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Abstract 

The use of ordinary Portland cement (PC) as the principal binder in concrete brings with it 

significant environmental challenges through the consumption of fossil fuels and emission of 

carbon dioxide (CO2) during cement production. Concrete specimens made with an alkali 

activated cementitious material (AACM) produced from an alternative binder and conventional 

Portland cement concrete were exposed to corrosion inducing environments for 1750 days to 

monitor their relative durability. AACM concrete shows higher corrosion potential Ecorr and 

corrosion current densities Icorr than PC concrete due to a reducing environment around the 

steel surface in AACM concrete, caused by high sulfide concentration in the pore solution. 

Corrosion resistance of the AACM concretes increases with increasing molarity of the alkali 

activator, at a constant liquid to binder ratio. The threshold Cl-/OH- value for pitting corrosion 

initiation in the AACM concrete is between 2.1 and 2.8 compared with 1.08 for the control PC 

concrete. The AACM concrete evaluated in this study showed greater resistance to chloride 

induced corrosion than the PC concrete. 

 

 

Keywords: Alkali activated concrete, AACM concrete, corrosion potential Ecorr, corrosion 

current density Icorr, chloride induced corrosion, free chloride/hydroxyl ion ratio, water 

capillary absorption. 
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Notations: 

AACM Alkali activated cementitious materials 

PC  Portland cement 

icorr  Corrosion current density (µA/cm2) 

Ecorr  Corrosion potential (mV) 

 A  Surface area of the exposed reinforcing steel (mm2) 

 I  Galvanic current 

Cl-/OH- Chloride/hydroxyl ion concentration 

ZRA  Zero-Resistance Ammeter  
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1.0 Introduction 

The structural integrity of reinforced concrete may be undermined by the onset of corrosion of 

steel reinforcement, leading to a high cost of repair or replacement [1]. Chloride ingress and 

carbonation in concrete structures are the main causes of corrosion of steel reinforcement and 

fibres [2, 3]. There is the likelihood of a reduced impact of chloride induced corrosion in 

AACM concrete relative to PC concrete structures due to the lower rate of chloride ingress in 

the former [4] suggesting a longer time for onset of corrosion in reinforced AACM concrete.  

Resistance against corrosion initiators such as chlorides in PC concrete is provided by a 

thermodynamically stable passive film formed at the steel-concrete interface when the pore 

solution pH is above 12.5 during cement hydration [5, 6]. The passive film has been shown to 

consist of an inner anhydrous oxide layer (Fe2O3 or Fe3O4) approximately 2.5nm thick and a 

1nm outer hydrous layer [7]. The stability of the passive film is governed by the availability of 

oxygen at the steel-concrete interface, the level of alkalinity and chemistry of the concrete pore 

solution and the redox potential of the embedded steel [5, 8]. The breakdown of the passive 

film or de-passivation in AACM and PC concrete are expected to be different, largely due to 

differences in their pore solution chemistry. Studies [9] show that passivation of steel 

reinforcement in PC concrete during cement hydration is supported by Portlandite, Ca(OH)2, 

which is not identified in AACM concrete [10, 11]. The pore matrix of AACM concrete 

contains high levels of alkalinity and a relatively poor oxidation environment which are 

considered to sustain passivity of embedded steel reinforcement [8]. There is limited 

information in the literature to validate this theory.  

The redox potential at the steel-concrete interface is influenced by the presence of sulfide in 

the pore solution of the concrete [12]. Sulfide deposits on the steel surface have been observed 

to delay the oxidation reaction to a certain extent which reduces the rate of corrosion reaction 
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of the embedded steel [13]. Furthermore, oxidized sulfide was suggested to produce elemental 

sulfur which accumulates at the pores of the depleted passive film resulting in its repair [12], 

particularly at sufficiently high sulfide concentration [13]. Alternatively, Tromans [14] 

suggested a reduction in the passive film due to the attraction of sulfide by magnetite resulting 

in the disintegration of the passive film [15], thereby, promoting higher corrosion rates. Blast 

furnace slag has high sulfide content which produces redox potentials of negative values 

compared to PC concrete [12]. Therefore, the corrosion behaviour of AACM concrete may be 

expected to be significantly different from PC concrete. An investigation of the chloride 

induced corrosion behaviour of AACM and control PC concrete is reported in this paper to 

provide insight into the mechanism of this process, which is currently limited. 

The distinctive pore properties of AACM concrete demonstrate lower porosity and chloride 

binding capacity compared with PC concrete [16]. The pore properties of AACM concrete were 

observed to show higher proportions of capillary pores (0.01 – 100µm) and lower proportions 

of gel pores (0.005 – 0.01µm) than PC concrete. Such pore size and distribution properties are 

likely to influence the availability or deprivation of oxygen and chloride ions at the steel-

concrete interface. The onset of chloride induced corrosion of steel embedded in concrete is 

linked to what is commonly referred to as the chloride threshold, which is the minimum 

chloride concentration at the steel surface that triggers pitting corrosion. It is acknowledged 

that the critical chloride threshold does not exist as a single level, but this value varies greatly 

as it is influenced by variations in the mix design, age of concrete, type of steel reinforcement 

and construction practice [17, 18]. The inherent heterogeneous nature of the multi-phase matrix 

structure is considered to be a major reason for variation in chloride threshold values [19]. The 

curing environment also accounts for variation in the critical chloride threshold and corrosion 

behaviour of steel reinforced AACM concrete [12].  
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Most research has used accelerated electrochemical test methods to monitor corrosion 

behaviour of steel bars in simulated pore solutions of AACM concrete [5, 20, 21] while other 

factors such as porosity and chloride binding capacity of AACM concrete are neglected. The 

role of the concrete matrix in controlling the physical and chemical processes (e.g. diffusion 

and chloride binding) which produce the pore solution chemistry are not represented in these 

accelerated electrochemical tests. Performance validation of concrete-based materials should 

adopt test methods designed to give a true representation of material behaviour that cannot 

reliably be achieved using accelerated electrochemical test methods of steel in simulated pore 

solutions. The accelerated corrosion test method adopted in the authors' research avoids this 

limitation by exposing steel bars embedded in AACM and PC concrete matrices to accelerated 

corrosion inducing environments which include concentrated chloride solution, high 

temperature, moisture, low humidity exposure cycles to allow oxygen diffusion to the steel and 

accelerate chloride diffusion by capillary action.   

In this study, three grades of AACM concrete representing low, medium and high strengths [16] 

are exposed to an accelerated corrosive environment involving, in sequence, immersion in 5% 

chloride solution at 200C; dry curing at 200C and 65% R.H.; exposure in an environmental 

chamber at 500C and 75% R.H. and 1 day wet/6 days dry curing cycles. The environment of 

exposure was selected to provide sufficient levels of chloride, oxygen and temperature to 

initiate corrosion within the timescale of the research. The investigation of the corrosion 

behaviour of steel reinforcement in AACM concrete under the relatively accelerated chloride 

induced corrosion environment will provide an understanding of its practical application 

potential in salt laden environments such as structures exposed to splash and tidal zones and 

de-icing salts. 

2.0 Experimental programme 
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2.1 Materials and mixes 

AACM concrete mixes (AACM 1, 2 and 3) made with the alkali activated cementitious material 

binder (AACM) and conventional PC concrete were produced as shown in Table 1. Ground 

granulated blast furnace slag (GGBS) and CEM 1 cement of grade 42.5R [22], supplied locally 

in Sheffield, UK were used as binders in the AACM and PC concrete mixes respectively. The 

chemical composition of the GGBS and CEM 1 cement is given in Table 2. The activator used 

in the AACM concrete is a sodium silicate solution of 6.5mol/L molarity and 2% modulus, 

together with NaOH of molarity 4.8mol/L. AACM 1, 2 and 3 mixes were produced by diluting 

the activator with water at 0%, 3.88% and 7.76% respectively as shown in Table 1, to produce 

low, medium and high strength grades [16, 23]. A liquid-binder ratio of 0.47, 10mm uncrushed 

gravel, 6mm limestone and a medium grade sand with 80% particle size passing 1mm sieve 

were used in both the AACM and PC concrete mixes. The properties and oxide compositions 

of these aggregates conform to BS 882:1992 [24]. Retarder R42 made from a blend of high 

grade polyhydroxy-carboxylic acid derivatives and a shrinkage reducing admixture (SRA) 

based on an alkyl-ether were added to the AACM mixes to improve their workability and 

setting time. Each chemical admixture contained less than 0.1% chloride ion and 3.5% sodium 

oxide. 

Table 1: Composition of AACM 1, 2, 3 and control PC concrete mixes 

Mix Binder 

Content 

(%) 

Fine 

Agg. 

(%) 

Coarse Agg. (%) Liquid/ 

Binder 

Ratio 

Activator 

Dilution  

(%) 

Activator 

Molarity 

mol/L 

R42 SRA 

10mm 

Gravel 

6mm 

Limestone 

(% by weight 

of binder) 

AACM 1 

AACM 2 

AACM 3 

Control 

PC 

25 

25 

25 

20 

18 

18 

18 

26 

29.3 

29.3 

29.3 

28.9 

15.7 

15.7 

15.7 

15.5 

0.47 

0.47 

0.47 

0.47(w/c) 

0 

3.88 

7.76 

- 

6.50 

6.26 

6.0 

- 

0.2 

0.2 

0.2 

- 

0.5 

0.5 

0.5 

- 

*R42 is the retarder; SRA is the shrinkage reducing admixture 
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Table 2: Chemical composition of CEM 1 cement and GGBS binders 

Chemical component SiO2 Al2O3 Fe2O3 CaO MgO K2O Na 2O TiO2 P2O5 MnO SO3 

CEM 1 (mass %) 11.1 8.35 3.16 64.2 2.09 1.19 0.227 1.88 2.01 2.14 3.64 

GGBS (mass %) 28.6 12.4 5.7 42.3 6.1 0.8 0.4 1.78 <0.1 0.3 0.08 

2.2 Corrosion test specimen Preparation 

Plain mild steel reinforcement bars of 8mm diameter conforming to BS 4449:2005+A3:2006 

[25] were embedded in the AACM and PC concrete mixes. Their percentage chemical 

composition is 98.5% Fe, 0.22% C, 0.23% Si, 0.52% Mn, 0.01% P, 0.01% S, 0.30% Cr, 0.14% 

Ni, 0.04% Cu and 0.03% Mo. The steel bars were cut into 400mm lengths and then grit blasted 

to remove all mill scale, rust and contamination (Fig. 1). A 4mm thread was tapped at one end 

of each rebar to accommodate an electrical connection. Both ends of each steel bar were masked 

with an epoxy resin coating applied over cement paste cast over a length of 100mm from both 

ends, leaving an exposed surface area of 50cm2. Care was taken to prevent the epoxy coating 

from coming in direct contact with the steel bar to prevent isolation of electrical connection and 

formation of a crevice.  

 
a 

 
b 

 

Fig. 1: Reinforcing bars (a) before grit blasting (b) after grit 

blasting 
Fig. 2: Reinforcing bars positioned in 

polystyrene moulds prior to casting 
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Triplicate steel bars were placed inside a polystyrene mould at a depth of 30mm (cover) from 

the bottom cast face as shown in Fig. 2. The opening around the steel bars in the polystyrene 

mould was completely sealed off to prevent leakage of concrete during casting. The polystyrene 

moulds were lightly oiled to prevent concrete from sticking followed by cleaning the steel with 

acetone to degrease and remove any dirt from the surface. Each polystyrene mould with the 

positioned triplicate steel bars was filled with concrete in three layers. 

Fresh AACM and PC concretes were mixed in a 150 kg capacity Cretangle mixer in accordance 

with BS EN 206:2013+A1:2016 [22] and placed into the polystyrene moulds in three layers. 

Each layer was compacted on a vibrating table for up to 30 seconds to attain homogeneity and 

minimize the presence of voids. The cast specimens were placed on a flat table surface and 

covered with polyethylene sheets to prevent moisture loss. A total of eight 250 x 250 x 75 mm 

steel reinforced slabs were produced for the AACM and PC concretes, two specimens for each 

of AACM 1, 2, 3 and PC concrete. The specimens were cured in the laboratory at 20 ± 2oC and 

65% R.H. for 24 hrs after casting and then demoulded. The hardened concrete was then cured 

in water (20 ± 2oC) for 27 days after demoulding. The specimens were taken out of water and 

surface dried after 28 days from casting. Two coats of bituminous paint were applied to five 

faces of each specimen, except the bottom cast face of 250mm x 250mm dimensions. The 

bituminous paint was allowed to dry for 24 hrs. The specimens were then exposed to the 

following accelerated corrosion inducing environment cycles as shown in Table 3. 

Table 3: Exposure regime for AACM and PC concrete to induce corrosion 

 Exposure 

(days) 
0 - 90  90 - 190  190 - 260  

260 - 

340  

340 - 

440  

440 - 

510  

510 - 

690  

690 - 

860  

860- 

1311 

1311-

1440 

1140-

1568 

1568-

1750 
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Curing 
regime 

Chloride 
diffusion  

Dry curing  
Chloride 
diffusion 

Climate 
chamber  

Chloride 
diffusion 

Dry 
curing 

Chloride 
diffusion 

1 day 
wet/ 6 
days dry 
cycle 

Dry  
curing 

Wet 
curing 

Dry 
curing  

Wet 
curing 

Condition 
(20+20C) 
5% NaCl 

(20+20C, 
65R.H.) 

(20+20C) 
5% NaCl 

(50oC, 
75% RH) 

(20+20C) 
5% NaCl 

(20+20C, 
65R.H.) 

(20+20C) 
5% NaCl 

(20+20C) 
65%RH 

(20+20C, 
65R.H.) 

(400C) 
(20+20C, 
65R.H) 

(400C) 

2.3 Test procedures 

2.3.1 Electrochemical monitoring 

The corrosion potential Ecorr and current density Icorr values were measured up to 1750 days 

under cycles of exposure given in Table 3. Half-cell potential monitoring of the AACM and PC 

corrosion specimens was performed using a reference electrode and digital voltmeter (DVM) 

in accordance with TR 60 [26] and ASTM C876 – 15 [27]. A silver-silver chloride (SSC) 

reference electrode was connected to a digital voltmeter for taking the potential readings in 

order to avoid contamination when immersed in NaCl solution, unlike a copper-copper sulphate 

electrode that is prone to such contamination [27]. 

Galvanic current density of the AACM and PC concrete was determined using a Zero-

Resistance Ammeter (ZRA) from ACM instruments with a current range of 500mA  and 

operational temperature range of -50C to 720C. A range of 100 µA was used to measure the 

galvanic current between two electrodes connected to the embedded triplicate steel bars and a 

stainless steel electrode with an area of 625 cm2 placed on top of the corrosion specimens (Fig. 

3). The readings of the galvanic current between the two electrodes became stable after 3 

minutes. The corrosion current density was calculated from the readings as follows: 

𝑖𝑐𝑜𝑟𝑟 =  𝐼
𝐴⁄      1 

where icorr is the corrosion current density (µA/cm2), A is the surface area of the uncoated 

section of embedded steel (= 50 cm2) and I is the galvanic current. 
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Figure 3: Galvanic current measurement 

using the Zero Resistance Ammeter (ZRA). 

 
Figure 4: Collection of dry drilled dust 

samples for analysis 

2.3.2 Drilled dust sample analysis 

X-ray fluorescence (XRF), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) 

were performed on dry drilled dust samples collected at depths of 30mm (representing cover) 

and 65mm from the uncoated surface of the specimen after 1750 days exposure to the regime 

given in Table 3. Dry drilled dust samples of AACM and PC concrete for bound chloride 

analysis were collected at depths of 15, 25, 30, 35, 50 and 65mm from the uncoated surface as 

shown in Fig. 4. Approximately 15 grams of drilled dust samples per each profile depth were 

collected at depths greater than 5mm from the drilled surface. The chloride analysis were 

performed in accordance with recognised  standards [28, 29].  

Chemical compositions of the AACM and PC drilled dust samples were analysed using a 

wavelength dispersive sequential X-ray fluorescence Philips PW2440 spectrometer. A Philips 

X-Pert X-ray diffractometer operating with a Cu Kα radiation source (40 KV and 40 mA, 

wavelength λ=0.154056 nm [6.07 x10-9 in.]) was also used to characterize the drilled dust 

samples. XRD analysis was performed by scanning from 50 to 750 at an angle of 2Ɵ; the scan 

step size was 0.016711 with a counting time step of 0.1 s. Thermogravimetric and differential 

analysis (TGA) was performed on the drilled dust samples to determine and quantify the 
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geopolymerization and hydration products using a NETZSCH STA 409 PC/PG device. AACM 

and PC drilled dust samples were heated up to 10000C at a rate of 200C/min in nitrogen gas.  

2.3.3 Pore solution analysis 

The core drilling operation was performed on the AACM and PC concretes after 850 and 1750 

days under the exposure regime. Four cores per corrosion specimen of dimensions 50mm 

diameter by 60 mm depth were drilled in between the embedded steel bars (Fig. 5).  Each core 

was sliced with a masonry saw into three discs at 0-20, 20-40 and 40-60mm depths (Fig. 6). 

Expression of concrete pore solution was carried out by placing three discs from the same depth, 

for example 0–20mm depth from the three cores per each concrete mix, into a pore fluid 

extraction device similar to Barneyback and Diamond [30] . The pore solution extraction device 

with the three discs inside it was placed in a compression testing machine under its loading 

platen and a compressive load was applied at a steady rate of 10KN/sec. The pore solution was 

extracted through a suction action without allowing contact with air and stored in plastic vials. 

The same procedure was repeated on concrete core discs representing 20-40mm and 40-60mm 

depths (Fig. 6).  

Free chloride concentration was determined by dipping a chloride ion selective electrode (ISE) 

into pore solutions while a double junction pH electrode was used to measure its alkalinity.  
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Figure 5: Cores (50mm dia X 60mm depth) 

drilled in-between embedded steel 

 
Figure 6: Concrete discs obtained from 

cores 

2.3.4 Corrosion product analysis 

The triplicate reinforcement bars embedded in AACM and PC concrete were retrieved after 

1750 days exposure to the curing regimes. The extracted triplicate reinforcement and the 

concrete around their surface were visually examined. The reinforcement was then gently 

cleaned with acetone to remove all contamination and loose corrosion products. 

The surface area and roughness of the cleaned rebars were examined with the aid of an infinite 

focus variation optical system manufactured by Alicona. 3D scanning in X, Y and Z directions 

on the steel surfaces containing pitting corrosion was carried out to provide topographical 

information from the variation of focus. 

3.0 EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Concrete characterization 

3.1.1 Chemical analysis 

X-ray fluorescence results of  AACM 1, 2, 3 and PC concrete drilled dust samples taken at 

30mm and 65mm depths from the exposed face of the specimen to the chloride solution after 

1750 days of chloride exposure are shown in Table 4. The 30mm depth represents the cover to 

Concrete Discs 

Concrete Core 

0-20 mm 

20-40 mm 

40-60 mm 
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the steel bars in the concrete. The results show the chemical compounds present in the AACM 

and PC concrete which influence the initiation and propagation of steel reinforcement corrosion.  

Table 4 shows the presence of sulfur in both the AACM and PC concrete in SO3
2- oxidation 

state. Significantly greater amounts of SO3
2- are present in the pore matrix of the AACM 

concrete than the PC concrete, both at the steel-concrete interface level (30mm depth) and at 

65mm depth.  For example, SO3
2- contents of AACM 1, 2, 3 and PC concrete at 30mm depth 

are 0.81%, 0.64%, 0.73% and 0.34% respectively. The corresponding values at 65mm depth 

are 1.02%, 1.27%, 1.53% and 0.32% respectively. These represent 50% to 80% higher SO3
2- 

contents in the AACM concrete than the PC concrete. The presence of sulfide in the pore matrix 

of concrete is known to reduce the redox reaction at the steel concrete interface [8, 12]. Blends 

of GGBS in concrete mixes can produce aqueous sulfur in the concrete pore solution in various 

oxidation states such as H2S, Sn2-, SO3
2-, S2O3

2- and SO4
2- depending on the content and degree 

of hydration of the GGBS [31]. The presence of high sulfide content in AACM concrete will 

create a highly reducing pore solution environment at the steel-concrete interface and help 

prevent chloride induced corrosion reactions.  

The sulfides present in the pore system of AACM concrete form sulfate oxides in the presence 

of available oxygen, thus reducing the oxygen concentration at the steel-concrete interface [32]. 

The deprivation of oxygen at the steel concrete interface results in a reducing environment, 

impeding initiation and propagation of pitting corrosion. MacPhee and Cao [33] suggested that 

the reducing environment caused by the high sulfide concentration will favour formation of Fe II 

rather than FeIII, which is associated with the αFe2O3 layer on the steel surface. In the process, 

precipitates of Mackinawite (Fe1+XS) are formed on the steel surface rather than an iron oxide 

passive film [34]. The depletion of oxygen concentration in AACM concrete due to a high 

concentration of sulfide affects the development of a protective passive layer on the steel 
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surface since oxygen concentration is required for the cathodic reaction which produces these 

passive films in OPC concrete [32]. This aspect requires further research.  

The data in Table 4 show that except Ca2+ the other alkalis Na+, K+, Al3+ and Mg2+ are more 

abundant in AACM than PC concrete. For example, the sum of these alkalis at 30mm depth in 

AACM 1,2,3 and PC concrete is 14.4%, 14.86%, 18.17% and 5.07% respectively. These alkalis 

contribute to the high alkalinity of AACM concrete, which also provides corrosion resistance 

to steel reinforcement. The effect of these alkalis on the corrosion resistance of steel 

reinforcement is discussed in Section 3.3. 

Table 4: Chemical composition of AACM and PC drilled powder samples at 30 and 65mm depth after 

1750 days curing regime  

  30mm depth (%)  65mm depth (%) 

Element Compound AACM 1  AACM 2 AACM 3 PC  AACM 1  AACM 2 AACM 3 PC 

Na Na2O 2.83 2.83 2.55   3.67 4.55 4.73 0.45 

Mg MgO 3.11 2.99 3.85 0.70  2.07 3.00 2.68 1.37 

Al Al2O3 7.84 8.12 10.56 3.55  6.90 7.08 8.77 6.10 

Si SiO2 48.49 42.72 31.98 74.96  54.50 47.97 40.70 54.41 

S SO3 0.81 0.64 0.73 0.34  1.02 1.27 1.53 0.32 

K K2O 0.62 0.92 1.21 0.82  0.90 0.89 1.05 1.39 

Ca CaO 34.33 39.08 46.21 15.78  28.61 33.56 38.81 29.66 

Ti TiO2 0.20 0.29 0.30 0.07  0.51 0.30 0.15 0.17 

Fe Fe2O3 0.89 1.14 1.27 3.05  1.27 0.99 1.17 4.92 

Sr SrO 0.028 0.04 0.05 0.04  - 0.07 0.07 0.06 

P P2O5 0.08 0.14 - 0.10  0.08 - - 0.68 

Mn MnO 0.23 0.44 0.39 -  0.32 0.33 0.34 - 

Zn ZnO 0.27 0.65 0.62 -  - - - - 

Cl Cl 0.28 0.29 0.31 0.60  0.17 0.23 0.25 0.48 

3.1.2 Mineralogical analysis 

Figure 7a. shows the X-ray diffraction (XRD) results of AACM drilled dust at 30mm depth 

(cover to reinforcement), after 1750 days of exposure to an environment capable of initiating 

chloride induced corrosion. The results show the presence of quartz, calcite, halite, augite, 
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cordierite and gypsum in the AACM concrete drilled dust samples. Figure 7b for PC concrete 

drilled dust samples shows the presence of quartz, calcite, Portlandite, hydrotalcite, anatase, 

ettringite, Friedel’s salt and hematite. The mineralogical compositions of AACM and PC 

concretes have a critical effect on their chloride binding capacity, porosity and alkalinity, each 

of which is responsible for the corrosion behaviour of both concretes. 

 

Figure 7a: XRD of AACM drilled dust samples at steel concrete interface after 1750 days 

exposure period 
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Figure 7b: XRD of PC drilled dust samples at steel concrete interface after 1750 days 

exposure period 

Legend 
  AACM 3 (%) PC (%) 
1 Quartz 57 44 

2 Calcite 20 15 
3 Portlandite - 5 

4 Halite 4 - 
5 Augite 7 - 
6 Cordierite 8 - 

7 Gypsum 4 - 
8 Hydrotalcite - 3 
9 Anatase - 1 

10 Ettringite - 2 
11 Friedel’s salt - 30 

12 Hematite - 1 

The higher content of quartz in AACM concrete (57%) than PC concrete (44%) accounts for 

its higher percentage of solid gel and, therefore, lower porosity than PC concrete [16]. The 

porosity of AACM 1 is 4.64%, 6.53% and 9.90% compared with 14.02%, 13.30% and 17.43% 

for PC concrete after 28 days curing under wet/dry, wet and dry curing, respectively. The 

corresponding values for AACM 2 are 6.67%, 8.02% and 10.70% while for AACM 3 they are 

7.71%, 9.05% and 11.93% [16]. Hence, fewer chloride ions diffuse through the pore matrix of 

AACM concrete relative to PC concrete [35], which will influence chloride induced corrosion 

of embedded steel.  

 It is also observed that the chloride binding capacity which regulates the amount of free 

chloride available to support corrosion is lower in AACM than PC concrete [23]. Hence, a 

higher amount of free chloride is released in the pore matrix of AACM concrete. The higher 

chloride binding capacity (acid and water soluble) of PC concrete [23] is due to the significant 

presence of hydrotalcite and Friedel’s salts (Fig. 7b). These compounds are absent in the 

AACM while relatively small amounts of halite and gypsum provide chloride binding in 

AACM concrete (Fig. 7a). Phases such as hydrotalcite provide surface absorption to physically 
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bind chloride and are sensitive to changes in pH, chloride concentration and total ionic strength 

[36]. The C3A content in PC concrete produces Ca6Al2O6.CaCl2.10H2O (Friedel’s salt) which 

accounts for its high chloride binding capacity [23]. The presence of gypsum in AACM 

concrete increases solubility of ions leading to the release of sulfate ions into its pore solution 

[15]. Halite is soluble in water and releases chloride into the pore fluid [37].   

The alkalinity of concrete at the steel interface is important for preserving its passivity. The 

percentage of calcite in both AACM (20%) and PC concrete (15%), as shown in Figure 7a and 

7b, relates to the degree of carbonation which causes a reduction in the pore solution alkalinity. 

Hydroxyl ions (OH-) within the pore solution are displaced by carbonation thereby depleting 

the protective passive film around the reinforcing steel. Portlandite which is only present in PC 

concrete (5%) serves as a booster for pore solution alkalinity by replacing the (OH-) consumed 

during the carbonation process. The carbonated AACM concrete does not contain Portlandite, 

however, it has higher contents of alkalis Na+, Al3+ and Mg2+ than PC concrete, Table 4[38]. 

These alkalis contribute significantly to the alkalinity of pore fluid in AACM concrete  [38]. 

Common atmospheric rust, hematite (1%), which is present in only PC concrete will support 

the corrosion of embedded steel [39]. 

3.1.3 Thermogravimetric analysis 

Figure 8a shows the derivatives of thermogravimetry (DTG) and thermogravimetry (TG) 

analysis of AACM and PC drilled dust samples collected at 30mm depth (cover to steel),which 

is heated from 330C to 10000C. Thermogravimetry (TG) analysis of the concrete drilled dust 

samples collected at the cover depth shows the decomposition of chemical compounds which 

affect steel corrosion, such as hydrotalcite and calcite in AACM concrete and Friedel’s salt, 

Portlandite and calcite in PC concrete. It validates the chemical and mineralogical analysis 

results.  
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Three dominant peaks were observed due to interlayer water molecule (H2O) released between 

330C to 2500C, hydroxyl (OH-) released between 3500C to 4800C and carbonate ions released 

between 6800C to 8600C as shown in Fig. 8a and 8b. The first peaks at 330C to 2500C relates 

to the bound water, dehydration of C-S-H, ettringite (AFt) and monosulfoaluminate (AFm) [40, 

41].  

 

Figure 8a: DTG-TG curves of AACM and PC concrete 
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Figure 8b: Recrystallized H2O (m/z = 18) and CO2 (m/z = 44) for AACM and PC concrete 

The intensity of the first peak is greater in AACM than PC concrete mainly due to its high 

volume of C-S-H, which is consistent with the XRD result. The presence of ettringite and 

gypsum in PC concrete resulted in its lower first peak than AACM concrete. The bonding of 

water molecules at the interlayer of these compounds is through H-bonding [36, 42] which also 

affects chloride concentration.  Previous research [23] has revealed higher physically bound 

chloride in AACM concrete than PC concrete due to the likelihood of an ordered structure of 

H-bonding of the water molecules at the interlayers of C-S-H in AACM concrete. 

The second dominant peak at 3500C to 4800C in Fig 8a represents the decomposition of 

Portlandite and hydrotalcite in PC concrete, which releases hydroxyl ions. XRD analysis show 

the presence of Portlandite and hydrotalcite in PC concrete, while they are not traceable in 

AACM concrete. The third dominant peak was observed at 6800C to 8600C in AACM and PC 

concrete as shown in Figures 8a and 8b. The peak intensity was greater in AACM concrete due 

to the higher amount of calcite (20%) as shown in Fig. 7a compared with15% calcite in PC 

concrete. Decarbonation of the calcite at 6800C to 8600C released CO2.  

3.2 Electrochemical monitoring 

3.2.1 Corrosion potential Ecorr 

The electrochemical corrosion potential Ecorr readings of AACM concrete specimens up to 

1750 days under corrosion inducing exposure (Table 3) are presented in Figure 9. However, 

Ecorr data for PC concrete in Fig 9 represent 1580 days exposure due to a 170 days' delay in 

producing the PC concrete specimens. The specimens were exposed to the following 

environments (Table 3) in sequence to support accelerated corrosion by providing high levels 

of chloride and oxygen at the steel surface: 1. Immersion in 5% chloride solution at 20 + 20C 

in accordance with standards [28, 29]; 2. Dry curing at 20 + 20C and 65% R.H.; 3. Environment 
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chamber at 500C and 75% R.H; 4.  1 day wet 20 + 20C followed by 6 days dry curing cycles; 

5. Wet curing at 400C. 

 

Figure 9: Corrosion potential Ecorr in AACM 1, 2, 3 upto 1750 days exposure and PC concrete 

for 1580 days exposure (due to 170 days' delayed start). 

Legend of curing regimes 

1 Chloride diffusion (20 + 20C) 

2 Dry curing (20 + 20C and 65% R.H.) 

3 Environmental chamber (500C, 75% R.H.) 

4 1 day wet/6 days dry curing cycle 
5 Wet curing (400C) 

AACM 1, 2 and 3 corrosion specimens were subjected to four cycles of chloride diffusion 

exposure at ages of 0 - 90, 190 - 260, 340 - 440 and 510 - 690 days while PC concrete specimens 

were exposed to three cycles at ages of 190 - 260, 340 - 440 and 510 - 690 days, omitting the 

first chloride cycle and most of the second dry curing cycle.  

The corrosion potentials Ecorr in AACM concrete reached maximum negative values during 

cycles 1 and 5 (Figure 9) which represent total submersion in the chloride solution or pure water 
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respectively.  The values reach as low as -677 mV during the first cycle (0 -90 days) of exposure 

(Fig. 9). The corresponding Ecorr values in the control PC under the same submerged exposure 

are above -200 mV which indicates a passive state of the steel (Fig. 9). The steel bars in AACM 

1 and 2 concrete which reached potentials as low as - 677mV do not show signs of chloride 

induced corrosion as shown in Fig. 14 (section 3.4) during inspection of the steel surface after 

1750 days of exposure. AACM 3 shows some signs of corrosion but much less than the PC 

concrete sample. 

The very negative Ecorr values in AACM concrete are attributed to the depletion of oxygen 

concentration at the steel-concrete interface preventing the passivation of the embedded steel. 

Factors affecting the onset of chloride induced corrosion in AACMs include mix design, curing 

environment, pore solution chemistry and more importantly the redox environment near the 

steel interface [8, 12, 18]. The presence of sulfides in AACM concrete (Table 4) causes a highly 

reducing redox environment which depends on the GGBS content and the degree of reaction 

[8, 32]. Sulfur content in the GGBS binder from various oxides such as H2S, Sn2-, SO3
2-, S2O3

2- 

and SO4
2- leads to a decrease in dissolved oxygen concentration in the pore solution of AACMs 

[31]. Table 4 shows a significant amount of SO3 at the steel interface of AACMs, which reduces 

the amount of dissolved oxygen within their pore matrix, therefore, resulting in a very negative 

Ecorr value of -677 mV. Similar Ecorr values between -450 mV to -600 mV, without showing 

signs of corrosion, were observed for steel bars immersed in NaOH solutions of 0.8M, 1.12M 

and 1.36M simulating pore solution of low calcium alkali activated concrete [5]. Steel 

reinforced alkali activated slag containing 0 to 8% by weight of NaCl added as admixture and 

cured at 90% R.H for 100 days also showed similar results [43].  
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The formation of sulfides in the AACM matrix around the steel interface affect the redox 

environment by depleting the availability of oxygen required to support corrosion. This induces 

a more negative potential, Ecorr, in specimens submerged in the chloride solution and water 

which also provide a low oxygen environment. A significant shift towards a more positive Ecorr 

value is observed when the AACM concrete becomes partially saturated under curing type 2: 

dry curing at 20 + 20C and 65% R.H.(Fig. 9), curing type 3:  environment chamber at 500C and 

75% R.H. and curing type 4: 1 day wet followed by 6 days dry curing cycles. This is due to 

sufficient oxygen becoming available at the steel-concrete interface to support an oxidizing 

environment during partial saturation of AACM concrete. For example, in Fig. 9, AACM 3 

concrete shows a sharp increase in Ecorr from -677 to +50mV during change over from chloride 

solution curing (cycle 1, 0 - 90 days) to dry curing (cycle 2, 90 - 190 days). A similar drop in 

corrosion potential of AACM 3 concrete is also observed when moving from the environment 

chamber at 500C and 75% R.H (curing cycle 3, Fig.9) to the submerged chloride solution curing 

cycle 1.  

The control PC concrete does not show significant variation of Ecorr when exposed under the 

different curing environments (Fig.9). The values ranged between 0mV and -250mV, indicating 

a non-corrosive state according to Ecorr values given in the literature [26]. However, the images 

of split specimens in Fig. 14, after 1750 days of exposure show significant pitting corrosion of 

steel in PC concrete. The Ecorr values of AACM concrete are highly affected by the saturated 

state of the matrix and lack sufficient stability under cyclic wet-dry exposure to provide a 

reliable corrosion indicator for the steel.  However, the Ecorr values of the AACMs are fairly 

stable (0 to -250 mV) during the prolonged partially saturated exposure period from 660 to 

1300 days in Figure 9.  
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Bastidas et al. [44] studied the passive state stability of steel embedded in alkali activated fly 

ash mortars. The fly ash reinforced mortar was cured for 94 days at 95% R.H. followed by 150 

days in laboratory air and then 220 days at 95% R.H. The corrosion potential Ecorr decreases by 

400 mV when moved from partial to complete saturated environment. The authors [44] 

attributed the low resistivity of fly ash mortar to the degree of saturation within its pore matrix, 

shifting the Ecorr value to a more negative potential when placed in a completely saturated 

environment. Other researchers have attributed the negative shift in Ecorr in fly ash mortar to 

insufficient oxygen at the steel concrete interface which is not taken into account by the digital 

voltmeter (DVM) [45, 46]. Care must, therefore, be taken when interpreting the results of Ecorr 

in AACM concrete under different curing regimes.  

Unlike alkali activated slag concrete, steel embedded in alkali activated fly ash concrete has a 

low sulfide content similar to PC concrete and its passivation mechanism is also similar due to 

identical oxidizing capacities of the pore solution [8]. The Ecorr values recorded for alkali 

activated fly ash concrete are between 0 mV to -200 mV [47]. In some cases the Ecorr value for 

alkali activated fly ash is lower than a comparative PC concrete, which is attributed to the 

inhibitive properties of soluble silicates in its pore solution [8]. The presence of sulfides in the 

pore solution of alkali activated slag dominates the inhibitive properties of soluble silicates, 

which will have a salient effect on the redox potential at steel concrete interface as evident in 

Figure 9. 

3.2.2 Corrosion current density Icorr 

The corrosion current density Icorr in AACM 1, 2, 3 and PC concrete was measured using a 

zero-resistance ammeter ZRA. It provides the basis for determining the severity of corrosion 

of the steel bars in the concrete. The values of Icorr are plotted against exposure period in Fig. 



 

24 

 

10. The measurements were taken up to 860 days exposure under different curing regimes 

presented in Table 3 and Fig.10.  

 

Figure 10: Current density Icorr in AACM 1, 2, 3 and PC concrete up to 860 days exposure 

Legend of curing regimes 
1 Chloride diffusion (20 + 20C) 

2 Dry curing (20 + 20C and 65% R.H.) 

3 Environmental chamber (500C, 75% R.H.) 

4 1 day wet/6 days dry curing cycle 

The corrosion current density Icorr in AACM is higher than in PC concrete as shown in Fig. 10. 

The Icorr in AACM concrete is relatively low from 290 days to 450 days before showing high 

peak values when it encounters exposure 2 (dry curing). AACM 3 has the highest Icorr value of 

4.06 µA/cm2 at 520 days exposure, followed by AACM 1  and 2 with Icorr values of 2.26 and 2.1 

µA/cm2 respectively. The reduction in molarity (concentration) of the activator increases the 

Icorr. By comparison, the Icorr values of the control PC concrete remain fairly stable with a 

maximum of 0.26 µA/cm2 at 300 days exposure, which suggests a passive state of steel. 

However, steel embedded in AACM 1 and 2 concrete shows little sign of active corrosion after 

1750 days exposure as shown in Fig. 14 (section 3.4) unlike PC concrete that shows the greatest 
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degree of pitting corrosion. The process of chloride induced corrosion is anodically controlled 

[48] which requires a corresponding cathodic reaction to sustain the dissolution of negatively 

charged electrons of iron into the electrolyte (pore solution) at the anodic site. The cathode 

provides the reaction of oxygen with the negatively charged electrons. However, the depletion 

of oxygen in AACM concrete at the steel surface due to the formation of sulfides in the matrix 

stifles the cathodic reaction and hence the corrosion process. 

The high Icorr values between 450 to 550 days (during curing cycle 1 and 2) exposure in Fig. 

10 relates to oxidation of sulfide during the partially dry curing state of AACM concrete (Table 

3) rather than an increase in the anodic reactant (chloride concentration) at the steel surface. 

The change over from the submerged state (cycle 1) to the dry curing state (cycle 2)  increased 

the oxygen concentration required for the cathodic reaction as well as the oxidation of the 

sulfide, thus producing elemental sulfur deposits on the steel surface embedded in AACM 

concrete as seen in Fig. 15.  Holloway and Sykes [43] observed similarly high shifts in the Icorr 

of slag cement mortar and attributed it to the depletion of the cathodic reactant (oxygen) rather 

than initiation of pitting corrosion. Sulfur deposits are formed at the cathodic site by the 

oxidation of hydrogen sulfide in the pore solution as seen in Fig 15. The inhibition of the 

cathodic reaction produces higher Icorr and  more negative Ecorr values in non-corroding steel as 

seen for AACMs in Figs 9 and 10. The stifling of anodic reactions  results in lower Icorr  and a 

less negative Ecorr values[43] as observed for PC concrete in Figs 9 and 10.      
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Figure 11: Anodic polarization of steel reinforcement embedded in AACM and PC concrete  

The relationship between Icorr and the anodic polarization (Ecorr) of steel embedded in AACM 

and PC concrete is shown in Fig. 11. Increasing values of Icorr are observed at decreasing Ecorr 

up to about -250 mV in AACM concrete. A steep linear relationship between Icorr and Ecorr is 

observed between about -150 to -250 mV which indicates anodic controlled corrosion in 

partially saturated AACM concrete. Thereafter, low Icorr values occur at more negative Ecorr 

values of under -360 mV in AACM concrete. Holloway and Sykes [43] observed a similar 

corrosion mechanism showing high Icorr peaks at less negative Ecorr values than -200 mV, while 

Icorr values were lowest at a more negative Ecorr value of -800 mV for steel embedded in alkali 

activated slag. Mundra et al [5] observed peak Icorr value at Ecorr under -700 mV and the lowest 

Icorr value at -1100 mV for steel bars in simulated pore solutions of alkali activated concrete. 

The two extreme Icorr values (high peak and lowest) signify the anodic and cathodic current 

peaks respectively. The anodic current peak indicates oxidation of Fe2+ to Fe3+ species [5] 

forming a passive film on steel surface containing polymorphs of either FeOOH or Fe2O3. There 

is inconclusive information in literature on the various polymorphs of either FeOOH or Fe2O3 

formed by the oxidation product of Fe3+ species [5, 49, 50].  
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In this study, the anodic current peak at -220 mV for AACM 3 relates to it being completely 

saturated during curing cycle 1 (Table 3), with sulfides, HS-, within its pore matrix hindering 

the formation of a passive film on the steel surface. There is competitive adsorption between 

HS- and OH- at the active sites on the steel surface. The absorbed HS- leads to the formation of 

a colloidal suspension of NaFeS2 (complex of Fe3+) and subsequently breaking down of the 

passive film at higher potentials [43]. The cathodic current peak at -450 mV for AACM 3 

concrete relates to its partially saturated state during cycle 2 (dry) curing (Table 3) when oxygen 

availability results in the oxidation of sulfide to form elemental sulfur deposits on the pores of 

the passive film [5, 43]. The passive film which was depleted during the anodic current peak 

is, therefore, repaired during the cathodic current peak [5]. 

3.3 Chloride contents and alkalinity of pore solution  

3.3.1 Free chloride 

Table 5 shows the free chloride concentrations, hydroxyl concentration, Cl-/OH- ratios and 

bound chloride (acid soluble) of AACM and PC concrete at 180, 270, 540, 860 and 1750 days 

exposure.  

Table 5: Free chloride  and hydroxyl concentration in AACM and PC concrete at different ages of 

exposure 

Exposure 

(days) 

mix Free Cl- (mol/L) OH- (mol/L) Cl-/OH- Acid Cl- (%wt. of 

binder) 

Depth (mm) 

 10 30 50 10 30 50 10 30 50 10 30 50 

180 AACM 1 0.011 0.006 0.002 0.155 0.347 0.363 0.07 0.02 0.01 0.39 0.04 0.04 

AACM 2 0.015 0.008 0.003 0.204 0.316 0.363 0.07 0.03 0.01 0.47 0.04 0.04 

AACM 3 0.018 0.010 0.004 0.129 0.257 0.288 0.14 0.04 0.01 0.24 0.22 0.04 

PC 0.010 0.005 0.002 0.014 0.058 0.074 0.71 0.09 0.03 0.99 0.66 0.17 

270 AACM 1 0.020 0.017 0.012 0.125 0.317 0.333 0.16 0.05 0.04 0.60 0.35 0.06 

AACM 2 0.023 0.017 0.014 0.174 0.286 0.333 0.13 0.06 0.04 0.62 0.37 0.06 

AACM 3 0.025 0.018 0.014 0.099 0.227 0.258 0.25 0.08 0.05 0.77 0.53 0.14 

PC 0.022 0.013 0.008 0.011 0.028 0.044 2 0.46 0.18 2.4 1.11 0.07 

540 AACM 1 0.036 0.023 0.016 0.046 0.061 0.011 0.78 0.38 1.48 - - - 
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AACM 2 0.058 0.036 0.024 0.055 0.078 0.015 1.05 0.46 1.63 - - - 

AACM 3 0.071 0.056 0.031 0.078 0.093 0.019 0.91 0.6 1.66 - - - 

PC 0.032 0.018 0.012 0.016 0.023 0.036 2.06 0.78 0.33 - - - 

860 AACM 1 0.043 0.033 0.028 0.013 0.018 0.027 3.27 1.82 1.05 - - - 

AACM 2 0.061 0.040 0.039 0.015 0.019 0.028 4.09 2.1 1.38 - - - 

AACM 3 0.067 0.059 0.052 0.015 0.021 0.031 4.47 2.81 1.67 - - - 

PC 0.022 0.014 0.018 0.008 0.013 0.023 2.76 1.08 0.78 - - - 

1750 AACM 1 0.041 0.034 0.027 0.017 0.02 0.032 2.43 1.71 0.84 0.54 0.27 0.05 

AACM 2 0.059 0.046 0.035 0.023 0.022 0.036 2.55 2.1 0.97 0.63 0.36 0.09 

AACM 3 0.070 0.06 0.051 0.026 0.025 0.033 2.69 2.4 1.53 0.82 0.45 0.18 

PC 0.022 0.014 0.008 0.009 0.014 0.022 2.43 1.02 0.36 3.25 3.07 2.54 

Portland cement concrete has lower concentrations of free chloride than AACM concrete. For 

example, the free chloride concentrations in PC concrete are 0.005 and 0.014 mol/L at 30mm 

depth after 180 and 1750 days exposure respectively. The corresponding values are 0.006 and 

0.034mol/L for AACM 1, 0.008 and 0.046mol/L for AACM 2 and 0.010 and 0.060 mol/L for 

AACM 3. The lower concentration of free chloride in the pore solution of PC concrete is 

predominantly influenced by its greater chloride binding capacity [2, 4] which increases its acid 

soluble chloride content as shown in Table 5. Conventional PC concrete has higher binding 

capacity due to the presence of C3A and C4AF in its binder (Table 2). The unhydrated portion 

of aluminate (C3A) and aluminoferrite (C4AF) of PC binders reacts with the chloride ions in 

the pore solution during the chloride exposure period, forming Friedel’s salt 

(Ca6Al2O6.CaCl2.10H2O) and calcium chloroferrite [51]. The lack of calcium aluminate (C3A) 

and aluminoferrite (C4AF) in the AACM concrete (Fig. 7a) results in its low chloride binding 

capacity. The chloride binding capacity regulates the amount of free chlorides [22] which 

initiate reinforcement corrosion when their threshold limits are exceeded.  

The acid soluble chloride concentration of the AACM 1, 2 and 3 mixes at 270 days exposure 

ranges between 0.35 and 0.53 at 30 mm depth (Table 5). However, the longest chloride 

exposure period occurs between 340 and 690 days (Figure 9) involving chloride diffusion and 
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capillary absorption due to the intermediate dry exposure period. Therefore, at 690 days of 

exposure the acid soluble chloride concentrations would have considerably exceeded the 

permissible level for corrosion initiation of 0.40% by weight of cement which is stipulated in 

standards for PC concrete [22]. However, corrosion in AACM concrete is controlled by its free 

chloride in the pore fluid and an acid soluble chloride threshold is therefore not applicable [35]. 

The free chloride concentrations in AACM and PC concrete show a steady increase up to 860 

days exposure with little further increase at 1750 days exposure, as shown in Table 5. The free 

chloride ingress relates to the exposure regimes presented in Table 3. The alternate exposure in 

the chloride solution and drying had stopped before 860 days, which was followed by a 

chloride-free exposure in water (regime 5) or in air (regime 2) up to 1750 days. High chloride 

ingress occurred in concrete up to 860 days due to both the diffusion and capillary absorption 

of chloride ions occurring simultaneously when concrete was exposed to cyclic wetting and 

drying [2, 52]. There is insignificant depletion of the free chloride concentration in both AACM 

and PC concrete between 860 and 1750 days due to the release of physically bound chloride 

into their pore solution [23, 35].  

The ingress of chloride from the curing environment and leaching of hydroxyl ions from the 

concrete pore solution occurs by diffusion in saturated concrete and by capillary absorption in 

unsaturated AACM and PC concretes exposed to wet and dry cycles.   
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Figure 12: Capillary absorption in AACM 1, 2, 3 and PC concrete. 

Figure 12 shows that the capillary absorption in AACM concrete is higher than PC concrete, 

particularly AACM 3 concrete which shows sorptivity of 0.085 mm/sec0.5 compared with 0.042 

mm/sec0.5 in PC concrete. The higher capillary absorption in AACM concrete relates to its 

higher volume of large capillary pores (0.01 to 10 µm) than PC concrete [16]. The volume of 

capillary pores is highest in the AACM 3 concrete [16], which gives it the greatest sorptivity 

value. However, the total porosity of the AACM 1, 2 and 3 concrete is less than PC concrete, 

which reduces their chloride diffusion (17). 

3.3.2 Hydroxyl concentration  

AACM concrete has a higher concentration of hydroxyl ions than the control PC concrete 

(Table 5). For example, the hydroxyl concentration at 30mm depth is 0.032, 0.036, 0.033 and 

0.022 mol/L for AACM 1, 2, 3 and PC concrete respectively at 1750 days exposure.  The pore 

solution alkalinity, therefore, is higher in AACM than PC concrete when subjected to diffusion 

and capillary absorption of chloride over a long period. The alkalinity in PC concrete is supplied 

by the hydration product Ca(OH)2 which releases hydroxyl ions (OH-) into its pore solution 

whereas in AACM concrete it is supplied by the hydroxyl ion concentration of the alkali 
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activator. This is evident by the highest concentration of hydroxyl ions in AACM 1 concrete 

(Table 5) which has the highest activator concentration (molarity) (Table 1). 

The leaching of hydroxyl ions into the curing solution is more significant in AACM than PC 

concrete. For example, the hydroxyl concentration at 10mm depth in AACM 1 concrete reduced 

from 0.155 to 0.017mol/L between 180 to 1750 days exposure. The corresponding values for 

PC concrete are 0.014 to 0.009 mol/L (Table 5). The alkalinity in PC concrete is relatively 

stable because of the buffering effect of Ca(OH)2 which releases hydroxyl ions into the pore 

solution, maintaining the level [12]. This mechanism is not present in AACM concrete. High 

carbonation in AACM concrete (20% calcite) as shown in the XRD result (Fig. 7a) also plays 

a significant role in the reduction of pore solution alkalinity compared with PC concrete which 

has 15% calcite (Fig. 7b).  

3.3.3 Chloride/hydroxyl (Cl-/OH-) ratio  

Figure 13 shows the plot of log (Cl-/OH-) at the steel interface (30mm depth) versus exposure 

time for the AACMs and PC concrete. The Cl-/OH- for AACM concretes increases linearly 

with time up to 860 days of exposure to chloride and dry cycles and remains constant thereafter 

when further chloride ingress stops due to chloride-free curing cycles (Table 3).  
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Figure 13: Relationship between log Cl-/OH- at steel-concrete interface (30mm depth) and 

exposure period (Cl/OH threshold for PC is 1 and AACM is 2.8). 

PC concrete has higher Cl-/OH-ratios than AACM concrete up to 540 days exposure and then 

a reversed trend is observed. This is characterised by the steep rise in the Cl-/OH-ratio up to 

270 days followed by small increase. The high chloride binding capacity and buffering effect 

on OH- concentration in PC concrete played an important role in the minimal increase of Cl-

/OH- ratio after 270 days exposure [23]. Chloride ions removed from the pore solution of PC 

concrete by chloride binding are simultaneously replaced by OH- through the buffering effect 

of the hydration product Ca(OH)2, thereby limiting absorption sites for further chloride ingress. 

There is no similar buffering effect in AACM concrete (Fig. 7a). The critical (maximum) levels 

of free chloride and Cl-/OH- occur at 860 days and remain fairly constant at 1750 days. The Cl-

/OH- ratios for AACM 1, 2, 3 and PC concrete are 1.82, 2.1, 2.8, and 1.08 respectively. These 

results will be related to the state of corrosion of the steel bars in section 3.5.  
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The corrosion specimens were split open to release the embedded bars after 1750 days of 

exposure to the chloride induced corrosion environment which simulated realistic practical 

conditions for accelerated corrosion. Visual inspection of the corrosion was performed by 3D 

scanning the surface area of bars with an infinite focus optical system. Figure 14 shows the 

severity of corrosion on the surface of steel embedded in AACM 1,2,3 and PC concrete. No 

corrosion activity was observed on the surface of steel embedded in AACM 1 and 2 while the 

steel in AACM 3 had a slight stain of rust. The extent of corrosion on steel in PC concrete is 

significantly more pronounced (Fig.14). Corrosion protection to steel is provided by the 

oxidation of sulfide ions present in the pore fluid of the GGBS based AACM concrete. This 

forms a dark passive layer on the surface of the steel as observed in Figure 14. 

 

AACM 1 

   

AACM 2 

   

AACM 3 

 
    

PC 

   

Figure 14: Chloride induced corrosion of steel embedded in AACM and PC concrete after 

1750 days exposure. 

High values of Ecorr and Icorr in AACM concrete are caused by sulfide concentration in the pore 

solution chemistry at the steel-concrete interface and not the actual corrosion resistance of the 
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embedded steel, as discussed in sections 3.2.1 and 3.2.2 respectively . In addition 

electrochemical test procedures such as open circuit potential, electrochemical impedance 

spectroscopy, linear polarization resistance and anodic polarization can also induce oxidation 

of HS‐ species in AACM pore solution which result in high Ecorr and Icorr readings [8]. Evidence 

of elemental sulfur (white flakes) from the oxidation of HS‐ species in the pore solution is also 

observed in the matrix near the steel-concrete interface as shown in Figure 15 (discussed in 

section 3.2.2). 

 

Figure 15: Elemental sulfur near the steel concrete interface in AACM 1 concrete after 1750 

days exposure. 

The passive film on the surface of steel embedded in GGBS-based AACM concrete is in the 

form of Fe-S complexes [8]. Structures of amorphous and crystalline oxides were also found 

on the steel surface embedded in AACM concrete such as an abundance of akageneite (β-

FeO(OH,Cl)) and lepridocrocite (γ-FeO(OH), together with traces of maghemite (γ-Fe2O3) and 

goethite (αFeO(OH)) [53]. The presence of chloride found in akageneite (β-FeO(OH,Cl)) 

which is part of the passive oxide structure, forms a rarely observed protective film on the 

surface of steel embedded in AACM concrete [50]. 

3.5 Corrosion threshold values 



 

35 

 

Figure 15 shows a snapshot of the Cl-/OH-at 30mm depth (location of steel), Icorr and Ecorr values 

for the AACM and PC concretes after 860 days of chloride induced corrosion exposure. 

Maximum chloride ingress would have occurred by this time since further exposure to chlorides 

is not provided after 690 days. 

 

Figure 16: Relationship between potential, current density and Cl/OH at steel concrete interface 

(30mm depth) at 860 days exposure. 

The Cl/OH values of the AACMs, which range between 1.82, 2.1 and 2.8, are much greater 

than 1.08 for PC concrete while the Icorr and Ecorr values for AACMs suggest much greater 

corrosion activity in the AACM concretes. AACM 3 has the highest Ecorr and Icorr values of -

172mV and 1.24µA/cm2 while AACM 1, 2 and PC concrete have relatively lower values as 

shown in Fig. 16. Despite these observations, the extracted steel embedded in AACM 1 and 2 

shows no signs of corrosion, AACM 3 concrete shows a few rust stains while steel in PC 

concrete shows quite extensive pitting corrosion (Figure 14). Other researchers [8, 12, 46] 

observed Cl-/OH-in AACM concrete exceeding the range of values which usually represent 

corrosion activity of steel embedded in PC concrete.  
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The historical Cl-/OH-threshold value of 0.61 [54] for the initiation of corrosion in PC based 

materials was based on simulated pore solution, neglecting the impact of chloride binding and 

buffering effect of the hydration product by releasing OH - into the pore solution. Values of 3 

and above have been given by tests using more representitive environments (45,54). Many 

recent researchers [5, 8, 14, 39] have similarly investigated corrosion of steel bars in simulated 

pore solutions of alkali-activated concrete while neglecting the influence of physical chloride 

binding [23, 35] and the redox environment [5]  around the steel interface in AACM concrete.  

Various values of Cl-/OH- ≥ 1.0 and Icorr ≥ 2.0  have been given in literature for the onset of 

pitting corrosion in AACM concretes represented by idealised pore solutions of different 

molarity [5, 8]. Similarly, for ternary PC concrete containing GGBS, Cl-/OH- ≥ 1.64, Icorr ≥ 6.1 

µA/cm2 and Ecorr ≤ - 500mV shows the onset of pitting corrosion which is resisted by the 

presence of sulfide and thiosulfates from the slag content in the mix [32]. In this study, three 

different activator molarities of 6.5mol/L (AACM 1), 6.26mol/L (AACM 2) and 6.03mol/L 

(AACM 3) as shown in Table 1 played a significant role in the corrosion resistance of the 

AACM concrete. Onset of pitting corrosion was only observed in AACM 3 having an activator 

molarity of 6.03mol/L at Cl-/OH- of 2.8, Icorr of 1.24 µA/cm2 and Ecorr of -172 mV. AACM 1 

concrete with activator molarity of 6.5mol/L did not show any pitting corrosion at Cl-/OH- of 

1.82, Icorr of 0.5 µA/cm2 and Ecorr of -126 mV. Similarly, AACM 2 with activator molarity of 

6.26mol/L did not show any pitting corrosion at Cl-/OH- of 2.1, Icorr of 0.78 µA/cm2 and Ecorr of 

-135 mV at 860 days exposure as shown in Figure 16. 

CONCLUSIONS  

The following conclusions can be drawn based on the study carried out on the chloride induced 

corrosion in AACM and a control PC concrete at 1750 days exposure to monitor their relative 

durability. 
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• Steel bars embedded in AACM concrete demonstrated a higher resistance to chloride 

induced corrosion than the corresponding control PC concrete after 1750 days of 

exposure to an accelerated corrosion inducing environment. 

• Corrosion resistance of the AACM concretes increases with increasing molarity of the 

alkali activator, at a constant liquid to binder ratio. No pitting corrosion was detected at 

molarities 6.5 mol/L and 6.26 mol/L while a rust stain was observed at 6.03 mol/L. The 

control PC concrete displayed significant pitting corrosion.  

• The threshold Cl-/OH- value for pitting corrosion initiation in the AACM concrete is 

between 2.1 and 2.8. No corrosion was detected in AACM concrete at Cl-/OH-ratios of 

1.82 and 2.1 while a rust stain was observed at Cl-/OH- of 2.8 after 1750 days exposure. 

The corresponding threshold of corrosion initiation for the control PC concrete is 

around 1.08. 

• AACM concrete also satisfies the nominal limit for acid soluble chloride content of 

0.4% (by weight of binder) to prevent reinforcement corrosion, as stipulated in many 

standards for PC concrete. Steel reinforcement in the AACM concrete remained free 

from corrosion at chloride contents exceeding 0.4%. However, there is no basis for 

applying this threshold limit to AACM concrete.  

• The alkalis Na+, K+, Al3+ and Mg2+ are more abundant in AACM than PC concrete. For 

example, their sum at 30mm depth in AACM 1,2,3 and PC concrete is 14.4%, 14.86%, 

18.17% and 5.07% respectively. These alkalis contribute to the high alkalinity of 

AACM concrete, which also provides corrosion resistance to steel reinforcement.  

Ca(OH)2 content, however, is lower in AACM (0%) than PC (5%) concrete. 
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• Corrosion protection to steel is provided by the oxidation of sulfide ions present in the 

pore fluid of GGBS based AACM concrete. The AACM concrete has up to 80% higher 

SO3
2- content at the steel interface than PC concrete. The presence of sulfides reduces 

the redox reaction and deprives oxygen supply at the steel interf ace. This forms a dark 

passive layer on the surface of the steel which impedes corrosion. 

• Corrosion potentials, Ecorr, of steel in submerged AACM concrete reach very high 

negative values (-677 mV) without any signs of corrosion. This is due to the depletion 

of oxygen at the steel interface caused by the oxidation of sulfides present in AACM 

concrete and also the low oxygen levels available under submerged exposure. The 

corresponding Ecorr values for the control PC remain fairly stable under submerged and 

dry exposure (0 to -250mV) and represent significant pitting corrosion. 

• The Ecorr and Icorr values of AACM concrete are highly influenced by the saturated state 

of the matrix. This is caused by the inhibition of the cathodic reaction in saturated 

AACM concrete producing higher Icorr and more negative Ecorr values in non-corroding 

steel. It results in a lack of sufficient stability in these values under cyclic wet-dry 

exposure to provide a reliable corrosion indicator for the steel. However, the Ecorr and 

Icorr values of AACM concrete remain fairly stable during prolonged partially saturated 

exposure.  
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