis of Persistent Organic Pollutants, in particular 

PCDD/Fs and PCBs” (Schaechtele et al., 2016), defined noise (N) as 2σ with a s/n 

requirement ≥ 3 for all peaks.  The LOQ was then defined as 3N (i.e. 6σ) – approximately 

peak-to-peak since that would theoretically include 99.7% of the noise data points.  The 

EU methods also permit the use of data smoothing, but if used, it must be used 

consistently; i.e. if required for sample data then it must also be used for the associated 

calibration data, it cannot be used selectively. 

Early work in this area indicated that the prevalent noise source was the instrument’s 

detector system and (head) amplifier (Hass and Friesen, 1979), however this is no longer 

the case.  As the performance of the HRMS instrumentation has improved*, resulting in 

greater ion currents reaching the detector, chemical noise – whether from the GC 

column, injector, reference compounds, sample matrix or contaminants, etc. – is now 

the dominant background noise source.  However, chemical noise sources exhibit far 

greater variability than background electronic noise†, hence dependent results such as 

LOQ are implicitly subject to that same variability.  The US Centers for Disease Control 

and Prevention (Atlanta, GA, USA) report a typical factor of 2x higher detection limits in 

serum samples, compared to standards, due to chemical noise and matrix effects 

(Turner et al., 2004). 

The use of the background noise levels to determine such metrics can also be 

problematical with high-resolution TOF instruments where creating mass 

chromatograms using small (≤ 10 mDa) windows can result in the near (sometimes 

 
* The base sensitivity of HRMS instrumentation has increased from 2 x 10-8 C/µg (methyl 
stearate) in the early 1980s to 10-6 C/µg today.  Concurrently, transmission at 10,000 
resolution has increased from 5% to 10%. 
† The detector system itself is a source of noise, e.g. the dark current from the photomultiplier, 
but, under normal operating conditions, these are negligible in a modern instrument. 
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complete) absence of measurable noise.  Although issues such as these can significantly 

affect LOD and LOQ determinations from background noise, their effect on the detected 

peaks’ statistics are minimal. 

Data smoothing is a useful tool that can be used to improve s/n and to aid the peak 

detection process.  Irrespective of whether simple digital filtering (i.e. moving average) 

or more advanced processes, e.g. using polynomial methods (Savitzky and Golay, 1964), 

are used, the effect is to substantially reduce the background noise in comparison to the 

effect on any peak heights.  A 2-fold improvement in s/n is readily achievable using data 

smoothing, and although this equates to a proportionally lower LOD, it is questionable 

as to whether the LOQ should be similarly reduced. 

Again, the peak statistics are unchanged since, although a peak’s height may be affected 

by the smoothing process, its area is nominally unaltered*.  Similar concerns can also 

apply to the use of “fast” chromatography, particularly 2D-GC, where the very narrow 

peak widths (< 100 ms), can lead to remarkably high s/n ratios that can be 

inappropriately extrapolated to correspondingly low LOD and LOQ values. 

 

2.10 Conclusions 

In addition to the peak retention time (or relative retention time) the isotope ratio 

measurement is a key parameter in determining whether compounds such as dioxins or 

PCBs are positively identified.  The 15%† tolerance employed by the current methods 

appears to be arbitrary and, as confirmed by the findings in this chapter, can be both 

too restrictive to allow for the variance found at low signal levels, and too broad to flag 

potentially problematic peaks at higher levels.  The paradoxical example where PCB-114 

was shown to be simultaneously both within and outside the method’s ratio tolerance 

 
* Minor area changes can occur due to slight differences in a peak’s baseline start- and end-
point determinations, but the fundamental process of smoothing does not affect a peak’s area. 
† It has also been noted that the ratio tolerances have been increased to 25% and 35% for the 
organochlorine pesticides in EPA Method 1699 (USEPA, 2007b), and although the reasoning 
behind this is not stated (and again, no references are offered), these too seem to be arbitrary 
limits and therefore subject to the same problems noted for the PCB and PCDD/F methods. 
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demonstrates a fundamental flaw in the use of the isotope ratio as a measurement 

parameter without proper consideration of the underlying statistics. 

When the high-resolution methods were first published, it would not have been 

practical to use anything other than a fixed tolerance, but the dynamic approach 

introduced here could now be readily accommodated – including all necessary 

documentation and associated QC data – using off-the-shelf spreadsheet and/or 

database programs or added to commercial quantification software.  Provision could 

also be made for the asymmetric nature of the ratio test in these calculations. 

The methods should therefore consider – perhaps as part of their performance-based 

measurement system (PBMS) strategy – extending their scope to include such 

dynamically assigned isotope ratio tolerances.  Reporting requirements would need to 

be extended to include both in and out-of-ratio data from both existing, static, 

tolerance(s) and any dynamic counterparts, so that the incidence and significance of this 

criterion can be comprehensively assessed and included in any measurement 

uncertainty reporting. 

Ironically, an extant problem (particularly with large-scale projects) is that many end-

users no longer work directly with the laboratories’ reports, instead they are supplied 

with database generated summaries.  Whilst this may be necessary, given the amount 

of data involved, any parameters that do not fit exactly with the methods’ criteria – or 

a data managers’ interpretation of them – can be lost.  Although data qualifiers should 

indicate if an analyte was not reported due to the isotope ratio tolerance not being met, 

or its concentration being below the reporting or calibration limit, this may not be 

consistently or correctly applied. 

A related, often contentious, issue concerns the reporting of undetected peaks – either 

because no measurable response was found, or the tentative compound is deemed to 

be a non-detect due to it failing the isotope ratio test: should the concentration simply 

be reported as zero, or as the detection limit (DL) (since a peak could have been present 

but not detected due to background noise), or DL/2 as a mid-point compromise between 

these values?  This has been a longstanding problem with the current ultratrace 

methods and, since it is not uncommon for data from these analyses to be used in 

litigation, it presents more than just an academic problem.  Some regard an out-of-ratio 
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peak as simply not meeting the positive identification requirements and it should 

therefore be treated like any other non-detect; others argue that if the peak is at least 

at the correct retention time, then its concentration should be considered from a risk 

assessment perspective. 

The use of ion statistics in environmental MS data processing can be a useful tool to help 

migrate existing analytical methods from their traditional HRMS roots to those based on 

newer technologies, e.g. using MS/MS and TOF instrumentation, where the current use 

of background data for signal-to-noise assessment is not viable.  As with the isotope 

ratio proposals, the use of these statistics directly in LOD/LOQ determination would 

need thorough validation prior to approaching any regulatory authority.  It was also 

shown that existing HRMS acquisition methods can be improved by optimising the 

channel dwell times according to the expected ion ratios. 

It is understood that there will be many challenges to changing the “rules of the game”; 

previous personal communications with US based stakeholders of current HRMS 

analyses suggested that, since much of their work could be ultimately subject to 

litigation, there would be a certain reluctance – despite the methods being nominally 

performance-based – to adopting any variations to those methods that were not 

explicitly promulgated from the regulators (e.g. the EPA).  The situation within the EU is 

likely to be more accommodating – as has already been seen by the acceptance of GC-

MS/MS as a valid alternative to GC-HRMS for regulatory food and feed testing – as there 

exists a far closer coupling between its laboratories and legislators (i.e. a true 

performance-based approach). 

As stated in the aims and objectives of Chapter 1, producing accurate and reliable data 

is of the utmost importance: considerable effort (and cost) is expended in project design, 

sample collection, laboratory analysis, data processing and reporting, and yet, minor 

shortcomings in the analytical methods can potentially lead to significant errors in the 

reported data – these should be addressed. 
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Chapter 3  

 

Molecular Ion Cluster Calculations 

 

3.1 Introduction 

Throughout the work in this thesis it has been necessary to know the true theoretical 

isotope ratios for the comparisons to the measured and simulated data.  This has 

highlighted several differences between the published ratios taken from the various 

dioxin and PCB methods, and the corresponding values obtained using the isotope 

calculation program included in the mass spectrometer’s software (MassLynx). 

Since no references were available to show how the published ratios were calculated, 

or to the source(s) of the exact masses or abundances used, it was considered prudent 

to create an ab initio program where all parameters and the calculation methods would 

be known.  This has resulted in “PureIso”, a Windows based isotope modelling program, 

written in Visual Basic using Visual Studio (Microsoft, Redmond, WA, USA).  The key 

algorithms used by the program are given in Appendix A.4.2 and copies of this program 

are available to any interested parties on request. 

Masses were obtained from IUPAC’s Technical Report “Atomic weights of the elements 

2013” (Meija et al., 2016a), and abundances from both the companion document, 

“Isotopic compositions of the elements 2013” (Meija et al., 2016b) and its predecessor 

“Isotopic compositions of the elements 2009” (Berglund and Wieser, 2011) for 

comparison purposes.  A complete list of the masses and abundances used is given in 

Appendix C.2. 

The primary aim of this chapter is to document the differences between the calculated 

ratios and those in the published methods, and whether changes to those values – that 

play a key role in determining a sample’s toxicity and other attributes – should be 

considered.  Certain new capabilities of the PureIso program: addressing the degree of 

purity in 13C and other labelled standards, and abundance calculations over a specific 

mass window are also introduced.  Finally, the effect on measured isotope ratios due to 
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mixed, charge exchange and protonation, modes in atmospheric pressure ionisation is 

discussed. 

 

3.2 Isotope cluster calculations: software design considerations 

The calculation of a molecule’s isotopic distribution can, depending on the numbers of 

atoms and isotopes in each element involved, and whether exact masses are required, 

lead to considerable memory and processing requirements.  To overcome these issues, 

various strategies have been developed to filter and/or otherwise limit the results to 

create practically viable programs (Valkenborg et al., 2012). 

To avoid any uncertainty due to such reduction mechanisms, this software was designed 

solely for small molecules (< 1,000 Da) with a very limited range of elements – C, H, N, 

O, Br, Cl, F, P, Si and S – hence it was unnecessary to apply any such practices as the 

calculation of all possible isotopic contributions is well within the power of a current 

desktop computer.  Although these restrictions would render the program unsuitable 

for general purpose applications, it is ideal for the POPs considered here (and many 

other small molecules) that are wholly within its capabilities. 

For a monoisotopic element* (e.g. F, P), there is implicitly only one possible contribution 

to the calculation, for elements with 2 isotopes (e.g. C, H, N, Cl, Br) there are n + 1, and 

for those with 3 isotopes (e.g. O, Si, S†) there are (n + 1) x (n + 2) / 2. 

Examples: 

• Hexachlorobenzene (C6Cl6) gives (6+1) x (6+1) = 49 combinations. 

• TCDD (C12H4Cl4O2) => 

(12+1) x (4+1) x (4+1) x [(2+1) x (2+2)]/2 = 1,950 combinations. 

• Malathion (C10H19O6PS2) => 

(10+1) x (19+1) x [(6+1) x (6+2)]/2 x 1 x [(2+1) x (2+2)]/2 = 36,960 combinations. 

 

 
* Only stable isotopes are considered in this program. 
† Excluding the minor (~0.015%) 36S isotope. 
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Even the last case is readily computable, although from a practical perspective, a post-

calculation threshold filter is a worthwhile addition since the display of masses such as 

the M+45 (13C10
2H19

18O6P34S2) at a probability of ~3.5 x 10-114 is unlikely to be useful! 

 

3.3 Abundance calculations of enriched isotopes 

Although the isotope calculators embedded within MassLynx or found online allow the 

inclusion of enriched isotopes, e.g. as required for carbon-13, deuterium or chlorine-37 

labelled compounds, they all assume 100% isotopic purity.  This is a limitation as it does 

not allow for correct modelling of commercial, stable isotopically labelled, standards as 

used in these analyses where the purities are typically 99% for carbon-13 and 96% for 

chlorine-37 labelled compounds*.  This program therefore includes 13C, 2H and 37Cl as 

independent pseudo-elements whose purities can be set to any value.  E.g. the ‘element’ 

13C would have two isotopes with masses 13.003355 and 12.0 and default abundances 

of 99% and 1% respectively – essentially the converse of the natural carbon composition. 

The seemingly high purity values of these labelled standards perhaps belie certain 

shortcomings, as demonstrated in the following calculations of the fully carbon-13 

labelled PeCB (13C12H5Cl5): Figure 3.1 shows the modelled molecular ion cluster based 

on a carbon-13 purity of 100% and Figure 3.2 shows the same compound based on the 

manufacturers’ assigned 99% purity.  In the former, the minor ions (odd m/z values) are 

minimally existent and, in total, account for < 0.06% of the isotopic distribution; in the 

latter, these ions are clearly present and account for 10.8% of the distribution. 

 

 
* Based on the published suppliers’ catalogue data from Cambridge Isotope Laboratories Inc. 
(Tewksbury, MA, USA) and Wellington Laboratories Inc. (Guelph, Ontario, Canada). 
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Figure 3.1 Modelled isotope distributions for the molecular ion cluster of carbon-13 labelled 
PeCB (13C12H5Cl5) showing exact m/z and abundances, assuming a 13C purity of 100%. 

 

 

Figure 3.2 Modelled isotope distributions for the molecular ion cluster of carbon-13 labelled 
PeCB (13C12H5Cl5) showing exact m/z and abundances, assuming a 13C purity of 99.0%. 
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3.4 Isotope cluster analysis: experimental data 

For a comparison of actual vs. modelled 13C12 molecular ion clusters, data were acquired 

on a G2-S Synapt, Q-IMS-TOF mass spectrometer (Waters, Wilmslow, UK) using positive 

AP ionisation with the TOF analyser operating at a resolution of ~18,000 (50% valley 

definition).  The mass spectrometer was coupled to a 7890 GC with 7693 auto-sampler 

(Agilent, Santa Clara, CA, USA), fitted with a 30 m (length) x 0.25 mm (internal diameter) 

x 0.25 µm (film thickness) SPB-Octyl column (Supelco, Bellefonte, PA, USA).  Splitless 

injections of PCB standards (Wellington Labs., Guelph, ON, Canada) were made using a 

0.7 µl injection volume.  Data acquisition and processing were done using MassLynx 

Versions 4.1.  Further details of the GC-MS parameters used are given in Appendix D.2. 

The molecular ion region from an averaged, centroided, spectrum of the acquired data 

is shown in Figure 3.3.  These data show a better match to the modelled cluster using a 

13C purity of 99% (Figure 3.2) with similar contributions of minor ions, 10.1% cf. 10.8%, 

compared to < 0.6% from the model based on a purity of 100% (Figure 3.1)  The r2 values 

for the 99% and 100% purity models are 0.997 and 0.980 respectively. 

 

 

Figure 3.3 Mass spectrum of carbon-13 labelled PCB-101 (2,2’,4,5,5’-PeCB, 13C12H5Cl5) 
acquired on the Synapt G2-S in TOF-MS mode. 
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3.5 A comparison of abundance ratios given by PureIso, other 

isotope calculation programs and from published EPA methods 

Table 3.1 shows the M/M+2 isotope ratios of TeCB and TCDD calculated using PureIso 

as compared with the published values from the EPA-1668C (USEPA, 2010) and 

EPA-1613B (USEPA, 1994) methods and those calculated by the MassLynx isotope utility 

(Ver. 4.2, Waters, Wilmslow, UK), and online programs from Chemcalc*, Eawag† (Loos et 

al., 2015) and SIS‡. 

Two sets of abundances were used for the PureIso calculations: in (1) 0.9894 for 12C and 

0.7580 for 35Cl, these being the mid-points of the representative isotopic abundances’ 

ranges from the latest 2013 IUPAC Technical Report (Meija et al., 2016b); in (2) the 

respective values were 0.9893 and 0.7576 from the previous 2009 report (Berglund and 

Wieser, 2011).  The abundances of H and O were unchanged between the two versions. 

 

 

Table 3.1 Comparison of calculated and published isotope ratios of M/M+2 for TeCB 
(C12H6Cl4) and TCDD (C12H4O2Cl4), and the absolute differences from the consensus ratios. 
The PureIso program was ran using two different sets of C and Cl abundances – see main text.  
The EPA ratios are from the 1668C and 1613B methods (identical in these cases) and were only 
given to 2 decimal places.  The consensus values are the average M/M+2 isotope ratios from 
the first 5 results, i.e. disregarding the SIS outlier value (~2 σ from the mean ratio).  The 
magnitudes of the absolute differences from consensus values are also highlighted by the 
gradient shading. 

 

 
* Silesian University of Technology & University of Lausanne.  https://www.chemcalc.org/main 
† Eawag/ETH, Dübendorf, Switzerland.  https://www.envipat.eawag.ch/index.php 
‡ Scientific Instrument Services, NJ, USA.  https://www.sisweb.com/mstools/isotope.htm 

Source
TeCB

M/(M+2) ratio

Abs. diff. from 

consensus

TCDD

M/(M+2) ratio

Abs. diff. from 

consensus

PureIso (1) 0.7784 0.19% 0.7757 0.16%

PureIso (2) 0.7766 0.04% 0.7741 0.04%

MassLynx 0.7765 0.06% 0.7740 0.05%

Chemcalc 0.7766 0.04% 0.7741 0.04%

Eawag 0.7766 0.04% 0.7741 0.04%

SIS 0.7671 1.27% 0.7689 0.71%

EPA 0.77 0.89% 0.77 0.57%

Consensus (1-5) 0.7770 0.7744

https://www.chemcalc.org/main
https://www.envipat.eawag.ch/index.php
https://www.sisweb.com/mstools/isotope.htm
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The ratios determined by PureIso match well with those from MassLynx, Chemcalc and 

Eawag, although the differences are clearly less with the 2009 isotopic abundances that 

would appear to be used in each of those programs.  However, the SIS results showed 

differences of ~2 σ from the overall mean ratios, and these were therefore excluded in 

the determination of the consensus mean ratios.  Compared to those consensus ratios, 

the EPA methods’ ratios are low by ~0.9% and ~0.6% for TeCB and TCDD respectively.  

Whilst the latter is acceptable if reporting the ratios to 2 decimal places, the former 

should be revised.  Furthermore, for the 13C-labelled TeCB, the calculated (PureIso) ratio 

is 0.786, yet the EPA-1668C value is unchanged at 0.77, i.e. an error of ~2%. 

A further complication not addressed by the commercially available programs concerns 

mass resolution.  Although parameters exist for peak separation and/or resolution, 

these determine the grouping and centroiding calculations for multiple isotopes within 

a mass window, but do not consider the partial contributions from minor isotopes made 

at certain exact m/z as monitored by the mass spectrometer at a given resolution. 

In Table 3.1 above, the ratios were determined using contributions from all isotopes 

present at each nominal mass; e.g. for TeCB, the ratio was calculated from the sum of 

probabilities at mass 290 (1 contribution) and 292 (4 contributions); this is shown in 

detail in Table 3.2, i.e. 2.9030e-1 / 3.7294e-01 = 0.7784. 

 

M Mass Formula Probability Δm (ppm) Σ probs. 

M+0 289.9224 C12H6Cl4 2.9030e-1 - 2.9030e-1 

M+2 291.9194 C12H6Cl3
37Cl 3.7072e-1 0.0 

 3.7294e-01 
M+2 291.9291 C10

13C2H6Cl4 2.1991e-3 33.1 

M+2 291.9320 C11
13CH5

2HCl4 2.5755e-5 43.1 

M+2 291.9349 C12H4
2H2Cl4 5.7601e-8 53.1 

Table 3.2 Isotopologue contributions (probabilities) for TeCB (C12H6Cl4) at m/z 290 and 292, 
relative mass differences of the M+2 fine isotopes and the overall M and M+2 probabilities. 

 

However, according to the EPA-1668C method, the ions monitored for TeCB are m/z 

289.9224 and 291.9194, therefore the 3 minor isotope peaks at m/z 292 that are 

separated in mass by ~33, 43 and 53 ppm from the main M+2 ions do not fully contribute 

to the overall abundance when using HRMS at the specified mass resolution of 10,000 

(and hence 100 ppm peak width).  The PureIso program addresses this with an option 
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to calculate abundance ratios from the summed intensities of all isotopologue peak 

profiles present at each mass over a mass window defined by this (or any other) peak 

width; the modelled peaks assume a Gaussian distribution with a width of ca. ±2.45 σ 

(i.e. at 5% height), thus reasonably mimicking the acquired HRMS peak profiles.  This 

modelling schema was then used for comparisons to the EPA-1668C method’s published 

ratios, and the corresponding lower and upper quality control (QC) limits that must be 

met for positive compound identification, with the results shown for the native PCBs in 

Table 3.3 and for the carbon-13 labelled PCBs in Table 3.4. 

 

 EPA-1668C Values Calculated Values Errors 

PCB Ra -15% +15% Ra -15% +15% Ra -15% +15% 

MoCB 3.13 2.66 3.60 3.089 2.626 3.553 -1.3% -1.3% -1.3% 

DiCB 1.56 1.33 1.79 1.550 1.318 1.783 -0.6% -0.9% -0.4% 

TrCB 1.04 0.88 1.20 1.036 0.880 1.191 -0.4% 0.0% -0.8% 

TeCB 0.77 0.65 0.89 0.778 0.661 0.894 1.0% 1.7% 0.5% 

PeCB 1.55 1.32 1.78 1.553 1.320 1.786 0.2% 0.0% 0.3% 

HxCB 1.24 1.05 1.43 1.244 1.057 1.431 0.3% 0.7% 0.0% 

HpCB 1.05 0.89 1.21 1.037 0.882 1.193 -1.2% -0.9% -1.4% 

OcCB 0.89 0.76 1.02 0.890 0.756 1.023 0.0% -0.5% 0.3% 

NoCB 0.77 0.65 0.89 0.779 0.662 0.895 1.1% 1.8% 0.6% 

DeCB 1.16 0.99 1.33 1.168 0.993 1.343 0.7% 0.3% 1.0% 

Table 3.3 EPA-1668C native (12C12) PCB method ratios and ±15% limits of acceptance 
compared with calculated (PureIso) values using Gaussian modelled peak profiles with 
100 ppm widths. 
Absolute errors ≥1% are highlighted in yellow. 
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 EPA-1668C Values Calculated Values Errors 

13C-PCB Ra -15% +15% Ra -15% +15% Ra -15% +15% 

MoCB 3.13 2.66 3.60 3.130 2.660 3.599 0.0% 0.0% 0.0% 

DiCB 1.56 1.33 1.79 1.566 1.331 1.801 0.4% 0.1% 0.6% 

TrCB 1.04 0.88 1.20 1.045 0.888 1.202 0.5% 1.0% 0.2% 

TeCB 0.77 0.65 0.89 0.785 0.667 0.903 1.9% 2.6% 1.4% 

PeCB 1.55 1.32 1.78 1.566 1.331 1.800 1.0% 0.8% 1.1% 

HxCB 1.24 1.05 1.43 1.253 1.065 1.441 1.0% 1.4% 0.8% 

HpCB 1.05 0.89 1.21 1.045 0.888 1.201 -0.5% -0.2% -0.7% 

OcCB 0.89 0.76 1.02 0.896 0.761 1.030 0.7% 0.2% 1.0% 

NoCB 0.77 0.65 0.89 0.784 0.667 0.902 1.8% 2.5% 1.3% 

DeCB 1.16 0.99 1.33 1.174 0.998 1.350 1.2% 0.8% 1.5% 

Table 3.4 EPA-1668C labelled (13C12) PCB method ratios and ±15% limits of acceptance 
compared with calculated (PureIso) values using Gaussian modelled peak profiles with 
100 ppm widths. 
Absolute errors ≥1% are highlighted in yellow and those ≥2% in orange. 

 

Similarly, comparisons were made to the EPA-1613B method’s ratios as shown in Table 

3.5 for PCDDs and PCDFs, and in Table 3.6 for their 13C-labelled analogues. 

 

 EPA-1613B Values Calculated Values Errors 

PCDD Ra -15% +15% Ra -15% +15% Ra -15% +15% 

TCDD 0.77 0.65 0.89 0.775 0.659 0.891 0.6% 1.3% 0.1% 

PeCDD 1.55 1.32 1.78 1.547 1.315 1.779 -0.2% -0.4% 0.0% 

HxCDD 1.24 1.05 1.43 1.240 1.054 1.426 0.0% 0.4% -0.3% 

HpCDD 1.05 0.89 1.21 1.035 0.880 1.190 -1.4% -1.2% -1.6% 

OCDD 0.89 0.76 1.02 0.888 0.755 1.021 -0.2% -0.7% 0.1% 

PCDF          

TCDF 0.77 0.65 0.89 0.776 0.660 0.893 0.8% 1.5% 0.3% 

PeCDF 1.55 1.32 1.78 1.550 1.318 1.783 0.0% -0.2% 0.1% 

HxCDF 1.24 1.05 1.43 1.242 1.056 1.428 0.2% 0.5% -0.1% 

HpCDF 1.05 0.89 1.21 1.036 0.881 1.192 -1.3% -1.0% -1.5% 

OCDF 0.89 0.76 1.02 0.889 0.756 1.022 -0.1% -0.6% 0.2% 

Table 3.5 EPA-1613B native (12C12) PCDD and PCDF method ratios and ±15% limits of 
acceptance compared with calculated (PureIso) values using Gaussian modelled peak profiles 
with 100 ppm widths. 
Absolute errors ≥1% are highlighted in yellow. 
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 EPA-1613B Values Calculated Values Errors 

13C-PCDD Ra -15% +15% Ra -15% +15% Ra -15% +15% 

TCDD 0.77 0.65 0.89 0.783 0.665 0.900 1.6% 2.3% 1.1% 

PeCDD 1.55 1.32 1.78 1.560 1.326 1.794 0.6% 0.5% 0.8% 

HxCDD 1.24 1.05 1.43 1.249 1.062 1.437 0.8% 1.1% 0.5% 

HpCDD 1.05 0.89 1.21 1.042 0.886 1.198 -0.8% -0.5% -1.0% 

OCDD 0.89 0.76 1.02 0.894 0.760 1.028 0.4% 0.0% 0.8% 
13C-PCDF          

TCDF 0.77 0.65 0.89 0.784 0.666 0.901 1.8% 2.5% 1.3% 

PeCDF 1.55 1.32 1.78 1.563 1.328 1.797 0.8% 0.6% 1.0% 

HxCDF 0.51 0.43 0.59 0.524 0.445 0.602 2.7% 3.6% 2.1% 

HpCDF 0.44 0.37 0.51 0.450 0.382 0.517 2.2% 3.3% 1.4% 

OCDF 0.89 0.76 1.02 0.895 0.761 1.029 0.5% 0.1% 0.9% 

Table 3.6 EPA-1613B labelled (13C12) PCDD and PCDF method ratios and ±15% limits of 
acceptance compared with calculated (PureIso) values using Gaussian modelled peak profiles 
with 100 ppm widths. 
Absolute errors ≥1% are highlighted in yellow, ≥2% in orange and ≥3% in red. 

 

Differences between the calculated* and methods’ values ≥ 1% are highlighted in yellow, 

≥ 2% in orange and ≥ 3% in red.  Notwithstanding the issues previously discussed in 

Chapter 2 (regarding ion statistics in these assessments) these errors, although small, 

could lead to misrepresentation of the data due to the binary choice of accepting or 

rejecting peaks based on these QC limits: the methods† should therefore be revised 

accordingly. 

  

 
* Using abundances of 0.9893 for 12C and 0.7576 for 35Cl. 
† Similar re-evaluations should also be performed on other POPs methods that use the same 
identification criteria. 
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3.6 MS/MS isotope ratio calculations 

For MS/MS analyses, the determination of the isotope ratios of product ions needs to 

consider the proportion of the relevant isotopes present in the precursor ion and the 

chosen mass loss.  E.g. for TCDD, the most intense fragments are due to the loss of COCl, 

therefore the experiment would include the multiple reaction monitoring (MRM) 

transitions: 

m/z 319.9 > 256.9 and m/z 321.9 > 258.9 

In both cases, Δm ≈ 63 Da from (specifically) 12C16O35Cl. 

 

As shown in Table 3.7, the first transition has just one possible pathway as the m/z 319.9 

ion of TCDD can only be formed by a single combination of the available isotopes, 

however there are 8 contributors to the loss from m/z 321.9 ion, although one of these 

– albeit an extremely minor (< 10-5 %) contributor – cannot lose the COCl m/z 63 since it 

does not contains any 16O atoms, hence there are 7 viable transition pathways. 

 

Precursor ion m/z 
Precursor 
abundance 

Product ion from the 
loss of 12C16O35Cl 

m/z 

12C12
1H4

16O2
35Cl4 319.8965 2.88e-01 12C11

1H4
16O1

35Cl3 256.9328 

12C12
1H4

16O2
35Cl3

37Cl1 321.8936 3.69e-01 12C11
1H4

16O1
35Cl2

37Cl1 258.9298 

12C12
1H4

16O1
18O1

35Cl4 321.9008 1.18e-03 12C11
1H4

18O1
35Cl3 258.9370 

12C10
13C2

1H4
16O2

35Cl4 321.9032 2.22e-03 12C9
13C2

1H4
16O1

35Cl3 258.9395 

12C11
13C1

1H4
16O1

17O1
35Cl4 321.9041 2.85e-05 12C10

13C1
1H4

17O1
35Cl3 258.9403 

12C12
1H4

17O2
35Cl4 321.9050 4.18e-08 no viable loss of 12C16O35Cl 

12C11
13C1

1H3
2H1

16O2
35Cl4 321.9062 1.72e-05 12C10

13C1
1H3

2H1
16O1

35Cl3 258.9424 

12C12
1H3

2H1
16O1

17O1
35Cl4 321.9070 1.01e-07 12C11

1H3
2H1

17O1
35Cl3 258.9433 

12C12
1H2

2H2
16O2

35Cl4 321.9091 2.29e-08 12C11
1H2

2H2
16O1

35Cl3 258.9453 

Table 3.7 Precursor and product ion formulae, exact m/z and abundances for the loss of 
COCl (specifically 12C16O35Cl) from the molecular ion of TCDD (M+0 and M+2) in an MS/MS 
(MRM) experiment. 
Due to the nature of this discussion, all superscripts and subscripts are shown, including unity. 
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For each pathway, there is an associated probability that the atoms are those required 

for the specific mass loss.  E.g. of the 4 Cl atoms in the precursor TCDD molecule for the 

[M+2] > [M+2 -12C16O35Cl] transition, [12C12
1H4

16O2
35Cl337Cl1] > [12C11

1H4
16O1

35Cl237Cl1], 

3 are 35Cl and 1 is 37Cl; since the required mass loss must include 35Cl there is a 75% 

probability of this occurring.  These probabilities can be similarly calculated for the 

remaining transitions as shown in Table 3.8; although many of these transitions result in 

minor contributions, they are nevertheless included for completeness. 

The effective ratio can then be calculated by taking the M+0 abundance divided by the 

total of M+2 abundances, yielding 1.031.  Using just the major M+2 contribution (0.277) 

would have given a reasonable approximation (difference < 1%) to this with a ratio of 

1.041.  This matches the 1.04 given by Kotz et al where their calculations used only this 

single value for the M+2 abundance (Kotz et al., 2014). 

 

M Precursor ion 
Precursor 

abundance 
Product ion from the  
loss of 12C16O35Cl 

Occurrence 
probability 

Product ion 
abundance 

M+0 12C12
1H4

16O2
35Cl4 2.88e-01 12C11

1H4
16O1

35Cl3 100% 2.88e-01 

M+2 

12C12
1H4

16O2
35Cl3

37Cl1 3.69e-01 12C11
1H4

16O1
35Cl2

37Cl1 75% 2.77e-01 

12C12
1H4

16O1
18O1

35Cl4 1.18e-03 12C11
1H4

18O1
35Cl3 50% 5.90e-04 

12C10
13C2

1H4
16O2

35Cl4 2.22e-03 12C9
13C2

1H4
16O1

35Cl3 83% 1.84e-03 

12C11
13C1

1H4
16O1

17O1
35Cl4 2.85e-05 12C10

13C1
1H4

17O1
35Cl3 46% 1.31e-05 

12C12
1H4

17O2
35Cl4 4.18e-08 n/a 0% 0.00e+00 

12C11
13C1

1H3
2H1

16O2
35Cl4 1.72e-05 12C10

13C1
1H3

2H1
16O1

35Cl3 92% 1.58e-05 

12C12
1H3

2H1
16O1

17O1
35Cl4 1.01e-07 12C11

1H3
2H1

17O1
35Cl3 50% 5.05e-08 

12C12
1H2

2H2
16O2

35Cl4 2.29e-08 12C11
1H2

2H2
16O1

35Cl3 100% 2.29e-08 

Table 3.8 Precursor ion abundances and probabilities of product ion formation for the loss 
of COCl (specifically 12C16O35Cl) from the molecular ion of TCDD (M+0 and M+2) and the 
resultant product ion abundances. 
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3.7 MS/MS fragmentation: experimental 

In the following experiment, a mix of 4 Aroclors*: 1016, 1232, 1248 and 1260 [Supelco, 

Bellefonte, PA, USA (catalogue number 4-8861)] was analysed using a Quattro MS/MS 

triple-quadrupole instrument (Micromass, Manchester, UK).  The source was operated 

in positive electron ionisation (EI) at 34 eV, and data acquisition performed in the MRM 

mode. 

The MS/MS instrument was coupled to a 6890 GC (Agilent, Santa Clara, CA, USA), fitted 

with a 30 m (length) x 0.25 mm (internal diameter) x 0.25 µm (film thickness) DB-5ms 

column (Agilent, Santa Clara, CA, USA).  Manual injections of 1 µl were made with a 10:1 

split ratio. 

Argon was used as the collision gas at a pressure of ~10-3 mbar with a collision energy of 

20 eV.  Further details of the key GC-MS/MS parameters used are given in Appendix D.3. 

 

3.8 MS/MS fragmentation: results and discussion 

MRM chromatograms were generated, and peak detection performed, for the 

m/z 323.9 > 253.9, m/z  325.9 > 255.9 and m/z  325.9 > 253.9 transitions, as shown in 

Figure 3.4.  Although the MS/MS analysis of PeCBs, as per the current EU PCB method 

(European Commission, 2017), only requires the first 2 transitions to be monitored for 

the mass loss of 70 Da (235Cl), the loss of 72 Da (35Cl37Cl) from m/z 325.9 > 253.9 is 

included here for additional confirmation. 

 

 
* See section 1.3 (p. 5) for background information on the Aroclor PCB mixes. 
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Figure 3.4 Peak-detected MRM chromatograms for the m/z 323.9 > 253.9 (-70 Da), m/z 
325.9 > 255.9 (-70 Da) and m/z 325.9 > 253.9 (-72 Da) transitions for a set of PeCB congeners. 

 

The expected abundance ratios can be determined using the same approach described 

in the previous section, resulting in the values shown in Table 3.9.  The expected ion 

abundance ratios for peaks from the m/z 325.9 > 255.9 and m/z 325.9 > 253.9 

transitions, relative to those of m/z 323.9 > 253.9, can therefore be calculated from the 

summed product ion abundances: 

2.192e-1 / 2.121e-1 = 1.033 

2.192e-1 / 1.403e-1 = 1.563 
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M Precursor ion 
Precursor 

abundance 
Mass 
loss 

Product ion Prob. 
Product ion 
abundance 

Sum of 
abundances 

M+0 12C12
1H5

35Cl5 2.192e-1 70 12C12
1H5

35Cl3 100% 2.192e-1 2.192e-1 

M+2 12C12
1H5

35Cl437Cl1 3.507e-1 70 12C12
1H5

35Cl237Cl1 60% 2.104e-1 

2.121e-1 
M+2 12C10

13C2
1H5

35Cl5 1.693e-3 70 12C10
13C2

1H5
35Cl3 100% 1.693e-3 

M+2 12C11
13C1

1H4
2H1

35Cl5 1.636e-5 70 12C11
13C1

1H4
2H1

35Cl3 100% 1.636e-5 

M+2 12C12
1H3

2H2
35Cl5 2.900e-8 70 12C12

1H3
2H2

35Cl3 100% 2.900e-8 

M+2’ 12C12
1H5

35Cl437Cl1 3.507e-1 72 12C12
1H5

35Cl3 40% 1.403e-1 1.403e-1 

Table 3.9 Probabilities of formation of product ions from the loss of 2Cl from the M+0 and 
M+2 ions of PeCB and the resultant product ion abundances. 
The data in the last row (M+2’) correspond to the loss of 35Cl37Cl (72 Da), for all other rows the 
loss is of 235Cl (70 Da).  

 

The results from the acquired data of the 10 most intense peaks are summarised in Table 

3.10 and show consistent ion abundance ratios (RSD < 3%) and good agreement with 

theoretical values (mean error < 1%). 

 

RT 
Peak area 

324 > 254 (A) 
Peak area 

326 > 256 (B) 
Peak area 

326 > 254 (C) 
Abundance 

ratio A/B 
Abundance 

ratio A/C 

13.23 1876 1781 1207 1.054 1.554 

13.89 299 304 196 0.982 1.522 

13.98 2379 2239 1530 1.062 1.555 

14.13 634 650 409 0.977 1.552 

14.64 438 414 284 1.057 1.545 

14.85 642 615 398 1.044 1.613 

14.97 318 314 215 1.012 1.481 

15.13 2222 2188 1461 1.016 1.521 

15.96 1260 1204 800 1.047 1.576 

16.69 681 658 422 1.036 1.613 

Mean: 1.029 1.553 

RSD: 2.99% 2.63% 

Theoretical abundance: 1.033 1.563 

Deviation from theoretical: -0.45% -0.60% 

Table 3.10 Summary of the PeCB MRM data shown in the chromatograms of Figure 3.4, 
showing peak retention times (RT), areas, calculated abundance ratios and comparisons to 
theoretical values. 
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3.9 Mass and intensity errors due to mixed AP ionisation modes 

To date, all published methods relating to the analysis of the POPs discussed in this 

thesis have been based on the use of HRMS and EI; as GC-MS/MS is now permitted for 

certain regulated analyses (as previously discussed in section 1.13), any mass or intensity 

artefacts arising from atmospheric pressure (AP) ionisation – commonly used as an 

alternative to EI with such instruments – should be examined. 

A schematic of the AP ion source region for the Synapt G2-S GC-MS/MS (Q-TOF) 

instrument (Waters, Wilmslow, UK) used in the following experiments is shown in Figure 

3.5.  The GC column is carried through a heated interface to within ~5 mm of the corona 

pin to maximise ionisation of its eluent. 

 

 

Figure 3.5 Schematic outline of the GC interface and atmospheric pressure (AP) ion source 
region found in the Waters’ Synapt G2-S (Q-TOF) and Xevo (triple-quad) instruments. 
(Image courtesy of Waters, Wilmslow, UK) 
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AP ionisation nominally operates in either charge transfer or protonation mode based 

on the mechanisms shown in Figure 3.6.  In the former, a high voltage (~5 kV) is applied 

to the source corona pin causing corona discharge ionisation of the nitrogen gas present 

in the source; these N2
+• cations then react with the analyte molecules and the resulting 

charge transfers form positive ions (M+•).  In protonation mode, the corona discharge 

ionisation initiates a reaction with a suitable reagent, e.g. water as in this example, that 

is admitted into the ion source; intermediate cations of H2O+• and H3O+• are created and 

provide the protons that lead to formation of the [M+H]+ ions.  Although this might be 

desirable for some compounds, it is less likely to benefit the relatively non-polar dioxins 

or PCBs. 

 

 

Figure 3.6 Illustration of the atmospheric pressure ionisation mechanisms for charge 
exchange and protonation. 
(Image courtesy of Waters, Wilmslow, UK) 

 

Although an instrument may be nominally operating in the charge transfer mode, some 

degree of protonation can occur due to the ubiquitous presence of background water in 

the ion source and/or sample introduction systems resulting in mixed ionisation modes.  

This was observed in the molecular ion region of the TeCB spectrum shown in Figure 3.7 

where intensities of the minor ions – those due to naturally occurring 13C isotope peaks 

– were clearly higher than expected. 
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Figure 3.7 Acquired spectrum from the molecular ion region of TeCB (C12H6Cl4) indicating 
mixed ionisation from both charge transfer and protonation modes. 

 

A comparison with the modelled isotope cluster distribution, as shown in Figure 3.8, 

confirmed this: e.g. the ion recorded at m/z 293 showed a relative intensity of ~20% 

compared to its theoretical value of ~13%.  In addition, the measured m/z of these ions 

showed errors ~1 mDa greater than those of the major ions. 

 

 

Figure 3.8 Modelled molecular ion cluster of TeCB (C12H6Cl4) showing exact m/z and 
abundances. 

 

These data are summarised in Table 3.11 with the m/z and intensities shown for the 

theoretical (Columns B, C) and measured (Columns D, E) data, and their corresponding 

differences (Columns F, G).  These data suggest that the observed errors may be due to 

the formation of protonated molecules that, given the m/z differences between the 

Supelco PCB mix 1 D100, WP-STK D10, WP-CS2 MSe CEs 10 and 40V 10-Oct-2016 17:19:30

m/z
289 290 291 292 293 294 295 296 297 298 299 300 301 302

%

0

100

161010 APGC PCB 07 1158 (19.462) Cm (1152:1164-1103:1123) 1: TOF MS AP+ 
3.16e6291.920

289.923

290.927

293.918

292.925

295.915294.922

296.919 297.914

Observed Observed 

Mass Rel. Int. 

289.923 78.8 

290.927 15.8 

291.920 100 

292.925 20.2 

293.918 51.2 

294.922 9.5 

295.915 11.5 

 

Theo. Theo. 

m/z Rel. Int. 

289.922 77.8 

290.926 10.1 

291.919 100 

292.923 12.9 

293.917 48.4 

294.920 6.2 

295.914 10.5 
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protonated and non-protonated species of ~15 ppm, would not have been resolved on 

the instrument in use. 

 

 

Table 3.11 The m/z and intensity errors due to mixed AP ionisation in the analysis of TeCB 
(C12H6Cl4), and the results from applying corrections to account for the degree of protonation. 

 

Although these m/z differences could be partially or fully resolved on other mass 

spectrometers that also support APCI, such as Orbitraps* and Fourier-transform ion 

cyclotron resonance (FTICR) instruments † , other performance limitations, practical 

considerations and/or high cost restrict their use for routine analysis. 

To test this idea, the theoretical protonated m/z have been added to the table (Column 

H) and the overall intensities at each m/z calculated (Column I) based on the “degree-

of-protonation” factor shown as [M+H] %.  From these, the relative percent difference 

(RPD) in intensity for each m/z is calculated (Column J).  The average RPD value was then 

used as the target for minimisation using the Excel solver function – this yielded an 

estimate for the degree-of-protonation of ~7.5%.  The relative contributions due to the 

protonated m/z can now be calculated (Column K) and used to determine corrected m/z 

(Column L).  The m/z errors (Column M) show an overall reduction with an RMS error of 

0.93 mDa compared to 1.46 mDa in the uncorrected data, though an overall bias in the 

reported m/z is still evident. 

 
* E.g. Q-Exactive Orbitrap (Thermo Scientific); resolution specification > 50,000 (FWHM) 
† E.g. solariX FTICR-MS (Bruker Daltonics); resolution specification > 107 (FWHM) 

A B C D E F G H I J K L M

TeCB Theo. Theo. Obs. Obs. Δ m/z Int. Theo. Adj. Int. [M+H] Adj. Adj.

Ion m/z Rel. Int. m/z Rel. Int. mDa Error [M+H] Rel. Int. RPD % (est.) m/z Δ mDa

M+0 289.922 77.8 289.923 78.8 0.6 1% 289.923 0.6

M+1 290.926 10.1 290.927 15.8 1.3 57% 290.930 15.8 0% 36% 290.926 0.1

M+2 291.920 100 291.920 100 0.5 0% 291.934 100 0% 0% 291.920 0.5

M+3 292.923 12.9 292.925 20.2 2.2 57% 292.927 20.2 0% 36% 292.924 1.4

M+4 293.917 48.4 293.918 51.2 1.4 6% 293.931 49.0 5% 1% 293.918 1.2

M+5 294.920 6.2 294.922 9.5 2.1 54% 294.924 9.7 2% 37% 294.921 1.2

M+6 295.914 10.5 295.915 11.5 1.2 10% 295.928 10.9 6% 4% 295.915 0.8

1.46 [M+H] % 7.5% 0.93RMS error (mDa) RMS error (mDa)
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The above process was then repeated using PeCB data from the same sample with the 

results summarised in Table 3.12.  The results show a similar pattern to the TeCB data 

above, with an estimate for the degree-of-protonation of ~6.5%. 

 

 

Table 3.12 The m/z and intensity errors due to mixed AP ionisation in the analysis of PeCB 
(C12H5Cl5), and the results from applying corrections to account for the degree of protonation. 

 

To verify that these proposed protonation effects were not due to peak (intensity) 

saturation – that would have similarly resulted in elevated isotopic abundances of the 

minor peaks, though not their corresponding m/z shifts – a further study was made using 

13C-labelled TeCB. 

 

  

A B C D E F G H I J K L M

PeCB Theo. Theo. Obs. Obs. Δ m/z Int. Theo. Adj. Int. [M+H] Adj. Adj.

Ion m/z Rel. Int. m/z Rel. Int. mDa Error [M+H] Rel. Int. RPD % (est.) m/z Δ mDa

M+0 323.883 62.3 323.884 65.0 0.6 4% 323.884 0.6

M+1 324.887 8.1 324.887 12.4 0.2 54% 324.891 12.0 3% 33% 324.886 -1.2

M+2 325.881 100 325.881 100 0.5 0% 325.895 100 0% 0% 325.881 0.5

M+3 326.884 12.9 326.885 19.3 1.2 50% 326.888 19.3 0% 33% 326.884 0.1

M+4 327.878 64.3 327.878 66.3 0.4 3% 327.892 64.8 2% 1% 327.878 0.3

M+5 328.881 8.2 328.882 11.6 1.1 41% 328.885 12.4 6% 33% 328.881 0.0

M+6 329.875 20.8 329.875 22.1 0.2 6% 329.889 21.2 4% 2% 329.875 -0.1

RMS error (mDa) 0.71 [M+H] % 6.5% RMS error (mDa) 0.55
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As shown by the data in Table 3.13, the M-1/M+1 ratio is elevated due to protonation 

of M+0; any saturation effects would have led to a decreased ratio.  (A similar proof can 

also be seen in the subsequent MoCB data with its increased M+1/M+2 ratio.) 

 

 

Table 3.13 The m/z and intensity errors due to mixed AP ionisation in the analysis of 
carbon-13 labelled TeCB (13C12H6Cl4), and the results from applying corrections to account for 
the degree of protonation. 

 

The above examples have focussed on the effect on minor ions – as these are the most 

apparent – though the primary ions are also affected as evident in the MoCB data shown 

in Table 3.14 where the M/M+2 ratio is ~9% lower than expected. 

 

 

Table 3.14 The m/z and intensity errors due to mixed AP ionisation in the analysis of MoCB 
(C12H9Cl), and the results from applying corrections to account for the degree of protonation. 

 

  

A B C D E F G H I J K L M

TeCB Theo. Theo. Obs. Obs. Δ m/z Int. Theo. Adj. Int. [M+H] Adj. Adj. Weighted

Ion m/z Rel. Int. m/z Rel. Int. mDa Error [M+H] Rel. Int. RPD % (est.) m/z Δ mDa errors

M-1 300.959 9.5 300.960 9.9 0.8 4% 300.964 300.960 0.8 0.1

M+0 301.963 78.7 301.964 79.2 1.2 1% 301.967 78.7 1% 0% 301.964 1.2 0.9

M+1 302.956 12.1 302.960 17.1 4.0 41% 302.970 16.8 2% 28% 302.958 1.2 0.1

M+2 303.960 100 303.961 100 1.3 0% 303.964 100.0 0% 0% 303.961 1.3 1.3

M+3 304.954 5.9 304.961 11.4 7.8 95% 304.968 11.9 4% 51% 304.958 4.7 0.3

M+4 305.957 47.8 305.958 47.7 1.4 0% 305.961 47.8 0% 0% 305.958 1.4 0.7

M+5 306.951 1.3 306.960 4.2 9.1 234% 306.965 4.1 2% 70% 306.957 5.8 0.1

M+6 307.954 10 307.955 10 1.2 -5% 307.959 10.2 5% 0% 307.955 1.2 0.1

4.57 [M+H] % 6.10% 2.84 0.63RMS error (mDa) RMS error (mDa)

A B C D E F G H I J K L M

MoCB Theo. Theo. Obs. Obs. Δ m/z Int. Theo. Adj. Int. [M+H] Adj. Adj.

Ion m/z Rel. Int. m/z Rel. Int. mDa Error [M+H] Rel. Int. RPD % (est.) m/z Δ mDa

M+0 188.039 100 188.041 100 1.7 0% 100 188.041 1.7

M+1 189.043 13.1 189.045 17.7 2.3 35% 189.047 17.7 0% 26% 189.044 1.8

M+2 190.037 32.4 190.038 35.5 1.4 10% 190.051 33.0 7% 2% 190.038 1.2

M+3 191.040 4.2 191.042 5.6 2.2 33% 191.044 5.7 2% 26% 191.041 1.6

1.94 [M+H] % 4.6% 1.57RMS error (mDa) RMS error (mDa)
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3.10 Conclusions 

The discussion on ion statistics in the previous chapter stressed the importance of ion 

abundance ratios in compound identification and proposed the use of dynamic 

tolerances rather than the fixed, ±15%, value of the existing methods.  Irrespective of 

this choice, having the correct ratio as the point around which any ratio is established is 

fundamental in ensuring the creation of irrefutable data and hence the findings here 

have shown that the current methods should, subject to review and validation, be 

revised accordingly. 

Although this work has focussed on the EPA-1613B (USEPA, 1994) and EPA-1668C 

methods (USEPA, 2010) for PCDD/Fs and PCBs respectively, these are directly 

referenced, in regard to m/z and expected isotope ratios, by the EU method for food 

and feed analysis (European Commission, 2017).  Furthermore, since the scope of the 

EU method extends to MS/MS, any revisions would also affect the MRM isotope ratios 

as these are derived from the precursor ions’ ratios with factors applied according to the 

relative proportions of 35Cl vs. 37Cl in the precursor and the selected mass loss.  The study 

of the determination of MS/MS ratios is also instructive in showing that not all 

contributors to the fine isotope structure are involved in a specific mass loss transition.  

An MS/MS study using a triple-quadrupole instrument to investigate the fragmentation 

losses from a set of PeCBs was performed, with the results showing close agreement 

between the measured and calculated isotope ratios for the conventional transition 

involving the loss of 2[35Cl] and also for the alternative loss of 35Cl37Cl. 

The ability of the PureIso program to model molecular ion clusters containing enriched 

isotopes at purities other than 100% has been shown to be valuable in validating the 

manufacturers’ claims of their standards’ purities.  This was demonstrated with the 

analysis of a commercially available 13C-labelled PeCB standard and comparison of the 

acquired molecular ion cluster data with its modelled equivalent at an assumed 99% 

isotopic purity.  It also, more importantly, fully characterises the additional (M+1, M+3, 

etc.) peaks in the labelled standards’ spectra that might otherwise be misconstrued as 

other analyte peaks or as protonated artefacts in AP ionisation analyses. 

The work using the modelled peak profiles has highlighted issues concerning the peak 

separation and resolution parameters in the various isotope calculators and that those 
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studied may not accurately reflect the peak intensities detected by HRMS; in contrast, 

the PureIso program calculates the isotope ratios by summing the intensities of the 

various isotopologues, modelled as a set of Gaussian peaks, at the m/z and resolution 

specified. 

The issue with mixed charge exchange ionisation and protonation has highlighted 

another unexpected cause of possible isotope ratio error.  Although such effects are 

minimal in many instances and/or only affect minor peaks, there exists the possibility of 

incorrect peak acceptance or rejection.  Furthermore, any shift away from the ionisation 

conditions present during the (concentration) calibration phase could also lead to 

quantification errors for any compound that does not have its own labelled standard.  

With full-scan* data, as in the above examples, and the ability to examine additional ions 

over those used for the ratio assessment, such effects would be identifiable.  For SIM or 

MRM analyses the use of additional m/z or transitions would be required over those 

specified by the method to provide the information needed to evaluate whether this is 

occurring. 

 

 

 
* TOF data is considered “full-scan” in this context even though it is not a scanning instrument 
in the conventional sense. 
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Chapter 4  

 

Analytical Effects of PCB Fragmentation 

 

4.1 Introduction 

The EPA-1668C method (USEPA, 2010) has been widely adopted for the analysis of all 

209 PCB congeners, both for regulatory measurements within the US and as a prototype 

for PCB analyses in other territories, including the EU.  In addition to the use of HRMS 

instrumentation at a resolution of ≥ 10,000 with EI at an energy between 28 and 40 eV, 

it specifies a proprietary GC column, the SPB-Octyl*, for its ability to adequately resolve 

all (current) WHO toxic PCBs with the exception of PCB-156 (2,3,3’,4,4’,5-HxCB) and 

PCB-157 (2,3,3’,4,4’,5’-HxCB).  However, these two isomers, that differ only in the ring 

position of one of the meta Cl atoms (5 or 5’), have the same toxic equivalency factor 

(TEF, ref. Table 1.5) and hence their need for separation is considered unnecessary. 

Other GC columns with less polar stationary phases, e.g. 100% dimethyl polysiloxane or 

5% diphenyl / 95% dimethyl polysiloxane – the latter type being routinely used in 

PCDD/F analyses – do resolve PCB-156 and 157, but not the toxic congener PCB-118 (due 

to its coelution with the non-toxic PCB-106) and are therefore ruled out from use in this 

application. 

In contrast to the analysis of PCDDs and PCDFs, where, with one minor exception†, the 

various congeners are separated into distinct retention time (RT) windows for each level 

of chlorination, routine PCB analysis – irrespective of the GC column choice – exhibits 

overlaps of the RT windows of the di- to nona-chlorinated biphenyls and is particularly 

significant for the tetra- to hepta-chlorinated homologues that also contain the toxic 

PCBs.  

 
* 30 m (length) x 0.25 mm (ID) x 0.25 µm (film thickness) (Supelco, Bellefonte, PA, USA). 
† With the commonly used, low polarity, “5ms” phase GC columns (e.g. DB-5ms, ZB-5ms, etc.), 
the first two pentachlorofuran isomers (1,3,4,6,8 and 1,2,4,6,8-PeCDF) elute before the last 
tetrachlorofuran isomer (1,2,8,9-TCDF) and therefore must be acquired as part of the TCDD/F, 
rather than the PeCDD/F, function.  Although the latter would be preferred to avoid inter-
function referencing of the PeCDF labelled standards and any ensuing response-factor errors, 
it is considered acceptable practice due to the non-toxicity of these isomers. 
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A consequence of these RT overlaps is the potential problem of interferences from 

product ions, due to the loss of 1 or 2 chlorine atoms from coeluting, higher chlorinated 

congeners, leading to errors in peak identification and concentration measurements. 

To illustrate the cause of these fragment ion interferences, the modelled molecular ion 

cluster for TeCB (C12H6Cl4) is shown in Figure 4.1 and that resulting from PeCB losing a 

Cl (C12H5Cl4) in Figure 4.2; the PeCB - Cl cluster has an almost identical pattern (as 

predicated by the same Cl4 distribution) but is nominally 1 m/z unit lower. 

The issue of interfering peaks affecting the TeCB data principally* arises due to the 

naturally occurring 13C isotopes present in the fragment ion cluster, at m/z 289.9179 

(C11
13CH5

35Cl4) and m/z 291.9150 (C11
13CH5

35Cl337Cl), being very close in mass (Δm ~15 

ppm) to those of the TeCB major ions at m/z 289.9224 (C12H6
35Cl4) and m/z 291.9195 

(C12H6
35Cl337Cl).  Separation of these ions would require a mass resolution of ~65,000 – 

far higher than the 10,000 normally used for HRMS (EI) analysis. 

Furthermore, the relative abundance of these 13C isotope ions is 0.782, which at the 

measurement precision available in routine GC-MS analyses – either using HRMS or 

MS/MS – is indistinguishable from the 0.778 of the primary (M, M+2) ions of TeCB and 

hence their presence would only be detectable through any differences in their 

chromatographic RTs.  Since the acceptable RT window in EPA-1668C is -1 to +3 seconds 

for toxic PCBs and -3 to +3 seconds for individual non-toxic PCBs (relative to their 

respective 13C-labelled standards) many interferences could pass unnoticed.  This is even 

more likely if there is a partial interference, i.e. the target compound is present and has 

additive contributions from the product ions. 

 

 
* Other fragmentation mechanisms that can also lead to interfering ions affecting the [M - Cl] 
cluster, e.g. loss of HCl and Cl/H exchange, will be discussed later in the chapter. 
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Figure 4.1 Modelled isotope cluster of the molecular ion of TeCB (C12H6Cl4) showing exact 
m/z and relative abundances. 

 

 

Figure 4.2 Modelled isotope cluster of product ions (C12H5Cl4) formed from the loss of Cl 
from PeCB (C12H5Cl5) showing a ~1 m/z unit (negative) displacement relative to TeCB (C12H6Cl4). 
The peaks are annotated with their exact m/z and relative abundances. 

 

The problem of interferences due to product ions from the fragmentation loss of 2 

chlorines also exists, but, as shown in the example of Figure 4.3, the situation is distinctly 

different since the HxCB product ions’ isotope cluster pattern is displaced by ~2 m/z 

units relative to that of TeCB.  These ions are further separated in mass (Δm ~63 ppm, 
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relative to TeCB) than the product ions due to the loss of Cl from PeCB but would still be 

unresolved using the method’s standard resolution (10,000). 

 

 

Figure 4.3 Modelled isotope cluster of the product ions (C12H4Cl4) formed due to the loss of 
2Cl from HxCB (C12H4Cl6) showing a ~2 m/z units (negative) displacement relative to TeCB 
(C12H6Cl4). 
The peaks are annotated with their exact m/z and relative abundances. 

 

These m/z differences are clearly depicted in Figure 4.4 with the superimposed modelled 

peak profiles from TeCB (m/z 291.9195, C12H6
35Cl337Cl), the M+1 interference due to the 

loss of Cl from PeCB (m/z 291.9150, C11
13CH5

35Cl337Cl) and the M+2 due to the loss of 2Cl 

from HxCB (m/z 291.9010, C12H4
35Cl237Cl2).  Each peak is annotated with its exact m/z 

and the mass difference, in ppm, relative to TeCB.  The peak intensities are normalised 

to their corresponding isotopes at m/z 290 to reflect their relative ion abundances. 
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Figure 4.4 Modelled peaks showing the base peak of TeCB (m/z 291.9195, C12H6
35Cl3

37Cl) and 
product ion interferents due to the loss of Cl from PeCB (m/z 291.9150, C11

13CH5
35Cl337Cl) and 

2Cl from HxCB (m/z 291.9010, C12H4
35Cl2

37Cl2). 
TeCB (blue trace), PeCB - Cl (red) and HxCB - 2Cl (green); calculated mass differences in ppm. 
Intensities were normalised to the peaks at (nominal) m/z 290 such that the displayed peaks 
indicate the relative isotope contributions at m/z 292: the PeCB - Cl product ions’ ratio differs 
by just ~0.5% whereas the HxCB - 2Cl product ions’ isotope ratio is 2.07 (cf. 0.78 for TeCB). 

 

Although EPA-1668C includes several (partially repeated) references to this potential 

problem, they are not comprehensive and there are no specific guidelines as to when 

any corrective actions should be taken, as shown by these quoted sections: 

 

[From 10.3.1.1] “The laboratory must also monitor exact m/z’s for congeners at 

higher levels of chlorination to determine if fragments will compromise 

measurement of congeners at lower levels of chlorination.” 

[From 14.3.2] “Where warranted, monitor m/z’s associated with congeners at 

higher levels of chlorination to assure that fragments are not interfering with the 

m/z’s for congeners at lower levels of chlorination. Also where warranted, 

monitor m/z’s associated with interferents expected to be present.” 

[From 18.1] “Fragment ions from congeners at higher levels of chlorination may 

interfere with determination of congeners at lower levels of chlorination.” 
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[From 18.5] “Interferences may pose a problem in the determination of 

congeners 81, 123, 126, and 169 in some environmental samples. Loss of one or 

more chlorines from a highly chlorinated congener may inflate or produce a false 

concentration for a less-chlorinated congener that elutes at the same retention 

time. If, upon inspection of the chromatogram, the possibility of interferences is 

evident (e.g., high concentrations of fragments from loss of one or two chlorines 

from higher chlorinated closely eluting congeners), carbon column fractionation 

(Section 13.4) and analysis is recommended.” 

 

Considering the above 4 points: section 10.3.1.1 is redundant since if congeners from a 

higher level of chlorination are present, then those m/z would be implicitly recorded as 

part of a method’s core requirements.  This similarly applies to the first part of section 

14.3.2, although the second part regarding the monitoring of interferents’ m/z has some 

merit (and will be discussed further later in this chapter).  The statement in section 18.1 

only repeats the cautionary note but does not suggest any solutions. 

The last point, section 18.5, in referring to only PCBs 81, 123, 126 and 169 being affected, 

ignores other known toxic PCBs that are, as will be shown, potential candidates for 

interferences due to fragmentation, and to the fact that many other PCBs – although 

non-toxic – may also be subject to these effects.  In addition to the risk of misreporting 

any individual congener’s concentration (and its associated homologue total 

concentration), its TEQ and the overall sample TEQ, the congener distribution profiles 

could be altered thus undermining any pattern matching based comparisons, e.g. as 

used in environmental forensics.  Additional sample clean-up using a carbon-column is 

an option for the toxic PCBs but not any others; coupled with the additional analytical 

costs this is therefore only a partial solution to the problem. 

Although (surprisingly) not referenced in the current version of the EPA-1668C (HRMS) 

PCB method or its predecessors, it is interesting to note that a much earlier method for 

the low-resolution mass spectrometry (LRMS) analysis of PCBs (and pesticides), EPA 

Method 680 (Alford-Stevens et al., 1985), did offer a correction strategy.  It explicitly 

specified the m/z to be monitored to identify interfering coeluters, their corresponding 

fragment m/z and correction factors that could be applied to the peak areas of those 
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fragment ions that, if detected, could be subtracted from the areas of the corresponding 

target PCBs. 

There are some weaknesses to this approach: it does not consider partially or multiple 

coeluting peaks, the factors assume an exact overlap of the m/z of the fragment ions 

and of the affected ions that is only directly applicable to a unit-mass resolution 

instrument, and it assumes that all fragments are from a simple loss of Cl or 2Cl, thereby 

incorrectly accounting for errors due to, for example, the loss of HCl*.  Despite these 

issues in the context of the HRMS analyses of PCBs, it would seem to have been useful 

foundation to build upon. 

There have been few published studies focussed on PCB fragmentation and none (that 

the author is aware of) with experimental data from all 209 congeners.  Greaves et al 

reported on the correlation between the degree of fragmentation, calculated internal 

energies and the number of ortho substitutions, but their data was limited to that 

acquired using electron capture negative chemical ionisation from a subset (n = 49) of 

TeCB, PeCB and HxCB congeners (Greaves, Harvey and MacIntyre, 1994).  Laušević et al 

compared the fragmentation responses for a limited number (n = 13) of non-, mono- 

and di-ortho substituted PCBs using a quadrupole ion trap mass spectrometer with 

collision induced dissociation (CID) under various resonant excitation conditions 

(Laušević, Splendore and March, 1996).  In both cases, the proportionally greater 

fragmentation observed for di-ortho, relative to that of non- or mono-ortho, PCBs was 

mirrored in the experimental data reported here. 

The aims of this chapter are to characterise the PCB fragmentation losses of Cl and 2Cl 

at all levels† of chlorination, and to examine the correlation, if any, between these data 

and currently assessed toxicity values.  In addition to the use of traditional EI HRMS 

analyses, this study will also examine the fragmentation results obtained from 

GC-MS/MS data acquired at various collision energies (CE) using a Q-TOF type 

instrument with AP ionisation. 

 

 
* The EPA 680 Method notes that some MoCBs and DiCBs can lose HCl, however none of these 
coelute with any other PCB. 
† Clearly there is no viable loss of 2Cl from a MoCB. 
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4.2 Materials and methods 

4.2.1 GC-HRMS (EI) 

GC-HRMS data were acquired using an AutoSpec-Ultima (Waters, Wilmslow, UK) 

magnetic sector *  instrument tuned to a resolution of ~12,000 at its nominal 8 kV 

accelerating voltage.  The HRMS instrument was coupled to a 6890 GC (Agilent, Santa 

Clara, CA, USA) fitted with a GC-PAL auto-sampler (CTC Analytics, Zwingen, Switzerland).  

Positive ion, electron ionisation (EI) was used at 34 eV electron energy.  Archived 

AutoSpec-Ultima data obtained at the same laboratory (SGS/Analytical Perspectives, 

Wilmington, NC, USA) were also used with permission. 

SIM acquisition was used to record data from 2 ions for the native (12C12) PCBs, 2 ions 

for 13C12-labelled PCBs, and a lock-mass and lock-mass check channel in each function.  

Additional m/z representing the losses of Cl and 2Cl were included as needed.  In total, 

7 functions were required to accommodate the overlapping retention time windows of 

the various PCB homologues as summarised in Table 4.1. 

 

Function # PCBs monitored Fragments monitored 

1 MoCB, DiCB - 

2 DiCB, TrCB, TeCB TrCB - 2Cl, TeCB - Cl 

3 TrCB, TeCB, PeCB PeCB - 2Cl, TeCB - Cl 

4 TeCB, PeCB, HxCB, HpCB HxCB - 2Cl, PeCB - Cl, HpCB - 2Cl, HxCB - Cl 

5 PeCB, HxCB, HpCB, OcCB HpCB - 2Cl, HxCB - Cl, OcCB - 2Cl, HpCB - Cl, OcCB - Cl 

6 HpCB, OcCB, NoCB NoCB - 2Cl, OcCB - Cl, NoCB - Cl 

7 DeCB - 

Table 4.1 Summary of the PCB homologues monitored in each acquisition function for the 
HRMS PCB fragmentation data. 

 

The GC column used was a SPB-Octyl (Supelco, Bellefonte, PA, USA) with dimensions 30 

m (length) x 0.25 mm (internal diameter) x 0.25 µm (film thickness).  Auto-injections of 

1 µl of the standards’ mixtures were made in the splitless mode with helium as the 

carrier gas at a constant flow rate of 1.2 ml/min.  Full details of the relevant GC and MS 

parameters are provided in Appendix D.1. 

 
* The AutoSpec HRMS instruments have an EBE geometry, i.e. first electrostatic analyser (ESA, 
E), magnet (B) and 2nd ESA. 
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Native and 13C-labelled PCB reference standards were manufactured by Cambridge 

Isotope Laboratories (Tewksbury, MA, USA), Wellington Laboratories (Guelph, ON, 

Canada) and AccuStandard (New Haven, CT, USA).   Full details of the various PCB mixes 

are provided in Appendix C.3. 

 

4.2.2 GC-MS/MS (APCI) 

GC-MS/MS data were acquired using a Synapt G2-S hybrid Q-IMS-TOF (Waters, 

Wilmslow, UK).  Atmospheric pressure chemical ionisation (APCI) was used in the 

positive ion mode at a mass resolution of ~18,000 (FWHM).  The instrument was coupled 

to a 7890A GC with a 7693A auto-sampler (Agilent, Santa Clara, CA, USA). 

Figure 4.5 shows the instrument’s schematic with the collision cell (trap) located 

between the quadrupole and the ion mobility cell.  Fragmentation occurs via CID with 

argon used as the collision gas in these experiments.  The gas pressure and collision 

energies (CE) used are described in the results and discussion section.  For the 

experiments discussed in this chapter, there was no mass selection in the quadrupole 

mass analyser and the ion mobility cell was inactive. 

 

 

Figure 4.5 Schematic outline of the Waters’ Synapt G2-S MS/MS (Q-IMS-TOF) analyser ion 
optics. 
(Image courtesy of Waters, Wilmslow, UK) 

 

 
 

Ion beam 
from AP 
source 
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The GC columns used were the SPB-1 and SPB-Octyl (Supelco, Bellefonte, PA, USA), both 

with dimensions 30 m (length) x 0.25 mm (internal diameter) x 0.25 µm (film thickness).  

For the SPB-1 column, splitless mode auto-injections were made using a volume of 1 µl 

with helium as the carrier gas at a flow rate of 1.4 ml/min; for the SPB-Octyl column, 

these figures were 0.7 µl and 1.7 ml/min respectively.  Full details of the relevant GC and 

MS parameters are provided in Appendix D.2. 

Native and 13C-labelled PCB reference standards were manufactured by Ultra Scientific 

(North Kingstown, RI, USA) and Wellington Laboratories (Guelph, ON, Canada).  Full 

details of the various PCB mixes used are provided in Appendix C.3. 

 

4.2.3 GC-TOF (EI) 

Accurate mass scan data were acquired using a GCT-Premier (Waters, Wilmslow, UK) 

TOF mass spectrometer coupled to a 6890 GC (Agilent, Santa Clara, CA, USA) fitted with 

a GC-PAL auto-sampler (CTC Analytics, Zwingen, Switzerland).  The GCT was operated in 

positive ion, electron ionisation (EI) mode with an electron energy of 34 eV.   Data were 

acquired over a mass range of m/z 50–650 at a resolution of ~7,500 (FWHM).  The 

archived GC-TOF data were obtained from SGS/Analytical Perspectives (Wilmington, NC, 

USA) and used with permission. 

The GC column and conditions used were as described for the GC-HRMS data above and 

full details of the relevant GC and MS parameters are given in Appendix D.4.  The native 

PCB reference standards used were manufactured by AccuStandard (New Haven, CT, 

USA) with full details given in Appendix C.3. 

 

4.2.4 MS data acquisition and processing 

Data from all instruments were acquired using MassLynx V4.1 and processed using 

MassLynx V4.2 software (Waters, Wilmslow, UK); additional MS data processing was 

done using UltraTrace-Pro V4.9 and V5.0 (SGS, Wilmington, NC, USA).  Further 

calculations used Excel 365 (Microsoft, Redmond, WA, USA) and MATLAB R2018b 

(MathWorks, Natick, MA, USA) was used for the principal component analysis (PCA). 



103 

4.2.5 Molecular modelling 

To obtain 3-dimensional structural information of the PCBs – required to obtain 

comparable values of published dihedral angles for the work in this chapter, and for 

subsequent use with the ion-mobility work in Chapter 5 – molecular modelling was 

performed using the “Orca” program (Version 4.0.1.2) (Neese, 2012) to determine the 

structural configurations of the most stable conformers. 

2-dimensional structures of each PCB were created using the molecular editing 

software, “Avogadro” (Version 1.2.0) (Hanwell et al., 2012); these were initially 

optimised using its integrated universal force field methods (Rappe et al., 1992) prior to 

export in Orca format.  These files include the functional and basis set parameters, and 

the x, y, z coordinates (in ångströms) for all atoms; Figure 4.6 shows an example Orca 

input file for the modelling of PCB-126. 

There is much discussion in the literature as to the most suitable modelling mechanisms 

for biphenyl and its halogenated compounds (Grein, 2002; Johansson and Olsen, 2008; 

Popelier et al., 2018), and these have led to the use of the ‘6-31G*’ basis set in the above 

calculations together with the restricted Hartree-Fock (RHF) functional method.  Other 

options included the use of the latest atomic masses of the most abundant isotopes and 

parallel processing with 6 processor cores as specified by the ‘Mass2016’ and ‘PAL6’ 

parameters respectively. 
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Figure 4.6 Example Orca input file for PCB-126 (3,3’,4,4’,5-PeCB, C12H5Cl5) 

 

Since Orca is normally invoked from the command line, a simple front-end program was 

created, “OrcaControl”, to manage its operation and allow entries to be interactively 

added to the process queue – a particular benefit given the lengthy processing time* of 

some calculations that would often require batched operations to be run overnight.  

Figure 4.7 shows a screenshot of the program in operation. 

 

 
* E.g. PCB-54 optimisation, including frequency calculations, required a run time of 
~50 minutes using 6 (of 8 available) cores of an Intel® i7-2600 processor running at 3.4 GHz. 

# Auto modified by JH's Orca Input Editor 15-Dec-2019 09:23:03 

! RHF OPT 6-31G* TightSCF SmallPrint 

!Mass2016 

!PAL6 

%scf 

 MaxIter 250 

end 

 

* xyz 0 1 

   C        1.72760        2.24070        0.81764 

   C        3.09436        2.48742        0.63903 

   C        4.01714        1.43417        0.41030 

   C        3.48781        0.11928        0.37137 

   C        2.12389       -0.12259        0.55002 

   C        1.24040        0.93027        0.77295 

   C        5.50024        1.70125        0.21642 

   C        6.03063        3.01459        0.25749 

   C        7.78614        0.89201       -0.19311 

   C        6.42002        0.64840       -0.01429 

   C        7.39623        3.26146        0.07907 

   C        8.28141        2.20068       -0.14728 

  Cl        7.96977        4.92457        0.14558 

   H        5.41422        3.87927        0.42666 

   H        6.11482       -0.38158       -0.06292 

  Cl       -0.46883        0.57878        0.99251 

  Cl       10.00332        2.50989       -0.37246 

   H        1.75371       -1.13973        0.51420 

  Cl        8.85833       -0.47558       -0.47484 

   H        3.39655        3.51833        0.68596 

  Cl        0.64603        3.60046        1.09676 

   H        4.09720       -0.75105        0.20496 

* 
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Figure 4.7 Screenshot showing the OrcaControl program in operation.  

 

The results created by Orca are also text files and can be visualised using the program 

“ChemCraft” (Version 1.8) as shown by the example for PCB-126 (3,3’,4,4’,5-PeCB) in 

Figure 4.8.  This program also provided the tools for determining the dihedral angle (and 

other measurements). 

 

 

Figure 4.8 Depiction of the 3-D structure of PCB-126 (3,3’,4,4’,5-PeCB). 
Image generated using ChemCraft from the Orca computed structure conformation based on 
the parameters given in Figure 4.6. 
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4.3 Results and discussion 

4.3.1 The scope of the fragmentation problem in PCB analyses 

To illustrate the scope of the problem, a solution containing all 209 PCB congeners at 

nominally equal concentrations (50 pg/µl) was analysed using GC-HRMS with the 

conditions specified by the EPA-1668C method (including the use of the SPB-Octyl GC 

column).  The chromatograms showing the molecular ion M+0 peak intensities due to 

the MoCB (Cl1) to PeCB (Cl5) congeners are shown in Figure 4.9, and the M+2 intensities 

for HxCB (Cl6) to NoCB (Cl9) and M+4 for DeCB (Cl10) congeners are shown in Figure 4.10.  

The peak annotations in the TeCB to HpCB traces refer to the WHO toxic PCB congeners 

(as indicated by the red shading). 

For the DiCB (Cl2) to OcCB (Cl8) congeners, the traces shown are composites of data 

acquired from either 2 or 3 functions as required to address the HRMS mass range 

limitations (as previously described in section 1.9), hence the repeated m/z labels shown 

in those chromatograms’ y-axes. 

The overlapping elution time windows of certain PCB homologues are readily apparent 

[note: the same RT range (x-axes) has been used for all traces] with, for example, the 

PeCB group being potentially affected by HxCB fragmentation (loss of Cl) from RT ~30.4 

onwards and HpCB fragmentation (loss of 2Cl) from RT ~35.2 onwards.  MoCB, OcCB, 

NoCB and DeCB are unaffected as there are no coeluting, higher-chlorinated, congeners 

present – implicitly so in the case of DeCB since it is at the highest level of chlorination 

possible for biphenyls. 

 

 



 

  

TeCBs 81 & 77 

PeCBs 123, 118, 114, 105 & 126 

1
0

7
 

Figure 4.9 Chromatograms showing the homologue windows for mono- to penta-chlorinated biphenyls illustrating the overlap in retention 
times under the analytical conditions of the EPA-1668C method. 
The peak annotations refer to the WHO toxic congeners (highlighted in red). 
[The pink markings in certain x-axes show ranges over which the background noise was determined – not used in these data.] 



 

 

Figure 4.10 Chromatograms showing the homologue windows for hexa- to deca-chlorinated biphenyls illustrating the overlap in retention times 
under the analytical conditions of the EPA-1668C method. 
The peak annotations refer to the WHO toxic congeners (highlighted in red). 
[The pink markings in certain x-axes show ranges over which the background noise was determined – not used in these data.] 

1
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HxCBs 167, 156/157 & 169 
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4.3.2 Artefact peak formation in PCB analyses 

To demonstrate the formation of artefact peaks due to fragmentation in GC-HRMS 

analysis, data from a sample containing a limited number of PCB congeners was 

examined.  Figure 4.11 shows the resulting chromatograms: the upper trace shows the 

peaks due to the M+0 molecular ion of PeCB (C12H5
35Cl5, m/z 323.8834), those due to 

the loss of Cl from PeCB (C12H5
35Cl4, m/z 288.9145, centre trace) and those due to the 

M+0 molecular ion of TeCB (C12H6
35Cl4, m/z 289.9224, lower trace). 

 

 

Figure 4.11 HRMS (EI) chromatograms showing PeCB congeners (upper trace), their fragment 
ions due to a loss of Cl (centre trace) and TeCB congeners (lower trace). 
Of the TeCBs, only PCB-63 and PCB-77 were present in the mix – the other peaks, including 
those annotated as [PCB-]61/70/74/76 and PCB-79 are artefacts of PeCB fragmentation. 
A x10 magnification has been applied to the lower trace over the RT range 26.8–30.6. 

 

The PeCBs present in the sample (upper trace) include PCB-91, 97, 85, 123 and 114 – the 

latter two being WHO toxic PCBs.  The 5 fragment ion peaks due to the loss of Cl from 

these PeCBs are shown in the centre trace and are clearly aligned with their precursors.  

In addition to the PeCBs, the sample included two TeCBs: PCB-63 and 77 (lower trace), 
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as identified by the peaks at RT 26.64 and 30.92.  However, the peaks annotated as 

61/70/74/76* and PCB-79 were not actually present in the sample mix but are artefacts 

due to the fragment ions caused by the loss of Cl† from PCB-91 (2,2’,3,4’,6-PeCB) and 

PCB-97 (2,2’,3,4’,5’-PeCB) respectively: they are nevertheless indistinguishable from the 

true TeCB peaks since both their isotope ratios and RTs match.  The peaks at RT 30.23, 

32.62 and 33.35 are similarly also artefact peaks (with valid isotope ratios), but none of 

these RTs match that of an actual TeCB. 

An EI spectrum obtained from TOF-MS data (acquired using the same, 34 eV, ionisation 

energy as the HRMS data) of PCB-97 is shown in Figure 4.12.  This shows the molecular 

ion cluster region and those for the losses of Cl and 2Cl, and clearly illustrates the minor 

isotope peaks in the -Cl cluster that would cause the artefact identified as PCB-79.  It is 

important to note that PCB-79’s structure – 3,3’,4,5’-TeCB – is not one that would be 

actually formed due to this fragmentation process and this assignment is purely due to 

the arbitrary alignment of the two PCBs’ retention times. 

 

 

Figure 4.12 Mass spectrum of PCB-97 (2,2’,3,4’,5’-PeCB) obtained in positive EI at 34 eV 
showing the molecular ion region and those principally from the losses of Cl and 2Cl. 
The minor peaks at m/z 289.9 and 291.9 (expanded in the inset) being the contributors to the 
false artefact identified as PCB-79. 

 

 
* There are 4 possible coeluting isomers at this retention time; per the EPA-1668C method they 
are therefore reported as the quadruplet “61/70/74/76”. 
† More specifically from mass interferences of the M+1 and M+3 isotope ions, as discussed in 
the introduction (section 4.1).   
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To examine this effect with AP ionisation, the Synapt G2-S instrument was used with a 

CE of 15 eV and argon as the collision gas at a pressure of ~2.4 x 10-2 mbar.  As with the 

EI data, a subset of PeCBs were present in the sample mix, here including PCB-102, 109, 

115 and 123 as shown by the acquired data chromatograms in Figure 4.13.  The upper 

trace shows the peaks due to the M+0 molecular ion of PeCB (C12H5
35Cl5, m/z 323.8834), 

the loss of Cl from PeCB (C12H5
35Cl4, m/z 288.9145, centre trace) and for the M+0 

molecular ion of TeCB (C12H6
35Cl4, m/z 289.9224, lower trace). 

 

 

Figure 4.13 APCI-MS chromatograms showing 4 PeCB congeners (upper trace), their fragment 
ions due to a loss of Cl (centre trace) and TeCB congeners (lower trace). 
Of the identified TeCBs, only the first 5: PCB-69, 47*, 42, 64 and 70 were present in the mix; 
those annotated as PCB-79 and PCB-81 are fragment artefacts due to loss of Cl from PCB-109 
and PCB-115 respectively. 
A x10 magnification has been applied to the lower trace over the RT range 29.0–32.0 
* PCB-47 was not annotated by the software due to space limitations: RT 24.22, area 1.84e6 

 

The 5 TeCB congeners shown in the RT 23–28 region, PCB-69, 47, 42, 64 and 70, were 

present in the sample mix, however this is not the case for PCB-79 and PCB-81; these 

peaks, similarly to those in the previous EI example, are artefacts, here due to the loss 

of Cl from PCB-109 and PCB-115 respectively.  It is important to note that the latter 
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artefact, incorrectly assigned as PCB-81, would in the case of a real-world sample be of 

special concern due to it being one of the 12 WHO toxic PCBs. 

This potential problem extends to many other PCBs: Table 4.2 lists the precursors and 

corresponding close eluting product PCBs due to the loss of a single Cl, and their 

respective RTs and RT differences. 

 

Precursor Congener RT Product Target Congener (-Cl) RT Δ RT (s) 

PCB-27 TrCB 19.89 PCB-13/12 DiCB 19.88 0.76 

PCB-16 TrCB 20.12 PCB-15 DiCB 20.16 -2.49 

PCB-50/53 TeCB 22.45 PCB-25 TrCB 22.40 2.96 

PCB-51 TeCB 23.11 PCB-21/33 TrCB 23.14 -1.99 

PCB-96 PeCB 25.77 PCB-59/62/75 TeCB 25.79 -0.70 

PCB-100/93 PeCB 28.27 PCB-67 TeCB 28.30 -2.00 

PCB-91 PeCB 28.82 PCB-61/70/74/76 TeCB 28.82 -0.23 

PCB-152 HxCB 30.59 PCB-113/90/101 PeCB 30.58 0.61 

PCB-136 HxCB 31.04 PCB-83 PeCB 31.02 1.22 

PCB-109/119/86/97/125/87 PeCB 31.56 PCB-79 TeCB 31.54 1.24 

PCB-115 PeCB 32.39 PCB-81 TeCB 32.41 -1.03 

PCB-148 HxCB 32.60 PCB-82 PeCB 32.59 0.10 

PCB-111 PeCB 32.91 PCB-77 TeCB 32.89 1.09 

PCB-154 HxCB 33.33 PCB-120 PeCB 33.31 1.07 

PCB-131 HxCB 34.59 PCB-123 PeCB 34.60 -0.47 

PCB-142 HxCB 34.73 PCB-106 PeCB 34.71 1.54 

PCB-133 HxCB 35.38 PCB-114 PeCB 35.34 2.34 

PCB-146 HxCB 35.94 PCB-105 PeCB 35.89 3.03 

PCB-184 HpCB 36.08 PCB-161 HxCB 36.06 1.06 

PCB-137 HxCB 37.18 PCB-127 PeCB 37.13 2.81 

PCB-178 HpCB 37.91 PCB-158 HxCB 37.87 1.95 

PCB-174 HpCB 39.40 PCB-159 HxCB 39.43 -1.67 

PCB-181 HpCB 40.13 PCB-167 HxCB 40.08 2.86 

PCB-190 HpCB 43.76 PCB-169 HxCB 43.80 -2.38 

Table 4.2 Precursor PCBs that present potential interferences due to the loss of Cl and their 
corresponding target PCBs. 
The congeners are sorted in RT order with the WHO toxic PCBs highlighted in bold type.  The 
list is limited to the 25 closest eluting PCBs and their fragmentation products with a maximum 
RT difference of ~3 seconds using the GC conditions required for the EPA-1668C method. 
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Similarly, Table 4.3 lists the precursors and corresponding close eluting product PCBs 

due to the loss of 2Cl, and their respective RTs and RT differences.  Although it shows 

far fewer instances than for the loss of Cl, it includes 3 WHO toxic PCBs.  Of these, 

PCB-126 and 169, with their TEFs of 0.1 and 0.03 respectively, are the 2 most toxic 

congeners and hence of particular importance in these analyses. 

 

Precursor Congener RT Product Target Congener (-2Cl) RT Δ RT (s) 

PCB-96 PeCB 25.77 PCB-38 TrCB 25.77 0.00 

PCB-188 HpCB 35.33 PCB-114 PeCB 35.34 -0.60 

PCB-175 HpCB 38.45 PCB-126 PeCB 38.51 -3.60 

PCB-198/199 HpCB 43.87 PCB-169 HxCB 43.80 4.20 

Table 4.3 Precursor PCBs that present potential interferences due to the loss of 2Cl and 
their corresponding target PCBs. 
The congeners are sorted in RT order with the WHO toxic PCBs highlighted in bold type.  The 
GC conditions used were as required for the EPA-1668C method.   

 

Nevertheless, there is a fundamental difference in the isotope ratio measurement from 

any resultant peaks of these fragment interferences (compared to those from the loss 

of a single chlorine) due to the fragment ion cluster m/z being ~2 Da lower than those 

of the molecular ion cluster being affected.  E.g. in the case of a HpCB affecting a PeCB, 

it is the fragment M+4 and M+6 ions that affect the M+2 and M+4 ions being monitored.  

Since the theoretical isotopic abundance ratios of these two peak pairs are ~3.10 and 

~1.55 respectively, any peaks formed through this mechanism would not, in isolation, 

be identified as a PeCB; however, if present in addition to the true compound, their 

contribution could lead to an out-of-ratio assessment and hence a false negative result 

being reported. 
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4.3.3 PCB fragmentation in GC-HRMS (EI) analyses 

To illustrate the variability in the degree of fragmentation exhibited by different isomers, 

GC-HRMS data was acquired from a mix containing all HxCB isomers at equal (50 pg/µl) 

concentrations.  The experimental conditions for the GC-HRMS analyses using EI at 34 

eV and the GC program used in conjunction with the SPB-Octyl GC column were as 

described earlier in section 4.2.1 with full details in Appendix D.1. 

The chromatographic data are shown in Figure 4.14 where the upper trace shows the 

detected peaks from the M+2 ion of the HxCB molecular ion cluster, with the toxic PCBs 

highlighted in red, and the lower trace shows the corresponding fragment peaks due to 

the loss of Cl. 

 

 

Figure 4.14 Chromatograms from data acquired (HRMS/EI) from a mix of all 42 HxCB 
congeners.  The upper trace shows peaks due to the M+2 molecular ion, with the WHO toxic 
PCBs highlighted in red, and the lower trace shows the fragment peaks due to the loss of Cl. 
Structures are shown for selected HxCBs to indicate the transition from the tetra-ortho 
substituted congeners in the lower RT range through to the mono- and non-ortho substituted 
congeners at higher RTs. 
Note: there are 34 discrete peaks shown as these include 6 coeluting doublets and 1 triplet.  
The additional peaks in the HxCB - Cl trace, e.g. at RT ~42, are due to the loss of 2Cl from HpCB. 

Decreasing Ortho Substitution 

HxCB M+2 
m/z 359.84 

HxCB - Cl 
m/z 322.88 
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There is clearly considerable variability in the degree of fragmentation of the various 

isomers, and there would appear to be some coupling between this and the number of 

Cl atoms in ortho positions: the group of tetra-ortho substituted congeners at the 

beginning of the retention time (RT) window, and the mono-ortho and non-ortho 

congeners at higher RTs, show markedly less fragmentation than the di- and tri-ortho 

peaks that fall in the central RT band.  This observation is however confounded by the 

existence of the various coeluting congeners. 

To resolve this, data from 9 separate PCB mixes were obtained where each mix 

contained a subset of the 209 PCBs such that no coeluting peaks were present, either at 

the same chlorination level or that would result in interferences due to fragmentation.  

A table listing the PCB contents of each mix is shown in Appendix C.3.  The same 

experimental conditions as above were used, i.e. to meet the requirements of the 

EPA-1668C method, with full details provided in Appendix D.1. 

The results for the relative fragmentation responses due to the loss of Cl are charted in 

Figure 4.15 for TeCB, Figure 4.16 for PeCB, Figure 4.17 for HxCB and Figure 4.18 for HpCB 

– these being the 4 homolog groups that, between them, contain the 12 WHO toxic 

PCBs.  For the remaining homologues, Appendix B.3 shows the data due to the loss of Cl 

from MoCB, DiCB and TrCB in Figure B.2, and from OcCB, NoCB and DeCB in Figure B.3. 

In each case, the most intense fragment responses are due to PCBs that are at least 

di-ortho substituted with Cl atoms in positions 2 and 2’ (i.e. on each ring), with lower 

responses (i.e. less fragmentation) for mono-ortho substituted congeners and the 

lowest responses for the mono- and non-ortho substituted toxic PCBs*.  This would 

appear to correlate with the steric hindrance introduced by the Cl ortho substitutions in 

opposing rings that constrain rotation about the biphenyl’s central C-C bond.  It is 

important to note that such hindrance would also inhibit a congener’s ability to adopt a 

sufficiently planar conformation required for AhR binding and its ensuing toxicity effects 

(McFarland and Clarke, 1989). 

 

 
* Of the 209 PCBs: there are 20 non-ortho, 48 mono-ortho, 36 di-ortho (2,6 – i.e. same ring), 36 
di-ortho (2,2’ – i.e. opposite rings), 48 tri-ortho and 21 tetra-ortho substituted biphenyls; 
therefore 105 PCBs contain at least the 2,2’ ortho substitutions. 
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Relative Fragmentation Responses due to the Loss of Cl
from Tetrachlorobiphenyls (C12H6Cl4): GC-HRMS EI+ @ 34 eV
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Figure 4.15 Chart showing the relative fragmentation responses due to the loss of Cl from TeCB (C12H6Cl4) congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.16 Chart showing the relative fragmentation responses due to the loss of Cl from PeCB (C12H5Cl5) congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.17 Chart showing the relative fragmentation responses due to the loss of Cl from HxCB (C12H4Cl6) congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.18 Chart showing the relative fragmentation responses due to the loss of Cl from HpCB (C12H3Cl7) congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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4.3.4 Variation of HxCB fragmentation with collision energy in GC-MS/MS 

(APCI) analyses 

For the initial study to investigate the variation in PCB fragmentation with collision 

energy (CE) a solution of 5 13C-labelled HxCBs (listed in Table 4.4) was analysed using the 

Synapt G2-S instrument at CE from 0 to 30 eV with argon as the collision gas at a pressure 

of 7.7 x 10-3 mbar.  Other experimental conditions were as described in section 4.2.2 

with the SPB-1 GC column installed. 

 

PCB Structure RT 

13C-PCB-138 2,2’,3,4,4’,5’-HxCB 30.73 
13C-PCB-167 2,3’,4,4’,5,5’-HxCB 32.41 
13C-PCB-156 2,3,3’,4,4’,5-HxCB 33.47 
13C-PCB-157 2,3,3’,4,4’,5’-HxCB 33.70 
13C-PCB-169 3,3’,4,4’,5,5’-HxCB 35.60 

Table 4.4 The 13C-labelled HxCBs (13C12H4Cl6) used for the initial fragmentation experiments 
with their structures and GC retention times (RT). 
The SPB-1 GC column, unlike the SPB-Octyl column used to meet the EPA-1668C method’s 
chromatographic requirements, does completely resolve PCB-156 and 157. 

 

Figure 4.19, Figure 4.20 and Figure 4.21 show a series of extracted ion chromatograms 

due to the 13C-labelled HxCB M+0 molecular ion (13C12H4
35Cl6, m/z 369.8846), the loss of 

Cl (13C12H4
35Cl5, m/z 334.9157) and of 2Cl (13C12H4

35Cl4, m/z 299.9469) at CE of 0, 15 and 

30 eV respectively. 

The data obtained with the CE at 0 eV (Figure 4.19) show similar responses for each of 

the M+0 peaks (RSD < 7%), and only weak responses for the M-Cl (avg. ~1.3%)  and M-2Cl 

(avg. ~2.8%) product ion peaks. 

At a CE of 15 eV (Figure 4.20) the M+0 peaks show a greater variation (RSD ~11%) in 

their areas; there are also notable increases in the responses of both the M-Cl and M-2Cl 

product ion peaks, particularly for PCB-138, those being ~18% and ~13% compared to 

~7.2% and ~7.4% for the averages of the 4 toxic isomers respectively. 
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Figure 4.19 Chromatograms from data acquired (Synapt, APCI) from a mix of 5 13C-labelled 
HxCBs showing peaks due to the M+0 ions, and from the losses of Cl and 2Cl at 0 eV CE. 

 

 

Figure 4.20 Chromatograms from data acquired (Synapt, APCI) from a mix of 5 13C-labelled 
HxCBs showing peaks due to the M+0 ions, and from the losses of Cl and 2Cl at 15 eV CE. 
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At a CE of 30 eV (Figure 4.21), the M+0 response of PCB-138 has been significantly 

(> 90%) reduced and there is some (~25%) reduction in the response of the 3 mono-

ortho HxCBs relative to PCB-169.  In this context, it should be noted that the current, 

WHO-2005, TEF of the non-ortho PCB-169 is 1000x that of any of the mono-ortho HxCBs. 

 

 

Figure 4.21 Chromatograms from data acquired (Synapt, APCI) from a mix of 5 13C-labelled 
HxCBs showing peaks due to the M+0 ions, and from the losses of Cl and 2Cl at 30 eV CE. 

 

Additional data were then acquired at CE of 10, 20 and 25 eV (chromatograms not 

shown) to provide intermediate values.  For the loss of Cl data, in addition to the peaks’ 

responses at m/z 334.9157 (13C12H3
35Cl5) – as shown in the above chromatograms – 

contributions due to the loss of HCl at m/z 333.9079 (13C12H3
35Cl5) and 335.9050 

(13C12H3
35Cl437Cl) were also included*. 

 

 
* The latter, given the instrument’s mass resolution and the data processing mass window, 
would also include any contributions due to Cl/H exchange giving rise to PeCB ions at m/z 
335.9235 (13C12H5

35Cl5).  This will be discussed in more detail later in this chapter. 
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The intensities of the precursor ions relative to those of the loss of Cl (and HCl) fragment 

ions against CE were calculated and plotted for each of the 5 HxCBs as shown in Figure 

4.22. 

 

 

Figure 4.22 Chart showing the intensities of 5 HxCB precursor (molecular) ions relative to the 
summed fragment ion intensities due to the losses of Cl and HCl vs. CE of 10 to 30 eV. 
Data were normalised to values obtained at CE = 0 eV and line smoothing applied. 

 

These data reflect the initial observations and show a similar trend for each of the mono-

ortho substituted PCB-167, 156 and 157, and the non-ortho substituted PCB-169 

congeners, with only minor variances across the CE range as seen by the cross-overs in 

their response curves.  In contrast, the di-ortho substituted PCB-138 (dashed line) 

exhibits a distinctly different response curve that, for example, shows a relative 

response of ~2% at 20 eV CE compared to the ~12% averaged response of the other 4 

PCBs. 

The acquired data were similarly processed for the loss of 2Cl as shown in Figure 4.23.  

In addition, the comparative losses of Cl and 2Cl were plotted in Figure 4.24 and show a 

rise in the relative losses of Cl to those of 2Cl at a CE of 15 eV. 
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Figure 4.23 Chart showing the intensities of 5 HxCB precursor (molecular) ions relative to the 
fragment ion intensities due to the loss of 2Cl vs. CE of 10 to 30 eV. 
Data were normalised to values obtained at CE = 0 eV and line smoothing applied.  The inset 
bar chart shows detail for the 25 and 30 eV CE data. 

 

 

Figure 4.24 Chart showing the fragment ion intensities due to loss of Cl relative to those due 
loss of 2Cl for 5 HxCBs vs. CE of 0 to 30 eV. 
Note: line smoothing applied. 
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Of these 5 HxCB isomers, only PCB-138 is considered non-toxic per the current WHO 

assessment: a key attribute (as previously discussed in section 4.3.3) being that it has di-

ortho (2, 2’) chlorine substitutions, whereas the remainder are either mono-ortho (PCB-

167, 156 and 157) or non-ortho (PCB-169) substituted. 

In considering the gas-phase structural differences between these 5 PCBs, a key 

parameter is the dihedral angle between the two ring planes (i.e. the twist, or torsion, 

angle about the central C-C bond) that is predominately governed by the presence of 

ortho substituted Cl atoms.  The dihedral angles obtained from published data 

(Dorofeeva et al., 2005), as shown in Table 4.5, are suggestive of a possible relationship 

with the degree of fragmentation.  This, as also shown in Table 4.5, is similarly seen with 

the internal barrier to rotation energy, a parameter closely related to the dihedral angle 

with 3 distinct energy levels of ~65, ~32 and ~10 kJ/mol corresponding to the di-, mono 

and non-ortho substitution respectively of these PCBs (Andersson, Haglund and 

Tysklind, 1997). 

It was however noted that the angle given for PCB-169 – and for several other PCBs – 

was lower than the accepted ~45° value (Popelier et al., 2018) for the (non-chlorinated) 

biphenyl molecule; this led to an alternate set of values being derived from the ab initio 

molecular modelling methods (as described in section 4.2.5).  These have been included 

in Table 4.5, and although showing higher values than those published, exhibit a similar 

trend.  Noting these differences, a further set of published values (Bureš, Pekárek and 

Ocelka, 2007) was then obtained for comparison purposes; these values also differ but 

exhibit the same basic pattern. 

 

Congener Structure 
Cl ortho 

substitution 
Dihedral 

angle1 
Dihedral 

angle2 
Dihedral 

angle3 
Erot 

kJ/mol 

PCB-138 2,2’,3,4,4’,5’-HxCB Di-ortho 83.1° 71° 87.7° 65.2 

PCB-167 2,3’,4,4’,5,5’-HxCB Mono-ortho 55.2° 51° 68.1° 29.6 

PCB-156 2,3,3’,4,4’,5-HxCB Mono-ortho 59.2° 53° 68.1° 33.5 

PCB-157 2,3,3’,4,4’,5’-HxCB Mono-ortho 59.0° 54° 69.7° 33.7 

PCB-169 3,3’,4,4’,5,5’-HxCB Non-ortho 37.9° 47° 45.9° 9.61 

Table 4.5 The dihedral angles of PCB-138, 167, 156, 157 and 169, and their internal barrier 
of rotation energies (Erot). 
Dihedral angles obtained from Dorofeeva et al (1), Bureš et al (2) and from values calculated 
herein (3). 
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4.3.5 PCB fragmentation in GC-MS/MS (APCI) analyses 

To replicate the previous fragmentation (EI) study using APCI, the Synapt G2-S GC-

MS/MS instrument was used with the experimental conditions as described in section 

4.2.2 (with full details in Appendix D.2) and the SPB-Octyl GC column installed.  Argon 

was used as the collision gas at a pressure of 7.8 x 10-3 mbar, but no voltage was applied 

to the collision cell. 

For these data, a set of 5 native (unlabelled) PCB mixes was available that contained all 

209 congeners between them, distributed such that no coeluting isomers (i.e. at the 

same level of chlorination) would be present in any single mix when using the EPA-1668C 

GC conditions.  Full details of the PCBs found in each mix are given in Appendix C.3. 

The results for the relative fragmentation responses due to the loss of Cl are charted in 

Figure 4.25 for TeCB, Figure 4.26 for PeCB, Figure 4.27 for HxCB and Figure 4.28 for 

HpCB.  At each level of chlorination, the greatest degree of fragmentation occurs for 

congeners with di- and tri-ortho Cl substitution and the least for those with non-, mono- 

and tetra-ortho substitution.  (For the remaining homologues, Appendix B.3 shows the 

data due to the loss of Cl from MoCB, DiCB and TrCB in Figure B.4, and from OcCB, NoCB 

and DeCB in Figure B.5.) 

These fragmentation profiles are broadly similar to the corresponding EI data shown 

previously (Figure 4.15 to Figure 4.18) – with r2 of 0.88, 0.91, 0.93 and 0.93 for the Cl4 to 

Cl7 homologues respectively – though the degree of fragmentation of the tetra-ortho 

substituted congeners is significantly greater in the APCI data, e.g. the average relative 

response of the loss of Cl fragments from the 2,2’,*,*,*,6,6’-HpCBs is ~15% for EI and 

~4.6% for the APCI data. 

 

 



 

  

1
2

7
 

4
4

.7
%

3
0

.2
%

5
2

.8
% 4

5
.6

%

6
4

.9
%

9
2

.5
%

1
0

.3
%

1
7

.5
%

2
2

.6
%

4
8

.0
%

3
2

.6
%

2
9

.1
%

3
3

.2
%

9
.7

%

2
.4

%

1
.5

%

4
.0

%

2
.0

%

5
.9

%

3
.4

%

2
.3

%

1
.1

%

0
.5

%

3
.6

%

1
.5

%

2
.4

%

8
.4

% 2
.5

%

1
.3

%

1
.4

%

1
.8

%

2
.3

%

2
.0

%

1
.4

%

6
.9

% 3
.7

%

1
.1

3
%

1
.0

7
%

6
.3

5
%

1
.9

2
%

1
.0

5
%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
0

-2
2

'3
3

'

4
1

-2
2

'3
4

4
2

-2
2

'3
4

'

4
3

-2
2

'3
5

4
4

-2
2

'3
5

'

4
5

-2
2

'3
6

4
6

-2
2

'3
6

'

4
7

-2
2

'4
4

'

4
8

-2
2

'4
5

4
9

-2
2

'4
5

'

5
0

-2
2

'4
6

5
1

-2
2

'4
6

'

5
2

-2
2

'5
5

'

5
3

-2
2

'5
6

'

5
4

-2
2

'6
6

'

5
5

-2
3

3
'4

5
6

-2
3

3
'4

'

5
7

-2
3

3
'5

5
8

-2
3

3
'5

'

5
9

-2
3

3
'6

6
0

-2
3

4
4

'

6
1

-2
3

4
5

6
2

-2
3

4
6

6
3

-2
3

4
'5

6
4

-2
3

4
'6

6
5

-2
3

5
6

6
6

-2
3

'4
4

'

6
7

-2
3

'4
5

6
8

-2
3

'4
5

'

6
9

-2
3

'4
6

7
0

-2
3

'4
'5

7
1

-2
3

'4
'6

7
2

-2
3

'5
5

'

7
3

-2
3

'5
'6

7
4

-2
4

4
'5

7
5

-2
4

4
'6

7
6

-2
3

'4
'5

'

7
7

-3
3

'4
4

'

7
8

-3
3

'4
5

7
9

-3
3

'4
5

'

8
0

-3
3

'5
5

'

8
1

-3
4

4
'5

R
e

lative
 Fragm

e
n

tatio
n

 R
e

sp
o

n
se

TeCB Congener

Relative Fragmentation Responses due to the Loss of Cl
from Tetrachlorobiphenyls (C12H6Cl4): GC-MS/MS APCI+ @ CE = 0 eV

2, 2' substituted region

Loss of Cl

Loss of Cl
(WHO Toxic PCB)

Figure 4.25 Chart showing the relative fragmentation responses due to the loss of Cl from TeCB (C12H6Cl4) congeners using GC-MS/MS APCI+. 
Data acquired using a CE of 0 eV.  The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.26 Chart showing the relative fragmentation responses due to the loss of Cl from PeCB (C12H5Cl5) congeners using GC-MS/MS APCI+. 
Data acquired using a CE of 0 eV.  The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.27 Chart showing the relative fragmentation responses due to the loss of Cl from HxCB (C12H4Cl6) congeners using GC-MS/MS APCI+. 
Data acquired using a CE of 0 eV.  The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure 4.28 Chart showing the relative fragmentation responses due to the loss of Cl from HpCB (C12H3Cl7) congeners using GC-MS/MS APCI+. 
Data acquired using a CE of 0 eV.  The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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4.3.6 Variation of PCB fragmentation with collision energy in GC-MS/MS 

(APCI) analyses 

The following work expands on the earlier HxCB fragmentation vs. CE study by using the 

209 PCB congener mixes and experimental conditions of the previous section with data 

acquired at CE of 0, 10, 20 and 30 eV.  Initially, spectra corresponding to each of the 5 

HxCBs previously analysed were examined, though these are now from the native, 

rather than 13C-labelled, congeners.  The spectra from the data acquired at 20 eV CE 

(each averaged over their GC peak and background subtracted) are shown in Figure 4.29 

and were obtained from 3 separate sample analyses due to the make-up of the 

congener-specific solutions – e.g. PCB-156 and 157 could not be in the same mix as they 

would otherwise coelute on the SPB-Octyl GC column. 

 

 

Figure 4.29 Mass spectra showing the molecular ion, loss of Cl and loss of 2Cl regions for the 
HxCBs (from top): PCB-138 (2,2’,3,4,4’,5’), 167 (2,3’,4,4’,5,5’), 156 (2,3,3’,4,4’,5), 157 
(2,3,3’,4,4’,5’) and 169 (3,3’,4,4’,5,5’).  Data acquired using AP+ ionisation at a CE of 20 eV. 
Note the x5 and x30 magnified sections in all spectra except PCB-138. 
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Each of the molecular ion clusters appear, as expected, to be practically identical as are 

the loss of 2Cl regions around m/z 290.  However, the clusters corresponding to the loss 

of Cl (ca. m/z 325) show some notable differences in each spectrum – these are shown 

in detail in Figure 4.30. 

 

 

Figure 4.30 Mass spectra showing the loss of Cl region for the HxCBs (from top): PCB-138 
(2,2’,3,4,4’,5’), 167 (2,3’,4,4’,5,5’), 156 (2,3,3’,4,4’,5), 157 (2,3,3’,4,4’,5’) and 169 (3,3’,4,4’,5,5’).  
Data acquired using AP+ ionisation at a CE of 20 eV. 

 

The upper spectrum of Figure 4.30 shows the loss of Cl region from PCB-138 

(2,2’,3,4,4’,5’-HxCB) with an isotope distribution that appears similar to the theoretical 

model for C12H4Cl5 and confirmed by the comparison shown in Figure 4.31 (r2 = 0.993).  

However, the remaining spectra show other features: the minor peak at m/z 321.9 

appears to be due to the (not unexpected) loss of HCl although the series of peaks at 

m/z 323.9, 325.9, etc. show significantly higher than expected intensities but with 

isotopic ratios that still match the Cl5 distribution pattern.  This could indicate that one 
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of the chlorine atoms has been replaced by a hydrogen – as will be further examined 

using the accurate mass data. 

 

 

Figure 4.31 Comparison spectra showing the loss of Cl region from the acquired data of 
PCB-138 (2,2’,3,4,4’,5’-HxCB, upper trace) and the theoretical isotope model of C12H4Cl5 
(lower trace) giving an r2 value of 0.993.  

 

The results from the elemental composition calculations using MassLynx for ions in the 

loss of Cl region from PCB-138 are given in Table 4.6.  These data show that all product 

ions in the cluster are due to the direct loss of Cl and are even-electron ions, as expected 

for MS/MS fragmentation of the molecular ion (Eckers, Monaghan and Wolff, 2005). 

 

Measured 
m/z 

Relative 
Abun. % 

Calculated 
m/z 

Error 
mDa 

Error 
ppm 

DBE 
Electron 

state 
Formula Comments 

322.8761 55.2 322.8756 0.5 1.5 8.5 Even C12H4
35Cl5  Loss of Cl 

323.8794 6.64 323.8789 0.5 1.5 8.5 Even C11
13CH4

35Cl5  Loss of Cl (13C) 

324.8731 100 324.8726 0.5 1.5 8.5 Even C12H4
35Cl437Cl  Loss of Cl 

325.8766 11.6 325.8760 0.6 1.8 8.5 Even C11
13CH4

35Cl437Cl  Loss of Cl (13C) 

326.8702 57.5 326.8697 0.5 1.5 8.5 Even C12H4
35Cl337Cl2  Loss of Cl 

327.8741 6.63 327.873 1.1 3.4 8.5 Even C11
13CH4

35Cl337Cl2  Loss of Cl (13C) 

328.8669 14.1 328.8667 0.2 0.6 8.5 Even C12H4
35Cl237Cl3  Loss of Cl 

Table 4.6 Elemental composition calculations for ions in the loss of Cl cluster from PCB-138 
(2,2’,3,4,4’,5’-HxCB; C12H4Cl6). 
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The elemental composition results for ions from the PCB-169 (3,3’,4,4’,5,5’-HxCB) loss 

of Cl cluster are shown in Table 4.7.  The odd (integer m/z) product ions at m/z 322.9, 

324.9, etc. show comparable results to those observed for PCB-138 above, however, 

other than the minor peak due to the loss of HCl at m/z 321.9, the remaining even ions 

at m/z 323.9, 325.9, etc. (highlighted in bold type) indicate a possible mix of two 

contributions: one in each case being the expected (even electron) Cl loss and the other 

that would match that of a prototypical PeCB radical cation (odd electron). 

Since a PeCB ion has one additional H and there is no evidence of protonation of the 

molecular ion, it could not have been directly formed from fragmentation.  Although the 

source of H or H2 is unknown, this suggests either* a Cl/H exchange process or H2 adduct 

formation with the HCl loss ion – the latter having been observed in chemical ionisation 

experiments using H2 (Harrison, Onuska and Tsang, 1981).  As will be shown in Chapter 

5, the formation of a PeCB – and specifically PCB-126 (3,3’,4,4’,5-PeCB) – is further 

supported by data obtained from the ion mobility analysis of these fragments. 

 

Measured 
m/z 

Relative 
Abun. % 

Calculated 
m/z 

Error 
mDa 

Error 
ppm 

DBE 
Electron 

state 
Formula Comments 

321.8687 6.29 321.8677 1.0 3.1 9 Odd C12H3
35Cl5 Loss of HCl 

322.8751 26.6 322.8756 -0.5 -1.5 8.5 Even C12H4
35Cl5 Loss of Cl 

323.8805 70.3 323.8789 1.6 4.9 8.5 Even C11
13CH4

35Cl5 Loss of Cl (13C) 

                    323.8834 -2.9 -9.0 8 Odd C12H5
35Cl5 Cl -> H exchange 

324.8716 48.2 324.8726 -1.0 -3.1 8.5 Even C12H4
35Cl437Cl Loss of Cl 

325.8781 100 325.8760 2.1 6.4 8.5 Even C11
13CH4

35Cl4
37Cl Loss of Cl (13C) 

                    325.8804 -2.3 -7.1 8 Odd C12H5
35Cl437Cl Cl -> H exchange 

326.8726 39.4 326.8697 2.9 8.9 8.5 Even C12H4
35Cl337Cl2 Loss of Cl 

327.8769 62.6 327.8775 -0.6 -1.8 8 Odd C12H5
35Cl337Cl2 Cl -> H exchange 

                    327.8730 3.9 11.9 8.5 Even C11
13CH4

35Cl3
37Cl2 Loss of Cl (13C) 

328.8711 14.2 328.8667 4.4 13.4 8.5 Even C12H4
35Cl237Cl3 Loss of Cl 

329.8729 17.4 329.8745 -1.6 -4.9 8 Odd C12H5
35Cl237Cl3 Cl -> H exchange 

                    329.8701 2.8 8.5 8.5 Even C11
13CH4

35Cl2
37Cl3 Loss of Cl (13C) 

Table 4.7 Elemental composition calculations for ions in the loss of Cl cluster from PCB-169 
(3,3’,4,4’,5,5’-HxCB; C12H4Cl6). 
Entries in bold type indicate a possible mix of ions due to the loss of Cl and from the proposed 
Cl/H exchange; their m/z are separated by ~14 ppm and therefore cannot be resolved by the 
(available) mass spectrometer. 

 
* For the remainder of the thesis, this will be referred to as a Cl/H exchange (since that is the 
effective outcome) even though the specific mechanism remains unknown. 



135 

Comparable patterns to the above were also observed in the PeCB data as shown by the 

examples in Figure 4.32; these spectra show the molecular ion and losses of Cl and 2Cl 

regions for PCB-109 (2,3,3’,4,6), PCB-117 (2,3,4’,5,6), PCB-111 (2,3,3’,5,5’) and PCB-114 

(2,3,4,4’,5) acquired using AP+ ionisation at a CE of 20 eV.  Of this group, only PCB-114 

is regarded as a toxic congener.  As with the previous HxCB data, the molecular ion and 

loss of 2Cl regions of all spectra show the same isotope distribution patterns, but this 

was not the case for the loss of Cl region. 

PCB-109 shows a significantly (~50x) lower intensity of the molecular ion region 

compared to the other 3 congeners, and the cluster around m/z 290 shows loss of HCl, 

Cl and of Cl/H exchange.  Loss of Cl and of Cl/H exchange were similarly also observed 

for PCB-111, 117 and 114, but the loss of HCl was only otherwise significant in the 

spectrum of PCB-114. 

 

 

Figure 4.32 Mass spectra showing the molecular ion and loss of Cl regions for (from top): 
PCB-109 (2,3,3’,4,6-PeCB), PCB-117 (2,3,4’,5,6-PeCB), PCB-111 (2,3,3’,5,5’-PeCB) and PCB-114 
(2,3,4,4’,5-PeCB).  Data acquired using AP+ ionisation at a CE of 20 eV. 
Note the different magnification regions and factors used within these spectra. 
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In addition to the congener-to-congener variation, the relative proportions of the losses 

of Cl, HCl, 2Cl and of the Cl/H exchange also vary with CE as shown in Figure 4.33 for 

PCB-114. 

 

 

Figure 4.33 Mass spectra showing the molecular ion and loss of Cl regions for PCB-114 
(2,3,4,4’,5-PeCB) acquired using AP+ ionisation at CE of (from top) 0, 10, 20 and 30 eV. 
Note: different magnifications for the loss of Cl region in these spectra.  
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4.3.7 Principal component analysis (PCA) of the fragmentation profiles from 

GC-MS/MS (APCI) data at various collision energies 

The complex fragmentation trends of the above PeCB congeners at CE from 0 to 30 eV 

were calculated as normalised relative responses to create the profiles as shown in the 

graphs* of Figure 4.34 for PCB-109, Figure 4.35 for PCB-117, Figure 4.36 for PCB-111 and 

Figure 4.37 for PCB-114. 

In each graph, the 6 series of points correspond to the ratios of intensities from: 

• Mol. ion relative to the loss of Cl (green) 

• Mol. ion relative to the loss of 2Cl (blue) 

• Mol. ion relative to the loss of HCl (red) 

• Mol. ion relative to the loss of 34* (black) 

• Loss of Cl relative to the loss of 2Cl (magenta) 

• Loss of Cl relative to the loss of 34* (orange) 

* The M-34 ion could be due to the M+2 (37Cl) isotope of the HCl loss, the M+1 (13C) 

isotope of the loss of Cl, the Cl/H exchange process or any combination of these. 

 

 

Figure 4.34 Fragmentation profile for PCB-109 (2,3,3’,4,6-PeCB) based on the relative 
responses of selected mass losses vs. CE of 0 to 30 eV. 

 
* These graphs, plotted in Microsoft Excel, used its built-in line smoothing function (based on 
a Bézier cubic-spline algorithm) hence the appearance of lines outside the data’s 0 to 100% 
y-axis range. 
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Figure 4.35 Fragmentation profile for PCB-117 (2,3,4',5,6-PeCB) based on the relative 
responses of selected mass losses vs. CE of 0 to 30 eV. 

 

 

Figure 4.36 Fragmentation profile for PCB-111 (2,3,3',5,5'-PeCB) based on the relative 
responses of selected mass losses vs. CE of 0 to 30 eV. 
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Figure 4.37 Fragmentation profile for PCB-114 (2,3,4,4',5-PeCB) based on the relative 
responses of selected mass losses vs. CE of 0 to 30 eV. 

 

These profiles were also calculated for a wider range (n = 80*) of congeners as shown in 

profile charts in Appendix B.4.  To investigate the correlation between these data, 

principal component analysis (PCA) was used.  The data for each parameter (loss of Cl, 

loss of 2Cl, etc.) at each CE were normalised to their respective standard deviations and 

mean-centred prior to PCA. 

PCA calculations were made using MATLAB and plotted as shown in Figure 4.38.  The 

data for the non-ortho and mono-ortho substituted toxic PCBs are indicated by the red 

and blue star-shaped points respectively, together with their accompanying 95% 

confidence interval ellipses.  The remaining non-toxic PCBs are divided into 6 further 

groups: non-ortho, mono-ortho, di-ortho on opposing rings (2, 2’), di-ortho on the same 

ring (2, 6), tri-ortho and tetra-ortho substituted. 

The variance of the first principal component (PC1) accounts for ~25% of the total and 

~17% for the second (PC2)†; this is perhaps reflected by the lack of grouping of PCBs 

other than those with non-ortho substitutions. 

 

 
* It is important to note that, although the individual mixes were immune from isomeric 
coelutions, the problem of coeluting fragment ions persisted, thus significantly limiting the 
number of PCBs that could be comprehensively studied. 
† PC3 ~15% and PC4 ~10%; all others < 10%. 
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Principal Component Analysis (PCA) of APCI MS/MS Fragmentation Data from 80 PCBs (Cl2 to Cl10) 
 

Figure 4.38 Chart showing the principal component analysis (PCA) of APCI fragmentation data from 80 di- to deca-chlorinated biphenyls with the 
95% confidence interval ellipses for all (n = 4, solid red line) non-ortho and a subset (n = 6*, dashed blue line) mono-ortho WHO toxic PCBs. 
* Of the 8 mono-ortho toxic congeners, PCB-118 and PCB-123 were excluded due to coeluting interferences from PCB-132 and PCB-131 respectively. 
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4.4 Conclusions 

The data shown in this chapter have illustrated the inherent issues in PCB analysis due 

to fragmentation from co-eluting, higher-chlorinated congeners, particularly in the 

context of the EPA-1668C method.  These are multiple concerns: artefact peaks can be 

formed that mimic true congeners that are not actually present in a sample but that 

share their retention time and have the correct isotope ratio (i.e. false positives); such 

artefacts can also increase the measured areas and hence reported concentrations of 

affected congeners (i.e. incorrect positives); conversely, and particularly for losses of 

2Cl, they can lead to an out-of-ratio assessment of otherwise valid peaks (i.e. false 

negatives).  It should also be realised that sample matrix effects can lead to differential 

retention time shifts such that peaks that are normally immune from fragmentation 

problems can then be affected and vice-versa. 

Although any of the above could distort the congener profile and hence diminish the 

data quality in any forensic/pattern matching work, for the toxic PCBs these effects are 

clearly more significant as their measured concentrations are often at the core of 

regulatory reporting.  A simple error correction scheme, as had been proposed in 

Method 680, is insufficient to address the various fragmentation mechanisms. 

A calibration process is therefore suggested as the best option: here a series of mixes – 

similar to those used in these studies – would be analysed such that unequivocal 

responses from fragment ion formation can be determined and then used to identify, 

and in some cases correct, potential problems during sample data processing.   Although 

this would still have limitations due to uncertainty with coeluting isomers and would not 

address differential retention time shifts (though the latter would invariably require 

further sample clean-up as the chromatography would inevitably be impaired in such 

cases) it could serve as a useful aid to analysis and one that could be semi-automated. 

Given that MS/MS based analyses are likely to become more prominent in the future – 

as instrument manufacturers move away from magnetic sector HRMS – these findings 

could provide useful supplemental information to the current methods. 

These data have also shown that varying collision energy in a GC-MS/MS instrument is 

a useful means of controlling the response of certain isomers.  In the real-world analysis 

of compounds such as PCBs – particularly in environmental samples where 
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concentrations can range over several orders of magnitude – the ability to attenuate 

non-toxic isomers could be advantageous in cases where their very high levels can 

inhibit accurate measurements of their (often low-level) toxic counterparts when 

adequate chromatographic separation cannot be achieved.  The use of isotope dilution 

is also helpful here since the calculated concentration of any toxic congener should be 

invariant with collision energy as both its response, and that of its 13C-labelled standard, 

are equally affected by any fragmentation. 

In the study of mass spectra obtained from PCBs at various collision energies, it was 

observed that in addition to the expected changes of specific (e.g. loss of Cl) fragment 

ions’ intensities, there were also changes to the relative intensities of ions within the 

loss of Cl cluster (e.g. loss of Cl vs. loss of HCl).  These variances in fragmentation were 

charted and submitted to PCA: although grouping of the non-ortho toxic PCB congeners 

can be recognised, the cluster is insufficiently separated from other non-toxic congeners 

for these data to be a definitive indicator of toxicity.  The proximity of certain PCBs with 

suggested AhR related activity, such as PCB-11 (3,3’-DiCB) (Roy et al., 2019) or PCB-37 

(3,3’,4-TrCB) *  to the toxic group could therefore simply be due to their non-ortho 

structures rather than any implied toxicity. 

Given the abrupt changes seen in the relative intensities of certain ions in the (nominal) 

loss of Cl cluster of some PCBs at certain collision energies, these data would benefit 

from additional points being acquired at intermediate energies.  This should also be 

extended to all congeners using more extensive PCB mixes where coeluting fragments 

do not occur.  The latter would also benefit a more detailed study of the accurate mass 

fragment data where the formation of molecular ion-like species within the loss of Cl 

fragment cluster, attributed to possible Cl/H exchange or H2 adduct formation, was 

observed.  Such experiments were beyond the scope of the current study but would 

form the basis of future work. 

 

 
* PCB-37 is currently assessed as a non-toxic congener, but has been suggested for possible 
future inclusion in the WHO toxic list (Van den Berg et al., 2006). 
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Chapter 5  

 

Ion Mobility Separation – Mass Spectrometry of all 209 PCBs  

 

5.1 Introduction 

As described in the preceding chapters, PCBs have been extensively studied over many 

years using GC, GC-(HR)MS and GC-MS/MS based analyses for their identification and 

quantification; this research extends the scope of analysis by using ion mobility 

separation together with mass spectrometry (IMS-MS).  Although conventional drift 

tube ion mobility spectrometry (DTIMS) has long existed as a standalone technique to 

separate molecules based on their size and shape, its combination with mass 

spectrometry in a practical and commercially available instrument is far more recent 

(May and McLean, 2015), notably the Synapt-HDMS* (Waters, Wilmslow, UK) system – 

based on travelling wave ion mobility spectrometry (TWIMS) technology – launched in 

2006 (Giles et al., 2004; Pringle et al., 2007). 

The focus of IMS-MS work to date has mostly concerned peptides, proteins and other 

biomolecules (Lanucara et al., 2014), such analytes being commensurate with the 

electrospray ionisation sources [and their associated liquid-chromatography (LC) sample 

introduction systems] or matrix-assisted laser desorption/ionisation (Djidja et al., 2009) 

that were intrinsic to the mass spectrometers from which the IMS-MS systems were 

derived.  Initial work to open this technique to GC-based sample analyses – as required 

for the compounds of interest in this thesis – was seen with the development of a 

prototype Synapt instrument fitted with an EI source. 

  

 
* “High-definition” mass spectrometry – a marketing, rather than formal MS, term. 
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Data from this instrument was shown in the 2011 ASMS poster presentation from Jones 

et al, “Analysis of halogenated aromatic compounds by electron impact ionisation and 

ion mobility separation on a GC-EI-Q-IMS-ToF”, where, in conjunction with high-

resolution TOF mass analysis, the arrival time distributions* (ATDs) from a series of 

2,3,7,8-substituted PCDD/Fs were observed (Jones, Richardson and Green, 2011).  

Although this instrument variant never progressed to commercial production, 

concurrent advances in atmospheric pressure sources nevertheless enabled GC sample 

introduction on a Synapt Q-IMS-TOF†. 

There is currently very limited published data on IMS-MS of PCBs, and these only 

consider a small number (n = 26) of congeners (Zheng et al., 2018) or their metabolites, 

hydroxy-PCBs (n = 9) (Adams et al., 2018).  Given the ability of IMS-MS to determine 

structural information in terms of an ion’s rotationally averaged collisional cross section 

(CCS) area, the aim of this chapter is to complement the previous (fragmentation) study 

by investigating the relationship between these data and that of the modelled structures 

of all 209 PCBs.  Since certain toxic effects, such as those associated with AhR binding, 

are principally a function of a PCB’s structure (Safe et al., 1985), this implicitly asks the 

question as to whether any correlation exists between the congeners’ toxicities – 

whether known or suggested – and their measured CCS values. 

  

 
* The term “arrival time distribution” (ATD) has recently been recommend for use in place of 
“drift time” (DT) to reflect the fact that the measured data includes time spent outside the 
actual drift region and other systematic delays (Gabelica et al., 2019).  This will be used where 
practicable, but the older term will persist for some existing graphs and software, e.g. for axis 
labelling, and this should be considered as being synonymous with ATD. 
† With the additional benefits of avoiding the vacuum system and electronics requirements of 
an EI source and allowing the ready interchange between LC and GC inlets. 
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5.2 Ion mobility theory – a brief overview 

In conventional DTIMS, the velocity of an ion through a gas filled cell is a function of the 

axial electric field intensity and the mobility coefficient, as shown in equation (5.1) 

(Revercomb and Mason, 1975). 

𝑣𝑑 = 𝐾𝐸 (5.1) 

Where vd is the velocity through the drift gas, K is the ion mobility coefficient and E is the 
electric field intensity. 

 

Hence, as shown in equation (5.2), the ion’s mobility can be determined from the 

measured drift time (DT) through the cell. 

𝐾 =
𝑙

𝑡𝑑𝐸
 (5.2) 

Where K is the ion mobility coefficient, l is the length of the drift cell, td is the measured 
time to traverse the cell and E is the electric field intensity. 

 

An analyte ion’s CCS may then be determined from its mass and charge, the mass, 

number density and temperature of the buffer gas, Boltzmann’s constant and the above 

mobility coefficient as expressed by the Mason-Schamp equation (5.3) together with 

that for the reduced mass (5.4) (Mason and MacDaniel, 1988). 

𝛺 =
3𝑧𝑒

16𝑁
(

2𝜋)

𝜇𝑘𝐵𝑇
)

0.5 1

𝐾
   (5.3) 

Where Ω is the CCS, z is the number of charges, e is the elementary charge, µ is the reduced 
mass of the analyte ion and buffer (drift) gas masses [as shown in equation (5.4)], N and T 
are the number density and temperature of the buffer gas, kB is the Boltzmann constant and 
K is the mobility coefficient. 

 

𝜇 =
𝑚𝑀

𝑚 + 𝑀
   (5.4) 

Where µ is the reduced mass of the analyte ion mass (m) and buffer gas mass (M). 
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As noted, the above formulae apply to conventional ion mobility using a linear drift 

geometry and operating in the low (≤ 2 Td*) field region.  This, however, is not the case 

for the analyses performed herein using the TWIMS-based Synapt G2-S instrument 

where, as implied by the travelling wave design, the electric field is not static and 

operates at much greater (> 100 Td) field strengths than linear mobility cells (Gabelica 

and Marklund, 2018): the net velocity through the gas cell is therefore no longer linear 

but approximates to quadratic function requiring empirical calibration to determine CCS 

(Shvartsburg and Smith, 2008). 

Smith et al showed a reduced version of the CCS equation by replacing the non-mass 

dependent variables† with a constant, A, and including the power term, B, to account 

for the non-linear characteristics of the TWIMS device (Smith et al., 2009).  An offset 

parameter, C, has been added here to allow for the ion mobility wave delay as shown in 

equation (5.5). 

𝛺 = 𝑧𝑒 (
𝑚 + 𝑀

𝑚𝑀
)

0.5

𝐴 𝑡𝑎
𝐵 + 𝐶   (5.5) 

Where A represents the combined non-mass dependent variables, ta is the ion arrival time, 
the power term, B, accounts for the non-linearity found in TWIMS and C allows for time-
delay correction.  Other parameters are as shown in (5.3) above. 

 

The above parameters can then be determined from a calibration process where ion 

mobility arrival time distribution (ATD) data are obtained from the analyses of standard 

compounds of known CCS – and ideally with reasonably similar structures and mass 

range – using the same instrument and conditions as the analytes in question. 

  

 
* Townsends – the reduced electric field corresponding to E/N; 1 Td = 10-21 V.m2. 
† If all ions are of the same charge state, e.g. singly charged as in this work, then ze could also 
be incorporated into the A coefficient. 
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5.3 Materials and methods 

5.3.1 GC-Q/IMS/TOF 

Travelling-wave ion-mobility mass spectrometry was performed using a Synapt G2-S 

hybrid Q-IMS-TOF (Waters, Wilmslow, UK) coupled to a 7890A GC fitted with a 7693A 

auto-injector (Agilent, Santa Clara, CA, USA).  Atmospheric pressure chemical ionisation 

(APCI) was used in the positive ion mode.  To meet the chromatographic requirements 

for PCB analysis, as specified in EPA-1668C, a 30 m x 0.25 mm x 0.25 µm SPB-Octyl 

capillary column (Supelco, Bellefonte, PA, USA) was installed in the GC with the injector 

operating in splitless mode.  Helium was used as the carrier gas at a constant flow of 1.4 

ml/min.  The mobility cell used nitrogen as the buffer gas at a pressure of 3.29 mbar; the 

travelling wave velocity was 300 m/s.  (A complete list of the relevant GC and MS 

parameters is provided in Appendix D.2) 

To correctly identify each PCB congener, a set of 5 separate mixes (Ultra Scientific, North 

Kingstown, RI, USA) was used, each containing a subset of the 209 PCBs such that no 

coeluting isomers – at the same level of chlorination – were present in any individual 

analysis.  For the analysis of certain fully (13C12) labelled PCBs, a mid-point calibration 

standard based on the EPA-1668C method was used (Wellington Laboratories Inc., 

Guelph, ON, Canada).  A complete list of the PCB congeners used for these analyses is 

provided in Appendix C.3. 

For CCS calibration, an 8-component mix (Waters, Wilmslow, UK) comprising: 

1,2-dichlorobenzene, 2,3,7,8-TCDD, anthracene, benzo(ghi)perylene, endosulphan, 

hexachlorobenzene, octafluoronaphthalene and phenanthrene was used.   
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5.3.2 Data processing 

As shown in the flow chart in Figure 5.1, TWIMS data were acquired using MassLynx 

(Waters, Wilmslow, UK), and this software was also used for the initial data checks, e.g. 

to verify chromatography, peak intensities, etc.  Following this, there are 2 possible 

paths, the choice of which depends on the degree of detail required: 

• Path 1 provides rapid processing of sets of m/z – e.g. all PCB congeners can be 

processed in a single pass – however there is limited control of the peak 

detection and review process. 

• Path 2 provides a much greater level of control – e.g. allowing reintegration of 

the ion mobility ATD data – it is however limited to processing individual 

congeners and can thus be a more time-consuming process. 

Both paths require the use of DriftScope (Waters, Wilmslow, UK) for initial processing of 

the raw IMS-MS data – although this software has some interactive processing 

capabilities, it cannot, for example, simultaneously display peaks from the multiple m/z 

as would be required for the comparison of PCB data – and therefore the data is 

exported from DriftScope into the format required for the selected path for subsequent 

processing. 
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Figure 5.1 Ion mobility data processing flow chart showing the 2 processing paths used for 
these data. 

 

For the first path, a peak list created by DriftScope is exported as a comma separated 

values (CSV) file.  Due to the very large size of these files – more than 200,000 peaks in 

each of the datafiles considered here – it was decided to create a dedicated ab initio 

program, “DriftScope Analyser” to process these files with the relevant tools for PCB 

(and similar) content. 

After reading the CSV file, DriftScope Analyser reduces the imported data using 

intensity, retention time (RT), ATD and mass filters – the latter to remove hydrocarbon 

Ion mobility data processing workflow 

Initial data assessment 
using MassLynx 

Data acquisition using 
MassLynx (Synapt G2-S) 

Peak detection and export to CSV 
format files using DriftScope 

Pre-filter by: 

• Intensity thresholding 

• GC retention time and arrival 
time distribution ranges 

• Hydrocarbon peak removal 
[mass sufficiency > 0.1, < 0.6 Da] 

Use DriftScope to export limited 
mass and (GC) retention time range 
data to MassLynx format datafiles, 
retaining mobility domain 
information 

PCB mass & time alignment filtering: 

• Select specific PCB masses with 
(typ.) 5 mDa window 

• Apply centroid retention time 
window (typ.) 0.2s 

Target peaks against known PCB (GC) 
retention times 

Display/print results and export to 
Excel 

Process CSV data using 
DriftScope Analyser 

  

Mass filtering and peak detection of 
ion mobility data (presented as 2-D 
chromatograms) using MassLynx 
and/or Ultratrace-Pro 

Display/print results and export to 
Excel or DriftScope Analyser 

Path 1: 
Multi-component, rapid 
“mid-level” processing  

Path 2: 
Single component, 
“high-level” processing  
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and other interferences that are readily separable from the halogenated compounds of 

interest due to their mass sufficiency. 

The resulting data are then subject to mass selection based on a pre-defined list with up 

to 8 masses specified for each homologue group and an appropriate mass window.  

Optionally, a centroiding time window can be applied to ignore peaks that are not 

coincident (in RT) with those from other m/z of the compound’s molecular ion cluster.  

Finally, the peaks can be identified by matching their actual and expected RTs.  The 

results are displayed, as shown by the example in the screenshot in Figure 5.2, as points 

on a 2-D (ATD vs. RT) graph with the point size indicating peak intensity. 

 

 

Figure 5.2 Screenshot showing an example of the DriftScope Analyser program in operation. 

 

For the second path, DriftScope is used to extract a datafile’s ion mobility content from 

specified RT and m/z ranges* , and to export this information to a new datafile in 

MassLynx format.  The resulting files allow mass chromatograms to be created where 

the x-axis now represents the ATD (the y-axis still shows intensity); since the original RT 

data has been lost, the RT range used at the DriftScope export stage is therefore critical 

and is usually limited to that required to encompass a single congener. 

 
* Optionally, ATD ranges may also be defined. 



151 

This is shown by the example in Figure 5.3 where the mobility data was extracted from 

a PCB sample mix from RT 37.7 to 38.0 and the ATDs for the M+0 to M+3 ions of PCB-126 

displayed using the UltraTrace-Pro (SGS, Wilmington, NC) software.  Although the ion 

mobility resolution is very low (~30, Ω/ΔΩ at FWHM), in the absence of mass 

interferences – due to the high resolution of the TOF analyser – the ion mobility 

centroids can be determined with sufficient precision to characterise the variations 

between isotopologue peaks. 

 

 

Figure 5.3 Example of ion mobility arrival time distributions (ATDs) for the M+0, M+2 and 
M+1, M+3 ions of PCB-126 (3,3’,4,4’,5-PeCB). 
The peaks are annotated with their areas and arrival time distributions (ms); the x-axis and 
associated centroid values are based on the raw data bin numbers. 

M+0 
C12H5

35Cl5 

 

 

M+2 
C12H5

35Cl437Cl 

M+1 
C11

13CH5
35Cl5 

M+3 
C11

13CH5
35Cl437Cl 
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5.4 Results and discussion 

5.4.1 Arrival time distribution variation with PCB chlorination level 

and structure 

A chart of the ion mobility arrival time distribution (ATD) vs. GC retention time (RT) for 

all 209 PCBs obtained from the combined analyses of the 5 separate PCB mixes is shown 

in Figure 5.4.  The ATDs show an increasing trend following the level of chlorination, 

though as with the RT data, there are several overlaps.  In addition, the data exhibit 

distinct sub-groups according to the number of ortho substituted Cl atoms; this is 

particularly well-defined for the subset of the 46 PeCBs, as shown by the expanded 

detail in Figure 5.5. 

Furthermore, the 12 PCB congeners that are known to be toxic – based on current WHO 

assessments – also appear to form a sub-group within the data as indicated by the points 

annotated in red (Figure 5.4).  This is unsurprising given that structure is a key parameter 

to one of the accepted mechanisms of toxicity based on AhR binding.  However, this is 

clearly not an exclusive metric since several other, nominally non-toxic congeners, such 

as PCB-106 and 122 (Figure 5.5) also fall within this grouping.  There is nevertheless the 

possibility that these are potentially toxic and that the current list of toxic PCBs is 

incomplete: e.g. the trichlorinated PCB-37 (3,4,4’-TrCB) (annotated in purple) has been 

suggested by the WHO for possible future inclusion (Van den Berg et al., 2006). 

 

 



 

 

  

37

77
81

105
114

118
123 126

156
157

167 169

189

10

20

30

40

50

60

70

10 15 20 25 30 35 40 45 50

Io
n

 M
o

b
ility A

rrival Tim
e D

istrib
u

tio
n

 (b
in

s)

GC Retention Time (mins.)

Ion Mobility Arrival Time Distribution vs. GC Retention Time for all 209 PCBs

# Cl

1

2

3

4

5

6

7

8

9

10

# Cl in ortho 
positions

0
1
2
3
4

Figure 5.4 Synapt G2-S (GC-Q-IMS-TOF) ion mobility arrival time distribution vs. GC retention time for all 209 PCBs. 
Data acquired using the experimental details described in Appendix D.2.  The data point colour-coding indicates the number of Cl atoms and shapes 
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Figure 5.5 Synapt G2-S (GC-Q-IMS-TOF) ion mobility arrival (drift) time distribution vs. GC retention time for all 46 PeCBs. 
Data acquired using the experimental details described in Appendix D.2.  The data points are annotated with the PCB number and structure (with 
the toxic congeners shown in red), and the shapes indicate the number of Cl ortho substituents as shown by the key.  
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5.4.2 Comparisons of modelled, experimental and published CCS data 

Two, freely available, modelling programs were used to estimate the CCS values for all 

209 PCB congeners to allow comparisons with those derived from the acquired ion 

mobility data and other published data: 

• “Impact” (Univ. of Oxford) – using the projection approximation (PA) and 

trajectory (TJ) methods (Marklund et al., 2015) 

• “CrossArea” (Univ. of Leeds) used the PA method (Smith et al., 2009). 

Both programs required input files created in the Protein Database (PDB) format*; as all 

PCBs had been modelled and their optimum conformations determined for the previous 

fragmentation study [using the “Orca” program (Neese, 2012) and associated methods 

(as described in section 4.2.5)], these data were converted† to that format. 

A summary‡ of the CCS data is shown in Table 5.1 for the first and last eluting PCBs at 

each level of chlorination, all toxic congeners (shown in bold type) and a subset of PCBs 

(n = 26) for which published data was available (Zheng et al., 2018).  The results columns 

show CCS data from the 3 modelled approaches, the experimental data acquired herein 

and the published data.  Also shown are the deviations between the experimental and 

published data, and between experimental and TJ data. 

The CCS calibration for the acquired Synapt mobility data was initially based on the 

8-component mix described in section 5.3.1; this yielded RMS errors between the 

acquired and modelled data of 5.67%, 3.75% and 5.61% for the 3 methods (Impact PA 

and TJ, and CrossArea PA respectively) for all 209 congeners, and 3.83% between the 

acquired and published data from Zheng et al. 

The latter was then used to recalibrate the acquired CCS data; this resulted in the 

respective errors being revised to 8.81%, 1.93% and 8.67% for the 3 methods, and 0.56% 

for the published data.  Clearly the reduction in the latter value is not unexpected given 

 
* This being indicative of their intended application rather than the small molecules considered 
here; nevertheless, the data shown suggest that their usage here is also appropriate. 
† An ab initio program, “PDBprocessor”, was developed to convert these files into PDB format 
and automatically submit them to the CCS modelling programs. 
‡ The complete table of modelled and experimental data for all 209 PCBs is shown in 
Appendix B.5. 



 

156 

that its data was used as the basis for the calibration.  With either calibration the TJ 

modelled CCS data showed lower RMS errors than the PA methods but were lowest with 

the revised calibration. 

 

Table 5.1 CCS values obtained from the “Impact” Projection Approximation (PA) and 
Trajectory (TJ) methods, the “CrossArea” PA method, published data (Zheng et al., 2018) and 
from the Synapt experimental data. 
(Table continues overleaf) 

  

PCB 
Impact 

PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Zheng 
et al. 
(Å2) 

Synapt 
expt. 
data 
(Å2) 

Dev’n 
expt.-
Zheng 

Dev’n 
expt.-

TJ 

PCB-1 2-MoCB 117.9 126.9 116.8 n/a 134.9 - 6.3% 

PCB-3 4-MoCB 121.6 131.0 122.4 n/a 134.5 - 2.6% 

PCB-4 2,2’-DiCB 123.7 133.4 122.2 n/a 141.9 - 6.3% 

PCB-15 4,4’-DiCB 131.7 142.5 131.1 n/a 142.3 - -0.1% 

PCB-16 2,2’,3-TrCB 131.0 141.8 131.0 n/a 148.8 - 5.0% 

PCB-28 2,4,4’-TrCB 138.1 149.8 137.3 149.7 150.0 0.2% 0.1% 

PCB-29 2,4,5-TrCB 135.7 147.0 133.6 150.7 149.6 -0.7% 1.7% 

PCB-30 2,4,6-TrCB 134.2 145.4 134.7 150.1 149.2 -0.6% 2.6% 

PCB-39 3,4’,5-TrCB 141.2 153.4 143.8 n/a 152.3 - -0.7% 

PCB-40 2,2’,3,3’-TeCB 138.5 150.3 139.0 n/a 155.1 - 3.2% 

PCB-52 2,2’,5,5’-TeCB 142.5 154.9 143.0 156.7 157.2 0.3% 1.5% 

PCB-70 2,3’,4’,5-TeCB 144.5 157.1 148.4 155.6 157.5 1.2% 0.2% 

PCB-77 3,3’,4,4’-TeCB 146.6 159.6 143.3 156.8 157.2 0.3% -1.5% 

PCB-81 3,4,4’,5-TeCB 146.3 159.2 146.8 158.6 156.7 -1.2% -1.6% 

PCB-82 2,2’,3,3’,4-PeCB 146.1 159.0 147.4 n/a 160.7 - 1.1% 

PCB-101 2,2’,4,5,5’-PeCB 149.9 163.3 149.2 162.6 163.0 0.3% -0.2% 

PCB-103 2,2’,4,5’,6-PeCB 147.5 160.6 149.2 160.7 161.9 0.7% 0.8% 

PCB-105 2,3,3’,4,4’-PeCB 150.5 163.9 154.2 161.6 161.8 0.1% -1.3% 

PCB-114 2,3,4,4’,5-PeCB 150.6 164.2 151.6 162.1 161.4 -0.4% -1.7% 

PCB-118 2,3’,4,4’,5-PeCB 152.5 166.3 153.5 n/a 163.4 - -1.7% 

PCB-123 2,3',4,4',5'-PeCB 152.2 165.9 154.6 n/a 163.0 - -1.8% 

PCB-126 3,3’,4,4’,5-PeCB 153.5 167.4 148.0 164.4 163.8 -0.4% -2.2% 

PCB-127 3,3’,4,5,5’-PeCB 155.4 169.6 152.7 n/a 165.6 - -2.4% 
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Table 5.1 (continued) CCS values obtained from the “Impact” Projection Approximation (PA) 
and Trajectory (TJ) methods, the “CrossArea” PA method, published data (Zheng et al., 2018) 
and from the Synapt experimental data. 
The deviations between experimental and both the published and TJ method modelled data 
are also shown.  *The RMS error for the TJ data is from all 209 congeners (as shown in Table 
B.3 of Appendix B.5). The WHO toxic congeners are indicated by bold type. 

 

  

PCB 
Impact 

PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Zheng 
et al. 
(Å2) 

Synapt 
expt. 
data 
(Å2) 

Dev’n 
expt.-
Zheng 

Dev’n 
expt.-

TJ 

PCB-128 2,2’,3,3’,4,4’-HxCB 153.2 167.0 151.0 n/a 166.7 - -0.2% 

PCB-138 2,2’,3,4,4’,5’-HxCB 155.4 169.6 157.1 168.0 168.0 0.0% -0.9% 

PCB-156 2,3,3’,4,4’,5-HxCB 157.1 171.6 161.2 168.2 168.5 0.1% -1.8% 

PCB-157 2,3,3’,4,4’,5’-HxCB 156.9 171.4 156.9 n/a 168.3 - -1.8% 

PCB-167 2,3’,4,4’,5,5’-HxCB 156.8 171.3 154.9 167.8 169.9 1.2% -0.8% 

PCB-169 3,3’,4,4’,5,5’-HxCB 161.3 176.4 164.3 170.0 170.7 0.4% -3.2% 

PCB-170 2,2’,3,3’,4,4’,5-HpCB 159.8 174.6 161.2 n/a 173.1 - -0.9% 

PCB-189 233’44’55’-HpCB 163.8 179.3 163.4 173.9 175.0 0.6% -2.4% 

PCB-190 2,3,3’,4,4’,5,6-HpCB 160.2 175.1 159.0 173.3 172.9 -0.2% -1.2% 

PCB-193 2,3,3’,4’,5,5’,6-HpCB 161.9 177.1 159.1 173.9 174.3 0.2% -1.6% 

PCB-194 2,2’,3,3’,4,4’,5,5’-OcCB 166.2 182.0 167.4 180.3 179.3 -0.6% -1.5% 

PCB-195 2,2’,3,3’,4,4’,5,6-OcCB 162.3 177.5 164.4 178.0 176.8 -0.7% -0.4% 

PCB-202 2,2’,3,3’,5,5’,6,6’-OcCB 161.4 176.5 160.1 176.9 176.2 -0.4% -0.2% 

PCB-205 2,3,3’,4,4’,5,5’,6-OcCB 163.9 179.4 165.7 n/a 178.9 - -0.3% 

PCB-206 2,2’,3,3’,4,4’,5,5’,6-NoCB 168.6 184.8 171.0 183.5 183.1 -0.2% -0.9% 

PCB-207 2,2’,3,3’,4,4’,5,6,6’-NoCB 166.2 182.1 168.4 181.7 181.2 -0.2% -0.5% 

PCB-208 2,2’,3,3’,4,5,5’,6,6’-NoCB 165.7 181.5 165.2 182.1 181.5 -0.3% 0.0% 

PCB-209 DeCB 170.3 186.7 168.2 185.9 186.3 0.2% -0.2% 

RMS Error 0.56% 1.93%* 
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5.4.3 Artefacts in the arrival time distributions of PCB isotopologues 

During the above analyses, an unusual observation was made concerning the relative 

ATDs of different m/z (isotopologues) within the molecular ion cluster of many PCBs.  

Figure 5.6 shows an example from 8 late eluting HpCBs: the individual primary ions 

(M+0, M+2…) (blue) have progressively increasing ATDs, as expected given their 

increasing masses, and this is similarly the case for the secondary ions (M+1, M+3…) 

(red).  However, as groups of ions, although sometimes intermixed, the secondary ions’ 

ATDs were often significantly displaced – both positively and negatively – relative to 

those of the primary ions. 

 

 

Figure 5.6 DriftScope Analyser plot of ion mobility ATD vs. RT for 8 late eluting HpCBs 
showing mixed positive, negative and overlapping ATDs of the groups of naturally occurring 
secondary (13C) ions (red) relative to those of the primary (12C) ions (blue). 
For each HpCB, the primary and secondary ion group m/z (listed below) increase with ATD.  
The marker sizes indicate the relative peak intensities. 
 

Primary ions (shown in blue) Secondary ions (shown in red) 

M+0, m/z 391.8054, C12H3
35Cl7 M+1, m/z 392.8088, C11

13CH3
35Cl7 

M+2, m/z 393.8025, C12H3
35Cl637Cl M+3, m/z 394.8059, C11

13CH3
35Cl637Cl 

M+4, m/z 395.7996, C12H3
35Cl537Cl2 M+5, m/z 396.8029, C11

13CH3
35Cl537Cl2 

M+6, m/z 397.7967, C12H3
35Cl437Cl3 M+7, m/z 398.8000, C11

13CH3
35Cl437Cl3 

    M+0, M+2… ions 

    M+1, M+3… ions 

PCB-189 
2,3,3',4,4',5,5'-HpCB 

 

PCB-190 
2,3,3',4,4',5,6-HpCB 

PCB-170 
2,2',3,3',4,4',5-HpCB 

PCB-193 
2,3,3',4',5,5',6-HpCB 

PCB-172 
2,2',3,3',4,5,5'-HpCB 

PCB-180 
2,2',3,4,4',5,5'-HpCB 

PCB-192 
2,3,3',4,5,5',6-HpCB 

PCB-191 
2,3,3',4,4',5',6-HpCB 
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E.g. the secondary ions of PCB-172 (2,2’,3,3’,4,5,5’-HpCB), 193 (2,3,3’,4’,5,5’,6-HpCB) 

and 189* (2,3,3’,4,4’,5,5’-HpCB) have ATDs that are negatively offset relative to the 

primary ions, with the M+7 ion (m/z 399) having a lower ATD than even the M+0 primary 

ion (m/z 392).  Conversely, for PCB-192 (2,3,3’,4,5,5’,6-HpCB) and 170 (2,2’,3,3’,4,4’,5-

HpCB), all secondary ions show a positive offset with the M+1 ion (m/z 393) having a 

higher ATD than the M+6 primary ion (m/z 398).  In addition to the clearly separated ion 

groups, varying degrees of overlap are also seen, e.g. PCB-180 (2,2’,3,4,4’,5,5’-HpCB), 

191 (2,3,3’,4,4’,5’,6-HpCB) and 190 (2,3,3’,4,4’,5,6-HpCB). 

 

 

Figure 5.7 Ion mobility ATDs for the M+0, M+2 and M+1, M+3 ions of PCB-189 
(2,3,3’,4,4’,5,5’-HpCB). 
The peaks are annotated with their areas and arrival time distributions (ms); the x-axis and 
associated centroid values are based on the raw data bin numbers. 

 
* The only WHO toxic PCB in this homologue group. 
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M+1 
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The corresponding raw ion mobility data for PCB-189 is shown in Figure 5.7; the 

detected peaks mirror the reported data above with lower ATDs for the M+1 and M+3 

ions (upper 2 traces) relative to those of the M+0 and M+2 ions (lower 2 traces).  It is 

important to note that the peak widths of the M+1 and M+3 ions are greater than for 

the M+0 and M+2 ions – this is also the case for the peaks of the M+5 and M+7 ions 

relative to the M+4 and M+6 ions (not shown). 

The first 5 eluting HpCBs were then investigated – each having the common feature of 

Cl substitution in all 4 ortho positions (i.e. 2,2’,6,6’): as shown by the data in Figure 5.8, 

all showed positive ATD offsets of the secondary ion groups; however, amongst these, 

PCB-186 (2,2’,3,4,5,6,6’-HpCB) showed a much greater (weighted average) shift of ~4.6% 

compared to ~2.1% (average of the other 4). 

 

 

Figure 5.8 DriftScope Analyser plot of ion mobility ATD vs. RT for 5 early eluting HpCBs, 
PCB-188, 179, 184, 176 and 186, each showing positive arrival time offsets for the groups of 
secondary (13C) ions (red) relative to those due to the primary (12C) ions (blue). 
The M+0 and M+1 peaks are annotated with their nominal m/z and ion arrival times (the 
remaining peaks in each series are not annotated for clarity) and the marker sizes indicate the 
relative peak intensities. 

 

  

    M+0, M+2… ions 

    M+1, M+3… ions 
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Examination of the PCB-186 raw data, as shown in Figure 5.9, reveals some distinctly 

different characteristics for the secondary ions, where a bimodal distribution is clearly 

seen but is not present in any of the primary ion traces.  The centroid times of these 

doublets correspond to the data plotted in Figure 5.8 and explain the appearance – but 

not the underlying cause – of the secondary ions’ excess ATD shifts. 

 

 

Figure 5.9 Ion mobility ATD for the M+0, M+2 and M+1, M+3 ions of PCB-186 
(2,2’,3,4,5,6,6’-HpCB) showing a bimodal distribution for the m/z 393 and 395 ions. 

 

By reintegrating/splitting the doublets, as shown in Figure 5.10, the secondary ion ATD 

values were updated using the times from the first of the two peaks at each m/z.  (The 

nature of the second of each of these doublets will be discussed later in the chapter.)  

The revised secondary ion group for PCB-186 now shows an ATD offset of ~0.4% – this 
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C12H3

35Cl7 

M+2 
C12H3

35Cl637Cl 

M+1 
C11

13CH3
35Cl7 

M+3 
C11

13CH3
35Cl637Cl 
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is substantially lower than the other 4 tetra-ortho substituted HpCBs and closer to 

theoretical expectation (~0.02%). 

 

 

Figure 5.10 Ion mobility ATDs for the M+1, M+3, M+5 and M+7 ions of PCB-186 
(2,2’,3,4,5,6,6’-HpCB).  Each peak has been reintegrated to separate the 2 components of the 
bimodal distribution. 

 

Clearly the splitting of these peaks can only provide an approximation to the true data; 

accurate measurement would require a higher resolution ion mobility device.  The low 

IMS resolution may also be masking similar effects in other PCBs: as noted above (in the 

observations for PCB-189), the peak widths of the secondary ions are greater than those 

of the primary ions; this suggests that similar artefacts could also exist in these data but 

not to the extent as made apparent by the doublets of PCB-186.  The greater widths of 

the secondary peaks affect ~90% of all PCBs irrespective of whether they show greater 

or lesser ATDs than the primary ions. 

M+5 
C11

13CH3
35Cl537Cl2 

M+7 
C11

13CH3
35Cl437Cl3 

 

 M+1 
C11

13CH3
35Cl7 

M+3 
C11

13CH3
35Cl637Cl 



 

163 

5.4.4 Ion mobility doublets and associated isomerisation 

Further examination of the PCB-186 (2,2’,3,4,5,6,6’-HpCB) data (Figure 5.10) showed an 

unusual feature of the secondary ion doublets: following reintegration/splitting, the 

averaged ATD from the first of the two peaks created at each m/z is reasonably well 

aligned with its (non-doublet) primary ion ATD; furthermore, examination of the second 

set of peaks, as shown for the M+3 ion in Figure 5.11, indicates close ATD alignment with 

the corresponding m/z of another congener, PCB-192 (2,3,3’,4,5,5’,6-HpCB). 

 

 

Figure 5.11 Ion mobility ATDs for the M+3 ion (m/z 394.8059, C11
13CH3

35Cl637Cl) of PCB-186, 
(2,2’,3,4,5,6,6’-HpCB) (red trace) and PCB-192 (2,3,3’,4,5,5’,6-HpCB) (purple trace). 

 

The ATD of the higher split peak from PCB-186, based on the centroid data from the 4 

secondary ions, is 62.3 (bins) as compared to 62.1 for PCB-192, a deviation of ~0.3%. 
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This could suggest that partial isomerisation is occurring: as shown in Figure 5.12, the 

structures of PCB-186 and PCB-192 have identical Cl substitutions on one ring, and 

rearrangement of the 2’ and 6’ ortho (Cl) positions to the 3’ and 5’ meta positions 

respectively on the other ring would be required for this to be achieved.  The lower 

single point conformation energy of PCB-192 (relative to PCB-186) also suggests that this 

is a favoured rearrangement following the affected C-Cl and C-H bond breakages. 

 

 

Figure 5.12 Structures of PCB-186 and PCB-192 showing isomerisation via the rearrangement 
of the 2’ and 6’ ortho (Cl) positions to the 3’ and 5’ meta positions respectively. 

 

To help identify further instances of bimodal distributions the relative peak widths of 

the M+1 to M+0 ions were calculated and plotted as shown in Figure 5.13 for the tri- to 

octa-chlorinated congeners (the lower vertical axis limit of 20% having effectively 

filtered any other congeners).  For the 6 PCBs with the greatest relative peak widths at 

each level-of-chlorination, the peak profiles of the M+0 (blue traces) and M+1 (red 

traces) ions are also shown in the insets. 

 

 

 

PCB-186 (2,2’,3,4,5,6,6’-HpCB) PCB-192 (2,3,3’,4,5,5’,6-HpCB) 

ΔEconf(192-186) = -11.4 kJ mol-1 
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The 6 candidate PCBs identified in Figure 5.13 as having the largest relative M+1/M+0 

ion mobility peak widths at each level-of-chlorination (including the aforementioned 

PCB-186) are: 

• PCB-19 (2,2’,6-TrCB) 

• PCB-54 (2,2’,6,6’-TeCB) 

• PCB-96 (2,2’,3,6,6’-PeCB) 

• PCB-152 (2,2’,3,5,6,6’-HxCB) 

• PCB-186 (2,2’,3,4,5,6,6’-HpCB) 

• PCB-200 (2,2’,3,3’,4,5,6,6’-OcCB) 

 

2 other PCBs – similarly containing the subset of 2,2’,6,6’ ortho substitutions – that also 

showed pronounced doublets in their secondary ion traces are: 

• PCB-104 (2,2’,4,6,6’-PeCB) 

• PCB-145 (2,2’,3,4,6,6’-HxCB) 

 

The pre- and post-split ATDs for these 8 PCBs and the corresponding ATDs of PCBs 

suggested as being the target isomers are shown by the graph in Figure 5.14.  In all cases, 

close alignment between the upper ATD from the split doublet peak and the 

corresponding ATD from the (non-doublet) target isomer was observed.  The overall 

alignment RMS deviation of ~0.8% (n = 8) also strengthens the idea that partial 

isomerisation is occurring in these examples. 

This effect was also observed for some other PCBs identified in Figure 5.13, such as PCB-

93 (2,2’,3,5,6-PeCB) and PCB-142 (2,2’,3,4,5,6-HxCB) – unlike the above tetra-ortho 

substituted PCBs, these both have a subset of tri-ortho substitutions – but the doublet 

peaks formed were less definitive and therefore not included in these results. 
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Figure 5.14 The ion mobility ATDs of the secondary ions of 8 PCBs, pre- and post-reintegration 
(splitting), and their alignment with possible isomerisation ‘targets’. 
The PCBs are shown in pairs, e.g. PCB-19 and PCB-36: the first of each pair is the PCB showing 
doublet formation, where the central points (red squares) indicates the ATD centroids prior to 
splitting, and the lower (green triangles) and higher (purple diamonds) points show the ATD 
centroids created by the peak splitting; the second PCB of each pair (blue columns) has an ATD 
that closely aligns with the upper ATD from the first PCB’s split.  For the 8 PCB pairs considered 
here the overall alignment RMS error is ~0.8%. 

 

The structures for the remaining 7 PCBs* and their suggested isomerisation targets, as 

referenced in Figure 5.14, are shown in Figure 5.15 to Figure 5.21. 

 

 

Figure 5.15 Structures of PCB-19 and PCB-36 showing isomerisation via the rearrangement of 
the 2, 2’ and 6 ortho (Cl) positions to the 3, 3’ and 5 meta positions respectively. 

 
* The structures of PCB-186 and PCB-192 having been previously shown in Figure 5.12. 
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PCB-36 (3,3’,5-TrCB) PCB-19 (2,2’,6-TrCB) 

ΔEconf(36-19) = -28.3 kJ mol-1 
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Figure 5.16 Structures of PCB-54 and PCB-80 showing isomerisation via the rearrangement of 
the 2, 2’, 6 and 6’ ortho (Cl) positions to the 3, 3’, 5 and 5’ meta positions respectively. 

 

 

Figure 5.17 Structures of PCB-96 and PCB-111 showing isomerisation via the rearrangement 
of the 2’, 6 and 6’ ortho (Cl) positions to the 3’, 5 and 5’ meta positions respectively. 

 

 

Figure 5.18 Structures of PCB-104 and PCB-127 showing isomerisation via the rearrangement 
of the 2, 2’, 6 and 6’ ortho (Cl) positions to the 3, 3’, 5 and 5’ meta positions respectively. 

 

 

 

 

 

PCB-80 (3,3’,5,5’-TeCB) PCB-54 (2,2’,6,6’-TeCB) 

PCB-111 (2,3,3’,5,5’-PeCB) PCB-96 (2,2’,3,6,6’-PeCB) 

PCB-127 (3,3’,4,5,5’-PeCB PCB-104 (2,2’,4,6,6’-PeCB) 

ΔEconf(80-54) = -34.7 kJ mol-1 

ΔEconf(111-96) = -21.8 kJ mol-1 

ΔEconf(127-104) = -9.2 kJ mol-1 
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Figure 5.19 Structures of PCB-145 and PCB-159 showing isomerisation via the rearrangement 
of the 2’, 6 and 6’ ortho (Cl) positions to the 3’, 5 and 5’ meta positions respectively. 

 

 

Figure 5.20 Structures of PCB-152 and PCB-165 showing isomerisation via the rearrangement 
of the 2’ and 6’ ortho (Cl) positions to the 3’ and 5’ meta positions respectively. 

 

 

Figure 5.21 Structures of PCB-200 and PCB-198 showing isomerisation via the rearrangement 
of the 6’ ortho (Cl) positions to the 5’ meta position. 

 

In all cases, isomerisation appears to occur from the rearrangement of one or more 

ortho substituted Cl atoms to a meta position, however, it is important to note that 

ortho substitution alone does not directly lead to this process.  E.g. although PCB-104 

(2,2’,4,6,6’-PeCB), as shown by the above data, is a convincing candidate, PCB-155 

(2,2’,4,4’,6,6’-HxCB), with its additional para Cl, shows no evidence of peak broadening 

or doublet formation. 

 

 

 

PCB-159 2,3,3’,4,5,5’-HxCB PCB-145 2,2',3,4,6,6'-HxCB 

PCB-165 (2,3,3’,5,5’,6-HxCB) PCB-152 (2,2’,3,5,6,6’-HxCB) 

PCB-198 (2,2’,3,3’,4,5,5’,6-OcCB) PCB-200 (2,2’,3,3’,4,5,6,6’-OcCB) 

ΔEconf(159-145) = -7.7 kJ mol-1 

ΔEconf(165-152) = -12.1 kJ mol-1 

ΔEconf(200-198) = -6.3 kJ mol-1 
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The process of PCB-155 isomerising to PCB-169 (3,3’,4,4’,5,5’-HxCB) – that would result 

from all 4 ortho Cl becoming meta – is depicted in Figure 5.22; however, unlike the 

rearrangements shown above, it is not favoured due to the difference in their single 

point conformation energies (ΔEconf = 15.9 kJ mol-1). 

 

 

Figure 5.22 Structures of PCB-155 and PCB-169 indicating that although isomerisation could, 
in principle, occur via the rearrangement of all ortho Cl to meta positions, it is not energetically 
favoured by the processes realised in these experiments. 

 

This is similarly the case for the other 4 PCBs that could, in principle, be formed via ortho 

-> meta rearrangements involving either 3 Cl atoms, 2 Cl on the same ring, 2 Cl on 

opposite rings or 1 Cl, respectively: 

 PCB-167 (2,3’,4,4’,5,5’-HxCB, ΔEconf = 31.0 kJ mol-1) 

 PCB-153 (2,2’,4,4’,5,5’-HxCB, ΔEconf = 6.4 kJ mol-1) 

 PCB-168 (2,3’,4,4’,5’,6-HxCB, ΔEconf = 27.2 kJ mol-1) 

 PCB-154 (2,2’,4,4’,5,6’-HxCB, ΔEconf = 3.5 kJ mol-1). 

 

  

 

PCB-155 (2,2’,4,4’,6,6’-HxCB) PCB-169 (3,3’,4,4’,5,5’-HxCB) 

ΔEconf(169-155) = +15.9 kJ mol-1 
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5.4.5 Observations from fully-labelled (13C12) PCB data 

To further examine the above effects related to the presence of 13C atoms, IMS-MS was 

performed on a mix* containing several fully-labelled PCBs (i.e. where all 12C atoms have 

been replaced by 13C) in addition to certain native, unlabelled, PCBs.  Figure 5.23 shows 

the DriftScope Analyser plot for both PCB-188 (2,2’,3,4’,5,6,6’-HpCB) and PCB-189 

(2,3,3’,4,4’,5,5’-HpCB)  

 

 

Figure 5.23 DriftScope Analyser plot of ion mobility ATD vs. RT for PCB 188 (2,2’,3,4’,5,6,6’-
HpCB) and PCB 189 (2,3,3’,4,4’,5,5’-HpCB) showing data from the native primary ions (blue), 
native secondary ions (red) and the 13C12-labelled primary ions (green). 
(PCB-178, present as a 13C12-labelled standard only, is not part of this study.) 

 

As previously reported in section 5.4.3, PCB-188 showed a positive offset in the ATDs of 

its secondary ions (relative to the primary ions’ ATDs), whereas PCB-189 showed a 

negative offset; however, the fully-labelled (13C12H3Cl7) ions show a positive offset for 

both congeners. 

  

 
* See Table C.4 (p. 243) for complete details. 

    12C M+0, M+2… ions 

    12C M+1, M+3… ions 

    13C M+0, M+2… ions 



 

172 

Doublet formation, and hence possible isomerisation, was also observed in the data of 

certain 13C-labelled PCBs.  The left panel of Figure 5.24 shows the ATDs for the native, 

M+0 to M+6, ions of PCB-54 (2,2’,6,6’-TeCB); the figure’s right panel shows the ATDs for 

the corresponding 13C12-labelled M-1 to M+5 ions.  The secondary series of the labelled 

ions starts at M-1 due to the presence of a single 12C in place of one of the 13C atoms 

resulting from the 13C isotopic purity* being less than 100%. 

 

 

Figure 5.24 Ion mobility ATDs of native and 13C-labelled PCB-54 (2,2’,6,6’-TeCB, C12H6Cl4). 
The native M+0 to M+6 ions are shown on the left and the 13C-labelled M-1 to M+5 ions on the 
right.  Both sets exhibit bimodal distributions for their secondary ions but, while consistent for 
the native ions, the 13C-labelled ions’ profiles vary with the degree of 37Cl substitution. 

 
* The purity of isotopically labelled standards was previously discussed in detail in Chapter 3. 
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The secondary native ions of PCB-54 each show similar doublet peaks, and their profiles 

are also reasonably like several of those noted in the previous section; however, this is 

not the case for the 13C-labelled ions where the profiles show distinct changes 

depending on the number of 37Cl atoms present. 

No doublet is observed for the M-1 ion (12C13C11H6
35Cl4) where only 35Cl are present; for 

M+1 (12C13C11H6
35Cl337Cl), with its single 37Cl, a doublet is formed that resembles one 

from the native secondary ion series.  As the 35Cl atoms are subsequently replaced by 

37Cl in the M+3, M+5 and M+7 ions, the doublets’ right-side peaks increase in intensity 

as the left-side peaks decrease; this is clearly shown by the overlaid traces in Figure 5.25. 

 

 

Figure 5.25 Overlaid traces (smoothed data) for the ATDs of the M-1 to M+7 secondary ion 
traces of 13C-labelled PCB-54 (2,2,’,6,6’-TeCB) showing the variation in distribution with 
increasing 37Cl substitution. 
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5.4.6 Possible mechanisms for the observed artefacts in ion arrival time 

distributions 

The separation of 13C-labelled glycine isotopomers has been previously reported using 

field asymmetric ion mobility spectroscopy (FAIMS), but the underlying mechanism for 

the variation in ATD could not be determined (Shvartsburg, Clemmer and Smith, 2010).  

The following mechanisms are therefore proposed for the observed artefacts affecting 

the secondary ions’ arrival time distributions. 

 

5.4.6.1  Changes to an ion’s centre-of-mass 

An initial supposition was that the peak broadening and doublet formation could result 

from centre-of-mass (CoM) differences according to the location of the single 13C atom 

in the various isotopomers of the M+1, etc. isotopologues.  E.g. for a symmetrical PCB 

such as 2,2’,6,6’-TeCB (PCB-54), a 13C atom in a para position would offset the CoM more 

than in one of the central C-C positions.  Such an effect has been reported for variations 

in the diffusivity of water isotopes in gases, and a correlation established between the 

molecules’ CoM and different D and 18O substitutions (Merlivat, 1978). 

Although this may be associated with minor peak broadening – such as that seen 

between a congener’s primary ions – the magnitude of many of the secondary ion shifts 

is far greater than those due to the 2 Da addition from a 37Cl substitution; it therefore 

seems unlikely that a 1 Da addition to either of the phenyl rings from a 13C substitution 

could be responsible for this effect.  Furthermore, no such effect is seen in any of the 

primary ions that would equally be affected by 37Cl isotopomers, e.g. for the M+2 

isotopologue of PCB-8 there are 2 possible Cl isotopomers as illustrated in Figure 5.26. 

 

 

Figure 5.26 Structures of the 2 possible isotopomers of the C12H8Cl37Cl isotopologue of PCB-8. 

 

PCB-8; [2-37Cl], 4’-DiCB 

 

)  

 PCB-198 

(2,2’,3,3’,4,5,5’,6-OcCB) 

PCB-8; 2,[4’-37Cl]-DiCB 

 

)  

 PCB-198 

(2,2’,3,3’,4,5,5’,6-OcCB) 
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5.4.6.2  Effects of nuclear spin 

A key difference between a 13C and 12C atom is that the former, due to its imbalance of 

protons and neutrons, has non-zero spin.  This attribute is normally associated with 

nuclear magnetic resonance (NMR) spectroscopy, however it has been reported that the 

rates of chemical reactions relating to radical pairs can be influenced by this spin even 

in ambient magnetic fields (Turro, 1983).  It is not currently known whether any such 

effect could apply to this work and this idea is therefore a placeholder for potential 

future research.  In a related thought experiment, could the radio-frequency (RF) 

conditions found within the travelling wave device interact with these 13C containing 

species resulting in certain/partial alignment such that an ion’s motion is no longer 

equally rotationally averaged over all axes, thus affecting its mobility? 

 

5.4.6.3  Thermal effects due to heating within the ion mobility cell 

The intense electric fields encountered by ions within a TW device can lead to 

considerable ion heating, e.g. > 200 K above the gas temperature, and have been shown 

to induce fragmentation that is distinguishable from that occurring prior to entry into 

the TW device (Morsa, Gabelica and De Pauw, 2014). 

Given this effect, detailed computational modelling of various PCBs and certain 

isotopologues and isotopomers was performed using the Orca program [as previously 

described in section 4.2.5, but here with the additional frequency parameter selected to 

create the infrared (IR) spectra].  In all cases, the resultant conformers, and hence their 

rotationally averaged CCS values, were identical – since the mean bond lengths and 

angles are unaffected by the presence of heavier isotope atoms – however, the 

vibrational characteristics of bonds involving isotopes do change and this is reflected in 

their modelled IR spectra. 
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5.4.7 Modelled PCB isotopologue and isotopomer IR spectra 

Figure 5.27 shows the modelled IR spectrum for native PCB-188, i.e. where all carbons 

are 12C, Figure 5.28 shows that from its M+1 isotopologue due to the substitution of a 

single 13C (in the ortho 2 position) and Figure 5.29 represents its fully labelled (13C12) 

isotopologue. 

 

 

Figure 5.27 Modelled IR spectrum of PCB-188 (2,2’,3,4’,5,6,6’-HpCB, C12H3Cl7). 

 

 

Figure 5.28 Modelled IR spectrum of the M+1 isotopologue of PCB-188 (2,2’,3,4’,5,6,6’-HpCB, 
C11

13CH3Cl7) due to a single 13C substitution. 
This is one of 12 possible 13C isotopomers (of the M+1 isotopologue), here in the ortho 2 
position. 
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Figure 5.29 Modelled IR spectrum of fully labelled 13C12-PCB-188 (2,2’,3,4’,5,6,6’-HpCB, 
13C12H3Cl7). 

 

For all spectra, the x-axis is shown from 400 to 2,000 cm-1 to emphasise the significant 

peaks (all peak intensities outside this range are < 3%).  Bonds involving a 13C have a 

lower vibrational frequency compared to those with 12C and this is reflected in the peaks’ 

frequencies of the corresponding IR spectra from the 13C1 and 13C12 data relative to the 

12C12 modelled data.  The above spectra, together with those from other isotopologues 

and isotopomers, were submitted to PCA with the results shown in Figure 5.30. 

The 4 clusters due to PCB-188 (2,2’,3,4’,5,6,6’-HpCB) and PCB 189 (2,3,3’,4,4’,5,5’-HpCB) 

in their native and 13C12-labelled forms are clearly shown in addition to the single 

spectrum points from the modelled 13C6 isotopologues.  Each cluster contains the base 

structure and all isotopomers of its 13C1 isotopologue, and similarly all isotopomers of its 

12C1 isotopologue for the native and 13C12-labelled PCB-188 and 189 respectively.  Also 

present in each cluster are the 37Cl4 and 37Cl7 base isotopologues with a selection of 

isotopomers of their 13C1 or 12C1 isotopologues. 
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Figure 5.30 Principal component analysis (PCA) of modelled IR spectral data from the 
isotopologues and isotopomers of PCB-188 (2,2’,3,4’,5,6,6’-HpCB) and PCB 189 
(2,3,3’,4,4’,5,5’-HpCB). 
The clusters are clearly shown for the native and 13C12-labelled PCBs.  Also shown are the single 
points for the modelled 13C6-labelled PCBs that lie approximately midway, on the PC2 axis, 
between the 12C12 and 13C12 clusters.  Detail from PCB-188 (dashed rectangle) is shown in Figure 
5.31. 

 

The horizontal separation (PC1) is principally due to the isomeric structural differences 

between the two PCBs whereas the vertical separation (PC2) is principally due to the 

number of 13C atoms, since any shifts due to 35Cl substitution with 37Cl are comparatively 

minor.  I.e. the shift (in PC2 relative to the base structure) of the 37Cl7 isotopologue (of 

either PCB-188 or 189) is ~10% of that due to the 13C12 isotopologue even though the 

former contributes a greater (14 vs. 12) number of additional neutrons.  Detail from the 

PCA of PCB-188 is shown in Figure 5.31. 
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Figure 5.31 Principal component analysis (PCA) of modelled IR spectral data from the 
isotopologues and isotopomers of PCB-188 (2,2’,3,4’,5,6,6’-HpCB).  (Detail from Figure 5.30.) 

 

These changes to the frequency and amplitude relating to certain bonds could therefore 

be responsible for a particular isotopologue or one of its isotopomers absorbing either 

more, or less, energy (from the RF waveform) than another during its transit through 

the mobility cell.  Whether any such effect – if substantiated – would be enough to cause 

any of the observed effects is unknown. 

If this mechanism is viable, it would nevertheless fail to explain why any peak 

broadening, doublet formation or the proposed isomerisation is only observed for 

secondary ions: is a combination of the above required?  E.g. could the spin effect result 

in a certain alignment or containment affecting only the secondary ions such that any 

RF field heating is more effectively focussed to supply sufficient energy for isomerisation 

to occur? 

It has also been reported that, for experimental data from sodiated polyethylene glycol, 

the measured CCS increased both with temperatures above and also below 300 K 

(Wyttenbach et al., 1997); if this effect also applies to PCBs it could, in conjunction with 

the above, explain why both positive and negative ATD shifts are observed for the 

certain PCBs’ secondary ions. 
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5.4.8 Ion mobility of PCB fragment ions 

The accurate mass fragment ion data discussed in the previous chapter (4.3.6) showed 

that for certain PCBs, e.g. PCB-169, the measured m/z of ions in the loss of Cl cluster at 

odd m/z agreed with expected M-Cl values, but even m/z data appeared to result from 

a mix of 2 ions: the expected 13C isotope of M-Cl and another due to Cl/H exchange. 

The differences between these odd and even m/z fragment ions are also evident in the 

IMS-MS data.  As shown in Figure 5.32, the ATD peaks of odd m/z are reasonably well 

aligned with each other (and with the loss of HCl peak) but are clearly offset from the 

alignment of the even m/z ions. 

 

 

Figure 5.32 Ion mobility ATDs from the loss of Cl cluster of PCB-169 (3,3’,4,4’,5,5’-HxCB) 
showing data for M-HCl and M-Cl+0 to M-Cl+3.  The M-Cl traces show increased ATDs for the 
even m/z fragment ions relative to those of odd m/z. 
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Although the even m/z ATDs show some tailing towards the lower time, the overall shift 

is significant and to higher ATDs relative to the odd m/z ions.  This suggests that their 

structures differ and, together with the previous accurate mass data, would reinforce 

the idea that these are due to a Cl/H exchange process. 

Given the symmetrical 4-meta, 2-para Cl structure of PCB-169 (3,3’,4,4’,5,5’-HxCB), 

there are only 2 viable outcomes of a direct Cl/H exchange: meta Cl/H would result in 

PCB-126 (3,3’,4,4’,5-PeCB) and para Cl/H would give PCB-127 (3,3’,4,5,5’-PeCB).  Figure 

5.33 shows a comparison of ATDs from m/z 323.88 from the PCB-169 loss of Cl fragment 

(upper trace), and from the molecular ions of PCB-126 (centre trace) and PCB-127 (lower 

trace). 

 

 

Figure 5.33 Ion mobility ATD data for m/z 323.88 from the loss of Cl cluster of PCB-169 
(3,3’,4,4’,5,5’-HxCB, upper trace) and from the molecular ions of PCB-126 (3,3’,4,4’,5-PeCB, 
centre trace) and PCB-127 (3,3’,4,5,5’-PeCB, lower trace). 
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Although the presence of a peak tail in the fragment ion data – due to the partial 

contribution from the 13C isotope of the Cl loss – confounds any exact match, it 

nevertheless shows reasonable alignment with the corresponding peak from PCB-126 

rather than with PCB-127.  This further supports the idea that Cl/H exchange has 

occurred for these even m/z ions, and more specifically at the meta position, and hence 

it is the 3,3’,4,4’,5-PeCB structure that has been formed. 

Similar variations in the odd/even M-Cl m/z are observed for other congeners, but as 

with the fragmentation data discussed in Chapter 4 (e.g. see Figure 4.32), these effects 

are not observed for the molecular ion or for the loss of 2Cl data, as shown for PCB-114 

(2,3,4,4’,5 PeCB) in Figure 5.34. 

 

 

Figure 5.34 Ion mobility ATD for PCB-114 (2,3,4,4’,5-PeCB) showing M+0 to M+3 from the 
molecular ion cluster (green), the loss of Cl (red) and the loss of 2Cl (blue). 
The ATDs show significant variations between the odd and even m/z for the loss of Cl but not 
for the molecular ion or for the loss of 2Cl. 



 

183 

The above variation in the ATD of fragment ion data can also be used as the basis to 

selectively filter spectra.  The upper trace of Figure 5.35 shows the conventionally 

acquired MS spectrum for loss of Cl region of PCB-138 (2,2’,3,4,4’,5’-HxCB), the same 

m/z range is then extracted from the IMS-MS data over the ATD ranges corresponding 

to the odd and even m/z maxima to create the spectra shown in the centre and lower 

traces respectively.  The conventional spectrum shows a mixture of M-Cl fragment ions 

and those from the Cl/H exchange process; these are effectively separated in the filtered 

IMS-MS data shown in the centre (M-Cl) and lower (Cl/H exchange) spectra. 

 

 

Figure 5.35 MS and IMS-MS data from the loss of Cl region for PCB-138 (2,2’,3,4,4’,5’-HxCB) at 
a CE of 20 eV. 
The upper trace shows the conventional (averaged and background subtracted) MS spectrum, 
the centre trace was selectively extracted from the IMS-MS ATD region corresponding to the 
odd m/z maxima and the lower trace from the even m/z maxima; these result in spectra 
corresponding to the M-Cl and Cl/H exchange respectively. 
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5.5 Conclusions 

The data in this chapter have shown that ion mobility separation coupled with mass 

spectrometry (IMS-MS) provides useful additional structural information for all 209 

PCBs: the collisional cross sections (CCS) derived from the acquired IMS-MS data have 

shown good agreement with that published for the few (26) PCBs for which data is 

available and expands upon that by presenting CCS data for all 209 PCBs.  These new 

data were also shown to match well with values obtained from molecular modelling 

calculations.  The various processing and data visualisation tools developed as an aid to 

this work should also be of benefit to future researchers. 

Various patterns have also emerged from the IMS-MS data that match key structural 

parameters, e.g. relating to the number of ortho substitutions, and importantly to those 

PCBs currently assessed as being toxic.  It was also observed that PCB-37, a congener 

that has been previously suggested for inclusion in the toxic congener list, also fitted 

with this pattern. 

Several unusual artefacts were also observed during this study.  For certain PCBs, the 

arrival time distributions (ATD) of the M+1, M+3, etc. ions, i.e. those due to the naturally 

occurring 13C isotope, were not consistent with the ATDs of the primary (M+0, M+2, etc.) 

ions.  This problem arises since it is assumed that a compound’s structure, and hence its 

collision cross section (CCS), is invariant with isotopic substitution(s), and therefore any 

changes in its measured ATDs should only be due to differences in the (reduced) masses 

of those isotopologues’ ions.  Both positive and negative ATD offsets were observed and 

were often significant, i.e. far greater than could be explained by any mass differences.  

However, changes in ATDs within either the primary or secondary ion sub-groups were 

consistent with their m/z, and there were no unexpected shifts due to the various 37Cl 

isotopologues – the effect appears to be confined to isotopologues containing a single 

13C.  Furthermore, the behaviour of fully 13C12-labelled standards appeared to be as 

expected (though only a few such standards were available to investigate this). 

In addition to these offsets, several PCBs exhibited the formation of doublets in their 

ATD data – again, only affecting the 13C isotopologues.  If such doublet peaks were split, 

it was found that the higher of the two resulting ATDs could be matched to that of 

another PCB and these suggested that isomerisation was occurring.  In all cases 
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observed, this was attributed to ortho substituted Cl atoms undergoing rearrangement 

to meta positions – subject to such positions being available and the process being 

energetically favourable. 

Various mechanisms were considered for the above effects: changes to an ion’s centre-

of-mass, the nuclear spin of 13C and ion heating within the mobility cell.  The first was 

considered unlikely given that the effects observed were far more significant where a 

13C was involved compared to those with a 37Cl, i.e. counter to that expected due to 

changes in centre-of-mass.  The effects of nuclear spin, i.e. as characterised by the 

angular momentum of 13C but not by 12C, are not known in the context of this work, but 

it remains a possible focal point for future research since many observations only pertain 

to ions containing a single 13C. 

It was also suggested that spin could play a role in ion heating via some alignment or 

containment within the travelling wave RF field.  Given that significant ion heating has 

been shown to occur in a mobility gas cell, this could affect an ion’s mobility since, 

although a particular PCB structure is unaffected by isotopic substitution(s), the 

vibrational characteristics of the involved bonds can change and would thus be 

differently affected by energy imparted by the RF field. 

To investigate this, computational modelling of various PCBs and their isotopologues 

and corresponding isotopomers was performed.  For a given PCB, the resultant infrared 

(IR) modelled spectra showed various lowered frequencies, as expected, due to the 

influence of heavier isotopes on certain bonds.  The modelled IR spectral data from 

PCB-188 and 189 – two congeners that exhibited opposite shifts of their 13C ion mobility 

ATDs – were also submitted to principal component analysis (PCA).  This showed good 

clustering of the isotopologues and isotopomers from each PCB in both their natural and 

13C12-labelled forms but did not show any other distinguishing features that would 

explain the observed variations in their IMS-MS data. 

IMS-MS fragment ion data were also examined to further investigate the proposed Cl/H 

exchange process observed in the loss of Cl cluster data for certain PCBs (as reported in 

Chapter 4).  The analysis of the data from PCB-169 showed different ATDs for the odd 

and even integer m/z ions in the M-Cl region, with the even m/z ions’ ATDs each having 

a significant component that is reasonably aligned with the ATD of the corresponding 
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m/z of PCB-126.  This would support the theory that a Cl/H exchange has occurred, in 

this case of a meta Cl, thus 3,3’,4,4’,5,5’ -> 3,3’,4,4’,5 (PCB-169 -> PCB-126). 

Although much useful and novel data have been obtained from this study, several 

questions remain unanswered.  In particular, the observed offsets and doublets in the 

ATDs of ions that include a single 13C, and the proposed isomerisations require further 

study: what is/are the mechanism/s involved and do these effects reflect different 

chemical and/or biological activity outside the gas phase arena? 

The low resolution of the ion mobility data is clearly a limiting factor in some of this work 

where more definitive data is needed, e.g. only cases of obvious doublet formation could 

be studied, yet many other examples were seen of significant peak broadening – these 

are likely also doublets, or possibly multiplets, but this could not be ascertained.  A 

recent development in travelling wave ion mobility spectrometry (TWIMS) is that of a 

cyclic TWIMS: a fundamental parameter governing the instrument’s resolution is the 

length of the mobility cell; by allowing the ions to make multiple passes through a looped 

cell this limitation can be significantly overcome (Giles et al., 2019). 

Although beyond the original scope of this thesis, further experimental work, using 

enhanced instrumentation such as the above, standards with different 13C labelling (e.g. 

13C1, 13C6, etc.), other mobility gases and variations in operational parameters (e.g. the 

amplitude and frequency of the travelling wave), could provide valuable insight into 

some of these previously unknown areas. 
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Chapter 6  

 

Conclusions, Outlook and Future Research 

 

6.1 Conclusions 

The initial aims and objectives of this thesis stemmed from the need to address various 

concerns in the published methods for the ultratrace analysis of persistent organic 

pollutants (POPs) such as polychlorinated dioxins (PCDDs), furans (PCDFs) and biphenyls 

(PCBs).  The introductory chapter discussed several historical and contemporary sources 

of these compounds and some of the known health effects.  Of note was that current 

human exposure is primarily through food, and this has led to legislation within the EU 

and other territories that define the maximum permitted concentrations of PCDDs, 

PCDFs and PCBs in both food and in animal feed. 

The correct determination of these compounds’ concentrations is therefore a key 

requirement in food and feed testing, and e.g. epidemiological studies, and other 

environmental monitoring and remediation programs.  Although that may seem to be 

an obvious, perhaps trite, statement, especially considering the complex sample 

preparation, use of carbon-13 labelled standards and the level of instrumentation 

required for such analyses, there are nevertheless aspects of the methods – 

measurement artefacts – that can result in incorrectly reported concentrations. 

The methods in question were founded on two key pillars: 

1. The use of isotope dilution, i.e. (briefly) where the responses of native (12C12) 

standards are referenced against 13C12-labelled standards to determine relative 

response factors (RRFs) for calibration purposes; subsequently, the unknown 

sample concentrations can be calculated from their responses and those of the 

corresponding 13C12-labelled standards together with their calibration RRFs.  

(See section 1.12 for comprehensive details on the isotope dilution technique.) 

2. The use of gas-chromatography (GC) coupled with high-resolution mass 

spectrometry (HRMS) operating at a resolution of ≥ 10,000 (m/Δm, 10% valley 

definition) using selected ion monitoring (SIM) for data acquisition. 
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Other technologies, such as GC-MS/MS (tandem mass spectrometry using, e.g. triple-

quadrupole or hybrid quadrupole/time-of-flight technologies) and bioanalytical (e.g. 

immunoassay) based techniques were also discussed as both are now used for limited 

testing of these compounds, but GC-HRMS based analysis remains the de facto standard 

as it complies with all current regulatory requirements. 

The reasons for the use of both HRMS and SIM were also described in Chapter 1, but a 

consequence of using the latter (to achieve the required sensitivity) is that compound 

identification now relies on just 2 parameters: GC retention time (RT) and the isotope 

ratio determined from the peak areas measured from the 2 ion traces at that RT.  If a 

detected compound elutes within its predicted RT window and the measured isotope 

ratio is within a specified tolerance of the theoretical value, then the compound is 

confirmed as that expected. 

However, as discussed in Chapter 2, measurement variances due to the statistical nature 

of a mass spectrometer’s ion production and detection methods can result in the failure 

to meet this ratio requirement, even for valid compounds.  This led to an extensive 

review of the ion detection process, associated calculations and to the use of Monte 

Carlo techniques to model isotope ratio measurements for different peak intensities and 

measurement dwell times to determine the expected failure rates; simulations using 

this model compared well with actual data. 

An interesting example based on some pentachlorinated biphenyl (PeCB) data was also 

shown.  The isotope ratio test is based on the responses from the two most intense ions 

of the molecular ion cluster, but for PeCBs the M+0 and M+4 intensities are 

approximately equal, and therefore the ratio can be determined from either M+0/M+2 

or M+2/M+4.  Data were shown where the ion ratios had been determined from both 

pairs and produced the paradoxical result of PCB-114 (amongst others) being in-ratio in 

one case and out-of-ratio in the other.  Although here it simply exposed the weakness 

of the ratio test, it must be realised that this would not ordinarily be possible since, in 

routine analyses, only one pair of ions would be monitored and thus any analyst would 

be unaware of such conflicting data.  The modelling also showed that the failure rate is 

asymmetrical, i.e. more peaks fail with ratios > +15% than with those with ratios < -15%. 
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The use of toxic equivalency factor (TEFs) and their resulting toxic equivalent 

concentrations (TEQs) is also relevant here.  These factors are used to scale the 

measured concentrations of each toxic congener and the results summed to produce a 

single concentration value.  This allows direct comparisons between samples and, for 

regulatory work, a straightforward pass/fail determination.  If one of the toxic 

compounds – such as PCB-114 in the above example – is then incorrectly assessed by 

the ratio test, a significant bias to the result can occur. 

The idea of modifying the relative dwell times of the monitored ion pairs to minimise 

the ion statistical variances according to their theoretical isotope ratios was also 

explored and showed some unexpected results.  E.g. monochlorinated biphenyl (MoCB) 

has a theoretical isotope abundance ratio of 3.06, therefore it was assumed that by 

proportioning the dwell times in a 25:75 ratio, rather than the default 50:50, the number 

of ions detected at each m/z would be equal and thus the performance would be optimal 

with each m/z showing the same statistical variance.  The former was true (implicitly), 

the ion counts do then match, but not the latter.  The model showed that the optimum 

occurred with a 37:63 ratio due to the greater overall number of primary ions detected.  

A related optimisation strategy based on expected signal levels also showed the benefit 

of reallocating some of the available channel dwell time from that used for the m/z 

channels of nominally high-level standards to those of the target compounds. 

The observation was then made that the rationale behind the 15% isotope ratio 

tolerance, as used by the PCDD/F and PCB methods, has never been explained nor any 

supporting data or other references provided, and it was probably established 

empirically from early experimental work.  Similarly, the published GC-HRMS method 

for organochlorine pesticides uses tolerances of 25% and 35% without justification.  

Irrespective of whether the 15% tolerance or any other value is chosen, it remains an 

arbitrary value that can only serve as a compromise: as discussed, it can be both too 

restrictive for the variances that accompany low-level signals and too broad to identify 

possible problems at higher levels.  Therefore, a key proposal arising from this work is 

that the ratio tolerance should be a dynamic rather than static parameter, and a chart 

and associated calculations demonstrating its implementation were shown. 

Although such an approach would formerly have presented technical challenges, it could 

now be readily incorporated into the data processing software and provide the users 
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with a more fit-for-purpose identification schema.  Its benefits were also shown in an 

example where a series of high-level peaks all fell within the original 15% tolerance, but 

failed the dynamic ratio test where a 2% value was suggested: since the absolute mean 

ratio error was ~9%, but the RSD was less than 1%, this immediately indicated a 

calibration or other instrument related problem.  Such an approach can be equally useful 

for MS/MS data and has the side benefit of providing an alternative measure of a peak’s 

signal-to-noise ratio. 

Despite the weaknesses of the existing isotope ratio criterion, replacing or supplanting 

it with the proposed dynamic test is more likely to face ethical and political rather than 

technical barriers.  For example, if a sample’s reported TEQ is above some regulated 

level using the existing method, but below using the proposed version, or vice-versa, 

how is any legal action, product withdrawal or other consequence amended?  In any 

event, a peer-reviewed inter-laboratory study is required in the first instance and, as 

discussed, some regions, such as the EU, may be more accepting of such changes as has 

previously been demonstrated by its adoption of GC-MS/MS instrumentation as a valid 

alternative to GC-HRMS for certain regulatory analyses of food and animal feed. 

The concern over isotope ratios also revealed several discrepancies between the 

methods’ quoted values and those given by the mass spectrometer’s software and other 

online sources.  This led to a validation exercise, discussed in Chapter 3, that included 

the development of “PureIso”, an ab initio isotope cluster calculation program where 

the sources of all isotopic masses and abundances could be referenced.  The program 

also addresses an important shortcoming of commercial isotope calculators by allowing 

the isotopic purities of 2H, 13C and 37Cl – as would be used by labelled standards in this 

work – to be defined.  By limiting calculations to those of small molecules, i.e. as 

applicable to this study, the program did not need any filtering or other pruning type 

routines, as generally used to constrain the number of combinations to meet typical 

memory limitations, thereby further assuring its results. 

A comparison between the calculated isotope ratios from PureIso and those from 3 out 

of 4 other programs showed excellent agreement (the 4th being a clear outlier from the 

consensus values).  Comparisons between the calculated values and those published in 

the EPA methods showed errors <1.5% for all native PCB and PCDD/Fs but up to 3% for 

certain 13C-labelled PCDFs.  Given the binary, detect vs. non-detect, result from applying 
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the isotope ratio test – whether under the existing approach, or that proposed – the 

methods’ values should be revised. 

Given the increasing use of AP ionisation over traditional EI, the chapter discussed the 

potential effect on measured isotope ratios due to a mixture of both charge exchange 

and protonation occurring in the ion source.  Although most ratio errors were small (or 

only affected the minor ions) they were, in the tests conducted, up to 4% which could 

contribute to uncertainty in peak confirmation, especially if coupled with other, e.g. 

statistical, errors. 

Calculations to determine the degree of protonation were shown but it should be noted 

that this would require additional m/z or transitions for certain experiment types.  As 

had been discussed in the previous chapter, any occurrences of incorrect ratio 

assessments can easily go unnoticed due to automated processing and reporting via 

databases, etc., with the unintended consequence of misreported concentrations or 

other inter-sample trends. 

The discussion of measurement artefacts continued in Chapter 4 with an examination 

of the effects of fragmentation in PCB analysis.  Unlike PCDD/F analysis, PCBs exhibit 

significant overlap of their analytical (m/z descriptor) functions that can result in 

interferences from fragment ions of more highly chlorinated congeners.  Although the 

possibility of this occurring is referenced in the prevalent PCB method (EPA-1668C), 

there is no specific detail as to the nature of the problem and it incorrectly asserts that 

only a subset of 4 congeners are affected. 

In cases where the interference is due to the loss of Cl, the ions formed would have the 

same isotope ratios (given the precision of the instrumentation used) and would thus 

be additive; for those due to the loss of 2Cl, the ratios would differ.  Depending on the 

level of interference, the latter could cause an otherwise in-ratio peak to become 

out-of-ratio.  Samples containing a small subset of known PCBs were analysed to 

demonstrate the formation of artefact peaks, i.e. false positives, due to the loss of Cl 

using both EI and AP ionisation.  These were shown to be indistinguishable from the true 

congeners, with one example showing the formation of a peak identified as the toxic 

PCB-81.  An analysis of the GC retention times of all 209 PCBs showed that 25 of these 

presented a potential problem due to the loss of Cl with 7 affecting one of the toxic 
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compounds.  For the loss of 2Cl, 4 PCBs were similarly identified with 3 affecting a toxic 

compound. 

The loss of Cl was charted for all 209 PCBs using both EI and AP ionisation.  These showed 

broadly similar patterns to each other with the highest level of fragmentation on those 

PCBs with Cl in at least the 2 and 2’ positions, i.e. ortho substituted on each ring.  Less 

fragmentation was observed for non-toxic mono-ortho PCBs and the least for the toxic 

mono- or non-ortho substituted PCBs.  This correlates with the steric hindrance imposed 

by the presence of Cl atoms in those positions and the consequent constrained rotation 

around the central C-C bond, and the more planar conformations that characterise the 

known toxic PCBs. 

Analysis of the data from GC-MS/MS experiments using AP ionisation showed some 

surprising results.  Although the isotope distribution of the molecular ion and loss of 2Cl 

clusters were as expected, this was not the case for several PCBs where the minor, M+1, 

M+3, etc. ions in the loss of Cl cluster – that should have been simply due to the natural 

13C isotopes of M-Cl ions – suggested a mix of these with other odd electron species.  

The accurate mass data indicated that these were radical cations where the loss of Cl 

had occurred but with an H having been substituted.  Although this possible Cl/H 

exchange mechanism, if correct, could not be explained, its occurrence was nevertheless 

supported by the ion mobility data shown in Chapter 5.  The example discussed showed 

the formation of 3,3’,4,4’,5-PeCB from 3,3’,4,4’,5,5’-HxCB, i.e. with exchange occurring 

in one of the meta positions. 

Further PCB studies using AP ionisation with GC-MS/MS at different collision energies 

led to the fragmentation profiles for a subset of 80 PCBs – this being limited by the 

available standards and potential coelution overlaps of the fragment ions.  These 

profiles were submitted to principal component analysis (PCA) where certain groupings, 

such as for the non- and mono-ortho toxic PCBs, could be observed.  A hypothesis being 

considered was that this analysis might identify certain PCBs as possible candidates for 

inclusion into the WHO list of known, and hence regulated, toxic compounds.  Although 

PCB-11 and 37, both having been previously reported as having toxic properties, were 

shown to be close to the non-ortho substituted toxic PCB cluster, the cluster itself was 

not sufficiently separated from other, non-toxic, PCBs for it to be an unequivocal 

indicator of toxicity.  This work would benefit from additional analyses using standards’ 
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mixes where all PCBs and any fragment ions are distinctly resolved in retention time so 

that all 209 congeners can be analysed.  A weakness of these data was that an 

insufficient number of collision energy (CE) points were used – due to instrument 

availability limitations – as some congeners showed rapid changes in fragmentation 

responses at, e.g. 10 and 20 eV CE, suggesting that data should also be acquired at 15 

and 25 eV CE. 

Such PCB mixes would also enable relative fragmentation responses to be determined 

for any molecular ion and their fragment losses for all cases where a coelution could 

exist; such a fragmentation calibration would address the method’s deficiency in this 

regard by allowing interfering candidates to be automatically identified.  

Chapter 5 showed that ion mobility separation in conjunction with mass spectrometry 

(IMS-MS) could provide an additional dimension to the data by showing the structural 

grouping for all 209 PCBs in terms of their degree of ortho substitution.  Because of the 

very large number of peaks present in the IMS-MS data two different processing 

strategies were developed; this included the development of a novel program, 

DriftScope Analyser (DSA) to process and display the data exported from the 

instrument’s software. 

For each PCB, its collision cross section (CCS) was calculated from the arrival time 

distribution (ATD) data and molecular modelling software was used to determine its 

optimum structure conformation.  The resulting modelled data was then submitted to 

2 further programs to estimate CCS using both projection approximation and trajectory 

methods.  The CCS results from the modelled data showed good agreement with those 

from the acquired mobility data, and for a subset of 26 PCBs for which published data 

were available. 

Using the DSA program also revealed some unexpected offsets of the ATDs of the 

secondary (minor) – naturally occurring 13C ions – relative to the primary (major) ions 

for some PCBs.  It would be expected that the ATDs would simply increase in accordance 

with mass since an ion’s structure – and hence its CCS – is nominally identical for all 

isotopologues of the same compound. 

Modifications were then made to the MS processing software such that the ion mobility 

ATDs could be recalculated in greater detail from the extracted accurate mass data.  This 
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enabled more precise comparisons between the ATDs of isotopologues despite the very 

low ion mobility resolution available.  These data were very surprising in that they 

showed the formation of doublets in the secondary ion ATD data.  The centroids from 

these doublets matched the offsets observed in the DSA data but when these were split 

into 2 peaks, the lower ATD peak now aligned with the ATD of the primary ions; 

however, the upper in each of the examples studied matched the ATD of another 

compound – this suggested that (partial) isomerisation was occurring. 

Because of the low ion mobility resolution, this study could only be performed for a 

small number of PCBs where the doublets were clearly present, but in each case the 

alignment indicated that a rearrangement of ortho-substituted Cl to meta was 

occurring.  One example shown was the isomerisation of 2,2’,3,4,6,6’-HxCB (PCB-145) to 

2,3,3’,4,5,5’-HxCB (PCB-159), i.e. the 2’, 6 and 6’ ortho Cl have rearranged to the 3’, 5 

and 5’ meta positions respectively.  This is also energetically favourable whereas certain 

other rearrangements, e.g. from 2,2’,4,4’,6,6’-HxCB (PCB-155) to 3,3’,4,4’,5,5’-HxCB 

(PCB-169), are not and therefore do not occur.  A puzzle that remains with the above is 

that it is only observed for the secondary (13C) ions. 

Changes to an ion’s centre-of-mass, the effects of nuclear spin and thermal effects due 

to heating in the ion mobility cell were considered as possible causes and this led to a 

computer-modelling based study of the certain PCB’s infrared (IR) spectra.  This showed 

different bond frequencies and magnitudes corresponding to the isotopologue and 

isotopomer variations.  PCA analysis of these data showed clear clustering of the data 

from PCB-188 and 189 in both native and 13C12-labelled forms together with their 

respective 13C1 and 12C1 isotopologues and corresponding isotopomers.  However, these 

data did not explain why the presence of a single 13C could give rise to the effects 

observed and therefore some combination of the above, or an as yet unknown 

mechanism is responsible. 
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6.2 Outlook 

Refinement of the analytical methods derived from this research should, following 

appropriate validation, lead to an increase in data quality by addressing the current 

weaknesses associated with isotope ratio measurements and fragmentation effects.  

This not only benefits data obtained from a single laboratory but, by providing a more 

scientifically sound method, it will also improve data integrity obtained from multiple 

sources.  This is particularly important for large-scale studies which, by necessity, 

process samples using a network of laboratories and where unwanted variances could 

mask important patterns thereby reducing a study’s effectiveness and potentially 

leading to incorrect assumptions or decisions.  Although this research has primarily 

focussed on PCB analysis, many of the ideas are directly transferrable to the analysis of 

other POPs including brominated flame retardants, mixed halogenated compounds, 

polychlorinated naphthalenes and pesticides. 

Over the last 3 decades since these analytical methods came into widespread usage, the 

performance of magnetic sector instruments, on which they were based (and still widely 

used), has seen only minor gains while other technologies, e.g. triple-quad or hybrid Q-

TOF instruments and with other ionisation methods, have made impressive gains in 

performance; these are already used as viable alternatives in some areas of analysis – a 

trend that can only continue.  This study has highlighted areas that impact these 

innovative technologies and will therefore help to transition the methods to 

accommodate them, especially given the legislation and legacy issues involved. 
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6.3 Future research 

Alongside several useful and novel findings, this research also raised new questions – in 

particular, the proposed radical ion formation in the fragmentation experiments, and 

the ion mobility ATD doublets and their proposed rearrangements that appear to 

uniquely affect only the minor, e.g. M+1, M+3, etc., 13C ions. 

The fragmentation study needs to be extended to use PCB mixes with far greater 

retention time separation of individual components such that no coelutions are 

detectable even at much lower levels than considered acceptable in the mixes used 

here.  Data needs to be acquired at additional collision energies and with different 

collision gases and pressures. 

An instrument with higher resolution ion mobility – such as the recently developed cyclic 

travelling wave device – would be the single most beneficial factor in the study of the 

ATD doublets and isomerisation.  The doublets were the clearest manifestation of more 

widespread peak broadening, but it is not yet known whether more complex structures, 

such as multiplets, exist due to the limited resolution available.  In addition, the analysis 

of new PCB standards with different degrees of 13C-labelling and the use of other 

mobility cell gases and pressures would be required to investigate these effects in more 

detail. 

Of course, this work does not need to be restricted to PCBs, but given the above 

discoveries, they would form a solid foundation for the investigative procedures needed 

for many of the related POPs – the data are the key. 
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Appendix A  

 

Presentations, Software Development and Other Research 

Performed During the PhD 

 

A.1 Oral and poster presentations as primary author 

Hart, J., 2016. Oral Presentation: Comparing the effect of varying collision energy on 
the fragmentation of toxic and non-toxic PCBs, Workshop of the EURL and NRLs 
for Dioxins and PCBs in Feed and Food. Uppsala, Sweden, 19 May 2016. 

Hart, J., Jones, R. and Clench, M., 2016. Poster Presentation: The Analysis of PCBs using 
APGC-MS/MS at Varying Collision Energies, BMRC/MERI Winter Poster Event. 
Sheffield Hallam University, Sheffield, UK, 15 December 2016. 

Hart, J., 2017. Oral Presentation: Development of a Practical Congener Profiling Utility 
for the Comparison of Dioxin, Furan and PCB Sample Data, EURL and NRL 
Workshop for Dioxins and PCBs in Feed and Food. Prague, Czech Republic, 
30 May 2017. 

Hart, J., Jones, R. and Clench, M., 2017. Poster Presentation: The Analysis of All 209 
PCB Isomers using GC-APCI-MS/MS at Selected Collision Energies and Correlation 
with Toxicity, 65th ASMS Conference on Mass Spectrometry and Allied Topics. 
Indianapolis, IN, USA, 5 June 2017. 

Hart, J., Jones, R. and Clench, M., 2017. Oral Presentation: A Study of All 209 PCB 
Isomers using GC-APCI-MS/MS at Various Collision Energies: Correlations with EI 
Data and Toxicity, 37th International Symposium on Halogenated Persistent 
Organic Pollutants. Vancouver, BC, Canada, 21 August 2017. 

Hart, J., 2017. Oral Presentation: Development of a Congener Profiling Program and 
Results from the Database Evaluation Samples, EURL Workshop of the Core 
Working Group “Dioxin Patterns”. Freiburg, Germany, 30 November 2017. 

Hart, J., 2018. Oral Presentation: Background and Development of the Congener 
Profiling Program, Workshop of the EURL and NRLs for Halogenated POPs in Feed 
and Food. Dublin, Ireland, 8 May 2018. 

Hart, J., Jones, R., Smith, D. and Clench, M., 2018. Oral Presentation: Ion Mobility Mass 
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Known Structures and Toxicities, 66th ASMS Conference on Mass Spectrometry 
and Allied Topics. San Diego, CA, USA, 6 June 2018. 

Hart, J., 2018. Oral Presentation: Updated information on the “Congener Profiler” and 
results of the new test database, EURL Workshop of the Core Working Group 
“Dioxin Patterns”. Athens, Greece, 20 June 2018. 
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A.3 Development of the “Congener Profiler” software 

Some parallel work concerned the development of a software program, “Congener 

Profiler”, intended for use within the EU National Reference Laboratories responsible 

for analysing PCDD/Fs and PCBs in food and feed products.  The purpose of this program 

is to help identify possible sources of contamination when a sample’s (toxic equivalent) 

concentration exceeds the regulatory limit.  The program uses an approach similar to 

conventional (spectral) library searching, with certain modifications, to compare a 

sample’s congener profile with those in a database containing patterns from known 

chemicals and historic food/feed contamination incidents (Malisch et al., 2017). 

Comparisons are made using an orthogonal vector method with the match being 

determined by the dot product of the vectors, i.e. the cosine of the angle between them.  

This can easily be envisaged for a system of just two components, e.g. a dioxin and a 

furan, expressed as vectors: if the two vectors match exactly (in direction, but 

irrespective of magnitude) the angle between them would be 0°, hence the cosine would 

be 1, i.e. indicative of an exact match; if the two vectors are orthogonal, the angle 

between them is 90°, hence Cos 90° = 0, i.e. no match. 

As an example, the vectors shown in Figure A.1 in represent a sample (red) and 2 

possible library matches (blue and green).  Visually, the green vector appears to be a 

closer match, as indicated by the cosine of the angle between them being closer to 1. 

 

 

Figure A.1 Illustration of a comparison between an unknown sample and 2 library entries, 
each represented by 2-dimensional vectors for their PCDD and PCDF concentrations. 

 

Angle diff. [red - green] = 5.0° 

Cos 5.0° = 0.996 

Angle diff. [blue - red] = 45.9° 

Cos 45.9° = 0.696 
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For real-world samples, the vectors have as many dimensions as the number of 

congeners analysed, e.g. 35 if all 17 PCDD/Fs, 12 WHO-PCBs and 6 Indicator PCBs are 

used.  Generally, for n congeners, using their concentrations from the library database 

(L) and the unknown (U), the cosine of the angle, θ, between them can be calculated 

using: 

𝐶𝑜𝑠 𝜃 = ∑(𝐿𝑖 × 𝑈𝑖)

𝑛

𝑖=1

(√∑ 𝐿𝑖
2

𝑛

𝑖=1

× √∑ 𝑈𝑖
2

𝑛

𝑖=1

)⁄  (A.1) 

 

The output from the program consists of two graphical displays and a results table as 

shown in Figure A.2.  The primary display (left panel) shows an x/y chart where the axes 

may be selected to various combinations of the congener groups.  The unknown sample 

is represented by a point on the chart’s origin, and the various matches as points spread 

across the chart depending on their match value, and a proportion in each axis according 

to the “distance”, i.e. the relevance of that congener’s group, in the calculation.  The 

central panel display is a simple bar chart showing the target unknown entry in the top 

box, followed by a series of matched entries in descending order of their match value 

calculated as a percentage.  The complete list of matches can be examined on the right-

hand section from the Results tab.  The graphics and results text can also be exported 

to files and/or to the clipboard for further examination, printing, etc. 

 



 

 

Figure A.2 Screenshot of the Congener Profiler program developed for use by the EU Reference Laboratories for PCDD/Fs and PCBs in 
Food and Feed for comparisons between unknown and library database samples. 

2
1

5
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A.4 Software developed for the PhD research 

The following is a list of software programs created by the author specifically for the 

research within this thesis.  These were all developed using Microsoft Visual Basic (VB), 

as part of the Visual Studio suite, versions 2015-2019 (Microsoft, Redmond, WA, USA), 

except for RaStats that used the Visual Basic for Applications (VBA) routines within Excel 

(Microsoft, Redmond, WA, USA). 

 

DriftScope Analyser 

A program to process and visualise ion mobility data exported from the Waters 

DriftScope software.  Detected chromatographic peaks due to selected m/z 

(from a built-in PCB database) are displayed as points on a chart of ion mobility 

arrival time distribution vs. GC retention time.  The points are colour-coded by 

chlorination level and scaled by peak intensity.  This program easily illustrates 

the various patterns related to structure and identifies potential interferences 

for peaks that overlap on either or both time axes. 

 

OrcaControl 

A program to queue and submit input (structure coordinates and optimisation 

parameter) files, generated using the Avogadro molecular editing software, to 

the Orca molecular modelling program. 

 

OrcaParse 

A program to extract centre-of-mass, dipole moments and single point energy 

values from Orca results files. 

 

PDB processor 

A program to (1) automatically modify Orca input files to create 13C isotopomer 

versions for subsequent computational modelling; (2) create PDB (Protein 

Database) format files from the Orca computed output files; (3) submit PDB files 



 

217 

to both the Impact and CrossArea ion mobility modelling programs to estimate 

rotationally averaged collisional cross-sectional areas. 

 

PureIso 

An ab initio program to calculate exact masses and isotopic abundances of the 

peaks within a molecular ion cluster.  A unique feature relevant to this thesis, 

compared to online calculators or to those incorporated within various mass 

spectrometer vendors’ software packages, is its ability to accommodate “fully-

labelled” standards of varying isotopic purity.  (This program is described in detail 

in Chapter 3 and specific code is shown in Appendix A.4.2) 

 

RaStats 

An Excel VBA macro to perform the ion statistics for both Gaussian and Poisson 

distributions, and the associated isotope ratio modelling used in Chapter 2.  

Details of the Poisson calculation code are shown in Appendix A.4.1. 

 

UltraTrace-Pro 

Custom add-ons developed for the proprietary (SGS) mass spectrometry 

software to enable the processing and display of ion mobility data. 
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A.4.1 Software code for the Poisson modelling 

The following VBA code documents the iterative calculations, developed for the ion 

statistics modelling in Chapter 2, using Atkinson’s Poisson rejection and multiplication 

methods (Atkinson, 1979). 

 

Function myPoisson(ByVal lambda As Double) As Integer 
 
Dim alpha, beta, k, r, s, u1, u2, x, c, lhs, rhs As Double 
Dim n As Integer 
 
If lambda > 30 Then ‘use the rejection method (for performance purposes) 
 

c = 0.767 – 3.36 / lambda ‘establish the required parameters 
beta = PI * (3.0 * lambda) ^ -0.5 
alpha = beta * lambda 
k = Log© – lambda – Log(beta) ‘note: Log in VB code is the natural log 

 
Do 

Do 
u1 = Rnd() ‘create a random value > 0, <= 1 
If u1 = 0.0 Then u1 = Rnd() ‘ensure non-zero 
x = (alpha – Log((1.0 – u1) / u1)) / beta 

Loop Until x >= 0.5 
 

n = Int(x + 0.5) 
u2 = Rnd() 
If u2 = 0.0 Then u2 = Rnd() 

 
lhs = alpha – beta * x + Log(u2 / (1.0 + Exp(alpha – beta * x)) ^ 2.0) 
rhs = k + n * Log(lambda) – LogFactorial(n) 

 
If lhs <= rhs Then Exit Do 

Loop 
 
Else ‘use the multiplication method 
 

r = Exp(-lambda) 
n = 0 
s = 1.0 

 
Do 

u1 = Rnd() 
s *= u1 
 
If s < r Then Exit Do 
n += 1 

Loop 
 
End If 
 
myPoisson = n 
 
End Function 
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A.4.2 Software code for the PureIso program 

The following shows the VB code developed for the core calculation routines used within 

the PureIso program: 

 
Private Function Isotope_Calc(ByVal trace As Integer) As Boolean 
 
' This is top-level routine from which all others are called. It is initiated from 
' either a calc request due to the user setting the various element values or from 
' a graphics refresh. The trace parameter passed to this routine allows up to 8 
' traces to be displayed as overlays. 
 
 
    Dim eIdx, idx, totalCombs, eleCt As Integer 
    Dim probability, mass As Double 
    Dim formula As String 
    Dim bDone As Boolean = False 
 
 
    eleCt = 0 
    For eIdx = 0 To ElementTable.GetUpperBound(0) 
        If ElementTable(eIdx).element_count > 0 Then eleCt += 1 
    Next 
    eleCt -= 1 
 
    Dim maxIndices(eleCt), curIndices(eleCt) As Integer 
    Dim all_probs(eleCt)(), all_masses(eleCt)() As Double 
    Dim all_formulae(eleCt)() As String 
 
 
    eleCt = 0 
    totalCombs = 1 
    For eIdx = 0 To ElementTable.GetUpperBound(0) 
 
        If ElementTable(eIdx).element_count = 0 Then Continue For 
 
        CalcAtomDistribution(CType(eIdx, ElementsIdx), trace) 
 
        ReDim Preserve all_probs(eleCt)(Probabilities(trace).GetUpperBound(0)) 
        ReDim Preserve all_masses(eleCt)(Masses(trace).GetUpperBound(0)) 
        ReDim Preserve all_formulae(eleCt)(Formulae(trace).GetUpperBound(0)) 
 
        For idx = 0 To Probabilities(trace).GetUpperBound(0) 
            all_probs(eleCt)(idx) = Probabilities(trace)(idx) 
            all_masses(eleCt)(idx) = Masses(trace)(idx) 
            all_formulae(eleCt)(idx) = Formulae(trace)(idx) 
        Next 
 
        totalCombs *= Probabilities(trace).Length 
        eleCt += 1 
    Next 
 
    If eleCt = 0 Then Return False 
 
    'set the index arrays that hold the num of possibilities for each element 
    eleCt -= 1 
    For eIdx = 0 To eleCt 
        maxIndices(eIdx) = all_probs(eIdx).GetUpperBound(0) 
        curIndices(eIdx) = maxIndices(eIdx) 'start the current indices at max values 
    Next 
 
    LblInfo.Text = totalCombs.ToString("#,#") 
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    'put all combinations into the arrays 
 
    totalCombs -= 1 
    ReDim Masses(trace)(totalCombs), Probabilities(trace)(totalCombs), 
              Formulae(trace)(totalCombs) 
 
    Do 
        mass = 0.0 
        probability = 1.0 
        formula = "" 
        For eIdx = 0 To eleCt 
            mass += all_masses(eIdx)(curIndices(eIdx)) 
            probability *= all_probs(eIdx)(curIndices(eIdx)) 
            formula &= all_formulae(eIdx)(curIndices(eIdx)) 
        Next 
 
        Masses(trace)(totalCombs) = mass - (NumElectronCharges.Value * ElectronMass) 
 
        Probabilities(trace)(totalCombs) = probability 
        Formulae(trace)(totalCombs) = formula 
        totalCombs -= 1 
 
        Do 
 
            If curIndices(eleCt) > 0 Then 
                curIndices(eleCt) -= 1 
                Exit Do 
            Else 
                'check if all entries are zero - we're done if they are 
                bDone = True 'assume this for now 
                For idx = 0 To eleCt 
                    If curIndices(idx) > 0 Then 
                        bDone = False 
                        Exit For 
                    End If 
                Next idx 
                If bDone Then Exit Do 
 
                For idx = eleCt - 1 To 0 Step -1 'decrement entries to the 'left' 
                    curIndices(idx + 1) = maxIndices(idx + 1) 'reset this entry 
                    If curIndices(idx) > 0 Then 
                        curIndices(idx) -= 1 
                        Exit Do 
                    End If 
                Next 
            End If 
 
        Loop 
 
        If bDone Then Exit Do 
 
    Loop Until totalCombs < 0 
 
    If totalCombs <> -1 Then 
        MessageBox.Show("An error has occurred in the calculations!", "PureIso", 
                        MessageBoxButtons.OK, MessageBoxIcon.Exclamation) 
        Return False 
    End If 
 
    If ChkFilter.Checked Then 
        Dim threshold As Double 
 
        Try 
            threshold = CDbl(TxtFilter.Text) 
        Catch ex As InvalidCastException 
            threshold = 0.0 
        End Try 



 

221 

        FilterArrays(threshold, trace) 
    Else 
        LblInfo2.Text = "-" 
    End If 
    SortArrays(trace) 
    GroupMasses(trace) 
 
    Return True 
 
End Function 
 
 
Private Sub CalcAtomDistribution(ByVal eIdx As ElementsIdx, ByVal trace As Integer) 
 
' This routine calculates the distribution probabilities for each atom in the 
' formulate according to the number of isotopes present in the table for that 
' element. Currently elements with up to 3 isotopes are supported. 
 
 
    Dim primary_atom_count, secondary_atom_count, tertiary_atom_count As Integer 
    Dim idx, loopCt As Integer 
    Dim factor As Double 
 
 
    With ElementTable(eIdx) 
 
        Select Case .isotope_count 
 
            Case 1 
 
                'with a mono-isotopic atom, there is just one possibility (e.g. 12^0) 
                ReDim Probabilities(trace)(0), Masses(trace)(0), Formulae(trace)(0) 
 
                Probabilities(trace)(0) = .abundances(0) 
                Masses(trace)(0) = .element_count * .masses(0) 
                Formulae(trace)(0) = .element_symbol_1 
 
                If .element_count > 1 Then Formulae(trace)(0) &= CStr(.element_count) 
                Formulae(trace)(0) &= " " 
 
            Case 2 
 
                'with 2 isotopes, there are num_atoms+1 possible combinations 
                'so the array is num_atoms as we also have index=0 
                ReDim Probabilities(trace)(.element_count), 
                    Masses(trace)(.element_count), Formulae(trace)(.element_count) 
 
                For idx = 0 To .element_count 
 
                    primary_atom_count = .element_count - idx 
                    secondary_atom_count = idx 
                    factor = CalcFactor(.element_count, 
                                 primary_atom_count,secondary_atom_count) 
 
                    Probabilities(trace)(idx) = .abundances(0) ^ primary_atom_count * 
                        .abundances(1) ^ secondary_atom_count * factor 
                    Masses(trace)(idx) = primary_atom_count * .masses(0) + 
                        secondary_atom_count * .masses(1) 
 
                    If primary_atom_count > 0 Then 
                        Formulae(trace)(idx) = .element_symbol_1 
                        If primary_atom_count > 1 Then Formulae(trace)(idx) &= 
                            primary_atom_count.ToString 
                        Formulae(trace)(idx) &= " " 
                    End If 
 
                    If secondary_atom_count > 0 Then 
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                        Formulae(trace)(idx) &= "[" & 
                            ElementTable(eIdx).element_symbol_2 
                        If secondary_atom_count > 1 Then Formulae(trace)(idx) &= 
                            secondary_atom_count.ToString 
                        Formulae(trace)(idx) &= "] " 
                    End If 
 
                Next 
 
            Case 3 
 
            'with 3 isotopes, there are (num_atoms+2 * num_atoms+1)/2 possible combs. 
                idx = ((.element_count + 2) * (.element_count + 1)) \ 2 - 1 
                ReDim Probabilities(trace)(idx), Masses(trace)(idx), 
                         Formulae(trace)(idx) 
 
                idx = 0 
                loopCt = 0 
                primary_atom_count = .element_count 
 
                Do 
 
                    For secondary_atom_count = 0 To loopCt 
                        tertiary_atom_count = .element_count - primary_atom_count – 
                            secondary_atom_count 
 
                        factor = Factorial(.element_count) / 
                            Factorial(primary_atom_count) / 
                                Factorial(secondary_atom_count) / 
                                    Factorial(tertiary_atom_count) 
 
                        Probabilities(trace)(idx) = .abundances(0) ^ 
                            primary_atom_count * .abundances(1) ^ 
                                secondary_atom_count * 
                                    .abundances(2) ^ tertiary_atom_count * factor 
 
                        Masses(trace)(idx) = primary_atom_count * .masses(0) + 
                            secondary_atom_count * .masses(1) + 
                                tertiary_atom_count * .masses(2) 
 
                        If primary_atom_count > 0 Then 
                            Formulae(trace)(idx) = .element_symbol_1 
                            If primary_atom_count > 1 Then 
                                Formulae(trace)(idx) &= primary_atom_count.ToString 
                            Formulae(trace)(idx) &= " " 
                        End If 
 
                        If secondary_atom_count > 0 Then 
                            Formulae(trace)(idx) &= "[" & 
                                ElementTable(eIdx).element_symbol_2 
                            If secondary_atom_count > 1 Then 
                                Formulae(trace)(idx) &= secondary_atom_count.ToString 
                            Formulae(trace)(idx) &= "] " 
                        End If 
 
                        If tertiary_atom_count > 0 Then 
                            Formulae(trace)(idx) &= "[" & 
                                ElementTable(eIdx).element_symbol_3 
                            If tertiary_atom_count > 1 Then Formulae(trace)(idx) &= 
                                tertiary_atom_count.ToString 
                            Formulae(trace)(idx) &= "] " 
                        End If 
 
                        idx += 1 
                    Next 
 
                    loopCt += 1 



 

223 

                    primary_atom_count -= 1 
 
                Loop Until primary_atom_count < 0 
 
            Case Else 
                'nothing else supported as yet 
                ReDim Preserve Probabilities(trace)(0), Masses(trace)(0), 
                    Formulae(trace)(0) 
 
                Exit Sub 
 
        End Select 
 
    End With 
 
End Sub 
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Appendix B  

 

Supplemental Results 

 

B.1 Error modelling using the Poisson distribution 

Figure B.1 shows the modelled variation in the number of peaks that fall within the 15% 

isotope ratio tolerance vs. the relative duty cycle of ion #1 for 5 different compounds.  

These data, summarised in Table B.1, were modelled using the Poisson distribution for 

comparison to Gaussian modelled data discussed in section 2.7 (p. 57). 

The data (solid lines) were smoothed using a 5-point moving average; also shown are 

the expected (dotted lines) and actual maxima (dashed lines).  The calculations were 

based on modelling using the Poisson distribution with 500 ions and 105 iterations. 

 

 

Figure B.1 Modelled data based on the Poisson distribution showing the relative number of 
peaks within 15% of the theoretical isotope ratio vs. relative duty cycle for MoCB, 
Methoxychlor, Malathion, TCDD and PeCB. 
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 MoCB 
Methoxy-

chlor 
Malathion TCDD PeCB 

Theoretical isotope ratio 3.06 6.13 9.51 0.78 0.62 

Expected optimum duty cycle 
(ion 1) 

24.6% 14.0% 9.5% 56.3% 61.6% 

Modelled duty cycle for 
maximum pass rate (ion 1) 

37.5% 29.3% 26.0% 53.5% 57.8% 

Pass rate at 50% duty cycle 66.4% 58.7% 49.0% 66.2% 61.7% 

Maximum pass rate 68.3% 62.7% 54.5% 66.4% 62.5% 

Increase 2.9% 6.8% 11.3% 0.3% 1.2% 

Table B.1 Summary of the data from Figure B.1 showing the optimum duty cycle and 
increases in the “pass rate” for 5 different compounds. 

 

B.2 PFK data statistics used for detector gain calculations 

The data shown in Table B.2 refers to that used for the discussion on detector gain 

calculations in Chapter 2.6. 

 

Data Start Scan # 
Data σ at Dwell 
Time = 100 ms 

Data σ at Dwell 
Time = 50 ms 

Data σ at Dwell 
Time = 10 ms 

Ratio 
σ50 ms / σ10 ms 

0 3.17E+04 4.02E+04 9.30E+04 2.31 

50 2.67E+04 3.78E+04 8.11E+04 2.15 

100 2.83E+04 3.56E+04 8.99E+04 2.53 

150 3.32E+04 3.46E+04 8.42E+04 2.44 

200 2.79E+04 3.02E+04 9.41E+04 3.11 

250 3.15E+04 3.80E+04 9.83E+04 2.59 

300 3.46E+04 3.48E+04 8.09E+04 2.32 

350 2.90E+04 3.91E+04 9.12E+04 2.33 

400 2.68E+04 4.43E+04 7.88E+04 1.78 

450 2.78E+04 4.44E+04 7.91E+04 1.78 

500 3.26E+04 4.31E+04 8.37E+04 1.94 

550 2.69E+04 4.00E+04 8.82E+04 2.20 

600 3.02E+04 4.17E+04 8.65E+04 2.07 

650 2.50E+04 2.98E+04 9.25E+04 3.10 

700 3.43E+04 3.60E+04 6.72E+04 1.87 

750 2.76E+04 3.65E+04 1.02E+05 2.78 

800 2.91E+04 4.66E+04 9.24E+04 1.98 

850 2.64E+04 4.07E+04 8.66E+04 2.13 

900 3.19E+04 4.22E+04 7.62E+04 1.80 

950 2.93E+04 3.65E+04 9.21E+04 2.52 

Mean 2.95E+04 3.86E+04 8.69E+04 - 

Mean σ as a % of 
the overall σn=1,000 

23.0% 18.2% 2.6% - 

Table B.2 PFK statistics showing the σ for each of the 20 x 50 scan data subsets from the 
overall (n = 1,000) datasets recorded using dwell times of 100, 50 and 10 ms. 
Also shown are the ratio of the 50 and 10 ms subset σ, and the mean σ and its proportion 
relative to its corresponding overall dataset at each dwell time. 
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B.3 Fragmentation charts for Mono to Tri and Octa to Deca CBs 

The following charts show the relative fragmentation responses due to the loss of Cl, in 

both EI (Figure B.2 and Figure B.3) and APCI (Figure B.4 and Figure B.5) modes, for the 

Cl1 to Cl3 and Cl8 to Cl10 homologues that were not shown in Chapter 4 (please refer to 

that chapter for the experimental details).  In each case, the data are normalised to the 

maximum of displayed values. 

 

 

Figure B.2 Chart of the relative fragmentation responses due to the loss of Cl from MoCB, 
DiCB and TrCB congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure B.3 Chart of the relative fragmentation responses due to the loss of Cl from OcCB, 
NoCB and DeCB congeners using GC-HRMS EI+ @ 34 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 

 

 

Figure B.4 Chart of the relative fragmentation responses due to the loss of Cl from MoCB, 
DiCB and TrCB congeners using GC-MS/MS APCI+ @ CE = 0 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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Figure B.5 Chart of the relative fragmentation responses due to the loss of Cl from OcCB, 
NoCB and DeCB congeners using GC-MS/MS APCI+ @ CE = 0 eV. 
The x-axis labels indicate the congener number and the chlorine substitution pattern. 
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B.4 PCB fragmentation profiles for PCA analysis 

Figure B.6 to Figure B.10 show the PCB fragmentation profiles used for the PCA analysis 

in section 4.3.7.  A red-coloured border indicates a WHO toxic PCB.  

 

 

Figure B.6 Fragmentation profiles for PCBs: 4, 8, 11, 14, 19, 37, 40, 42, 43, 46, 47, 50, 52, 
54 and 56. 
The graphs show the relative responses of 6 selected mass losses vs. collision energy of 0 to 
30 eV. 
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Figure B.7 Fragmentation profiles for PCBs: 59, 63, 64, 65, 66, 69, 70, 74, 77, 78, 80, 81, 82, 
85, 86, 88, 89 and 92. 
The graphs show the relative responses of 6 selected mass losses vs. collision energy of 0 to 
30 eV. 
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Figure B.8 Fragmentation profiles for PCBs: 98, 101, 103, 105, 109, 110, 111, 112, 114, 116, 
117, 120, 122, 125, 126, 127, 129 and 133. 
The graphs show the relative responses of 6 selected mass losses vs. collision energy of 0 to 
30 eV. 
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Figure B.9 Fragmentation profiles for PCBs: 137, 138, 144, 146, 147, 151, 154, 155, 156, 157, 
159, 160, 161, 164, 167, 169, 170 and 173. 
The graphs show the relative responses of 6 selected mass losses vs. collision energy of 0 to 
30 eV. 
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Figure B.10 Fragmentation profiles for PCBs: 174, 182, 188, 189, 191, 193, 202, 205, 206, 
208 and 209. 
The graphs show the relative responses of 6 selected mass losses vs. collision energy of 0 to 
30 eV. 
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B.5 Calculated CCS values for all 209 PCB congeners 

Table B.3 shows the CCS values for all 209 PCB congeners calculated using the “Impact” 

projection approximation (PA) and trajectory (TJ) methods, the “CrossArea” PA method, 

and from the acquired (Synapt) data as discussed in section 5.4.2. 

 

PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

1 117.9 126.9 116.8 134.9 31 138.0 149.7 135.3 150.7 

2 121.3 130.7 121.5 136.3 32 134.0 145.1 133.1 149.7 

3 121.6 131.0 122.4 134.5 33 135.4 146.7 136.9 149.8 

4 123.7 133.4 122.2 141.9 34 136.9 148.4 139.2 151.7 

5 125.6 135.6 125.7 142.0 35 138.4 150.2 143.1 151.3 

6 127.5 137.7 128.4 143.6 36 140.7 152.8 145.3 153.3 

7 127.9 138.2 129.8 142.6 37 138.9 150.7 138.3 149.8 

8 128.1 138.4 128.3 142.6 38 135.8 147.2 137.4 149.4 

9 127.9 138.2 124.0 143.2 39 141.2 153.4 143.8 152.3 

10 124.3 134.1 124.5 141.9 40 138.5 150.3 139.0 155.1 

11 130.9 141.7 131.1 145.3 41 138.5 150.3 138.6 154.5 

12 128.7 139.1 128.9 142.6 42 140.8 152.9 144.2 155.8 

13 131.3 142.1 132.9 143.9 43 140.3 152.3 142.1 155.6 

14 130.7 141.4 126.6 145.1 44 140.5 152.6 139.7 156.3 

15 131.7 142.5 131.1 142.3 45 136.2 147.7 136.4 153.1 

16 131.0 141.8 131.0 148.8 46 135.8 147.2 136.0 153.7 

17 133.7 144.8 134.8 149.5 47 143.4 155.8 146.8 156.5 

18 133.3 144.3 134.1 149.7 48 140.7 152.8 140.2 155.7 

19 128.8 139.2 126.7 147.2 49 143.3 155.8 142.4 156.7 

20 134.9 146.1 140.2 150.3 50 138.6 150.3 138.8 154.4 

21 133.5 144.5 132.8 148.0 51 138.4 150.2 140.6 154.6 

22 135.5 146.8 133.2 149.4 52 142.5 154.9 143.0 157.2 

23 135.2 146.6 134.6 149.9 53 137.8 149.4 137.5 154.7 

24 131.5 142.3 132.2 148.2 54 133.3 144.4 132.5 152.1 

25 137.6 149.3 137.4 150.9 55 142.7 155.1 145.9 156.0 

26 137.3 148.9 134.2 151.7 56 142.4 154.7 147.1 156.2 

27 133.0 144.0 133.1 149.9 57 144.9 157.5 143.2 157.7 

28 138.1 149.8 137.3 150.0 58 144.4 157.0 143.9 157.7 

29 135.7 147.0 133.6 149.6 59 140.8 152.9 138.7 156.0 

30 134.2 145.4 134.7 149.2 60 143.3 155.7 149.2 155.1 

Table B.3 CCS values obtained from the “Impact” projection approximation (PA) and 
trajectory (TJ) methods, from the “CrossArea” PA method and from experimental data. 
(Table continues overleaf) 
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PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

61 140.6 152.7 144.0 154.5 101 149.9 163.3 149.2 163.0 

62 138.8 150.7 140.4 154.1 102 145.3 158.1 146.4 160.4 

63 145.5 158.2 146.1 156.9 103 147.5 160.6 149.2 161.9 

64 141.1 153.3 145.1 155.7 104 143.0 155.4 140.6 158.9 

65 139.0 150.9 135.1 154.1 105 150.5 163.9 154.2 161.8 

66 145.6 158.3 150.0 156.7 106 149.5 162.9 150.2 162.1 

67 144.9 157.6 142.7 157.3 107 152.5 166.2 152.2 163.5 

68 147.1 160.1 150.8 158.3 108 152.0 165.7 153.5 163.4 

69 143.1 155.5 145.0 156.7 109 148.2 161.4 146.0 161.4 

70 144.5 157.1 148.4 157.5 110 147.7 160.8 149.0 161.9 

71 140.6 152.7 141.2 156.0 111 153.7 167.7 154.9 165.4 

72 146.6 159.5 149.2 159.3 112 147.8 160.9 147.3 162.0 

73 142.1 154.4 140.2 157.2 113 149.8 163.2 148.0 163.7 

74 145.8 158.6 148.9 156.6 114 150.6 164.2 151.6 161.4 

75 143.7 156.2 147.8 156.4 115 148.9 162.2 153.4 161.2 

76 141.8 154.1 143.5 156.1 116 143.7 156.3 144.6 158.8 

77 146.6 159.6 143.3 157.2 117 148.5 161.7 148.0 161.5 

78 146.1 158.9 142.3 157.8 118 152.5 166.3 153.5 163.4 

79 148.5 161.7 146.5 158.9 119 150.3 163.8 150.4 162.8 

80 150.0 163.5 153.3 160.9 120 154.0 168.0 157.7 165.0 

81 146.3 159.2 146.8 156.7 121 152.2 165.9 154.3 163.8 

82 146.1 159.0 147.4 160.7 122 149.4 162.7 153.4 162.3 

83 142.5 154.9 142.9 162.0 123 152.2 165.9 154.6 163.0 

84 143.3 155.8 143.2 159.8 124 151.2 164.8 152.8 163.7 

85 148.1 161.2 150.4 161.4 125 146.9 159.9 146.8 161.8 

86 148.5 161.7 148.1 160.2 126 153.5 167.4 148.0 163.8 

87 146.8 159.7 150.0 162.0 127 155.4 169.6 152.7 165.6 

88 143.3 155.7 142.4 158.8 128 153.2 167.0 151.0 166.7 

89 143.0 155.4 142.3 159.3 129 152.5 166.3 152.7 166.9 

90 148.9 162.1 150.3 162.8 130 154.9 169.0 154.0 168.2 

91 145.8 158.6 147.3 160.6 131 150.6 164.1 150.3 165.5 

92 144.5 157.1 144.5 163.6 132 150.2 163.6 150.6 166.0 

93 143.2 155.7 144.9 158.5 133 156.8 171.2 154.8 170.1 

94 144.8 157.4 144.0 160.3 134 150.4 163.9 149.9 165.4 

95 145.0 157.7 145.7 160.9 135 152.2 165.9 150.2 167.0 

96 140.3 152.4 138.5 157.8 136 147.4 160.5 147.2 164.3 

97 148.0 161.1 148.1 162.0 137 155.1 169.3 158.8 167.6 

98 145.8 158.6 148.8 160.5 138 155.4 169.6 157.1 168.0 

99 150.7 164.2 152.7 162.7 139 153.0 166.9 155.5 166.5 

100 148.6 161.8 149.5 161.5 140 153.2 167.1 151.4 166.6 

Table B.3 (continued) CCS values obtained from the “Impact” projection approximation (PA) 
and trajectory (TJ) methods, from the “CrossArea” PA method and from experimental data. 
The WHO toxic congeners are indicated by bold type. 
(Table continues overleaf) 
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PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

PCB 
BZ# 

Impact 
PA 
(Å2) 

Impact 
TJ 

(Å2) 

Cross-
Area PA 

(Å2) 

Expt. 
(Synapt) 

(Å2) 

141 154.6 168.7 153.5 168.2 176 154.6 168.7 153.8 170.5 

142 148.2 161.4 147.8 163.3 177 157.4 171.9 155.8 172.2 

143 149.2 162.6 151.5 165.1 178 159.2 174.0 159.3 173.4 

144 152.4 166.2 152.2 167.2 179 154.5 168.6 153.7 169.9 

145 147.6 160.7 146.0 163.2 180 162.0 177.2 159.3 174.3 

146 157.2 171.7 158.5 169.5 181 157.6 172.1 156.0 171.5 

147 152.9 166.8 154.0 166.5 182 159.4 174.3 157.2 172.8 

148 154.9 169.1 152.1 167.9 183 160.0 174.9 157.9 173.1 

149 152.5 166.3 154.2 166.9 184 156.7 171.1 157.6 171.0 

150 150.1 163.6 154.5 165.3 185 156.9 171.4 156.1 172.5 

151 152.1 165.8 152.7 167.2 186 151.7 165.3 150.5 168.1 

152 147.4 160.5 145.8 162.9 187 159.6 174.4 158.7 173.4 

153 157.4 171.9 160.7 169.2 188 157.0 171.5 159.3 170.8 

154 155.4 169.6 157.8 167.9 189 163.8 179.3 163.4 175.0 

155 152.4 166.2 150.7 166.0 190 160.2 175.1 159.0 172.9 

156 157.1 171.6 161.2 168.5 191 164.0 179.4 163.5 174.0 

157 156.9 171.4 156.9 168.3 192 161.9 177.0 160.7 174.1 

158 155.8 170.1 159.6 167.8 193 161.9 177.1 159.1 174.3 

159 159.3 174.1 159.8 169.9 194 166.2 182.0 167.4 179.3 

160 152.6 166.4 153.2 166.5 195 162.3 177.5 164.4 176.8 

161 157.0 171.5 156.3 168.9 196 163.9 179.3 166.5 178.0 

162 159.1 173.9 160.1 169.9 197 162.1 177.3 164.1 176.3 

163 155.5 169.7 156.2 168.2 198 163.8 179.3 163.1 178.4 

164 154.5 168.6 155.4 168.1 199 163.8 179.2 164.8 178.5 

165 157.0 171.5 153.8 170.4 200 158.6 173.3 158.4 175.3 

166 153.5 167.4 155.7 166.3 201 161.4 176.5 163.2 176.3 

167 156.8 171.3 154.9 169.9 202 161.4 176.5 160.1 176.2 

168 155.5 169.8 155.0 168.8 203 164.2 179.7 165.6 178.2 

169 161.3 176.4 164.3 170.7 204 161.2 176.3 163.6 175.7 

170 159.8 174.6 161.2 173.1 205 163.9 179.4 165.7 178.9 

171 157.9 172.5 159.5 171.8 206 168.6 184.8 171.0 183.1 

172 161.7 176.8 160.1 174.5 207 166.2 182.1 168.4 181.2 

173 155.1 169.3 153.5 170.3 208 165.7 181.5 165.2 181.5 

174 156.6 171.0 157.2 172.0 209 170.3 186.7 168.2 186.3 

175 159.4 174.2 157.9 173.2      

Table B.3 (continued) CCS values obtained from the “Impact” projection approximation (PA) 
and trajectory (TJ) methods, from the “CrossArea” PA method and from experimental data. 
The WHO toxic congeners are indicated by bold type. 
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Appendix C  

 

Supplemental Information 

 

C.1 Magnet scan equations 

In a magnet scan experiment, the magnet is (traditionally*) scanned exponentially from 

high mass down to low mass.  The scan law is expressed as: 

𝑚𝑥 = 𝑚0𝑒−𝑘(𝑡𝑥−𝑡0) (C.1) 

Where mx and m0 are the unknown (or end) and start masses, tx and t0 are the measured times 
(within the scan) of the unknown (or end) and start masses, and k is the rate constant. 

 

The rate constant can be readily extracted from the above to give: 

𝑘 =
𝑙𝑛(𝑚0 𝑚𝑥⁄ )

𝑡𝑥 − 𝑡0
 (C.2) 

 

As an example, for a scan covering one decade of mass (m/z 500–50) with a scan time 

of 1 second, we would obtain: k = ln (500 / 50) / (1 - 0) ≈ 2.3. 

An important benefit of this scan law is that it results in peaks of constant width – both 

in time-per-peak and in ppm terms – and hence is well suited to digitisation since, given 

the fixed frequency of the analogue-to-digital convertor (ADC), this will lead to a 

constant number of data points across the peak.  This allows for straightforward 

optimisation of any subsequent digital filtering (smoothing) and other operations 

needed for (mass) peak detection. 

 

 
* Although other functions, such as linear scans or up (in mass) scans are possible, the 
exponential down scan was traditionally the most straightforward to implement with analogue 
electronics (e.g. via capacitor discharge in a resistor-capacitor based circuit). 
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C.2 Masses and abundances used by the PureIso program 

Element Mass # Exact Mass Abundance1 Abundance2 

H 1 1.007825032 0.999885  

 2 2.014101778 0.000115  

C 12 12.0 0.9894 0.9893 

 13 13.0033548378 0.0106 0.0107 

N 14 14.003074 0.99632  

 15 15.000108 0.00368  

O 16 15.99491463 0.99757  

 17 16.9991312 0.00038  

 18 17.9991603 0.00205  

F 19 18.99840322 1.0  

Si 28 27.9769271 0.922297  

 29 28.9764949 0.046832  

 30 29.9737707 0.030872  

P 31 30.973762 1.0  

S 32 31.9720707 0.9493  

 33 32.97145843 0.0076  

 34 33.96786665 0.0429  

Cl 35 34.968852721 0.758 0.7576 

 37 36.96590262 0.242 0.2424 

Br 79 78.9183361 0.5069  

 81 80.916289 0.4931  

Table C.1 Elemental masses and abundances used by the PureIso program. 

 

The masses in Table C.1 were obtained from IUPAC’s “Atomic weights of the elements 

2013” (Meija et al., 2016a). 

1Abundances were taken from “Isotopic compositions of the elements 2013” (Meija et 

al., 2016b). 

2Alternative abundances for C and Cl were taken from the previous “Isotopic 

compositions of the elements 2009” (Berglund and Wieser, 2011) and used for certain 

comparisons as described in the main text. 

The current version of the program is limited to a maximum of 3 isotopes per element 

and therefore the minor sulphur isotope 36S with its abundance of ~0.00015 was 

omitted. 
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C.3 Tables of the PCB congener mixes 

Table C.2 lists the PCB congeners found in the C-CS-01 to C-CS-09 mixes as supplied by 

AccuStandard (New Haven, CT, USA).  The 12 WHO toxic congeners are indicated by bold 

type. 

 

PCB Mix C-CS-01 

BZ# Structure BZ# Structure BZ# Structure 

1 2-MoCB 44 22’35’-TeCB 147 22’34’56-HxCB 

2 3-MoCB 52 22’55’-TeCB 153 22’44’55’-HxCB 

3 4-MoCB 56 233’4’-TeCB 173 22’33’456-HpCB 

4 22’-DiCB 66 23’44’-TeCB 174 22’33’456’-HpCB 

6 23’-DiCB 67 23’45-TeCB 177 22’33’45’6’-HpCB 

8 24’-DiCB 71 23’4’6-TeCB 179 22’33’566’-HpCB 

9 25-DiCB 74 244’5-TeCB 180 22’344’55’-HpCB 

16 22’3-TrCB 82 22’33’4-PeCB 187 22’34’55’6-HpCB 

18 22’5-TrCB 87 22’345’-PeCB 194 22’33’44’55’-OcCB 

19 22’6-TrCB 99 22’44’5-PeCB 195 22’33’44’56-OcCB 

22 234’-TrCB 110 233’4’6-PeCB 199 22’33’455’6’-OcCB 

25 23’4-TrCB 138 22’344’5’-HxCB 203 22’344’55’6-OcCB 

28 244’-TrCB 146 22’34’55’-HxCB 206 22’33’44’55’6-NoCB 

PCB Mix C-CS-02 

BZ# Structure BZ# Structure BZ# Structure 

5 23-DiCB 48 22’45-TeCB 141 22’3455’-HxCB 

7 24-DiCB 60 2344’-TeCB 149 22’34’5’6-HxCB 

10 26-DiCB 70 23’4’5-TeCB 164 233’4’5’6-HxCB 

17 22’4-TrCB 83 22’33’5-PeCB 170 22’33’44’5-HpCB 

24 236-TrCB 84 22’33’6-PeCB 171 22’33’44’6-HpCB 

26 23’5-TrCB 95 22’35’6-PeCB 172 22’33’455’-HpCB 

31 24’5-TrCB 103 22’45’6-PeCB 178 22’33’55’6-HpCB 

32 24’6-TrCB 107 233’4’5-PeCB 183 22’344’5’6-HpCB 

37 344’-TrCB 115 2344’6-PeCB 193 233’4’55’6-HpCB 

41 22’34-TeCB 131 22’33’46-HxCB 196 22’33’44’56’-OcCB 

45 22’36-TeCB 132 22’33’46’-HxCB 197 22’33’44’66’-OcCB 

46 22’36’-TeCB 135 22’33’56’-HxCB 205 233’44’55’6-OcCB 

PCB Mix C-CS-03 

BZ# Structure BZ# Structure BZ# Structure 

15 44’-DiCB 92 22’355’-PeCB 144 22’345’6-HxCB 

20 233’-TrCB 93 22’356-PeCB 151 22’355’6-HxCB 

27 23’6-TrCB 101 22’455’-PeCB 157 233’44’5’-HxCB 

29 245-TrCB 105 233’44’-PeCB 158 233’44’6-HxCB 

34 23’5’-TrCB 118 23’44’5-PeCB 190 233’44’56-HpCB 

40 22’33’-TeCB 119 23’44’6-PeCB 191 233’44’5’6-HpCB 

42 22’34’-TeCB 128 22’33’44’-HxCB 207 22’33’44’566’-NoCB 

47 22’44’-TeCB 134 22’33’56-HxCB 208 22’33’455’66’-NoCB 

69 23’46-TeCB 136 22’33’66’-HxCB 209 22’33’44’55’66’-DeCB 

Table C.2 PCB composition of the AccuStandard C-CS-01 to C-CS-09 mixes. 
(Table continues overleaf) 



 

240 

PCB Mix C-CS-04 

BZ# Structure BZ# Structure BZ# Structure 

13 34’-DiCB 81 344’5-TeCB 163 233’4’56-HxCB 

14 35-DiCB 90 22’34’5-PeCB 165 233’55’6-HxCB 

35 33’4-TrCB 100 22’44’6-PeCB 175 22’33’45’6-HpCB 

51 22’46’-TeCB 117 234’56-PeCB 200 22’33’4566’-OcCB 

53 22’56’-TeCB 122 233’4’5’-PeCB 201 22’33’45’66’-OcCB 

54 22’66’-TeCB 124 23’4’55’-PeCB 202 22’33’55’66’-OcCB 

73 23’5’6-TeCB 130 22’33’45’-HxCB   

75 244’6-TeCB 154 22’44’56’-HxCB   

PCB Mix C-CS-05 

BZ# Structure BZ# Structure BZ# Structure 

12 34-DiCB 85 22’344’-PeCB 137 22’344’5-HxCB 

33 23’4’-TrCB 91 22’34’6-PeCB 156 233’44’5-HxCB 

49 22’45’-TeCB 97 22’34’5’-PeCB 167 23’44’55’-HxCB 

59 233’6-TeCB 104 22’466’-PeCB 176 22’33’466’-HpCB 

63 234’5-TeCB 114 2344’5-PeCB 185 22’3455’6-HpCB 

64 234’6-TeCB 123 23’44’5’-PeCB 189 233’44’55’-HpCB 

77 33’44’-TeCB 129 22’33’45-HxCB   

PCB Mix C-CS-06 

BZ# Structure BZ# Structure BZ# Structure 

11 33’-DiCB 65 2356-TeCB 133 22’33’55’-HxCB 

21 234-TrCB 86 22’345-PeCB 139 22’344’6-HxCB 

38 345-TrCB 102 22’456’-PeCB 145 22’3466’-HxCB 

50 22’46-TeCB 113 233’5’6-PeCB 161 233’45’6-HxCB 

57 233’5-TeCB 126 33’44’5-PeCB 169 33’44’55’-HxCB 

61 2345-TeCB 127 33’455’-PeCB 181 22’344’56-HpCB 

PCB Mix C-CS-07 

BZ# Structure BZ# Structure BZ# Structure 

36 33’5-TrCB 96 22’366’-PeCB 166 2344’56-HxCB 

72 23’55’-TeCB 98 22’34’6’-PeCB 182 22’344’56’-HpCB 

78 33’45-TeCB 106 233’45-PeCB 184 22’344’66’-HpCB 

79 33’45’-TeCB 108 233’45’-PeCB 204 22’344’566’-OcCB 

89 22’346’-PeCB 152 22’3566’-HxCB   

PCB Mix C-CS-08 

BZ# Structure BZ# Structure BZ# Structure 

30 246-TrCB 76 23’4’5’-TeCB 159 233’455’-HxCB 

43 22’35-TeCB 109 233’46-PeCB 186 22’34566’-HpCB 

55 233’4-TeCB 112 233’56-PeCB 192 233’455’6-HpCB 

58 233’5’-TeCB 120 23’455’-PeCB 198 22’33’455’6-OcCB 

PCB Mix C-CS-09 

BZ# Structure BZ# Structure BZ# Structure 

23 235-TrCB 111 233’55’-PeCB 148 22’34’56’-HxCB 

39 34’5-TrCB 116 23456-PeCB 150 22’34’66’-HxCB 

62 2346-TeCB 121 23’45’6-PeCB 155 22’44’66’-HxCB 

68 23’45’-TeCB 125 23’4’5’6-PeCB 160 233’456-HxCB 

80 33’55’-TeCB 140 22’344’6’-HxCB 162 233’4’55’-HxCB 

88 22’346-PeCB 142 22’3456-HxCB 168 23’44’5’6-HxCB 

94 22’356’-PeCB 143 22’3456’-HxCB 188 22’34’566’-HpCB 

Table C.2 (continued) PCB composition of the AccuStandard C-CS-01 to C-CS-09 mixes. 

 



 

241 

Table C.3 lists the PCB congeners found in each of the RPCM-1668-A to -E mixes supplied 

by Ultra-Scientific *  (North Kingstown, RI, USA).  The 12 WHO toxic congeners are 

indicated by bold type. 

 

PCB Mix RPCM 1668-A 

BZ# Structure BZ# Structure BZ# Structure 

2 3-MoCB 79 33’45’-TeCB 151 22’355’6-HxCB 

6 23’-DiCB 81 344’5-TeCB 152 22’3566’-HxCB 

8 24’-DiCB 82 22’33’4-PeCB 153 22’44’55’-HxCB 

9 25-DiCB 83 22’33’5-PeCB 156 233’44’5-HxCB 

10 26-DiCB 85 22’344’-PeCB 159 233’455’-HxCB 

11 33’-DiCB 87 22’345’-PeCB 161 233’45’6-HxCB 

14 35-DiCB 88 22’346-PeCB 166 2344’56-HxCB 

26 23’5-TrCB 89 22’346’-PeCB 167 23’44’55’-HxCB 

27 23’6-TrCB 92 22’355’-PeCB 170 22’33’44’5-HpCB 

30 246-TrCB 95 22’35’6-PeCB 171 22’33’44’6-HpCB 

31 24’5-TrCB 96 22’366’-PeCB 172 22’33’455’-HpCB 

32 24’6-TrCB 103 22’45’6-PeCB 175 22’33’45’6-HpCB 

33 2’34-TrCB 105 233’44’-PeCB 176 22’33’466’-HpCB 

34 2’35-TrCB 106 233’45-PeCB 177 22’33’4’56-HpCB 

35 33’4-TrCB 113 233’5’6-PeCB 178 22’33’55’6-HpCB 

36 33’5-TrCB 119 23’44’6-PeCB 179 22’33’566’-HpCB 

38 345-TrCB 120 23’455’-PeCB 183 22’344’5’6-HpCB 

41 22’34-TeCB 122 2’33’45-PeCB 190 233’44’56-HpCB 

45 22’36-TeCB 124 2’3455’-PeCB 191 233’44’5’6-HpCB 

49 22’45’-TeCB 127 33’455’-PeCB 194 22’33’44’55’-OcCB 

50 22’46-TeCB 129 22’33’45-HxCB 195 22’33’44’56-OcCB 

52 22’55’-TeCB 130 22’33’45’-HxCB 196 22’33’44’56’-OcCB 

57 233’5-TeCB 133 22’33’55’-HxCB 198 22’33’455’6-OcCB 

63 234’5-TeCB 136 22’33’66’-HxCB 200 22’33’4566’-OcCB 

66 23’44’-TeCB 142 22’3456-HxCB 201 22’33’45’66’-OcCB 

72 23’55’-TeCB 143 22’3456’-HxCB 204 22’344’566’-OcCB 

75 244’6-TeCB 144 22’345’6-HxCB 207 22’33’44’566’-NoCB 

78 33’45-TeCB 148 22’34’56’-HxCB   

PCB Mix RPCM 1668-B 

BZ# Structure BZ# Structure BZ# Structure 

5 23-DiCB 71 23’4’6-TeCB 139 22’344’6-HxCB 

7 24-DiCB 73 23’5’6-TeCB 145 22’3466’-HxCB 

12 34-DiCB 90 22’34’5-PeCB 149 22’34’5’6-HxCB 

18 22’5-TrCB 91 22’34’6-PeCB 150 22’34’66’-HxCB 

Table C.3 List of PCBs in the 5 PCB Ultra-Scientific RPCM 1668-A to E mixes. 
(Table continues overleaf) 

  

 
* PCB-199, 200 and 201 were incorrectly named in the supplied documentation and have been 
revised here to match current nomenclature (Mills III, Thal and Barney, 2007). 
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PCB Mix RPCM 1668-B (continued) 

BZ# Structure BZ# Structure BZ# Structure 

22 234’-TrCB 94 22’356’-PeCB 157 233’44’5’-HxCB 

23 235-TrCB 99 22’44’5-PeCB 160 233’456-HxCB 

24 236-TrCB 100 22’44’6-PeCB 162 233’4’55’-HxCB 

28 244’-TrCB 108 233’45’-PeCB 165 233’55’6-HxCB 

39 34’5-TrCB 109 233’46-PeCB 168 23’44’5’6-HxCB 

48 22’45-TeCB 111 233’55’-PeCB 181 22’344’56-HpCB 

51 22’46’-TeCB 114 2344’5-PeCB 184 22’344’66’-HpCB 

53 22’56’-TeCB 117 234’56-PeCB 185 22’3455’6-HpCB 

55 233’4-TeCB 118 23’44’5-PeCB 186 22’34566’-HpCB 

58 233’5’-TeCB 121 23’45’6-PeCB 187 22’34’55’6-HpCB 

60 2344’-TeCB 128 22’33’44’-HxCB 192 233’455’6-HpCB 

61 2345-TeCB 132 22’33’46’-HxCB 197 22’33’44’66’-OcCB 

62 2346-TeCB 135 22’33’56’-HxCB 201 22’33’455’6’-OcCB 

68 23’45’-TeCB 137 22’344’5-HxCB 203 22’344’55’6-OcCB 

PCB Mix RPCM 1668-C 

BZ# Structure BZ# Structure BZ# Structure 

13 34’-DiCB 80 33’55’-TeCB 146 22’34’55’-HxCB 

17 22’4-TrCB 84 22’33’6-PeCB 147 22’34’56-HxCB 

20 233’-TrCB 86 22’345-PeCB 154 22’44’56’-HxCB 

29 245-TrCB 93 22’356-PeCB 158 233’44’6-HxCB 

40 22’33’-TeCB 101 22’455’-PeCB 164 233’4’5’6-HxCB 

46 22’36’-TeCB 107 233’4’5-PeCB 173 22’33’456-HpCB 

59 233’6-TeCB 112 233’56-PeCB 174 22’33’456’-HpCB 

65 2356-TeCB 116 23456-PeCB 182 22’344’56’-HpCB 

67 23’45-TeCB 140 22’344’6’-HxCB 193 233’4’55’6-HpCB 

76 2’345-TeCB 141 22’3455’-HxCB   

PCB Mix RPCM 1668-D 

BZ# Structure BZ# Structure BZ# Structure 

21 234-TrCB 69 23’46-TeCB 123 23’44’5’-PeCB 

25 23’4-TrCB 70 23’4’5-TeCB 131 22’33’46-HxCB 

42 22’34’-TeCB 97 22’3’45-PeCB 134 22’33’56-HxCB 

47 22’44’-TeCB 102 22’456’-PeCB 163 233’4’56-HxCB 

64 234’6-TeCB 115 2344’6-PeCB 180 22’344’55’-HpCB 

PCB Mix RPCM 1668-E 

BZ# Structure BZ# Structure BZ# Structure 

1 2-MoCB 56 233’4’-TeCB 169 33’44’55’-HxCB 

3 4-MoCB 74 244’5-TeCB 188 22’34’566’-HpCB 

4 22’-DiCB 77 33’44’-TeCB 189 233’44’55’-HpCB 

15 44’-DiCB 98 22’3’46-PeCB 202 22’33’55’66’-OcCB 

16 22’3-TrCB 104 22’466’-PeCB 205 233’44’55’6-OcCB 

19 22’6-TrCB 110 233’4’6-PeCB 206 22’33’44’55’6-NoCB 

37 344’-TrCB 125 23’4’5’6-PeCB 208 22’33’455’66’-NoCB 

43 22’35-TeCB 126 33’44’5-PeCB 209 22’33’44’55’66’-DeCB 

44 22’35’-TeCB 138 22’344’5’-HxCB   

54 22’66’-TeCB 155 22’44’66’-HxCB   

Table C.3 (continued) List of PCBs in the 5 PCB Ultra-Scientific RPCM 1668-A to -E mixes. 
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Table C.4 lists the native (12C12) and labelled (13C12) PCB congeners present in the CS3 

mix supplied by Wellington Laboratories, Inc. (Guelph, ON, Canada).  The 12 WHO toxic 

congeners are indicated by bold type.  Several PCBs are only present as labelled 

standards – these are used as clean-up and injection standards rather than for the 

quantification of native congeners. 

 

Native Standards Labelled Standards 

BZ# Name BZ# Name 

1 2-MoCB 1 13C12-2-MoCB 

3 4-MoCB 3 13C12-4-MoCB 

4 22’-DiCB 4 13C12-22’-DiCB 

-  9 13C12-25-DiCB 

15 44’-DiCB 15 13C12-44’-DiCB 

19 22’6-TrCB 19 13C12-22’6-TrCB 

-  28 13C12-244’-TrCB 

37 344’-TrCB 37 13C12-344’-TrCB 

-  52 13C12-22’55’-TeCB 

54 22’66’-TeCB 54 13C12-22’66’-TeCB 

77 33’44’-TeCB 77 13C12-33’44’-TeCB 

81 344’5-TeCB 81 13C12-344’5-TeCB 

-  101 13C12-22’455’-PeCB 

104 22’466’-PeCB 104 13C12-22’466’-PeCB 

105 233’44’-PeCB 105 13C12-233’44’-PeCB 

-  111 13C12-233’55’-PeCB 

114 2344’5-PeCB 114 13C12-2344’5-PeCB 

118 23’44’5-PeCB 118 13C12-23’44’5-PeCB 

123 23’44’5’-PeCB 123 13C12-23’44’5’-PeCB 

126 33’44’5-PeCB 126 13C12-33’44’5-PeCB 

-  138 13C12-22’344’5’-HxCB 

155 22’44’66’-HxCB 155 13C12-22’44’66’-HxCB 

156 233’44’5-HxCB 156 13C12-233’44’5-HxCB 

157 233’44’5’-HxCB 157 13C12-233’44’5’-HxCB 

167 23’44’55’-HxCB 167 13C12-23’44’55’-HxCB 

169 33’44’55’-HxCB 169 13C12-33’44’55’-HxCB 

-  178 13C12-22’33’55’6-HpCB 

188 22’34’566’-HpCB 188 13C12-22’34’566’-HpCB 

189 233’44’55’-HpCB 189 13C12-233’44’55’-HpCB 

-  194 13C12-22’33’44’55’-OcCB 

202 22’33’55’66’-OcCB 202 13C12-22’33’55’66’-OcCB 

205 233’44’55’6-OcCB 205 13C12-233’44’55’6-OcCB 

206 22’33’44’55’6-NoCB 206 13C12-22’33’44’55’6-NoCB 

208 22’33’455’66’-NoCB 208 13C12-22’33’455’66’-NoCB 

209 22’33’44’55’66’-DeCB 209 13C12-22’33’44’55’66’-DeCB 

Table C.4 List of PCBs in the Wellington Laboratories’ 1668C CS3 mix. 
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Table C.5 lists the chemical standards used in the Waters’ CCS calibration mix and their 

expected CCS values.  (These values are based on the averages from multiple runs on an 

instrument calibrated using other compounds of known CCS acquired using electrospray 

ionisation.) 

 

CCS Calibration Standard CCS, Å2 

1,2-Dichlorobenzene 117.4 

2,3,7,8-Tetrachlorodibenzo-p-dioxin 155.9 

Anthracene 132.6 

Benzo(ghi)perylene 153.7 

Endosulphan 167.7 

Hexachlorobenzene 136.1 

Octafluoronaphthalene 130.6 

Phenanthrene 133.0 

Table C.5 List of standards used for ion mobility CCS calibration and their expected 
CCS values. 

 

 

C.4 Commercial/external software used throughout the PhD study 

The following is a list of commercial or other externally sourced software used 

throughout this thesis: 

 

Avogadro 

An open-source molecular builder and visualization tool.  Version 1.2.0  

https://avogadro.cc/docs (Hanwell et al., 2012) 

ChemCraft 

Graphical software for visualisation of quantum chemistry computations.  

Version 1.8  https://www.chemcraftprog.com 

ChemDraw 

Chemical structure drawing software.  Version 16.0.1.4  

http://www.perkinelmer.co.uk/category/chemdraw 

  

https://avogadro.cc/docs
https://www.chemcraftprog.com/
http://www.perkinelmer.co.uk/category/chemdraw
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CrossArea 

A program (Univ. of Leeds) to provide collisional cross section area estimates 

based on the projection approximation method.  Version dated 14-Sep-2018 

https://github.com/tumbling-cross-section (Smith et al., 2009) 

DriftScope 

Ion mobility data processing and visualisation software. 

Version 2.9  http://www.waters.com 

Impact 

A program (Univ. of Oxford) to provide collisional cross section area estimates 

based on projection approximation and the trajectory method.  Version 0.9.1 

http://impact.chem.ox.ac.uk (Marklund et al., 2015) 

MassLynx 

Mass spectrometry data acquisition and processing software. 

Versions 4.1 and 4.2  http://www.waters.com 

MATLAB 

Numerical computing and analysis software.  Version R2018b  

https://uk.mathworks.com/products/matlab.html 

Microsoft Office (Word, Excel and PowerPoint) 

Versions 2010-2016 and Office 365  https://www.microsoft.com 

Orca 

A general-purpose quantum chemistry program package using density 

functional theory and semi-empirical methods.  Version 4.0.1.2  

https://orcaforum.kofo.mpg.de (Neese, 2012) 

RefWorks 

A web-based reference and citation management utility.  

https://refworks.proquest.com 

 

https://github.com/tumbling-cross-section
http://www.waters.com/
http://impact.chem.ox.ac.uk/
http://www.waters.com/
https://uk.mathworks.com/products/matlab.html
https://www.microsoft.com/
https://orcaforum.kofo.mpg.de/
https://refworks.proquest.com/
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Appendix D  

 

Tables of the Key MS Instrument Parameters  

 

D.1 GC-HRMS (EI) 

MS model Waters AutoSpec-Ultima 

Polarity Positive ion 

Source mode Electron ionisation 

Electron energy 34 eV 

Trap current 500 µA 

Source temperature 280 °C 

Photomultiplier voltage 340 V 

Accelerating voltage 8,000 V (nominal) 

Resolution (10% valley definition) 10,000 (nominal) 

Data format Selected ion monitoring (SIM) 

  

GC model Agilent 6890 

Auto-sampler model CTC Analytics GC-PAL 

GC column type Supelco SPB-Octyl 

GC column length 30 m 

GC column internal diameter 0.25 mm 

GC column film thickness 0.25 µm 

Sample solvent Nonane 

Injector temperature 270 °C 

Injection volume 1 µl 

Injection mode Splitless 

Carrier gas Helium 

Gas (He) control mode Constant flow 

Gas (He) flow rate 1.2 ml/min 

Purge time 1.0 min 

Initial oven temperature 90 °C 

Initial hold time 2.0 mins 

Oven ramp rate #1 15 °C/min 

Final temperature #1 150 °C 

Hold time #1 0.0 mins 

Oven ramp rate #2 3.0 °C/min 

Final temperature #2 280 °C 

Hold time #2 3.0 mins 

Table D.1 Key data acquisition parameters used for the GC-HRMS analyses 
(AutoSpec-Ultima, EI+). 
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D.2 GC-Q-IMS-TOF (APCI) 

MS model Waters Synapt G2-S 

Polarity Positive ion 

Source mode Atmospheric pressure chemical ionisation 

Corona voltage 5 kV 

Corona current 2 µA 

Source temperature 150 °C 

Mass range m/z 150–520 

Scan time 0.5 s 

Inter-scan time 0.015 s 

Data format (non-IMS expt.) Centroid 

Data format (IMS expt.) Continuum 

Resolution (50% valley definition) 18,000 (nominal) 

Collision cell gas Argon 

Collision cell (Ar) pressure 1.0 x 10-3 – 2.4 x 10-2 mbar 

Collision energy 0–40 eV  

Cone, auxiliary & make-up gas Nitrogen 

Cone gas (N2) flow 210 L/hr 

Auxiliary gas (N2) flow 200 L/hr 

Make-up gas (N2) flow 350 mL/min 

Ion mobility cell gas Nitrogen 

Ion mobility cell (N2) pressure 3.29 mbar 

Ion mobility wave velocity 300 m/s 

Ion mobility wave delay 1000 µs 

  

GC model Agilent 7890 

Auto-sampler model Agilent 7693 

Table D.2 Key data acquisition parameters used for the GC-Q-IMS-TOF analyses 
(Synapt G2-S, APCI+). 
(Table continues overleaf) 
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1. SPB-Octyl GC column experiments  

Column type Supelco SPB-Octyl 

Column length 30 m 

Column internal diameter 0.25 mm 

Column film thickness 0.25 µm 

Solvent Nonane 

Injector temperature 270 °C 

Injection volume 0.7 µl 

Injection mode Splitless 

Carrier gas Helium 

Gas (He) control mode Constant flow 

Gas (He) flow rate 1.7 ml/min 

Purge time 1.0 min 

Initial oven temperature 90 °C 

Initial hold time 2.0 mins 

Oven ramp rate #1 15 °C/min 

Final temperature #1 150 °C 

Hold time #1 0.0 mins 

Oven ramp rate #2 3.0 °C/min 

Final temperature #2 280 °C 

Hold time #2 3.0 mins 

  

2. SPB-1 GC column experiments  

Column type Supelco SPB-1 

Column length 30 m 

Column internal diameter 0.25 mm 

Column film thickness 0.25 µm 

Solvent Nonane 

Injector temperature 270 °C 

Injection volume 1.0 µl 

Injection mode Splitless 

Carrier gas Helium 

Gas (He) control mode Constant flow 

Gas (He) flow rate 1.4 ml/min 

Purge time 2.0 min 

Initial oven temperature 90 °C 

Initial hold time 2.0 mins 

Oven ramp rate #1 15 °C/min 

Final temperature #1 150 °C 

Hold time #1 0.0 mins 

Oven ramp rate #2 3.0 °C/min 

Final temperature #2 280 °C 

Hold time #2 7.0 mins 

Table D.2 (continued) Key data acquisition parameters used for the GC-Q-IMS-TOF analyses 
(Synapt G2-S, APCI+). 
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D.3 GC-MS/MS (EI) 

MS model Micromass Quattro (Triple-Quad) 

Polarity Positive ion 

Source mode Electron ionisation 

Source temperature 200 °C 

Electron energy 34 eV 

Trap current 50 µA 

Detector voltage 500 V 

Resolution Unit mass 

Collision cell gas Argon 

Collision cell pressure 10-3 mbar 

Data format Multiple reaction monitoring (MRM) 

  

GC model Agilent 6890 

GC column type J&W DB-5ms 

GC column length 30 m 

GC column internal diameter 0.25 mm 

GC column film thickness 0.25 µm 

Sample solvent Hexane 

Injector temperature 280 °C 

Injection volume 1 µl 

Injection mode Split 10:1 

Carrier gas Helium 

Gas (He) control mode Constant flow 

Gas (He) flow rate 1.0 ml/min 

Initial oven temperature 80 °C 

Initial hold time 2.0 mins 

Oven ramp rate #1 20 °C/min 

Final temperature #1 200 °C 

Hold time #1 5.0 mins 

Oven ramp rate #2 10.0 °C/min 

Final temperature #2 280 °C 

Hold time #2 10.0 mins 

Table D.3 Key data acquisition parameters used for the GC-MS/MS analyses (Quattro, EI+). 
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D.4 GC-TOF (EI) 

MS model Waters GCT-Premier 

Polarity Positive ion 

Source mode Electron ionisation 

Source temperature 250 °C 

Electron energy 34 eV 

Trap current 250 µA 

MCP voltage 2,300 V 

Resolution (FWHM) 7,500 (nominal) 

Mass range m/z 50–650 

Scan duration 0.2 s 

Inter-scan duration 0.1 s 

  

GC model Agilent 6890 

Auto-sampler model CTC Analytics GC-PAL 

GC column type Supelco SPB-Octyl 

GC column length 30 m 

GC column internal diameter 0.25 mm 

CGC column film thickness 0.25 µm 

Sample solvent Nonane 

Injector temperature 270 °C 

Injection volume 1 µl 

Injection mode Splitless 

Carrier gas Helium 

Gas (He) control mode Constant flow 

Gas (He) flow rate 1.2 ml/min 

Purge time 1.0 min 

Initial oven temperature 100 °C 

Initial hold time 2.0 mins 

Oven ramp rate #1 15 °C/min 

Final temperature #1 150 °C 

Hold time #1 0.0 mins 

Oven ramp rate #2 3.0 °C/min 

Final temperature #2 280 °C 

Hold time #2 2.0 mins 

Table D.4 Key data acquisition parameters used for the GC-TOF analyses (GCT-Premier, EI+). 

 

 


	Abstract
	Candidate’s Declaration
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Terms
	List of Abbreviations
	Chapter 1   Thesis Overview, Aims and Objectives
	1.1 Introduction
	1.2 The chemical structures of PCDDs, PCDFs and PCBs
	1.3 Sources of PCBs, PCDDs and PCDFs
	1.4 Health effects from exposure to PCBs, PCDDs and PCDFs
	1.5 Ultratrace Analysis Methods for Persistent Organic Pollutants
	1.6 The need for high resolution
	1.7 The need for high sensitivity
	1.8 The need for high dynamic range
	1.9 SIM experiment overview
	1.10 Compound identification: retention time and isotope ratio
	1.11 Toxic equivalency factors and toxic equivalent concentrations
	1.12 Isotope dilution: the use of stable isotopically labelled standards
	1.13 Alternative technologies: MS/MS
	1.14 Alternative technologies: bioanalytical analysis
	1.15 Thesis outline, aims and objectives

	Chapter 2   Ion Statistics in Ultratrace Environmental Mass Spectrometry
	2.1 Introduction
	2.2 Ion statistics and a Monte Carlo based simulation model
	2.3 SIM experimental setup
	2.4 SIM operation, ion detection and related calculations
	2.5 Testing the data modelling theory
	2.6 Determination of the detector gain
	2.7 Improving the odds: optimisation of acquisition dwell times
	2.8 Implementing the dynamic isotope ratio criterion
	2.9 A statistical evaluation of signal-to-noise measurement
	2.10 Conclusions

	Chapter 3   Molecular Ion Cluster Calculations
	3.1 Introduction
	3.2 Isotope cluster calculations: software design considerations
	3.3 Abundance calculations of enriched isotopes
	3.4 Isotope cluster analysis: experimental data
	3.5 A comparison of abundance ratios given by PureIso, other isotope calculation programs and from published EPA methods
	3.6 MS/MS isotope ratio calculations
	3.7 MS/MS fragmentation: experimental
	3.8 MS/MS fragmentation: results and discussion
	3.9 Mass and intensity errors due to mixed AP ionisation modes
	3.10 Conclusions

	Chapter 4   Analytical Effects of PCB Fragmentation
	4.1 Introduction
	4.2 Materials and methods
	4.2.1 GC-HRMS (EI)
	4.2.2 GC-MS/MS (APCI)
	4.2.3 GC-TOF (EI)
	4.2.4 MS data acquisition and processing
	4.2.5 Molecular modelling

	4.3 Results and discussion
	4.3.1 The scope of the fragmentation problem in PCB analyses
	4.3.2 Artefact peak formation in PCB analyses
	4.3.3 PCB fragmentation in GC-HRMS (EI) analyses
	4.3.4 Variation of HxCB fragmentation with collision energy in GC-MS/MS (APCI) analyses
	4.3.5 PCB fragmentation in GC-MS/MS (APCI) analyses
	4.3.6 Variation of PCB fragmentation with collision energy in GC-MS/MS (APCI) analyses
	4.3.7 Principal component analysis (PCA) of the fragmentation profiles from GC-MS/MS (APCI) data at various collision energies

	4.4 Conclusions

	Chapter 5   Ion Mobility Separation – Mass Spectrometry of all 209 PCBs
	5.1 Introduction
	5.2 Ion mobility theory – a brief overview
	5.3 Materials and methods
	5.3.1 GC-Q/IMS/TOF
	5.3.2 Data processing

	5.4 Results and discussion
	5.4.1 Arrival time distribution variation with PCB chlorination level and structure
	5.4.2 Comparisons of modelled, experimental and published CCS data
	5.4.3 Artefacts in the arrival time distributions of PCB isotopologues
	5.4.4 Ion mobility doublets and associated isomerisation
	5.4.5 Observations from fully-labelled (13C12) PCB data
	5.4.6 Possible mechanisms for the observed artefacts in ion arrival time distributions
	5.4.6.1   Changes to an ion’s centre-of-mass
	5.4.6.2   Effects of nuclear spin
	5.4.6.3   Thermal effects due to heating within the ion mobility cell

	5.4.7 Modelled PCB isotopologue and isotopomer IR spectra
	5.4.8 Ion mobility of PCB fragment ions

	5.5 Conclusions

	Chapter 6   Conclusions, Outlook and Future Research
	6.1 Conclusions
	6.2 Outlook
	6.3 Future research

	References
	Appendix A   Presentations, Software Development and Other Research Performed During the PhD
	A.1 Oral and poster presentations as primary author
	A.2 Co-authored work
	A.3 Development of the “Congener Profiler” software
	A.4 Software developed for the PhD research
	A.4.1 Software code for the Poisson modelling
	A.4.2 Software code for the PureIso program


	Appendix B   Supplemental Results
	B.1 Error modelling using the Poisson distribution
	B.2 PFK data statistics used for detector gain calculations
	B.3 Fragmentation charts for Mono to Tri and Octa to Deca CBs
	B.4 PCB fragmentation profiles for PCA analysis
	B.5 Calculated CCS values for all 209 PCB congeners

	Appendix C   Supplemental Information
	C.1 Magnet scan equations
	C.2 Masses and abundances used by the PureIso program
	C.3 Tables of the PCB congener mixes
	C.4 Commercial/external software used throughout the PhD study

	Appendix D   Tables of the Key MS Instrument Parameters
	D.1 GC-HRMS (EI)
	D.2 GC-Q-IMS-TOF (APCI)
	D.3 GC-MS/MS (EI)
	D.4 GC-TOF (EI)


