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Programmed death-ligand 1 (PD-L1) is an immune checkpoint inhibitor that binds

to its receptor PD-1 expressed by T cells and other immune cells to regulate

immune responses; ultimately preventing exacerbated activation and autoimmunity.

Many tumors exploit this mechanism by overexpressing PD-L1 which often correlates

with poor prognosis. Some tumors have also recently been shown to express PD-1.

On tumors, PD-L1 binding to PD-1 on immune cells promotes immune evasion and

tumor progression, primarily by inhibition of cytotoxic T lymphocyte effector function.

PD-1/PD-L1-targeted therapy has revolutionized the cancer therapy landscape and has

become the first-line treatment for some cancers, due to their ability to promote durable

anti-tumor immune responses in select patients with advanced cancers. Despite this

clinical success, some patients have shown to be unresponsive, hyperprogressive or

develop resistance to PD-1/PD-L1-targeted therapy. The exact mechanisms for this

are still unclear. This review will discuss the current status of PD-1/PD-L1-targeted

therapy, oncogenic expression of PD-L1, the new and emerging tumor-intrinisic roles

of PD-L1 and its receptor PD-1 and how they may contribute to tumor progression and

immunotherapy responses as shown in different oncology models.

Keywords: programmed death-ligand 1, PD-1/PD-L1-targeted therapy, tumor-intrinsic role, oncology models,

novel therapeutic strategies, biomarkers, immunotherapy, PD-1

INTRODUCTION

Cancer immunotherapies work to re-establish immune-mediated tumor eradication (1). Despite
the advancements in immunotherapy over the past decade, the interactions of cells within the
tumor microenvironment continue to mediate immune evasion and tumor progression (2). The
tumor consists of extracellular matrix components and diverse cell populations such as T cells, B
cells, natural killer (NK) cells, macrophages, dendritic cells, fibroblasts and endothelial cells (3).
Although immune cells such as NK, CD8+, and CD4+ T cells which migrate to the tumor display
anti-tumor activity, over time the tumormicroenvironment becomes immunosuppressive, favoring
the emergence of tumor promoting cells such as regulatory T-cells (T-regs), myeloid derived
suppressor cells (MDSCs) and M2 macrophages (1). This is known as the phenomenon cancer
immuno-editing which involves three phases: elimination, equilibrium, and escape (Figure 1).
Besides tumor cells acquiring the ability to escape immune recognition, they also employ
immune-inhibitory mechanisms to evade the immune systems defenses (4). Immuno-editing
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FIGURE 1 | The process of cancer immuno-editing: elimination, equilibrium and escape. Normal healthy cells transform into tumor cells through acquiring mutations

that allows for uncontrolled growth of the cell. In the elimination phase, immune cells can recognize and eliminate tumor cells by inducing apoptosis via granule and/or

receptor-mediated mechanisms. Some tumor cells avoid immune destruction and enter dynamic equilibrium with immune cells whereby the immune system elicits a

potent enough response to contain the tumor cells but not enough to eradicate them. During this phase tumor cells develop increased genetic instability and undergo

immune selection, whereby the immune cells eliminate those tumor cells susceptible to immune-mediated killing, whilst selecting those tumor cells with mechanisms

to evade the immune system. These selected tumor cells can now proliferate freely and expand leading to immune escape. PD-L1 expression is one of the many

mechanisms employed by tumors to facilitate immune evasion and tumor development. Tumor-intrinsic mutations can induce PD-L1 expression and influence tumor

cell-immune cell interactions within the tumor microenvironment to favor tumor growth (as discussed later in this review). Interferon gamma (IFN-γ), tumor necrosis

factor alpha (TNF-α), tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), interleukin 10 (IL-10), interleukin 6 (IL-6), transforming growth factor beta

(TGF-β), hypoxic inducible factor 1/2 alpha (HIF-1/2α), vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs).

occurs in patients with advanced cancers and this process can
be influenced by therapies targeting immuno-inhibitory proteins
(5, 6). One such mechanism is targeting of programmed death-
ligand 1 (PD-L1) (7, 8).

Abbreviations: NK, Natural killer cells; Tregs, Regulatory T cells; MDSCs,
Myeloid-derived suppressor cells; PD-L1, Programmed death-ligand 1; PD-1,
Programmed death 1; FDA, USA Food and Drug Administration; NSCLC,
Non-small cell lung cancer; CTLA-4, Cytotoxic T lymphocyte antigen-4; TCR,
T cell receptor; APCs, Antigen presenting cells; PD-L2, Programmed death-
ligand 2; SHP1/2, Src-homology 2 domain-containing phosphatase 1/2; miRNA,
microRNA; 3’UTR, 3’ untranslated region; GSK3β, Glycogen synthase kinase 3β;
S/T, Serine/Threonine; ccRCC, Clear cell renal cell carcinoma; ER, Endoplasmic
reticulum; 2D, Two-dimensional; CSC, Cancer stem cell; EMT, Epithelial to
mesenchymal transition; 3D, Three-dimensional; MDR1/P-gp, Multidrug resistant
1/P-glycoprotein.

PD-L1, also known as B7-H1 and CD274, is an immune
checkpoint inhibitor that binds to its receptor PD-1 expressed
by T cells, B cells, dendritic cells, and monocytes (7). PD-
L1 is expressed by T cells, B cells, NK cells, dendritic
cells, macrophages, MDSCs, and many other cell types such
as epithelial and endothelial cells (9, 10). The PD-1/PD-L1
signaling axis regulates immune responses to prevent exacerbated
activation and autoimmunity (8, 10). Many tumors exploit this
mechanism by overexpressing PD-L1 (11–13). Recently, tumors
have also been shown to express PD-1 (14, 15). PD-L1 binding
to PD-1 on immune cells induces inhibitory responses which in
turn can promotes immune evasion and tumor progression.

Elevated expression of PD-L1 on tumors has been reported
to strongly correlate with advanced disease state and unfavorable
prognosis in melanoma (11), breast (13), gastric (16), ovarian
(12), liver (17), kidney (18), pancreatic (19), and bladder (20)
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cancer. Immunotherapies targeting the PD-1/PD-L1 signaling
axis have become the first-line treatment for some cancers due
to their ability to promote durable anti-tumor immune responses
in select patients with advanced cancers (21–23), leading to their
approval by the USA Food and Drug Administration (FDA).
Although PD-1/PD-L1-targeted therapies have demonstrated
clinical benefits across a broad range of cancers, some patients
are unresponsive, hyperprogressive, or develop resistance (24).
The objective response rate of anti-PD-L1monoclonal antibodies
alone is ∼15% in non-small-cell lung cancer (NSCLC) (21,
25), ∼20% in urothelial carcinomas (23, 26) and ∼30% in
Merkel cell carcinomas (27, 28). Consequently, novel therapeutic
strategies are required to enhance patient response rates through
combining PD-1/PD-L1-targeted therapy with other immune
approaches, small molecule inhibitors, chemotherapy, or other
modalities. Patients considered eligible for PD-1/PD-L1-targeted
therapy are those that present with PD-L1-positive tumors,
circulating PD-1 positive/CD8+ T cells and/or tumors with high
mutational burden (23, 29). However, patient tumors that have
shown to lack PD-L1 have also responded positively to PD-1/PD-
L1-targeted therapy (10, 30), suggesting that either blocking
PD-L1 expression on tumors is not required for anti-tumor
responses and inhibition of PD-L1 on immune cells alone may be
sufficient or that more sensitive approaches to detecting PD-L1
expression on tumors is required. Conversely, some tumors with
high PD-L1 expression have shown to be unresponsive to PD-
1/PD-L1-targeted therapy (31), likely due to the lack of immune
stimulatory cells present in the tumor microenvironment to
elicit an effective anti-tumor immune response, but reasons for
this remain to be fully elucidated. However, patients that are
intrinsically unresponsive to PD-1/PD-L1-targeted therapy can
also demonstrate “primary resistance” whereby their tumors
display inadequate T cell infiltration, T cell exclusion, impaired
IFNγR signaling, and/or local immune suppression (2, 31).
Patients that initially respond to PD-1/PD-L1-targeted therapy
also show “acquired resistance” whereby their tumors display
loss of T cell function and/or disrupted antigen processing and
presentation (31, 32). In recent years, approximately 10% of
cancer patients have experienced pseudoprogression in response
to PD-1/PD-L1-targeted therapy, whereby patients temporally
exhibit rapid progression of their condition before responding
successfully to treatment (33). On the other hand, some patients
have experienced hyperprogression in response to PD-1/PD-L1-
targeted therapy, which is characterized by rapid deterioration
of their condition upon initialization of treatment without a
successful response; giving patients<2 months to live from onset
(33). The reasons for pseudoprogression and hyperprogression
in response to PD-1/PD-L1-targeted therapy remain speculative
and need to be explored. It is also important for clinicians to be
able to distinguish between the two types of responses to inform
patient selection for therapy. Further insight into the role of
PD-L1 and PD-1 in the tumor microenvironment could allow
the identification of more appropriate biomarkers predictive of
clinical efficacy to PD-1/PD-L1-targeted therapy necessary to
ensure patients receive the maximum clinical benefit whilst avoid
immune-related adverse effects (24, 29), pseudoprogression and
hyperprogression (33).

IMMUNE CHECKPOINT SIGNALING IN
CANCER

Immune checkpoint molecules expressed on T cells such
as cytotoxic T lymphocyte antigen 4 (CTLA-4) and PD-1
regulate immune responses by dampening T cell activation to
prevent exacerbated activation and autoimmunity (4, 34). During
cancer development anti-tumor immunity is suppressed and
immunotherapies targeting CTLA-4 and PD-1 signaling axes
have been developed to reactivate T cells to induce immune-
mediated tumor eradication (35). Normally, T cell activation
requires two signals. Signal one is the T cell receptor (TCR)
recognizing and binding to an antigenic peptide presented on
an MHC molecule on antigen presenting cells (APCs) or tumor
cells. The second is a co-stimulatory signal through CD28 on
T cells binding to CD80/CD86 on APCs. CTLA-4 prevents T
cell activation by competing with the co-stimulatory molecule
CD28 for the CD80/CD86 on APCs (36). Ipilimumab is a
CTLA-4 inhibitor approved for the treatment of advanced or
unresectable melanoma (36, 37). Unlike CTLA-4 expression
restricted to T cells, PD-1 is expressed by activated T cells,
B cells and monocytes. PD-1 binds to its two ligands, PD-
L1 and PD-L2, expressed primarily by APCs and tumor cells
(7). The function of PD-L2 however is not as widely known
as PD-L1 (38). Activated PD-1 on T cells through PD-L1
binding counteracts the downstream signaling of the TCR and
CD28 co-stimulatory signal by phosphorylating the cytoplasmic
immunoreceptor tyrosine-based switch motif leading to the
recruitment of Src homology region 2 domain containing
phosphatases 1 and 2 (SHP1/2) and slam-associated protein
(38, 39). SHP1/2 dephosphorylate the TCR and CD28 proximal
signaling molecules including ZAP70 and PI3K, respectively,
inhibiting T cell activation, cytokine production and promoting
pro-apoptotic molecule expression, ultimately resulting in T cell
anergy or apoptosis (2) (Figure 2). The overexpression of PD-L1
in many cancers causes functionally exhausted and unresponsive
T cells, promoting immune evasion and tumor progression
(7, 11–13) and abrogating PD-L1 expression on tumor cells
can enhance sensitivity to T cell killing (40, 41). Signaling of
PD-L1 intrinsically within immune cells has not been as well
studied as PD-1, however macrophage treatment with anti-PD-
L1 antibodies has been shown to upregulate mTOR pathway
activity, and RNA-Seq analysis revealed upregulation of multiple
macrophage inflammatory pathways (42).

PD-1/PD-L1-targeted therapies yield remarkable anti-tumor
immune responses with limited side effects in select patients
with advanced cancers (24). They have shown to increase
the proliferation of tumor-infiltrating lymphocytes and develop
a more clonal TCR repertoire within the T cell population
directed against the tumor (32). Currently there are six approved
PD-1/PD-L1-targeted therapies for the treatment of multiple
cancers as single agents (Table 1); some of which have gained
accelerated approval and emerged as front-line treatments
for some cancers (35). In 2014, the FDA approved the first
anti-PD-1 monoclonal antibody, Nivolumab, for treatment of
patients with unresectable or metastatic melanoma and disease
progression following Ipilimumab (anti-CTLA-4), based on the
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FIGURE 2 | The extrinsic function of the PD-1/PD-L1 signaling axis in cancer. T cells play an important role in modulating immune responses against tumor cells, but

tumors can exhibit immune inhibitory mechanisms like overexpressing PD-L1 to avoid T cell-mediated killing. (A) When PD-L1 binds to PD-1 expressed on the surface

of T cells, T cells become inactivated through the recruitment of SHP1/2 which subsequently inhibits TCR and CD28 co-stimulatory signaling by preventing the

phosphorylation of ZAP70 and PI3K, leading to T cell anergy or apoptosis and ultimately immune evasion. (B) Monoclonal antibodies targeting the PD-1/PD-L1

signaling axis have been developed to restore immune-mediated eradication of the tumor. PD-1/PD-L1 blockade allows co-stimulatory signal transduction from the

TCR and CD28 on T cells upon interaction with APCs or tumor cells. TCR binding to the tumor-associated antigen (TAA) in the MHC complex leads to the

phosphorylation of ZAP70, which then phosphorylates P38 and LAT resulting in activation of calcium-dependent and MAPK pathways. Simultaneously, CD80 binding

to CD28 phosphorylates PI3K which activates PIP3 leading to AKT-mTOR pathway activation. These signaling pathways promote T cell activation, cytokine

production and pro-survival factor expression stimulating anti-tumor immunity.

CA209037 clinical trial data where Nivolumab alone achieved
31.7% objective response rate (43). Subsequently, Nivolumab was
approved for the first-line treatment of metastatic melanoma
(44) and second-line treatment for NSCLC (45) and renal
cell carcinoma (46) following successful phase I-III clinical
trials. Nivolumab has also been approved for classic Hodgkin
lymphoma (47), head and neck squamous cell carcinoma (48),
bladder cancer (49), and colorectal cancer with microsatellite
instability or mismatch repair deficiency (50). Similarly, the anti-
PD-1 monoclonal antibody Pembrolizumab is approved for the
first-line treatment of metastatic melanoma (51) and NSCLC
(25) and second-line treatment for metastatic head and neck
squamous cell carcinoma (52) and refractory classical Hodgkin’s
lymphoma (53). In addition, it has also been approved for
gastric/gastroesophageal junction adenocarcinomas (16), cervical
cancer (54), and primary mediastinal large B-cell lymphoma
(55). Pembrolizumab is also the first therapy to be approved for
the treatment of all solid tumors with high mutational burden
(56). More recently, Nivolumab and Pembrolizumab have
gained accelerated approval for many more cancers (Table 1).
Cemiplimab represents a newly approved anti-PD-1 monoclonal
antibody for the treatment of metastatic cutaneous squamous
cell carcinoma (57). Atezolizumab was the first anti-PD-L1

monoclonal antibody to be approved for treatment of advanced
NSCLC and metastatic urothelial carcinoma. Atezolizumab
promoted a tolerable and durable objective response rate of
23% and 15% in NSCLC (21, 58) and in metastatic urothelial
carcinoma, respectively (22, 59), whilst anti-PD-L1 monoclonal
antibodies Avelumab and Durvalumab are approved for the
treatment of Merkel cell carcinoma (27, 28) and NSCLC (60),
respectively and are both approved for treatment of metastatic
urothelial carcinoma (26, 61). Furthermore, these PD-1/PD-
L1-targeted therapies are also being investigated for treatment
of colorectal, bladder, prostate and breast cancer as well as
hematological malignancies and have shown promising results in
the early clinical trials.

As single agents, immunotherapies targeting the PD-1/PD-
L1 signaling axis have demonstrated unprecedented capabilities
to elicit anti-tumor immune responses in some patients with
advanced cancers (21–23), however the fact remains; there are
a large percentage of non-responders or initial responders that
acquire resistance (29, 68). Most research associated with PD-L1
and PD-1 has been focused on their extrinsic role to inhibit the
immune system, but more recently a tumor-intrinsic role of PD-
L1 and PD-1 is emerging in some cancer types; however these
roles remain to be fully characterized in all cancers. Important
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TABLE 1 | FDA approved single agent use of PD-1/PD-L1-targeted therapy for a broad range of cancer types.

Drug Drug target Study name (Identifier) Population References

Nivolumab PD-1 NCT01844505 Metastatic melanoma (62)

NCT01642004 Advanced non-small cell lung cancer (45)

NCT01668784 Advanced renal-cell carcinoma (46)

NCT01592370 Relapsed/refractory classical Hodgkin’s lymphoma (47)

NCT02488759 Recurrent or metastatic head and neck squamous cell

carcinoma

(48)

NCT02387996 Metastatic urothelial carcinoma (49)

NCT02060188 Colorectal cancer with MSI-H and MMR aberrations (50)

NCT01658878 Advanced hepatocellular carcinoma (63)

NCT01928394 Metastatic small cell lung cancer (64)

Pembrolizumab PD-1 NCT01866319 Metastatic melanoma (51)

NCT01295827 Advanced non-small cell lung carcinoma (25)

NCT02255097 Recurrent or metastatic head and neck cancers (52)

NCT02453594 Adults and pediatric patients with refractory classical

Hodgkin’s lymphoma

(53)

NCT02335424 Metastatic urothelial carcinoma (23)

NCT01295827 Unresectable or metastatic high microsatellite instability

or mismatch repair deficient solid tumors

(56)

NCT02335411 Recurrent locally advanced or metastatic gastric or

gastroesophageal junction adenocarcinoma

(16)

NCT02628067 Recurrent or metastatic cervical cancer (54)

NCT02576990 Adults and pediatric patients with refractory or relapsed

primary mediastinal large B-cell lymphoma

(55)

NCT02702414 Advanced hepatocellular carcinoma (65)

NCT02267603 Adult and pediatric recurrent locally Merkel cell

carcinoma

(66)

NCT02054806 Advanced small cell lung cancer (67)

Cemiplimab PD-1 NCT02760498 Metastatic cutaneous squamous cell carcinoma (57)

Avelumab PD-L1 NCT02155647 Merkel cell carcinoma (28)

NCT01772004 Metastatic urothelial carcinoma (61)

Atezolizumab PD-L1 NCT01375842 Metastatic urothelial carcinoma (59)

NCT01903993 Advanced non-small cell lung carcinoma (21)

Durvalumab PD-L1 NCT01693562 Advanced urothelial carcinoma (26)

NCT02125461 Unresectable stage III non-small cell lung carcinoma (60)

PD-1 checkpoint inhibitors currently approved by the FDA include Nivolumab, Pembrolizumab, and Cemiplimab. PD-L1 checkpoint inhibitors currently approved by the FDA include

Avelumab, Atezolizumab and Durvalumab. Approved PD-1/PD-L1-targeted therapies are currently under clinical investigation for multiple other cancer types as single agents or in

combination with other anti-cancer drugs. Other PD-1/PD-L1-targeted therapies not yet approved by the FDA, such as Pidilizumab targeting PD-1, are also undergoing clinical

development for the treatment of multiple cancer types. For each drug displayed in table, the cancer types to which they were approved for treatment are shown in order of approval.

MSI-H, High microsatellite instability; MMR, mismatch repair.

questions to be addressed are the contribution of tumorigenic
expression of PD-L1 and PD-1 to intrinsic signaling, whether
monoclonal antibodies targeting the PD-1/PD-L1 signaling axis
work sufficiently to block this new and emerging role of PD-L1
and PD-1 and whether the intrinsic roles of these proteins are
contributing significantly to resistance, relapse to treatment, and
hyperprogressive responses in patients.

MECHANISMS AFFECTING PD-L1
EXPRESSION IN TUMORS

The tumor-intrinsic PD-L1 pathway is aberrantly activated in
many cancers (11–13, 69). There are several intrinsic and

extrinsic mechanisms responsible for PD-L1 regulation in tumor
cells, including genetic alterations, epigenetic modifications,
oncogenic and tumor suppressor signals, inflammatory cytokines
and other factors (Figure 3) (68–80).

Genetic Aberrations of PD-L1
Several tumors harbor genetic aberrations of the chromosome
9p24.1 which CD274, the gene for PD-L1, resides ultimately
affecting the expression of PD-L1 (72, 81, 82). Increased
copy number alterations on chromosome 9p correlates directly
with increased PD-L1 expression (72) and frequently occurs
in primary mediastinal B-cell lymphoma (63%) (83), classical
Hodgkin lymphoma (40%) (47), triple-negative breast cancer
(29%) (84), and soft tissue carcinomas (21.1%) (85). A recent

Frontiers in Immunology | www.frontiersin.org 5 October 2020 | Volume 11 | Article 568931

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hudson et al. Extrinsic and Intrinsic Roles of PD-L1/PD-1

FIGURE 3 | The mechanisms of PD-L1 activation and inactivation in cancer. The diagram highlights the many mechanisms behind PD-L1 regulation in tumor cells and

whether the proposed mechanisms have been shown to upregulate (+) or downregulate (−) the expression of PD-L1. PD-L1 expression is regulated at the

transcriptional, post transcriptional, translational, and post translational level in tumor cells. Many mechanisms have been shown to modulate PD-L1 expression

including genetic aberrations, epigenetic modifications, oncogenic and tumor suppressor signals and extrinsic factors.

study analyzing 9,771 tumor samples from 22 cancer types
revealed a high frequency of copy number gains in bladder,
cervical, colorectal, ovarian, and head and neck cancer (more
than 15% of tumors), but only a low frequency in pancreatic,
renal cell, and papillary thyroid carcinoma (<5% of tumors) (72).
In addition, copy number gains are also less frequently observed
in gastric cancer (15%) (86), NSCLC (5.3%) (87), small cell
lung cancer (1.9%) (88), and diffuse large B-cell lymphoma (3%)
(89). PD-L1 copy number gains are associated with substantial
therapeutic activity in some cancers due to the high levels
of tumor PD-L1 and increased immune infiltrates that they
have shown to promote (47, 90). There is some evidence to
suggest that PD-L1 chromosomal translocations influence PD-L1
overexpression in certain diffuse large B cell lymphomas (81, 89).
Disruption of the 3’ untranslated region (UTR) of PD-L1 is
another mechanism by which some tumors such as adult T-cell
leukemia/lymphoma, diffuse large B-cell lymphoma, and gastric
cancer display marked elevation of aberrant PD-L1 transcripts
that have become stabilized by truncation of the 3’UTR (69, 82,
91–93). PD-L1 deletions however are more frequently observed
in tumors than copy number gains (31 vs. 12%); particularly
in melanoma and NSCLC where >50% of tumors harbor PD-
L1 deletions (72). PD-L1 deletions, like PD-L1 copy number
gains, are associated with a high tumor mutational load and poor
prognosis, but the clinical significance of PD-L1 deletions is not
yet clear (72, 84).

Epigenetic Mechanisms Modulate PD-L1
Expression
Epigenetic modifications including microRNAs (miRNAs),
promoter DNA methylation, and histone modifications have
been shown to modulate PD-L1 expression in different cancers
(71, 79, 94–97). A number of miRNAs have been identified
to directly or indirectly influence PD-L1 expression (93, 98);
the majority of which inhibit PD-L1 expression by tumor cells
(Figure 3). One miRNA identified across multiple cancers to
inhibit PD-L1 expression is miR-200c which directly binds to
the 3’UTR of PD-L1 in hepatocellular carcinoma (99), acute
lymphoid leukemia (95), and NSCLC (100). Other miRNAs
include: miR-140 (79, 101, 102), miR-142-5p (103, 104), miR-
197 (105, 106), miR-34a (95, 107, 108), and miR-424/424-5p
(109, 110). miRNAs that positively regulate PD-L1 expression
include miR-135 (96) and miR-3127-5p (111) in NSCLC and
miR-18a in cervical cancer (79). In colorectal cancer PTEN is
directly targeted by miRNAs miR-130b, miR-20b, and miR-21
to indirectly induce PD-L1 expression via PI3K-AKT-mTOR
pathway activation (71).

Recently, PD-L1 promoter methylation has been shown
to negatively correlate with PD-L1 mRNA and/or protein
expression in multiple cancer types including acute myeloid
leukemia (78), glioblastoma (112), melanoma (113), head and
neck cancer (114), colorectal cancer (115) and prostate cancer
(116). The methylation status of the PD-L1 promoter has clinical
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significance for predicting the outcome of PD-1/PD-L1-targeted
therapy (78, 97, 113–116). For example, in NSCLC patients,
anti-PD-1 therapy enhanced PD-L1 promoter methylation and
reduced PD-L1 expression which mediated resistance to anti-
PD-1 immunotherapy Nivolumab in NSCLC patients (117).
In addition, histone modifications including methylation and
acetylation have been reported to modulate PD-L1 expression
in some cancers (118–123). The histone methyltransferase,
enhancer of zeste 2 polycomb repressive complex 2 subunit has
been shown to suppress PD-L1 expression through mediating
trimethylation of the PD-L1 promoter in hepatoma cells (120).
Moreover, histone deacetylases have been reported to regulate
PD-L1 expression in melanoma cells (122, 124, 125).

Constitutive Oncogenic Signaling
Regulates PD-L1 Expression
Oncogenic and tumor suppressor signaling pathways have been
shown to regulate PD-L1 expression (126, 127). Oncogenic
signals derived from aberrant receptors, effector molecules
and transcription factors leads to the overexpression of PD-
L1 by tumors and are associated with poor prognosis and
patient response to PD-1/PD-L1-targeted therapy (69, 70, 127,
128). PI3K-AKT-mTOR and RAS-MAPK pathway activation
is evidently linked to constitutive PD-L1 regulation in many
cancers (69, 129–131). Loss of PTEN (a tumor suppressor that
negatively regulates PI3K-AKT-mTOR signaling) or mutations
in PIK3CA (a catalytic subunit of PI3K) leads to elevated PD-L1
expression via constitutive PI3K-ATK-mTOR pathway activation
in squamous cell lung carcinoma (132, 133), NSCLC (130),
gliomas (134), colorectal cancer (135), prostate cancer (136),
and breast cancer (137). Some tumors harbor mutations in
RAS, BRAF, and EGFR and exhibit constitutive RAS-MAPK
pathway activation and consequently overexpress PD-L1 (70,
128, 129, 138). BRAF and EGFR mutations correlate with
PD-L1 expression, poor prognosis and low patient response
to PD-1/PD-L1-targeted therapy in melanoma (70, 138) and
NSCLC (128), respectively. Moreover, oncogenic transcription
factors including MYC (139), STAT (140), NFκB (141, 142),
IRF-1 (143), AP-1 (144), and HIF (145, 146) have been
reported to modulate PD-L1 expression at the transcriptional
level. MYC expression is found elevated in 70% of cancers
(147) and has recently been shown to bind to the PD-L1
promoter transcriptionally inducing PD-L1 expression (148).
Similar to MYC, other oncogenic reprogramming factors have
been implicated in PD-L1 regulation. OCT4 and SOX2 have
both been shown to upregulate PD-L1 expression in cervical
cancer (79) and hepatocellular carcinoma (149), respectively,
highlighting the necessity of PD-L1 expression for tumor
reprogramming functions.

Extrinsic Factors Promote PD-L1
Expression
Interferon gamma signaling in the tumor microenvironment is
primarily responsible for PD-L1 upregulation by tumor cells in
most cancer types (76, 150–154). This may be due in part to
secretion of IFNγ from tumor specific T-cells within the tumor

microenvironment. A study investigating IFNγ-mediated PD-
L1 upregulation in multiple cancers including melanoma, renal
cell carcinoma, head and neck cancer, and NSCLC, found that
IFNγ was able to induce mRNA and protein PD-L1 expression
by tumor cells regardless of constitutive PD-L1 expression (76).
Although, IFNγ is a dominant driver of PD-L1 expression in
various tumors, the mechanism by which IFNγ mediates PD-
L1 upregulation appears to be distinct among different cancer
types. For example, transcription factors JAK/STAT1, IRF-1 and
NFκB are responsible for IFNγ-induced PD-L1 expression in
hematopoietic tumors (155), lung cancer (143), and melanoma
(141), respectively. IFNγ signaling is often associated with a
positive patient response to PD-1/PD-L1-targeted therapy in
metastatic melanoma, NSCLC, head and neck cancer, gastric
cancer, and urothelial carcinoma (29, 156, 157). Moreover, loss of
function mutations in molecules involved in the IFNγ signaling
pathway such as JAK1, JAK2, and β2-microglobulin have been
identified to render tumor cells unresponsive to IFNγ signaling
and mediate intrinsic or acquired resistance to PD-1-targeted
therapy (158–160).

Other inflammatory cytokines shown to promote PD-L1
expression by tumor cells include: TNFα in breast (161),
prostate, colorectal cancer (162) and hepatocellular carcinoma
(152); IL-27 in lung, prostate and ovarian cancer (163); and
TGFβ in breast (164) and lung cancer (165). Additionally,
some cytokines have been shown to work synergistically to
upregulate PD-L1 expression in tumors such as TNFα with
IFNγ (166) and with IL-17 (162). Besides inflammatory cytokines
extrinsically modulating PD-L1 expression, hypoxia in the tumor
microenvironment selectively elevates PD-L1 expression viaHIF-
1α activation in melanoma, breast, lung, thyroid and prostate
cancer (9, 146, 167). In recent studies, HIF-2α has also been
shown to correlate with PD-L1 expression in clear cell renal cell
carcinoma (168, 169).

Despite the tremendous efforts of scientific researchers to
provide insight into the mechanisms behind PD-L1 signal
activation in cancer, the regulation of PD-L1 expression
by tumors remains to be fully elucidated in all cancer
types. Understanding the mechanisms of tumorigenic PD-
L1 expression and signaling in different cancer types may
provide therapeutic opportunities to alleviate PD-L1-induced
intratumoural immunosuppression and overcome resistance to
PD-1/PD-L1-targeted therapy. For greater improvement in the
efficacy of PD-1/PD-L1-targeted therapy, it is necessary to
identify and target tumor-intrinsic mechanisms that are both
responsible for controlling PD-L1 expression and promoting
tumor progression.

TUMOR-INTRINSIC PD-L1 SIGNALING

To date, there are less than twenty publications investigating
the intrinsic role of PD-L1 in tumors; predominantly using
RNA interference approaches in two dimensional (2D)-cultured
mouse or human cancer cell lines and immunocompromised
mouse models. There is an emerging role of PD-L1 to send pro-
survival signals within tumor cells to promote cancer initiation,
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FIGURE 4 | The proposed mechanism of action of PD-L1 in tumor cell

signaling. In select cancer types, there is an emerging role of PD-L1 to send

pro-survival signals in tumor cells. There is little known about the mechanisms

behind PD-L1 signal transduction in tumor cells and more research is required

to fully elucidate the potential mechanisms responsible. However, PD-L1

signaling in some tumor cells has been shown to promote cancer initiation,

epithelial to mesenchymal transition (EMT), invasion and metastasis, regulate

glucose metabolism, and contribute to drug resistance. TAA,

Tumor-associated antigen.

metastasis, development, and resistance to therapy (Figure 4).
However, how these emerging pro-survival signals are conveyed
intracellularly from cell surface PD-L1 is largely unknown. There
is accumulating evidence that intracellular regions of PD-L1
are responsible for transducing survival signals in tumor cells
(170–172). Three conserved amino acid sequences including
RMLDVEKC, DTSSK, and QFEET motifs have been reported
and shown to be located in the intracellular domain of PD-L1.
RMLDVEKC and DTSSK motifs were reported to be associated
with regulating PD-L1 stability and signal transduction due to the
discovery of two specific ubiquitination sites located in the motifs
(161, 171). Gato-Cañas et al., demonstrated that the RMLDVEKC
motif was required to inhibit IFN-mediated cytotoxicity toward
tumor cells via directly preventing STAT3 phosphorylation and
caspase-mediated apoptosis. Another study also demonstrated
that tumor cells expressing PD-L1 were refractory to Fas- and
protein kinase inhibitor Staurosporine-mediated apoptosis (170),

which could suggest that the intracellular motifs of PD-L1may be
involved in crosstalk with other signaling pathways; in particular
signaling pathways that control tumor cell survival. Other studies
have shown that PD-L1 agonists can induce crosslinking between
PD-L1 and CD80/CD86 to transduce reverse signaling (173–
175). Recently, PD-L1 has been shown to form a heterodimer
with CD80, a shared ligand with CTLA-4 and CD28, in cis
on APCs and tumor cells. This heterodimer was reported to
weaken CD80:CTLA4 interaction, but not CD80:CD28 binding
indicating that PD-L1 may prevent CTLA-4 inhibitory signals
(174, 175). Furthermore, overexpression of CD80 on PD-L1
positive tumor cells was shown to blunt the pro-tumor role of
PD-L1 (176). The above studies support the notation that PD-
L1 reverse signaling exists in tumor cells. Research efforts should
expand on this emerging concept of PD-L1 reverse signaling
which has the potential to identify new mechanisms of PD-L1-
targeted immunotherapy.

Tumor-Intrinsic PD-L1 Is Associated With
Cancer Initiation
PD-L1 expression has been shown to correlate with the cancer
stem cell (CSC)-like characteristics including the expression of
CD44 and/or CD133 at high levels on tumor cells. Human head
and neck (177), lung (178), and colorectal (179) cancer cells that
have CSC-like characteristics (CD44high/CD133high) were shown
to preferentially express PD-L1 compared to CD44low/CD133low

cancer cells in immunocompromised mouse models either
inoculated with a patient-derived xenograft or human cancer
cell lines mixed with Matrigel R©, respectively. In breast and lung
cancer cells CD44 was shown to be a key regulator of PD-
L1 expression following shRNA-directed knockdown of CD44
in vitro and in vivo using a metastatic breast cancer xenograft
mouse model (180). Additionally, primary tumor samples from
breast and lung cancer patients expressed high levels of PD-
L1 correlating with CD44 positivity (180), suggesting that CD44
regulation of PD-L1 expression observed in vitro could be similar
to that of an in vivo human tumor.

OCT4 and Nanog are transcription factors critical for
pluripotency and tumorigenesis (98). PD-L1 has been shown to
promote OCT4 and Nanog expression via PI3K/AKT pathway
in breast CSCs (131). PD-L1 knockdown compromised the
capability of breast CSCs to self-renew themselves in vitro
and in vivo using immune deficient nude mice. CSCs ability
to self-renew and differentiate into heterogeneous lineages of
cancer cells is thought to be responsible for drug resistance
and relapse in cancer development and progression (98). A
recent study showed that breast cancer stemness is regulated
by miR-873 directly suppressing PD-L1 expression and thus
PI3K/AKT and ERK1/2 signaling in breast cancer cells, which
reduced CSC-like characteristics and enhanced chemosensitivity
(181). Tumor PD-L1 has also been shown to promote the
tumor-initiating cell generation in immunocompromisedmurine
melanoma and ovarian cancer mouse models; a phenotype which
was also verified in a human ovarian cancer cell xenograft
mouse model (182, 183). This mechanism of intrinsic PD-L1 to
drive tumor stemness was associated with increased mTORC1
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signaling (182). However, CSC-like characteristics including high
aldehyde dehydrogenase activity, reduced production of reactive
oxygen species and a dormant state in the cell cycle were
favored following knockdown of PD-L1 in cholangiocarcinoma
cell tumors inoculated into mice compared to high PD-L1
expressing tumors (184), indicating that intrinsically PD-L1 may
have different roles in different cancer types. Moreover, the
CSC-like phenotype is shown to be associated with epithelial
to mesenchymal transition (EMT) (98). Chen et al. (100)
indirectly knocked down PD-L1 via the microRNA-200/ZEB1
axis in lung adenocarcinoma cells and found that PD-L1
expression correlated with EMT. Low miRNA-200 expressing
cells transplanted into a syngeneic immunocompetent mouse
model exhibited decreased intratumoural CD8+ T cells and
increased metastatic potential due to lack of control over
PD-L1 regulation.

Tumor-Intrinsic PD-L1 and the Promotion
of Tumor Growth, Invasion and Metastasis
Besides EMT playing a key role in invasion and metastasis, it
has the ability to alter the tumor immune microenvironment
to immunosuppressive and influence response to PD-1/PD-
L1-targeted therapies (185). PD-L1 knockdown in cultured
human gastric cancer cell lines SGC-7901 and AGS reduced
cell proliferation, migration, invasion and induced cell cycle
arrest in vitro and reduced tumor growth and EMT phenotypic
marker expression in immunocompromised mice in vivo
compared to gastric tumors expressing PD-L1 (186). Similarly,
in cultured human Jurkat lymphoid leukemia cells and Raji
lymphoma cells, PD-L1 knockdown by lentiviral transduction
reduced their invasive ability via downregulation of extracellular
matrix-degrading enzymes, matrix metalloproteinase 2 and 9
(187). PD-L1 silencing in murine B16 melanoma cells has also
been shown to slow tumor growth and reduce metastases to the
lungs of immunocompetent mice as well as immunodeficient
mice via mechanisms that increase autophagy and reduce
mTORC1 signaling (188). These findings may be linked to the
intrinsic functions of PD-L1 to promote tumor stemness via
mTORC1 signaling (182, 183). Tumor-initiating cells induced
by intrinsic PD-L1 signaling are likely to show higher metastatic
potential due to their self-renewal capabilities. Interestingly,
the same therapeutic effect to reduce lung metastasis was
absent in murine ovarian ID8agg cancer cells lacking PD-L1,
in immunocompromised mice (188), suggesting the effects of
intrinsic PD-L1 may be tumor specific and warrants further
investigation. A recent study which knocked down PD-L1 in
NCI-H1299 and Calu-1 cells showed enhanced proliferation
in comparison to control cells, suggesting a tumor suppressor
role of PD-L1 (15). Indeed, PD-L1 expression has been
shown to correlate with EMT markers in many solid tumors
including gastric, lung, breast, colon, and other common
cancers (185, 189). With consideration co-targeting of EMT
vulnerabilities and PD-1/PD-L1 signaling axis may have
the potential to improve clinical efficacy of immunotherapy
by limiting the shift of the tumor microenvironment

from immunostimulatory to immunosuppressive during
tumor development.

Tumor-Intrinsic PD-L1 and Regulation of
Metabolic Processes
Within the tumor microenvironment, nutrient competition
between tumor cells and immune cells may regulate tumor
progression and PD-L1 has been reported to directly regulate the
metabolism of several cancer cell lines (190, 191). Lactate derived
from tumors can suppress the function of T cells by disrupting
aerobic glycolysis, a process required for optimal T cell function
(190). It has been reported that checkpoint blockade could induce
an increase in the glucose concentration within a progressive
tumor mouse model, which correlated with glycolytic capacity in
tumor infiltrating lymphocytes and increased IFNγ production
(191). Interestingly, treatment of B16 melanoma, MC38 colon
cancer and sarcoma cancer cell lines in vitro with anti-PD-L1
antibodies was shown to reduce aerobic glycolysis mechanisms,
including reduced glycolysis enzymes and Akt phosphorylation,
indicating a tumor intrinsic role for PD-L1 in enhancing tumor
glycolysis. The same results were achieved by shRNA mediated
knockdown of PD-L1 (191), strongly suggesting that PD-L1
itself was the modulator of glycolysis in cancer cells. Hypoxic
inducible factor, HIF-1α is a well-known modulator of glycolysis
in cancer cells (192). The reduced glycolytic activity of cancer
cells caused by PD-L1 blockade would subsequently induce
an adaptive hypoxic response and stimulate the production of
HIF-1α. HIF-1α also directly modulates immune cell activity
in the tumor microenvironment to favor tumor growth and
induces PD-L1 expression on tumor cells and immune cells;
indirectly mediating immune escape and tumor progression
(9). Under hypoxic conditions PD-L1 expression was directly
induced by HIF-1α on MDSCs in B16-F10 tumor-bearing
mice, and PD-L1 blockade increased MDSC-mediated T cell
activation by downregulating IL-10 and IL-6 expression (193).
Dual blockade of PD-L1 and HIF-1α could further reduce the
glycolytic activity of cancer cells caused by PD-L1 blockade
and enhance anti-tumor immunity, ultimately leading to cancer
cell death.

Tumor-Intrinsic PD-L1 Facilitates
Resistance to Anti-Cancer Therapies
PD-L1 exhibits an anti-apoptotic role in MDA-MB-231 breast
cancer cells and silencing PD-L1 in these cells increased
cancer cell apoptosis and enhanced cancer cell susceptibility
to doxorubicin-induced apoptosis in vitro and in vivo
(194), suggesting that PD-L1 not only prevents cancer cell
apoptosis, but also promotes chemotherapy resistance. Likewise,
CRISPR/Cas9 knockout of PD-L1 enhanced the sensitivity
of human osteosarcoma KHOS and MNNG/HOS cells to
doxorubicin and paclitaxel and compromised their ability to
form three-dimensional (3D) spheroids in vitro (195). Further
characterization of the role of PD-L1 in chemotherapy resistance
in MDA-MB-231 breast cancer cells discovered that PD-L1
knockdown suppresses the expression of multidrug resistance
1/P-glycoprotein (MDR1/P-gp) via PI3K/AKT pathway in vitro
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(196); recognizing this has an additional therapeutic target. In
fact, PD-1/PD-L1 interaction increased survival of breast cancer
cells when exposed to doxorubicin (196), suggesting that PD-
1/PD-L1-targeted therapy may increase chemotherapy efficacy
by inhibiting MDR1/P-gp expression which usually confers
resistance in breast cancer cells. Moreover, through culturing of
breast (MDA-MB-231 and 4T1) and prostate (DU145) cancer cell
lines with recombinant PD-1 or Jurkat T cells it has been shown
how PD-1/PD-L1 interactions results in increased resistance
to doxorubicin and docetaxel (197). Subsequent knockdown
or blockade of PD-1 restored tumor cell chemo-sensitivity and
reduced their metastatic potential in a synergistic breast cancer
mouse model, suggesting blockade of intrinsic pathways is
beneficial for therapy. Conversely, human colorectal cancer cells
harboring a BRAFV600E mutation showed that the depletion of
PD-L1 suppresses chemotherapy-induced apoptosis through the
down regulation of BIM and BIK BH3-only proteins (198), even
though depletion alone reduced tumor growth. The effect of
PD-L1 on chemosensitivity was confirmed in BRAFV600E mutant
MC38 murine tumor xenografts, where PD-L1 knockout cells
were less sensitive to chemotherapy due to the suppression of
pro-apoptotic molecules, BIM and BIK, compared to parental
cells expressing PD-L1. This study highlights the importance
of understanding the role of PD-L1 in each cancer type and its
subtypes to design effective treatment regimens that will benefit
cancer patients.

The tumor-intrinsic role of PD-L1 appears to be similar
across all cancer types investigated in the literature to date,
with the exceptions of cholangiocarcinoma and contradictory
evidence in lung cancer, in that PD-L1 promotes tumor
growth and development. However, the molecular mechanisms
of PD-L1 exerting pro-tumor activity appear to be distinct
amongst different cancer types. Notably, in the studies that
have investigated the intrinsic role of PD-L1 in lung cancer the
cells utilized were mesenchymal lung cancer cell lines which
harbored KRAS and/or p53 mutations, suggesting that the tumor
cells metastatic capacity and mutational status may not be
determining factors as to whether PD-L1 exhibits a pro-tumor
or anti-tumor role in lung cancer. Furthermore, Wang et al.
(15) reported that PD-L1 expression reduced lung cancer cell
proliferation, suggesting that although PD-L1 expression may
limit tumor cell proliferation it is still affecting other tumor
characteristics that influence tumor progression. The reasons
behind this potential role of PD-L1 in lung cancer warrants
further investigation.

TUMOR-INTRINSIC PD-1 SIGNALING

Similar to PD-L1, the expression of PD-1 on T cells and its
role to inhibit the immune system is well characterized, but
recent studies have found intrinsic expression of PD-1 in tumor
cells including melanoma (199), hepatic carcinoma cells (200),
ovarian (201), bladder (201), lung (15, 202), and colorectal
(15) cancer cells. In melanoma B16 tumors, a subpopulation
of PD-1 expressing cancer cells were identified to modulate
downstream mTOR signaling and promote tumorigenesis
independent of adaptive immunity, in an in vivo mouse model

lacking an adaptive immune system (Figure 5A) (199). This
effect was abrogated with anti-PD-1 therapy, tumor-specific
PD-1 knockdown and mutagenesis of intracellular signaling
motifs downstream of PD-1, strongly suggesting an intrinsic
function of PD-1 to promote tumorigenesis in melanoma.
Similar to intrinsic PD-1 in melanoma cells, intrinsic PD-1 in
liver cancer cells has been reported to mediate tumorigenesis
in immunocompromised mice via regulating mTOR signaling
(Figure 5A) (200) and thus combined inhibition of PD-1 and
mTOR may be a potential therapeutic strategy for melanoma
and liver cancer. Moreover, anti-PD-1 therapy has been reported
to reduce the cell growth of bladder RT4 cancer cells cultured
in 2D in the absence of adaptive immunity (201), implying
that PD-1 expression is potentially oncogenic. Interestingly in
murine NSCLC M109 cells, intrinsic PD-1 exhibited an anti-
tumor role in immunocompromised mice and when NSCLC
cells were treated with anti-PD-1 therapy they demonstrated
increased proliferation and tumor growth (Figure 5B) (202).
Consistent with this, silencing of PD-1 or therapeutic antibody
blockade of PD-1 on the surface of NSCLC and colorectal cancer
cells increased proliferation in vitro via activating PI3K and
MAPK pathways (15), suggesting that PD-1 could be involved
in development of resistance to immunotherapy blockade in
NSCLC and could provide one explanation for why patients
with NSCLC can display hyperprogressive disease following
treatment with anti-PD-1 therapy (15, 203). The latter findings
also suggest that the tumor suppressor role of PD-1 on cancer
cells may not be limited to NSCLC. Although, Wang et al.,
demonstrated that PI3K and MAPK pathways were activated
following anti-PD-1 therapy in NSCLC cells in vitro and in vivo,
their study also showed that PD-1/PD-L1 dysfunction did not
activate mTOR, illustrating that the mechanism behind tumor-
intrinsic PD-1 to either induce or inhibit tumor growth may be
different. However, mTOR activation has been shown to occur
in the only two studies investigating tumor-intrinsic PD-1 where
PD-1 has a pro-tumor role, which may suggest that mTOR
signal activation is necessary for PD-1 to exhibit tumorigenic
activity. Therefore, the molecular mechanism behind tumor-
intrinsic PD-1 needs to be elucidated in other cancer types
to confirm this potential role of mTOR in PD-1 signaling
in tumor cells. Furthermore, studies investigating the role of
tumor-intrinsic PD-1 in tumors have utilized tumor cell lines
that exhibit invasive and metastatic potential. The metastatic
potential of cells does not seem to be a factor in determining
whether PD-1 is pro- or anti-tumorigenic and nor is it associated
with enhanced tumor-intrinsic PD-1 activity (199). Additionally,
studies have used both poorly- and well-differentiated tumor
cells which have been shown to have the same PD-1-intrinsic
function, implying that the differentiated state of the cell is
also not a contributing factor to the role PD-1 in tumors.
Yao et al., reanalyzed cancer transcriptomic and proteomic
data from The Cancer Genomic Atlas Project and The Cancer
Cell Line Encyclopedia Dataset to find that tumor-intrinsic
PD-1 expression is widespread in many cancer types. This
heterogeneity may explain the differential therapeutic effects of
anti-PD-1 drugs and could provide crucial information required
when selecting suitable patients for treatment dependent on

Frontiers in Immunology | www.frontiersin.org 10 October 2020 | Volume 11 | Article 568931

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Hudson et al. Extrinsic and Intrinsic Roles of PD-L1/PD-1

FIGURE 5 | The new and emerging role of PD-1 signaling in cancer. (A) Intrinsic PD-1 signaling has been shown to promote tumorigenesis in melanoma, liver, and

bladder cancer cells. Anti-PD-1 therapy abrogates this effect inhibiting tumor growth. (B) Intrinsic PD-1 signaling in NSCLC and colorectal cancer cells has been

shown to inhibit tumorigenesis. Anti-PD-1 therapy preventing PD-1 signaling promotes tumor progression in NSCLC and colorectal cancer cells.

the cancer cell type. However, further work in different
cancers and tumor models could also shed more light into
this area.

So far, most evidence for PD-L1 and PD-1 signaling in cancer
cells is based on 2D cell culture models using murine and human
cancer cells and immunodeficient mouse models that can fail to
fully recapitulate the human in vivo tumor (24, 204). Therefore,
more relevant models capable of recapitulating the heterogeneity
of the tumor microenvironment during in vivo conditions could
allow further predictive in vitro evaluation of the tumor-intrinsic
role of PD-L1 and PD-1, and how these roles may be affected by
immunotherapy treatment and influence immune cell function.

IMMUNOTHERAPY BLOCKADE OF
INTRINSIC PD-L1 AND PD-1 SIGNALING

Recent reports discussed above suggest that the emerging
intrinsic role of PD-L1 is largely pro-tumorigenic in a number
of cancers, but that in lung cancer and cholangiocarcinoma, it

may act as a tumor suppressor gene. Likewise, the new emerging
tumor intrinsic role of PD-1 has also been reported to have
differential roles in different cancer cell types and this remains
to be further investigated. However, there are currently a limited
number of reports investigating how immunotherapeutic drugs
potentially modulate these intrinsic pathways. Theivanthiran
et al. (205) demonstrated that PD-1 blockade on CTLs in
a syngeneic mouse model was able to activate a PD-L1-
NLRP3 inflammasome signaling pathway in tumor cells that
promoted MDSC recruitment and infiltration into the tumor
microenvironment. Intratumoural MDSCs can suppress T cell
function (193) and thus may dampen the immune response
and promote resistance to anti-PD-1 therapies. The effect
of the immunotherapy drug Atezolizumab was measured on
MDA-MB-231 breast cancer cells (206). In this study, RNA-
Seq was utilized to assess the modulation of gene expression
after treatment with Atezolizumab and it was reported that
genes promoting cell migration, metastasis, EMT, cell growth,
and hypoxia were downregulated whilst apoptosis genes were
upregulated. This suggests that Atezolizumab may be able to
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modulate the signaling of PD-L1 in this cell line to some
extent at the level of gene expression. In contrast, Wang
et al. (15), investigated the effects of anti-PD-1 antibodies
Nivolumab and Pembrolizumab or the anti-PD-L1 antibody
Atezolizumab on Calu-1, SW480, HT-29, BxPC-3, SK-BR-3,
and U-2 OS cells. All immunotherapy drugs were shown
to increase cell proliferation compared to isotype control in
vitro. To verify these findings in vivo, human lung cancer
cells were inoculated into immunocompromised mice. Similar
to in vitro studies, monoclonal antibody administration to
block PD-1 or PD-L1 activated PI3K and MAPK pathways
by phosphorylating AKT and ERK1/2, respectively, promoting
tumor cell growth in vivo. These small numbers of studies
suggests that immunotherapeutic antibodies may be able to
modulate the intrinsic function of PD-L1 and PD-1 and
potentially highlights another mechanism by which tumors may
develop resistance to PD-1/PD-L1 targeting therapy through
co-expressing PD-L1 and its receptor PD-1. The ability of
immunotherapy drugs to modulate the intrinsic PD-L1 and PD-1
pathway in other cancers in more heterogeneous tumor models
could also provide further important insight into the mechanism
of immunotherapy treatment.

FUTURE DIRECTION “MODELING TUMOR
HETEROGENEITY” TO FURTHER
ELUCIDATE INTRINSIC ROLES OF PD-L1
AND PD-1

Tumor heterogeneity makes it challenging to identify novel
therapeutic targets and potential biomarkers of immunotherapy
response that could substantially enhance therapeutic efficacy.
The scientific basis for numerous clinical trials has derived from
2D cell culture models and animal models, which can fail to
fully replicate the human tumor microenvironment due to lack
of heterogeneity and species-to-species variability, respectively,
which could account for lack of transferability of PD-1/PD-L1-
targeted antibodies into the clinic (24, 204). Furthermore, most
evidence to date exploring the intrinsic role of PD-L1 and PD-
1 has been based on 2D cell culture models using murine or
human cancer cell lines or animal models, and thus limit the
capacity to explore these roles in a relevant human tumor setting.
Given the emerging intrinsic roles of PD-L1 and PD-1 and the
differences between cancer types, utilizing models which closely
mimic the heterogeneity of the human tumor microenvironment
could allow a more predictive in vitro evaluation of the
intrinsic role of PD-L1 and PD-1 in cancer and modulation
by anti-cancer therapeutics. For example, human cancer cells
implemented into different 3D cell culture models have shown

to exhibit characteristics that more closely mimic in vivo human
tumors, such as changes in morphology, proliferation, gene and
protein expression, and response to treatment (204). Indeed the
modulation of PD-L1 expression has been reported to be affected
by the extracellular matrix stiffness of tumors in 3D culture (207)
and a 3D model system utilizing patient-derived organoids that
resembled the tumor immune microenvironment for the study
of the PD-1/PD-L1 signaling axis has been developed (208).
Furthermore, in a recent study a tumor-immune co-culture was
utilized to assess the efficacy of immunotherapies Nivolumab and
Durvalumab (209).

CONCLUSIONS

PD-1/PD-L1 checkpoint blockade is at the cutting edge of
research offering cancer patients hope for new treatment
regimens with potential to have substantial clinical benefit and
prolong survival. PD-1/PD-L1-targeted therapies reactivate
the immune system to induce immune-mediated tumor
eradication, and although they have demonstrated success
has single agents, they have also shown cooperation with
conventional and targeted therapies in the clinic. Unfortunately,
most patients are unresponsive or develop resistance to
PD-1/PD-L1-targeted therapy. Further elucidating the
tumor intrinsic role of PD-L1 and its receptor PD-1 in all
cancer types will help understand the basis for or lack of
response to immunotherapy and may allow the identification
of novel therapeutic targets and biomarkers to enhance
clinical efficacy.
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