

Structural, electrical and photocatalytic properties of ironcontaining soda-lime aluminosilicate glass and glassceramics

ALI, Ahmed, KHAN, Irfan, ZHANG, Bofan, RAZUM, Marta, PAVIC, Luka, SANTIC, Ana, BINGHAM, Paul http://orcid.org/0000-0001-6017-0798, NOMURA, Kiyoshi and KUBUKI, Shiro

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/27513/

This document is the Accepted Version [AM]

Citation:

ALI, Ahmed, KHAN, Irfan, ZHANG, Bofan, RAZUM, Marta, PAVIC, Luka, SANTIC, Ana, BINGHAM, Paul, NOMURA, Kiyoshi and KUBUKI, Shiro (2020). Structural, electrical and photocatalytic properties of iron-containing soda-lime aluminosilicate glass and glass-ceramics. Journal of Non-Crystalline Solids. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Table 1 ⁵⁷Fe Mössbauer fitted parameters for room temperature analyses of as collected slag (not heat-treated), melted slag at 1400 °C; heat treated at 800 °C for 100 min; and samples with different Fe₂O₃ and basicity content and the modified salag melted at 1400 °C; heat treated at 800 °C for 100 min

Sample	Species	4 (%)	δ	Δ	Г
Sample	Species	11 (70)	$(mm s^{-1})$	(mm s^{-1})	$(mm s^{-1})$
E 19	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	78.8	$0.32_{\pm\ 0.01}$	$0.77_{\pm0.02}$	$0.50_{\pm0.02}$
Г-10	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	21.2	$0.26_{\pm0.02}$	$1.65_{\pm\ 0.07}$	$0.45_{\pm0.05}$
F-12	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	60.0	$0.28_{\pm0.01}$	$1.00_{\pm\ 0.03}$	$0.53_{\pm0.04}$
	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	40.0	$0.24_{\pm\ 0.01}$	$1.78_{\pm 0.05}$	$0.54_{\pm 0.06}$
F-6	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	58.1	$0.21_{\pm0.02}$	$0.93_{\pm\ 0.07}$	$0.50_{\pm0.08}$
(B-1.00)	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	41.9	$0.23_{\pm\ 0.02}$	$1.67_{\pm0.11}$	$0.53_{\pm0.11}$
D 1 75	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	50.0	$0.19_{\pm0.02}$	$0.84_{\pm0.05}$	$0.39_{\pm0.07}$
B-1./3	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	50.0	$0.12_{\pm\ 0.03}$	$1.73_{\pm0.09}$	$0.54_{\pm0.12}$
B-1.50	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	76.4	$0.14_{\pm\ 0.02}$	$0.92_{\pm0.04}$	$0.56_{\pm0.05}$
	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	23.6	$0.12_{\pm\ 0.03}$	$1.88_{\pm0.07}$	$0.37_{\pm0.08}$
B-1.25	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	58.9	$0.20_{\pm\ 0.01}$	$0.84_{\pm0.03}$	$0.48_{\pm0.05}$
	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	41.1	$0.12_{\pm0.02}$	$1.88_{\pm0.04}$	$0.44_{\pm\ 0.06}$
B-0.75	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	60.6	$0.25_{\pm0.02}$	$0.98_{\pm0.07}$	$0.51_{\pm0.05}$
	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	39.4	$0.26_{\pm\ 0.02}$	$1.61_{\pm0.13}$	$0.51_{\pm0.12}$
M-1.5	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	53.8	$0.26_{\pm0.02}$	$0.82_{\pm\ 0.06}$	$0.51_{\pm0.08}$
	$\mathrm{Fe}^{\mathrm{III}} T_{\mathrm{d}}$	46.2	$0.18_{\pm0.02}$	$1.78_{\pm0.07}$	$0.52_{\pm\ 0.10}$
Melted	$\mathrm{Fe}^{\mathrm{III}} O_{\mathrm{h}}$	52.1	$0.36_{\pm0.01}$	$0.60_{\pm\ 0.06}$	$0.43_{\pm\ 0.06}$
slag	$\mathrm{Fe}^{\mathrm{III}}O_{\mathrm{h}}$	47.9	$0.35_{\pm\ 0.01}$	$\overline{1.08_{\pm\ 0.09}}$	$0.51_{\pm 0.06}$
As	$\mathrm{Fe}^{\mathrm{II}}O_{\mathrm{h}}$	70.2	$1.01_{\pm\ 0.01}$	$1.81_{\pm\ 0.02}$	$0.47_{\pm 0.03}$
slag	$\mathrm{Fe}^{\mathrm{III}}O_{\mathrm{h}}$	29.8	$0.48_{\pm 0.06}$	$1.32_{\pm 0.09}$	$0.53_{\pm 0.09}$

 $T_{\rm d}$ tetrahedral, $O_{\rm h}$ octahedral, A absorption area, δ isomer shift, Δ quadrupole splitting, Γ line width

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	Na ₂ O	TiO ₂	MgO	P_2O_5	K ₂ O	MnO	Others
As collected slag	23.90	20.80	18.33	24.61	4.69	2.14	3.12	1.45	0.21	0.36	0.39
B-1.5	27.6	20	6	41.4	5	-	-	-	-	-	-

Table 2 XRF compositional analysis of combustible waste slag (weight %) collectedJuly 2018 and nominal composition of the model slag B-1.50

Table 3 DC conductivity at RT for the samples of basicity 0.75 to 1.75 and the modified slag heat-treated at 800 °C for 100 min

Sample	$\sigma_{ m DC}{}^{ m a}$ / (Ω cm) $^{-1}$
B-0.75	2.2×10 ⁻¹²
B-1.00	3.2×10 ⁻¹¹
B-1.25	7.0×10 ⁻¹⁰
B-1.50	2.2×10 ⁻⁸
B-1.75	6.5×10 ⁻⁹
M-1.50	5.6×10 ⁻⁹

^a DC conductivity obtained from equivalent circuit modeling.