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ABSTRACT 

Cu phase has been incorporated into hard coatings to form nanocomposite structure, which not only 

enhanced the hardness but also the toughness due to excellent ductility of copper. In this study, a 

single Al67Ti33-V-Cu spliced target was used to prepare the AlTiVN-Cu nanocomposite coatings, 

and the effect of Cu doping on microstructure and mechanical properties of AlTiVN-Cu coatings 

has been investigated. The results showed that the deposition rate linearly increased from 3.8 to 

13.4 nm/min when Cu content increased from 2.6 to 46.7 at.%. AlTiVN-Cu coatings exhibited a 

Ti-Al-V-N solid-solution phase with strong (111) preferred orientation at low Cu contents below 8.3 

at.%. When Cu content increased above 22.6 at.%, Cu atoms grew up into metallic crystallites and 

strongly suppressed crystal growth of nitride coatings due to repeated nucleation. With increasing 

Cu content, the microstructure transferred from compact columnar to dense featureless, and then to 

coarse columnar structure. AlTiVN-Cu(2.6 at.%) coating exhibited a super hardness of 41.1 GPa 

and an excellent toughness with a high H3/E*2 ratio of 0.24. 

Keywords: AlTiVN-Cu; Microstructure; Mechanical properties; Toughness. 

 

1. Introduction 

In last decades, ternary TiAlN coatings have been widely applied in cutting tools attribute to 

the high hardness, excellent wear resistance, good oxidation resistance and corrosion resistance at 

elevated temperatures [1–4]. To meet the increasing demand of modern machining technology 

under extreme conditions, especially for high-speed and dry cutting, some novel structures based on 

ternary TiAlN hard coatings, such as multicomponent alloying structure [5, 6], nanocomposite 

structure [7, 8], multilayer or nano-structure [9, 10], have been put forward to further improve the 

mechanical properties and wear resistant of the coatings. 

To further enhance the oxidation resistant and thermal properties, some metallic elements with 

high melting point (e.g. Y, Ta, Hf) have been incorporated into TiAlN hard coatings, which was 

related to promoting the formation of Al2O3 dense layer [11, 12]. Lubricious oxides with 

substoichiometric compounds were commonly referred to as Magnéli phases (e.g. Mo, W, V) [13]. 

Due to the rapid oxidation of VN coatings at elevated temperatures above 500 °C [14], the 

formation of vanadium oxides including V2O5 and Magnéli phases from the series VnO2n-1 was 
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beneficial for providing lubricious effects, and V was incorporated into TiAlN hard coatings to 

improve the tribological properties [15]. However, the V-addition promoted the formation of 

rutile-like TiO2 instead of a dense Al2O3, resulting in a drop in oxidation resistance [6, 16]. In 

addition, the alloying of V was found to further increase the coating hardness due to solid solution 

hardening of fcc Ti-Al-V-N phase [17]. Moreover, increasing V content reduced the fraction of hcp 

AlN phases in the dual-phase (fcc/hcp) structure, causing a significant hardness enhancement from 

21 to 27.5 GPa for Ti33-xAl67VxN coatings [18]. Although the hardness of TiAlN coatings have been 

improved by the V addition, but suffered from an increased flank wear due to the increase of 

brittleness for Ti-Al-V-N coatings [19]. Similar results were also found in the Ti-V-N coatings that a 

high V content led to a decrease in ductility of the coatings [20]. 

Recently, some soft phases (e.g. Cu, Ag, Ni) have been incorporated into hard coatings to form 

the nanocomposite structure, which simultaneously exhibited both high hardness and toughness 

[21]. Among which, it is well know that soft Cu phase exhibit excellent ductility, which could 

improve coating hardness and toughness [22, 23], or even lower the friction coefficient [24, 25]. It 

was reported by Jirout et al. [26] that the addition of Cu into ZrO2 coatings altered the 

microstructure and macrostress, which significantly influenced mechanical properties, such as 

toughness or brittleness. Due to the grain boundaries in crystalline coatings promoted the 

propagation of cracks, amorphous Zr-Cu-O coating with high Cu content of 38 at.% exhibited better 

fracture toughness as compared to the polycrystalline coatings. In addition, the additive Cu as a soft 

and ductile metal has been reported to improve the coating hardness and tribological properties of 

(Ti,Al)N-Cu coatings [27]. Thus, it can be inferred that the comprehensive properties of Ti-Al-V-N 

multicomponent coatings could be improved by the addition of Cu to form a nanocomposite 

structure. 

The aim of this work was to prepare AlTiVN-Cu coatings by high power impulse magnetron 

sputtering (HIPIMS) with a single Al67Ti33-V-Cu spliced target. A variation in Cu contents could be 

achieved simply by altering the vertical substrate positions, in order to study the effect of Cu doping 

on the deposition rate, microstructure, residual stress and mechanical properties of AlTiVN-Cu 

nanocomposite coatings. 

2. Experimental 

2.1. Coating deposition 

AlTiVN-Cu coatings were deposited on 316L stainless steels and YT14 cemented carbides by 

high power impulse magnetron sputtering (HIPIMS) with a rectangular spliced target (69 mm × 443 

mm), which was consisted of two metal targets of Cu and V (99.9% purity), and a Al67Ti33 alloy 

target (99.9% purity). As shown in Fig. 1, four different vertical substrate distances (D = 4, 10, 16, 

22 cm) were designed to prepare AlTiVN-Cu coatings with various compositions, especially for the 

addition of V and Cu, similar to our previous studies for the design of Mo-V-Cu-N coatings [28]. 

Before deposition, all the samples were treated ultrasonically in anhydrous ethanol and then fixed 

on the different vertical position holders in the chamber after dried in air. The deposition process 

started with ion etching by Ar glow discharge at a DC bias voltage of −1000 V for 15 min. Then 

followed by the plasma bombardment with Cr+, which was conducted by arc ion plating (AIP) with 

a Cr target (99.9% purity, Ø 100 mm) at a target current of 100 A for 3 min. To further enhance the 

adhesion strength, a thin inter-layer of CrN (~100 nm in thickness) was first deposited by AIP 

technique. Then AlTiVN-Cu coatings were deposited by HIPIMS technique in a common Ar and N2 

atmosphere. The deposition time was set as 180 min, and detail deposition parameter were listed in 

Table 1. The total coating thickness was in the range of 0.8 to 2.5 μm. 

2.2. Coating characterization 

A field emission scanning electron microscopy (FE-SEM, Quanta650) was used to characterize 

the coating surfaces and cross-sections, the coating compositions were measured by 

energy-dispersive X-ray spectrum (EDX). The deposition rates were calculated according to the  
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Fig. 1. Schematic diagram of Al67Ti33-V-Cu 

spliced target and the substrate positions. 

 

Table 1 Deposition parameters of AlTiVN-Cu coatings deposited by HIPIMS. 

Parameters Values 

Base pressure (Pa) 5.0×10-3 

Working pressure (Pa) 0.6 

N2 /Ar flow rate (sccm) 10 / 45 

Working temperature (°C) 200 

Bias voltage (V) –100 

Target power (kW) 1.5 

Pulse length (μs) 100 

Frequency (Hz) 200 

Duty cycle 2% 

Vertical substrate distance D (cm) 4、10、16、22 

Deposition time (min) 180 

coating thickness observed from the cross-sections. The crystal structure was measured by X-ray 

diffraction (XRD, D8 Advance) using Bragg Brentano mode and Cu Kɑ radiation. The instrument 

operated at 40 kV and 40 mA, and the scanning diffraction range was 20°‒80° with a step size of 

0.02°. An atomic force microscopy (AFM, Bruker) was used to measure the average surface 

roughness of the coatings, which were performed on a scan area of 5 × 5 μm2 in a contact mode. 

The selected sample was further characterized by field-emission transmission electron microscopy 

(FE-TEM, Philips CM20) with tungsten electron gun operated at 200 kV. The cross-sectional 

sample was prepared by using a precision ion polishing system (model 691) with a low angle Ar+ 

ion beam between 8°‒10°. Then the final surface cleaning was operated at a lower beam energy of 

2.5 keV and 20 µA to remove the upper copper layer induced by sputtering process. 

A film stress tester (FST-1000, Supro Instruments) was used to measure residual stress of the 

coatings, which were performed on 316L stainless steel substrates (elastic modulus Es of 195 GPa 
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and poisson’s ratio υs of 0.29) based on Stoney’s equation [29], as shown below: 
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where Es and υs denotes the elastic modulus and poisson’s ratio of the substrates, hs and hc are the 

thickness of the substrates and coatings. R0 and Rc refers the curvature radius before and after the 

coating deposition, respectively. A nanoindenter (NHT2, CSM) was performed on YT14 cemented 

carbides substrates to measure the coating hardness and elastic modulus. A scratch tester (RST, 

CSM) was used to measure the adhesion strength. The scratch tests were performed at a scratching 

distance of 3 mm under a maximum load of 80 N. A Vickers hardness tester (MVK-H1, Mitutoyo) 

was employed to evaluate the toughness of the coatings, and a diamond square cone with a apex 

angle of θ = 136° was used as the sharp Vickers indenter tip. The indentation tests were conducted 

on the coatings deposited on the substrates of stainless steel and cemented carbide under a 

indentation load of 4.9 N with a dwell time of 15 s. The indentation morphologies were then 

characterized by SEM technique, and the depth of impression d could be calculated by the 

following formula: 

)
2

cot(
2


=

a
d                            (2) 

where a and θ refers to the indentation side length and apex angle, respectively. 

3. Results and discussion 

3.1. Chemical composition and deposition rate 

According to the designed spliced target and vertical substrate distances in Fig. 1,  various 

chemical compositions of AlTiVN-Cu coatings can be achieved in Fig. 2(a). When the vertical 

substrate distance increased from 4 to 22 cm, Cu content increased sharply from 2.6 to 46.7 at.%, 

whereas both V and N contents decreased linearly from 16.7 to 0.6 at.% and 47.1 to 27.8 at.%, 

respectively. It indicated that a wide composition range of the coatings can be adjusted with a single 

spliced target simply by varying the vertical substrate distance. However, due to the special design 

of Al67Ti33-V-Cu spliced target in Fig. 1, all the deposited AlTiVN-Cu coatings contain Cu, and no 

reference AlTiVN (undoped) coating could be achieved in this study. As shown in Fig. 2(b), the 

calculated Al/Ti atomic ratios increased gradually from 1.7 to 2.0, closing to the original contents in 

Al67Ti33 alloy target. With the decrease of V content, the (Al+V)/Ti atomic ratios also decreased 

sharply from 3.0 to 2.1. Moreover, the N/(Al+Ti+V) atomic ratios were within the small range of 

0.8 to 1.1, indicating that N content in all the coatings were nearly to the stoichiometric. Due to the 

different mass between sputtered elements, the variations in atomic ratios could be caused by the 

re-sputtering effect, especially for the HIPIMS deposition with high ionization degree and ion 

bombardment. 

Fig. 3 shows the deposition rate of AlTiVN-Cu coatings at different Cu contents. With 

increasing the Cu content from 2.6 to 46.7 at.%, the deposition rate increased linearly from 3.8 to 

13.4 nm/min, which can be attributed to the changes in chemical compositions of AlTiVN-Cu 

coatings. According to the sputtering yields of metals under normally incident Ar+ ion bombardment 

[30], the sputtering yields were found to be independent of gas pressure and ion current density, but 

increasing with ion energy, and raised differently for different materials. At a argon ion energy of 

400 eV, the Cu element has the highest sputtering yield of ~1.6 as compared to the Al (~0.8), Ti 

(~0.4) and V (~0.5) elements. Thus, the increase of deposition rate can be mainly attributed to a 

sharp increase of Cu content in the deposited coatings. 

3.2. Microstructure and residual stress 

Fig. 4 displays the XRD patterns of AlTiVN-Cu coatings at different Cu contents. At a low Cu 

content of 2.6 at.%, it was found that four diffraction peaks centered at about 37.0°, 43.3°, 62.4°,  
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Fig. 2. (a) Chemical composition and (b) atomic ratio of the coatings as a function of vertical 

substrate distance. 

 

Fig. 3. Deposition rate of 

AlTiVN-Cu coatings as a function of 

Cu content. 

 

Fig. 4. XRD patterns of AlTiVN-Cu 

coatings at different Cu contents. 

78.9°, which could be corresponded to the (111), (200), (220) and (222) planes of NaCl-type 

face-centered cubic (FCC) structure, respectively. Due to similar atom radius, the Ti atoms were 

partly replaced by V and Al atoms in FCC Ti-N lattice, which resulted in the formation of TiAlVN 

solid-solution phase [19]. It indicated that the V tended to solid solution in FCC TiAlN lattice rather 

than to form an individual phase of VN in the AlTiVN-Cu coatings. When the Cu content increased 

up to 8.3 at.%, AlTiVN-Cu coating exhibited an enhanced (111) preferred orientation and the (220)  
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Table 2 Lattice parameters of AlTiVN-Cu coatings with various Cu contents. 

Planes 
Lattice parameters a0 (Å) 

2.6 at.% 8.3 at.% 22.6 at.% 46.7 at.% 

TiAlVN 

(111) 4.204 4.203 4.198 － 

(200) 4.178 4.176 4.174 － 

(220) 4.208 － － － 

(222) 4.201 4.200 － － 

Cu 
(111) － － － － 

(200) － － － 3.612 

Mean 4.198 4.193 4.186 3.612 

Stdev 0.013 0.015 0.017 － 

peak disappeared. However, when the Cu content further increased to 22.6 at.%, the diffraction 

peak of (222) disappeared, and the strong preferred orientation of (111) decreased to a extremely 

low-intensity reflection. Similar results were reported in Zr-Cu-O coatings that the crystallization 

was strongly suppressed by the incorporation of high Cu content (24 at.%) [26]. When the Cu 

content reached as high as 46.7 at.%, a new diffraction peak at ~50.5° appeared in the XRD patterns, 

corresponding to the (200) plane of FCC Cu phase (JCPDS 85-1326). It indicated that the Cu atoms 

existed as crystalline phase in the AlTiVN-Cu(46.7 at.%) coating. Whereas no obvious nitride phase 

can be observed in the diffraction peaks, indicating that Cu atoms grew up into metallic crystallites 

and strongly suppressed the crystal growth of nitride coatings due to repeated nucleation. 

In addition, as the Cu content increased, the peak positions shifted slightly toward higher 

diffraction angles, illustrating that a decrease in lattice parameters. To further quantitatively analyze 

this variation, the lattice parameters of deposited AlTiVN-Cu coatings were calculated by the 

Gaussian fittings [31], as listed in Table 2. When Cu content increased from 2.6 to 22.6 at.%, the 

lattice parameters of AlTiVN-Cu coatings decreased from 4.198 to 4.186 Å. When the Cu content 

further increased to 46.7 at.%, the lattice parameters decreased sharply to 3.612 Å, which was 

nearly to the standard reference value (3.615 Å) of Cu powder (JCPDS 85-1326). This further 

demonstrated that FCC Cu phase formed in AlTiVN-Cu(46.7 at.%) coating. According to the lattice 

distortion in substitutional solid solutions, the incorporation of Al and V with smaller atomic radius 

in TiN lattice could lead to lattice shrink as compared to the standard reference value (4.242 Å) of 

TiN powder (JCPDS 38-1420). Similar results were also found in Ti-Al-V-N coatings that the lattice 

parameters decreased with the increase of Al and V atoms incorporated in the TiN lattice [19]. 

Fig. 5 displays the residual stress of AlTiVN-Cu coatings at different Cu contents. All the 

coatings exhibited a compressive residual stress, which would be caused by the effect of atomic 

peening during ion bombardment process [32]. When Cu content increased from 2.6 to 46.7 at.%, it 

can be found that the compressive residual stress decreased sharply from 5.7 to 0.1 GPa, indicating 

that the compressive residual stress of AlTiVN-Cu coatings can be significantly released by the 

addition of Cu. Similar results were found in MoN/Cu coatings that the relaxation of residual stress 

could be mainly attributed to the presence of a compliant copper phase [33]. 

Fig. 6 shows SEM morphologies of AlTiVN-Cu coating surfaces at different Cu contents. At a 

low Cu content of 2.6 at.%, AlTiVN-Cu coating exhibited a relatively smooth surface with small 

microparticles. However, when the Cu content increased to 22.6 at.%, the coating surface became 

rougher with larger microparticles appeared. Similar results were also reported in TiN-Cu 

nanocomposite coatings that Cu grains agglomerated around the TiN crystallites, leading to the  
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Fig. 5. Residual stress of 

AlTiVN-Cu coatings as a function 

of Cu content. 

 

Fig. 6. Surface micrographs of the coatings at different Cu contents: (a) 2.6 at.%, (b) 8.3 at.%, (c) 

22.6 at.% and (d) 46.7 at.%. 

increase of spherical particles sizes [34]. In Fig. 6(d), when the Cu content reached as high as 46.7 

at.%, the coating surface was uniformly covered with many clustered grains, which was typical for 

a granular structure. At high Cu contents, the atomic mobility increased on the growing surfaces 

during coating deposition, which led to the immiscible Cu grains clustered to form relatively larger 

grains [35]. To investigate the surface morphology evolution, three-dimensional AFM images of 

AlTiVN-Cu coatings at different Cu contents were compared in Fig. 7. At low Cu contents, a 

plate-like structure can be clearly observed on the coating surfaces. It would be due to the effect of  
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Fig. 7. Three-dimensional AFM images of the coatings at different Cu contents: (a) 2.6 at.%, (b) 8.3 

at.%, (c) 22.6 at.% and (d) 46.7 at.%. 

 

Fig. 8. Cross-sectional SEM micrographs of the coatings at different Cu contents: (a) 2.6 at.%, (b) 

8.3 at.%, (c) 22.6 at.% and (d) 46.7 at.%. 

strong ion bombardment and etching on the growing coating surfaces, which resulted in a template 

growth effect of WC-Co substrate. However, when the Cu content increased to 22.6 at.%, the 

coating surface became rough with small granular structure observed, and then transferred to an 

island-like structure with larger granular size when the Cu content reached as high as 46.7 at.%,  
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Fig. 9. Cross-sectional TEM bright-field image and selected area electron diffraction pattern of the 

AlTiVN-Cu(22.6 at.%) coating: (a) lower cross-sectional part, (b) upper cross-sectional part, (c) 

amplification picture of upper part, (d) SAED pattern. 

which could be corresponded to the rough tops of columnar growth. As the Cu content increased, 

the average surface roughness increased sharply from 21.0 to 64.6 nm, which was in consistent with 

the surface morphologies observed in Fig. 6. 

Fig. 8 displays the fractured cross-sections of AlTiVN-Cu coatings at different Cu contents. As 

shown in Fig. 8(a, b), AlTiVN-Cu coatings exhibited compact columnar microstructure at low Cu 

contents, corresponding to II-type structure in Thornton’s structure zone model [36]. In addition, a 

flat and dense interface of YT14 cemented carbide substrate/CrN interlayer/coating can be clearly 

identified in Fig. 8, indicating that a good adhesion between the substrates and coatings. However, 

when Cu content increased to 22.6 at.%, a dense fine-grained without obvious columnar 

microstructure observed in Fig. 8(c), which was in consistent with above XRD results (see Fig. 4). 

This indicated that the addition of Cu phase into Al-Ti-V-N coatings can significantly influence the 

microstructure evolution by restricting the growth of columnar crystal, and even formed a dense 

featureless microstructure. Similar microstructure evolution was also found in Zr-Cu-N 

nanocomposite coating with a high Cu content of 20 at.% [22]. When Cu content reached as high as 

46.7 at.%, AlTiVN-Cu coating exhibited a coarse columnar microstructure. Cu atoms agglomerated 

in inter-granular boundaries and grew up into metallic Cu crystallites at high Cu contents above 14 

at.%, leading to a porous and coarse microstructure in Mo-Cu-N coatings [24]. 

Fig. 9 displays the bright-field TEM images and selected area electron diffraction (SAED) 

pattern of AlTiVN-Cu(22.6 at.%) nanocomposite coating. As shown in Fig. 9(a), a bi-layer structure  
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Fig. 10. (a) Hardness H and elastic modulus E, (b) H/E* ratio and elastic recovery We, and (c) 

H3/E*2 ratio of the coatings as a function of Cu content. 

can be clearly observed, which was in agreement with the cross-section morphology in Fig. 8. The 

CrN interlayer exhibited a typical columnar structure with a large grain size of 90‒110 nm, which 

was typical for the arc ion plating deposition. As for the upper part in Fig. 9(b), AlTiVN-Cu coating 

exhibited a extremely fine and incontinuous columnar structure, which was typical for interrupted 

columnar growth model. It could be explained by Barna and Adamik’s structure zone model (SZM) 

[37], the incorporation of Cu phase in the Al-Ti-V-N coatings blocked the columnar growth and 

stimulate repeated nucleation, leading to a dense featureless microstructure formed in Fig. 8(c). The 

corresponding amplification picture of upper part coating as shown in Fig. 9(c), it was found that 

the short columns with a small grain size of 10‒30 nm formed in the upper coating, which 

demonstrated that the Cu doping contributed to the refinement of crystallite size of TiAlVN phase. 

In Fig. 9(d), the SAED pattern of upper coating exhibited a typical NaCl-type cubic structure with 

incontinuous diffraction rings, which can be corresponded to the (111), (200), (220), and (311) 

planes of TiAlVN solid-solution phase. However, no Cu phase could be identified in the SAED 

pattern, indicating that Cu atoms existed as an amorphous state in AlTiVN-Cu(22.6 at.%) 

nanocomposite coating, which was in consistent with above XRD results. 

3.3. Mechanical properties 

Fig. 10(a) shows the coating hardness and elastic modulus at various Cu contents. At a low Cu 

content of 2.6 at.%, a relatively high hardness of 41.1 GPa was achieved for the AlTiVN-Cu(2.6 

at.%) coating, belonging to the superhard coatings. As for the TixAl2xVyN coatings, Kutschej et al. 

reported that the coating hardness increased from 27 to 32 GPa when V content in the target 

increased from 2 to 10 at.%, which mainly due to the solid solution hardening [17]. The highest 

hardness of 38 GPa achieved for the coating with 25 at.% V, which caused by the predominantly 

formed fcc Ti-Al-V-N phase. As for the Ti33-xAl67VxN coatings, Pfeiler et al. found that increasing V 

content reduced the fraction of hcp AlN phase in the dual-phase (fcc/hcp) structure, and the highest 

hardness of 27.5 GPa was obtained for the coating with 16.5 at.% V [18]. As for the Ti16.5Al67V16.5 

targets, with increasing the bias voltage from -40 to -160 V, the coating hardness increased form 

27.6 to 38 GPa, which mainly due to the vanishing of hcp AlN phase and high ion bombardment  
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Table 3 Nanoindentation test data of AlTiVN-Cu coatings. 

Cu 

content 

H 

(GPa) 

E 

(GPa) 
H/E* H3/E*2 We 

Thickness 

(μm) 

Depth 

(nm) 

2.6 at.% 41.1 ± 1.0  501 ± 11 0.077 0.243 64% 0.8 109 

8.3 at.% 34.5 ± 1.4 438 ± 11 0.074 0.188 61% 1.1 119 

22.6 at.% 14.9 ± 0.6 268 ± 7 0.052 0.041 51% 1.6 173 

46.7 at.% 6.8 ± 0.3 190 ± 5 0.034 0.008 38% 2.5 249 

 

 

Fig. 11. Adhesion strength of the 

coatings as a function of Cu content. 

induced defect density [38, 39]. Thus, the superhard AlTiVN-Cu(2.6 at.%) coating achieved in this 

study not only related to the V-alloying but also the addition of Cu. 

Due to hardening effect of grain refinement and grain boundary sliding, a small addition of Cu 

into hard coatings to form nanocomposite structure could also enhance the coating hardness. As for  

Cr-Cu-N coatings, a high hardness of 35 GPa achieved at a low Cu content of 1 at.% [40]. In Table 

3, as Cu content increased to 46.7 at.%, both the coating hardness and elastic modulus sharply 

decreased to 6.8 GPa and 190 GPa, respectively. The decrease in hardness and elastic modulus 

would be due to the coarse microstructure and reduced residual stress at high Cu contents. The 

segregation of Cu into a separate phase, leading to the grains in metallic phase has a tendency to 

creep under loading [34]. It has been concluded by Musil [41] that a relatively high H/E* ratio ≥ 0.1 

and elastic recovery We were expected to achieve the hard nanocomposite coatings with enhanced 

toughness. In Fig. 10(b), as the Cu content increased from 2.6 to 46.7 at.%, both the H/E* ratio and 

elastic recovery We decreased linearly from 0.077 to 0.034 and 64% to 38%, respectively. It 

indicated that the toughness of AlTiVN-Cu coatings reduced when Cu content increased above 2.6 

at.%. In Fig. 10(c), the H3/E*2 ratio also decreased sharply from 0.243 to 0.008 when the Cu content 

increased, implying that the resistance to plastic deformation decreased. 

Fig. 11 presents the adhesion strength of AlTiVN-Cu coatings at different Cu contents, which 

were performed on the cemented carbide substrates. It was reported that the scratch toughness of the 

coatings could be evaluated by the adhesion strength [42]. When the Cu content increased from 2.6 

to 8.3 at.%, the adhesion strength of the coatings increased slightly from 45.7 to 63.8 N, and then 

followed by a sharp decrease to 6.6 N when Cu content increased to 46.7 at.%. It was found that the 

improvement in adhesion strength of the hard coatings would be attributed to the combined effects  
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Fig. 12. Vickers indentation SEM images of the coatings performed on 316L stainless steel 

substrates: (a) 2.6 at.%, (b) 8.3 at.%, (c) 22.6 at.%, (d) 46.7 at.%. 

of high H/E* ratio and appropriate compressive residual stress [43]. Thus, the highest adhesion 

strength and scratch toughness achieved for AlTiVN-Cu(8.3 at.%) coating would be related to the 

high H/E* ratio of 0.074 and appropriate compressive residual stress of 4.0 GPa. 

It is well known that the coating toughness refers to the ability to absorb energy during 

deformation up to fracture, and it can be enhanced and evaluated by the crack resistant. The 

indentation micrographs of AlTiVN-Cu coatings performed on the 316L stainless steel and YT14 

cemented carbides substrates were compared in Fig. 12 and Fig. 13, respectively. As shown in Fig. 

12, all the coatings exhibited circular cracks, which was a typical phenomenon of pile up under a 

high compressive stress [44]. As the Cu content increased, the number of the circular cracks 

increased, which would be due to the sharp decrease of H3/E*2 ratio in Fig. 10(c). Fig. 13 shows the 

indentation micrographs of AlTiVN-Cu coatings performed on the cemented carbide substrates. It 

was found that no obvious cracks observed in Fig. 13(a), implying that AlTiVN-Cu coating 

exhibited an excellent crack resistant at a relative low Cu content of 2.6 at.%. However, the circular 

cracks and radial cracks occurred for the AlTiVN-Cu(8.3 at.%) and AlTiVN-Cu(22.6 at.%) coatings, 

respectively. This phenomenon would be related to the decrease of H3/E*2 ratio and compressive 

residual stress at high Cu contents. It was reported that high compressive residual stress tended to 

prevent the formation of radial cracks, while promoted circular cracks [45]. In Fig. 13(d), the 

coating exhibited no any cracks but plastic deformation when Cu content reached as high as 46.7 

at.%. The plastic deformation would be due to the extremely low H3/E*2 ratio of 0.008, and resulted 

in a low resistance to plastic deformation. 

Moreover, center cracks could be clearly identified in the indentation top showed in Fig. 

12(a–c). However, no center cracks were found in the coating with a high Cu content of 46.7 at.% 

in Fig. 12(d). Similar phenomenon were also observed for all the coatings performed on cemented  

22.6 at.% Cu 

2.6 at.% Cu 

46.7 at.% Cu 

8.3 at.% Cu 
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Fig. 13. Vickers indentation SEM images of AlTiVN-Cu coatings performed on YT14 cemented 

carbide substrates: (a) 2.6 at.%, (b) 8.3 at.%, (c) 22.6 at.%, (d) 46.7 at.%. 

carbide substrates in Fig. 13, which would be mainly related to the coating thickness (h) and the 

depth of impression (d). As shown in Fig. 14(a), all the depths of impressions were much higher 

than the coating thickness under a relative high indentation load (L = 4.9 N). In addition, due to the 

softer substrate of stainless steels, the depth of impressions were much deeper than that of the 

cemented carbide substrates. In Fig. 14(b), when the Cu content increased, both the d/h ratios of 

stainless steel and cemented carbide substrates decreased from 12.6 to 4.1 and 4.4 to 1.7, 

respectively. Therefore, to avoid the formation of center cracks, the d/h ratio ≤ 4.4 should be 

ensured as the indentation load increased, especially for the soft substrates. 

When compared the indentation images in Fig. 12 and Fig. 13, it demonstrated that the 

substrates significantly influenced the formation of cracks, which could be related to the mechanical 

properties of hard coatings (Hc, Ec*) and substrates (Hs, Es*) [46]. As shown in Fig. 14(c−d), when 

the Cu content increased from 2.6 to 46.7 at.%, both the Hc/Hs ratios of stainless steel and cemented 

carbide substrates decreased from 9.3 to 1.5 and 2.3 to 0.4, respectively. Similar trends were 

observed in the Ec*/Es* ratios, which decreased from 2.5 to 0.9 and 0.9 to 0.3 for stainless steel and 

cemented carbide substrates, respectively. As compared to the hard coatings, the soft substrates 

suffered much more plastic deformation during loading process, which resulted in a tendency to 

form circular cracks [26]. Therefore, it can be concluded that AlTiVN-Cu coatings performed on 

316L stainless steel substrates with high Hc/Hs ratios ≥ 1.5 and Ec*/Es* ratios ≥ 0.9 would be tended 

to form the circular cracks. As for the coatings performed on YT14 cemented carbide substrates, no 

cracks formed in AlTiVN-Cu(2.6 at.%) coating with the highest H3/E*2 ratio of 0.24, and plastic 

deformation formed in the AlTiVN-Cu(46.7 at.%) coating with an extremely low H3/E*2 ratio of 

0.008. 

22.6 at.% Cu 

2.6 at.% Cu 

46.7 at.% Cu 

8.3 at.% Cu 



Page 14 of 17 

 

 

Fig. 14. (a) Depth of impression d and coating thickness h, (b) d/h ratio, (c) Hc/Hs ratio, and (d) 

Ec*/Es* ratio of the coatings as a function of Cu content. 

 

4. Conclusions 

AlTiVN-Cu nanocomposite coatings with various Cu contents were deposited by high power 

impulse magnetron sputtering with a single Al67Ti33-V-Cu spliced target. The various Cu contents in 

the coatings were simply controlled by altering the vertical substrate positions, and the effect of Cu 

incorporation on the microstructure evolution and mechanical properties of AlTiVN-Cu 

nanocomposite coatings was investigated. As the Cu content increased, the microstructure 

transferred from compact columnar to dense featureless, and then to coarse columnar structure. As 

the Cu content increased above 22.6 at.%, Cu atoms grew up into metallic crystallites and strongly 

suppressed the crystal growth of nitride coatings due to repeated nucleation. When the Cu content 

increased from 2.6 to 46.7 at.%, both the coating hardness and compressive residual stress 

decreased sharply from 41.1 to 6.8 GPa and 5.7 to 0.1 GPa, respectively. The AlTiVN-Cu(2.6 at.%) 

coating exhibited an excellent toughness and crack resistant due to the highest H3/E*2 ratio of 0.24. 

No cracks but plastic deformation formed in AlTiVN-Cu(46.7 at.%) coating due to a extremely low 

H3/E*2 ratio of 0.008. To avoid the formation of center cracks, d/h ratio ≤ 4.4 should be ensured as 

the indentation load increased, especially for the soft substrates. 
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