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Abstract: Wireless computer networks are increasingly important as reliable 

means of communication in medical environments. Evaluation of Quality of 

Service (QoS) in wireless computer networks deployed in medical environments   

can improve network performance and enhance utilization of resources. In this 

study, the QoS offered by IEEE 802.11n and IEEE 802.11ac wireless protocols 

was evaluated and compared using multiple point-to-point links for Voice Over 

Internet Protocol (VoIP) traffic. QoS was evaluated based on Predictive Statistical 

Diagnosis (PSD) and Probabilistic Neural Network (PNN). PSD and PNN based 

QoS evaluation methods categorized the VoIP packets into low, medium and high 

QoS types based on the packets' transmission delay, jitter, and percentage packet 

loss ratio. Both PSD and PNN allowed QoS for VoIP to be quantified accurately. 

It was shown that 802.11ac provides a higher QoS for VoIP transmission as 

compared with IEEE 802.11n. The devised methods can be used in medical 

environments for evaluation of wireless networks' QoS. 

 

Keywords: Quality of service; wireless computer networks; Wi-Fi; 802.11ac; 

802.11n; probabilistic neural networks; Bayesian. 

1 Introduction 

Growing use of devices and applications that rely on wireless computer networks in the 

medical field has provided opportunities and challenges. Wireless devices and 

technologies have been beneficial in the way patients are looked after and have allowed 

them to be more independent in the daily lives. They made it possible for mobile 

working where medical staff are less constrained to be at their desks or to carry around 

patients' medical paper records during patients' visits [1][2]. The technology has enabled 

clinicians to incorporate new medical observations into the patients' records that are in 

turn immediately accessible to other staff. Wireless technologies allow some patients 

that would be kept in hospitals to be discharged earlier and to be remotely monitored in 

their homes through wireless sensors attached to them or placed around their homes. To 

facilitate these effectively, the performance of the associated wireless networks needs to 

meet the expected high standard. In order to determine the compliance of the networks 

to these standards, suitable tools that indicate their performance or quality of service 

(QoS) are needed.  There are many studies investigating QoS for e-health networks and 

communications. It has been shown that an improvement in the QoS of the Internet of 

Things (IoT) can lead to enhanced communication in e-health applications [3]. QoS 

requirements for achieving reliability in rescue vehicles that involves paramedic 

assistance [4] and intelligent control of the network topology [5] were reported. Other 

related QoS issues were reported in several studies, e.g. [6][7]. 

To handle the demand for Wi-Fi, IEEE introduced further standards with improved 

performance such as IEEE 802.11g and IEEE 802.11n that provided a throughput rate 

up to 450 Mbps [8][9].The latest IEEE standard in the WLANs is 802.11ac. It is 

designed to improve 802.11n bandwidth utilization and throughput rate by incorporating 

extended multiple wireless signals and antennas, resulting in a larger multiple 



 

input/multiple output (MIMO) communication environment that supports up to 8 

streams. The channel bandwidth in 802.11ac is up to 80 MHz while the maximum 

channel bandwidth in 802.11n is 40 MHz [10][11].  IEEE 802.11ac standard operates 

in the 5 GHz band. After a period Wi-Fi operating in 2.4 GHz bands, their limitations 

became apparent, mainly due to interference. Interference between 2.4 GHz neighbors 

can reduce the network performance [8][9]. 

A number of studies reported QoS evaluation in multimedia wireless networks 

based on fuzzy logic and neural networks [12][13]. Neural networks were used to 

analyze and evaluate overall QoS for Voice over Internet Protocol (VoIP) traffic using 

networks simulated in a package called NS-2 [12]. The traffic parameters were initially 

classified into three types of QoS by an unsupervised learning Kohonen neural network. 

The results were then further processed by a supervised learning neural network called 

multilayer perceptron (MLP) to determine the overall QoS. The QoS measure obtained 

by the approach was compared with other QoS evaluation techniques that used fuzzy 

logic and regression modelling [12]. Fuzzy c-means clustering and Kohonen neural 

network were compared for their effectiveness to classify QoS into high, medium and 

low types for real time VoIP traffic [13].  The study also used fuzzy inference system 

(FIS), multilayer perceptron (MLP) and linear regression to quantify overall QoS for 

real time applications such as VoIP. However, these studies did not evaluate multiple 

Wi-Fi protocols such as IEEE 802.11ac and 802.11n. QoS assessments methods 

reported in studies [12][13] were based on either fuzzy c-means, Kohonen neural 

network, fuzzy inference system (FIS) or MLP. These methods have a number of 

shortcomings. For example, the FIS approach requires the user to develop the rules for 

the method's knowledge base and determine the types and parameters of the 

membership functions for its inputs and outputs. The rules and membership functions' 

parameters are specific to each particular application. MLP and Kohonen neural 

networks need careful training to ensure effective generalization [12]. MLP also 

requires a careful determination of the number of neurons in its hidden layer(s) to avoid 

overfitting or poor generalization. Kohonen output is a grid of neurons' (map) that 

requires interpretation to determine the boundary between individual clusters. The 

performance evaluations carried out in some studies such as [9][14] were not aimed at 

measuring overall QoS classification and its variation to traffic change.   

In this study, QoS provided by IEEE 802.11ac (80 MHz channel bandwidth) and 

IEEE 802.11n (20 and 40 MHz bandwidths) wireless standards for VoIP traffic was 

compared using physical networks. The evolution of QoS considered scenarios that 

gradually increased the number of point to point (PPP) links between two access points. 

A Bayesian based method called predictive statistical diagnosis (PSD) and a 

probabilistic Neural Network (PNN) were developed to determine and quantify QoS for 

VoIP. These approaches were chosen because they are robust and their operations are 

not computationally intensive making them suitable for real-time operations. 

2 Bayesian theory 

Bayesian statistics is a supervised learning classification technique that utilizes 

probability to deal with uncertainty in information. Bayesian classification allows 

apriori information about the data to be used as part of classification [15][16][17]. It 

determines unknown events by considering the knowledge of known events, i.e. 

 

   𝑃(ℎ|𝑒) =
𝑃(𝑒|ℎ)𝑃(ℎ)

𝑃(𝑒)
                    (1) 

where p(h) is the prior probability of hypothesis h, p(e) is the prior probability of 

evidence e, p(e|h) is the probability of e given h and p(h|e) is the probability of h given e.  

Using Bayes' theorem the probability that a feature vector X with parameter vector θ is 

assigned to a class of type t1 is given by  

 

𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑃(𝑿|𝑡1,𝜽)

𝑃(𝑿)
         (2) 



 

where p(t1) is the prior probability of type t1,  p(X|t1,θ) is the probability density function 

of X for a given type t1 and n is number of types. The sum of the probabilities is 

 

     𝑃(𝑿) = ∑ 𝑃(𝑿|𝑡, 𝜽)𝑡=𝑡𝑛
𝑡=𝑡1

𝑃(𝑡)              (3) 

Equation 2 can expressed as [18], 

 

      𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑃(𝑿|𝑡1,𝜽)

∑ 𝑃(𝑿|𝑡,𝜽)𝑡=𝑡𝑛
𝑡=𝑡1

𝑃(𝑡)
        (4) 

The parameter θ is unavailable however the calibration data set (Z) is available. To 

utilize Z, p(X|t,θ) is replaced by q(X|t,Z) [15], where  

        𝑞(𝑿|𝑡, 𝒁) = ∫ 𝑃(𝑿|𝑡, 𝜽) 𝑃(𝜽|𝒁) 𝑑𝜽
𝜽

      (5) 

Equation 4 then is rewritten as [18]  

 

        𝑃(𝑡1|𝑿, 𝜽) =
𝑃(𝑡1)𝑞(𝑿|𝑡1,𝒁)

∑ 𝑃(𝑡)𝑞(𝑿|𝑡,𝒁)
𝑡𝑛
𝑡=𝑡1

       (6) 

Equation 6 is the predictive density function for an observation X on a case of type t 

measured on the calibration data Z. The right-hand side of equation 5 is evaluated by 

using  

 

          𝑞(𝑿|𝑡, 𝒁) = 𝑺𝑡𝑑(𝑣𝑡 , 𝒎𝒕 , {1 +
1

𝑛𝑡
} 𝑺𝑡)      (7) 

             

where there are nt cases of type t with observation vectors x1, x2..., xnt; vt is the degree of 

freedom (given by nt - 1), mt is the mean vector of the input features and St is the 

covariance matrix. Std is a d-dimensional student-type density function defined as  

 

𝑺𝑡𝑑(𝑣, 𝒃, 𝑐) =
𝛤[0.5(𝑣+1)]

𝜋0.5𝑑{[0.5(𝑣−𝑑+1)]} |𝑣𝑐|0.5
𝑥

1

[1+(𝑿−𝒃)𝑇(𝑣𝑐)−1 (𝑿−𝒃)]0.5(𝑣+1)
    (8) 

 

where Γ is the gamma function. By using equation 8, the unknown p(X|t,θ) can be 

determined for the case of known types. To obtain the probabilities for the test or 

evaluation data set, equation 8 uses the observation vector X for the cases of known type 

but retains the mean (mi) and covariance matrices (Si) (i.e. calibration information) for 

the classification of cases whose types are unknown. This Bayesian based approach is 

known as Predictive Statistical Diagnosis (PSD) and it will be an approach used in this 

study to classify network parameters (i.e delay, jitter and %PLR) to three QoS categories 

as Good, Medium and Low types. PSD has been successfully used for data classification 

before [18]. The second data classification used in this study is probabilistic neural 

network (PNN) and was included to allow comparison of their QoS effectiveness. 

3 Probabilistic Neural Network (PNN) 

PNN introduced by Specht [19] uses a supervised learning algorithm and therefore 

during its training, representative examples of each data types and their respective 

categories (types) are required. PNN is based on a statistical approach called kernel 

discriminate analysis and it is predominantly a classifier. It uses the training examples of 

known types to alter the approximated distribution functions to best describe its input 

data [20].  Advantages of PNN include fast training, an essentially parallel structure, 

and certain convergence to an optimal classifier as number of training examples is 

increased. PNN is associated to Bayes classification theory [19] and Parzen 

nonparametric probability density function estimation theory [20]. PNN architecture has 

four layers referred to as the input, pattern, summation and output as shown in Figure 1. 



 

 

 Fig.1 Architecture of a probabilistic neural network 

 

An input data vector (X) is fed to the n input neurons. The input layer forwards the 

inputs to the neurons in the pattern layer, dividing them into k categories, a category for 

each classification grouping. The neurons in the pattern layer use a Gaussian kernel to 

determine their outputs of an input pattern X from the input layer as  

 

𝜑𝑘,𝑖(𝑥) = ∑ 𝑤𝑘𝑖
𝑀𝑘
𝑖=1 𝜑𝑘,𝑖(𝑥)    𝑘 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑐𝑙𝑎𝑠𝑠𝑒𝑠)       (9) 

        𝜑𝑘,𝑖 =
1

(2π𝜎2)𝑛/2 𝑒𝑥𝑝 (
‖𝑥−𝑥𝑘,𝑖‖

2

2𝜎2 )                                           (10) 

 

where n

k i
x R is the center of the kernel, and σ is known as the smoothing or spread 

parameter. It sets the size of the kernel receptive field. The summation layer sums the 

outputs from the neurons associated with each class type and indicates the probabilities 

for an input data to belong the predefined categories as 

 

𝑝𝑘(𝑥) = ∑ 𝑤𝑘,𝑖
𝑀𝑘
𝑖=1 𝜑𝑘𝑖(𝑥)    𝑘 = 1, … , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑟𝑜𝑢𝑝𝑠 (𝑐𝑙𝑎𝑠𝑠𝑒𝑠)           (11) 

 

where Mk is the number of neurons in the pattern layer for class k, and wk,i are positive 

coefficients satisfying ∑ 𝑤𝑘,𝑖
𝑀𝑘
𝑖=1 = 1. The neuron at the output layer determines the 

category or type of the input vector (x) based on Bayes' decision rule and using the 

information from the neurons in the summation layer, i.e. 

𝑐(𝑥) = arg 𝑚𝑎𝑥1 ≪ 𝑘 ≫ 𝑘(𝑝𝑘)               (12) 

The smoothing (spread) parameter needs to be stated at the start of the training 

process. PNN was used in this study to process delay, jitter and %PLR and classify 

packets into Good, Medium and Low QoS types. 

4 Methodology 

The experiment was based on a network laboratory (area 4 m 6 m) consisting of two 

wireless access points and 20 PCs. The design supported 10 point-to-point (PPP) links 

involving 20 PCs that communicated via access point 1 (AP-1) and access point 2 

(AP-2) as shown in Figure 2. The setup gave flexibility of testing for different traffic 

conditions. The traffic associated with the established PPP links was captured and 

processed by Bayesian and PNN models to evaluate and compare the performance of 

802.11n (20/40 MHz ) and 802.11ac protocols.  
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Fig.2 Network layout used in the study 

 

The access points were of type Cisco© AIR-AP1852E. These supported IEEE 

802.11 g/n/ac protocols. Cisco© catalyst 3560-CX switch was used to connect the APs 

and Session Initiation Protocol (SIP) server via 1 Gbps links. On the PC side, wireless 

adaptors of Linksys© AC1200 were used in all scenarios. [14]. VoIP connectivity was 

established by SIP server. SIP Softphones ran over the Windows© PC providing SIP 

VoIP sessions. Real time protocol (RTP) used packet size of 160 bytes and G711a 

protocol for audio CODEC.  

Initially one to one PC PPP link was established between PC-1a and PC-1b. The 

traffic included HD video, VoIP and TCP traffic. Following this test, the number of PPP 

links was increased to three PCs in each side. PC-1a connected to PC-1b, PC-2a 

connected to PC-2b and PC-3a connected to PC-3b (i.e. 3 PPP links) at 2 minutes from 

the start of the transmission. Data packets were captured from the same two computers. 

Then the number of PPP links was in turn increased to 5, 7 and 10 PCs in each side at 

times 4, 6, and 8 minutes from the start of the transmission, the transmission ended at 10 

minutes. The tests investigated the network behavior and QoS by increasing PPP links 

between AP-1 and AP-2. Each PC that connected to AP-1 (i.e. PC-1a to PC-10a) in these 

PPP links transmitted the same traffic that included HD video, VoIP and TCP to its peer 

PC connected to AP-2. The traffic was sent simultaneously. The manner of increasing 

the number of PPP links at every two minutes was by manual configuration of the PCs 

connected to the AP-1 to send traffic to its counter PCs connected to AP-2 as indicated 

in Table 1. 

 

TABLE 1. Communication timing and the number of links 

Time (minutes) Number of PPP links 

0-2 1 

2-4 3 

4-6 5 

6-8 7 

8-10 10 

 

Wireshark traffic monitoring tool [21] was installed on PC-1a that was connected to 

AP-1 and PC-1b that in turn was connected to AP-2 to capture packets. Wireshark 

captured packets based on protocol type or number such as RTP. The captured packets 

were processed to determine network end-end delay, jitter and %PLR [15] to quantify 

overall QoS. 

In order to obtain QoS performance for the two wireless standards i.e. 802.11n/ac, 

one channel was used for IEEE 802.11n (20 MHz bandwidth) in first scenario, then two 

channels were used for 802.11n (40 MHz). For IEEE 802.11ac, one channel was 

configured with (80 MHz). Table 2 summarizes wireless channels bandwidth, 

frequencies and maximum physical data rate. 



 

 

TABLE 2. IEEE 802.11 standards, frequency and channel bandwidth used in the study 

Protocol Frequency (GHz) Channel width (MHz) Maximum data 

rate (Mbps) 

Modulation and 

Coding Scheme 

802.11n 2.4 20 65 7 (1 Spatial stream) 

802.11n 2.4 40 135 7 (1 Spatial stream) 

802.11ac 5 60 325 7 (1 Spatial stream) 

 

4.1 The operations for both the Bayesian and PNN were: 

 

A.  Wireshark was used to capture VoIP traffic packets between PC-1a and PC-1b 

during all change of PPP links and their associated traffic from start until minute 10 

which was the end of 10 PPP link traffic transmissions. 

B.  Delay, jitter and percentage packet loss ratio (%PLR) were determined.  The 

delay (Di) is the time taken for a packet to reach from its source to destination. Jitter (Ji) 

is the magnitude of variations in delay. The percentage packet loss ratio (%PLRi) is the 

total number of lost packets compared to total number of sent packets [22]. 

C.  QoS requirements of ITU for VoIP traffic applications were applied to calibrate 

the PNN and Bayesian methods (i.e. the training examples). A summary of these ITU 

recommended traffic bounds are:  

 Good QoS: delay is less than 150 msec, jitter is less than 1 msec and %PLR is less 

than 2%. 

 Medium QoS: delay is between 150-400 msec, jitter is between 1-3 msec and %PLR 

is between 2-4% 

 Low QoS: delay is more than 400 msec or jitter is more than 3 msec or %PLR is 

more than 4% [13]. 

 

4.2 Bayesian model 

 

The Bayesian technique processed delay, jitter and %PLR values for individual packets 

and produced an output indicating the QoS category. The algorithm for the Bayesian 

approach consisted of three parallel routes associated with low, medium and high QoS 

categories as shown in Figure 3. Three examples lists, one for each QoS type (low, 

medium and high), were prepared based on ITU recommendations of VoIP. Each list 

contains 300 examples and each example characterized different levels of delay, jitter 

and %PLR and the corresponding QoS. These were used to calibrate the Bayesian 

classifier. Figure 3 indicates the manner traffic measures were associated to each QoS 

type. When a packet strongly belonged to a class (e.g. low QoS, represented by BC1- 

route) then the associated probability was close to 1. The same operations are followed 

for BC-2 (medium QoS) and BC-3 (high QoS). BC-1 used the examples from the low 

and not low QoS list, BC-2 used the examples from the medium and not medium QoS 

list and BC-3 used the examples from the high and not high QoS list. Once the values 

from the paths BC-1, BC-2 and BC-3 were obtained, each received packet was classified 

to the QoS type associated with the largest value from the corresponding BC path. The 

results were mapped by values from 0 to 0.34 for packets classified through BC-1 path, 

0.35 to 0.65 for packet classified through BC-2 path and 0.66 to 1 for packets classified 

through BC-3 path. The Bayesian Classifiers (BC-1, BC-2 and BC-3) have used 

equations number (7) where inputs values X are represented by delay, jitter and %PLR 

and Z vector represent the training data which contain 300 entry includes classified 

examples. The test file contained delay, jitter and %PLR for all received packets of 10 

minutes transmission.  



 

 

Fig.3 Flow chart for the Bayesian approach 

4.3 PNN model 

 

The PNN model shown in Figure 1 was used with three inputs, delay, jitter and %PLR. 

The training file contained 300 examples prepared based on ITU recommendations for 

VoIP transmission and each example characterized varied levels of delay, jitter and 

%PLR and their corresponding QoS (i.e. k=3, represent low, medium and high) include 

100 examples per class (i.e. M=100). The test file contained delay, jitter and %PLR for 

all received packets for 10 minutes transmission. When the value of PNN spread 

parameter was near zero, the PNN acted as a nearest neighbor classifier. In this study the 

value of spread was chosen 0.01 by experimenting with different values and considering 

the performance on classifying the examples in the training file.  

 

5 Results and Discussion 

Figures 4 (a-c) show the traffic parameter values for the VoIP (i.e. delay, jitter and 

%PLR). Figures 4 (a) shows the delay values. For the IEEE 802.11n (20 MHz, shown in 

blue), the delay was 15 msec for 1 PPP link then the it increased to 100 msec for 5 PPP 

links and then reached the highest level at 230 msec for 10 links. It can be seen from the 

figure that there were more variations in delay for IEEE 802.11n (20 MHz) as compared 

to other two protocols. Figure 4 (a) shows delay for IEEE 802.11n (40 MHz, in red) for 

1 PPP link. The delay was less than 14 msec and the highest delay was for 10 PPP links 

at 200 msec. Figures 4 (a) shows delay for 802.11ac (80 MHz, in green).The results 

show lowest delay, i.e. less than 10 msec for 1 PPP link and less than 20 msec for 5 PPP 

links and its maximum was 50 msec for 10 PPP links. The black colour plots in Figures 

4(a-b) represent data trends obtained by third order polynomials. Figure 4 (b) shows the 

jitter measurement. For IEEE 802.11n (20 MHz, in blue), jitter was 0.01 msec for 1 PPP 

link, it increased to 1.2 msec for 5 links and 5 msec for 10 links. For IEEE 802.11n 

(40MHz, in red) a lower jitter in general was observed as compared to IEEE 802.11n for 

1 link (i.e. less than 0.01 msec) and the highest jitter was for 10 links for 4 msec. For 

IEEE 802.11ac (80 MHz, shown in green), jitter was less than 0.008 msec for 1 link and 

increased to 1 msec for 5 links and the maximum was about 1.1 msec for 10 links. In 

general, jitter increased as the number of links increased between the two APs. IEEE 

802.11ac showed lowest jitter and IEEE 802.11n (20 MHz) showed highest jitter and 



 

more fluctuations than others. Figure 4 (c) shows the results for %PLR. IEEE 802.11n 

(20 MHz, shown in blue) and IEEE 802.11n (40MHz, shown in red) both showed 

similar trends for %PLR with a larger %PLR for IEEE 802.11n (20 MHz) as compared 

with IEEE 802.11n (40 MHz). The IEEE 802.11ac showed lowest %PLR values close to 

zero, most of the time except, at minute 8 that showed %PLR equal to 0.2%. 

 

 
 (a)                 (b) 

 
            (c) 

Fig. 4 (a) Delay (b) Jitter (c) %PLR 

 

Figures 5 (a-f) show the overall QoS classification (packet by packet classification) 

for the Bayesian and PNN techniques.  Figures 5 (a) and (b) show the QoS for IEEE 

802.11n (20 MHz) for the Bayesian and PNN approaches respectively. In time period 

between 0 and 2 minutes with 1 PPP link established, most packets were classified as 

good QoS as throughput was low. The QoS decreased between medium and low starting 

at 4 minutes then fluctuated between high, medium and low as traffic increased steadily 

to the maximum in 10 links. Figures 5 (c) and (d) show the QoS of 802.11n (40 MHz) by 

Bayesian and PNN respectively. In time period between 0 and 2 minutes with 1 link 

established, most packets were classified as good QoS as traffic still low.  QoS 

decreased between medium and high starting at 4 minutes where 5 links were 

established. This continued till minute 8 minutes when 10 links were established and 

QoS changed to low and medium till the end of transmission because of a large increase 

in the transmitting data.  Figures 5 (e) and (f) show the QoS for IEEE 802.11ac (80 

MHz) for 1 link where most packets were classified as good QoS . QoS changed 

between high and medium, starting from minute 8 where 10 links were established. 

However, most packets had high QoS. In general IEEE 802.11ac (80 MHz) provided 

improved operation as compared to IEEE 802.11n (20/40 MHz). Figures 5 (a-f) indicate 

that the QoS trends for 802.11n and 802.11ac have similar behavior, the QoS in general 

decreased as the number of PPP links increased. IEEE 802.11ac (80 MHz) shows 

improved results as compared with IEEE 802.11n (20/40 MHz) and IEEE 802.11n (40 

MHz) shows higher performance than 802.11n (20 MHz) for VoIP traffic. A reason 

IEEE 802.11ac provided improved QoS performance as compared to IEEE 802.11n is 

that it is able to have a lower %PLR, lower delay and lower jitter which are main factor 

of VoIP traffic. Overall QoS classifications for the Bayesian and PNN provide 

consistent QoS classification. 

 

 



 

 
(a)                  (b) 

 
(c)                   (d) 

 
(e)                        (f) 

Fig. 5. QoS classification by Bayesian and PNN: (a) and (b) are for IEEE 802.11n (20 

MHz), (c) and (d) are for 802.11n (40 MHz) and (e) and (f) are for IEEE 802.11ac (80 MHz) 

 

6 Conclusions 

This study developed innovative approaches to determine quality of service (QoS) in 

wireless computer networks that have applications in determining network performance 

in medical environments such as hospitals. Two methods of determining QoS were 

developed. One was based on probabilistic neural network (PNN) and the other used 

predictive statistical diagnosis (PSD). These were applied to evaluate QoS for Voice 

over Internet Protocol (VoIP) wirelessly transmitted using IEEE 802.11ac and IEEE 

802.11n protocols. IEEE 802.11ac showed consistent behavior for delay, jitter and 

percentage packet loss ratio as the number of VoIP transmission links increased. Tests 

showed that jitter was the main traffic parameter that caused low and medium QoS for 

packets in IEEE 802.11ac. Both Bayesian and PNN approaches successfully classified 

VoIP packet into Low, Medium and High QoS categories and provided consistent 

results.  
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