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ABSTRACT: We report a Monte Carlo (MC) simulation study of a
model discotic liquid crystal (DLC) confined between hybrid walls with
controllable penetrability. The model consists of oblate hard Gaussian
overlap (HGO) particles. Particle−substrate interactions are modeled as
follows: each substrate sees a particle as a disc of zero thickness and
diameter D less than or equal to that of the actual particle, σ0, embedded
inside the particle and located halfway along, and perpendicular to, its
minor axis. This allows us to control the anchoring properties of the
substrates, from planar (edge-on) for D ≈ 0 to homeotropic (face-on) for
D ≈ σ0, which can be done independently at either substrate. Depending
on the values of Ds ≡ D/σ0 at the top (Ds

t) and bottom (Ds
b) substrates, we

find domains in (Ds
b, Ds

t) space in which particle alignment is uniform
planar (UP), is uniform homeotropic (UH), or varies linearly from planar
at one substrate to homeotropic at the other (Lin). These domains are
separated by regions of bistability (P−Lin and H−Lin), which appear to be wider than for prolate HGOs, and there may be also a
small tristable (P−H−Lin) region. Results are compared with the predictions of density functional theory, implemented at the level
of Onsager’s second-virial approximation with Parsons-Lee rescaling. As in the case of symmetric confinement studied previously, the
agreement between theory and simulation is substantially less good than for prolate HGOs: in particular, for the investigated
substrate separation L = 6σ0, the Lin configuration is never predicted. These discrepancies are likely a consequence of the fact that
Onsager’s theory is less accurate for discs than for rods.

■ INTRODUCTION

Historically, liquid crystalline (LC) behavior was first identified
in substances made up of elongated building blocks.1 However,
it has now been realized for a huge variety of molecular shapes,
including plates and discs,2 as well as at the colloidal level, e.g., in
dispersions of gibbsite3 or clay4 particles. Such discotic liquid
crystals (DLCs) may exhibit semiconducting properties, with
promising applications in the photovoltaic industry.5 They are
also effective as lubricants, outperforming hydrocarbons in some
conditions.6 In all these practical settings, an understanding of
LCs at surfaces and interfaces is paramount, which combined
with sheer curiosity, has spawned a number of theoretical,
computational, and experimental studies.
On the theory side, only hard-body models have been used.

Harnau and Dietrich extended Onsager’s second-virial theory to
treat infinitely thin hard discs with continuous orientations7 and
binarymixtures of hard platelets with restricted orientations8 at a
hard wall. More recently, Kapanowski and Abram9 found, also
on the basis of Onsager’s second-virial theory, that hard platelets
will order biaxially at a hard wall only if the bulk phase itself is
biaxial. A more sophisticated, fundamental-measure (FM)
density functional theory (DFT) of infinitely thin hard platelets,
both pure and mixed, was developed by Schmidt and co-
workers.10 This was applied to the isotropic−nematic (I−N)

interface of suspensions of colloidal platelets11,12 and to the
capillary nematization of thin hard discs between parallel hard
walls,13 with results generally superior to those of Onsager’s
second-virial theory.
On the side of computer simulations, Piñeiro et al.14 carried

out a NPT and Gibbs ensemble Monte Carlo (MC)
investigation of hard cut spheres of aspect ratio L/D = 0.1 in a
slab geometry between either hard walls that exclude the
particles completely or “adsorbent” walls that exclude only the
particles’ centers of mass. Avendaño et al.15 simulated soft-
repulsive rings between parallel, soft-repulsive walls, with results
that are in stark contrast to the behavior of convex DLCs.
Finally, other numerical studies of confined DLCs have
employed the popular Gay−Berne (GB) model and more
complex wall−particle interactions.16−20 In all of the above, only
symmetric confinement has been assumed, i.e., where both
substrates induce the same anchoring.
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In a recent paper,21 we started a research program aimed at
establishing the design principles for DLCs in confined
environments.We chose a simple (for ease of use and generality)
hard-body model that allows one to switch between different
types of anchoring in either symmetric or hybrid systems by
tuning a physically transparent parameter. Our model consists of
oblate hard Gaussian overlap (HGO) particles sandwiched
between parallel planar substrates: each substrate sees a particle
as a disc of zero thickness and diameter D less than or equal to
that of the actual particle, σ0, embedded inside the particle and
located halfway along, and perpendicular to, its minor axis; the
anchoring induced by a given substrate is planar (edge-on) forD
≈ 0 and homeotropic (face-on) forD≈ σ0. In the present paper,
we consider hybrid confinement in the simplest case in which
either substrate of a slit-like pore may induce a different
anchoring. These are the boundary conditions relevant to
important LC applications such as twisted-nematic22 or hybrid-
aligned23 displays and are also realized, e.g., in nanometrically
thin 5CB films spun-cast onto silicon wafers.24

This paper is organized as follows: first, we describe our
model. Then, details of the computer simulations are given,
followed by a section where results are presented and compared
with the predictions of the previously published theory.21

Finally, we give some conclusions.

■ MODEL

As in previous works,21,25−27 we consider a purely steric
microscopic model of uniaxial particles represented by the hard
Gaussian overlap (HGO) potential:28
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where ûi and ûj are the orientations of particles i and j, rîj is the
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σ

σ χ
χ χ

̂ ̂ ̂ =

−
̂ · ̂ + ̂ · ̂
+ ̂ · ̂

+
̂ · ̂ − ̂ · ̂
− ̂ · ̂

−

r u u

r u r u

u u

r u r u

u u

( , , )

1
2

( )

1 ( )

( )

1 ( )

ij i j

ij i ij j

i j

ij i ij j

i j
0

2 2 1/2Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
(1)

The parameter χ is set by the particle length-to-breadth ratio κ
= σL/σ0 via

χ κ
κ

= −
+

1
1

2

2 (2)

In this study, we consider disc-shaped, i.e., κ < 1, particles. For
moderate κ, the HGO model is a good approximation to hard
ellipsoids (HEs);29−31 furthermore, their virial coefficients (and
thus their equations of state, at least at low to moderate
densities) are very similar.32,33

From a computational point of view, HGOs have the
considerable advantage over HEs that the distance of closest
approach between two particles is given in closed form.34

Particle−substrate interactions are nowmodeled, as in ref 13, by
a hard disc−wall (HDW) potential (see Figure 1)
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where β = 1/kBT, θ is the polar angle of the HGO orientation
vector, and the z-axis has been chosen to be perpendicular to the
substrates, located at z = z0

α (α = 1,2). According to eq 3,
particles see each other as HGOs, but the substrates see a
particle as an infinitely thin disc of diameter D (which need not
be the same at both substrates or in different regions of each
substrate). This is the oblate-particle version of the hard needle-
wall potential of our earlier works:25−27,35 physically, 0 < D < σ0
means that the particles are able to embed their side and end
groups, but not the whole width of their cores, into the bounding
walls. In an experimental situation, this might be achieved by
manipulating the density, orientation, or chemical affinity of an
adsorbed surface layer. In what follows, the substrate is
characterized using the dimensionless parameter Ds = D/σ0; as
shown in ref 21, this allows us to set the anchoring at either wall
as either homeotropic (face-on) for Ds ≲ 1 or planar degenerate
(edge-on) for Ds ≪ 1, although anchoring strengths cannot be
finely controlled in this way (more on this later).
The theory in refs 21 and25−27 describes the orientational

structure of an LC film in terms of the following orientational
order parameters, calculated in the laboratory-fixed frame36

η θ= ⟨ ⟩ =z P Q( ) (cos ) zz2 (4)

ε θ ϕ= ⟨ ⟩ =z Q( ) sin 2 sin
4
3 yz (5)

ν θ ϕ= ⟨ ⟩ =z Q( ) sin 2 cos
4
3 xz (6)

ς θ ϕ= ⟨ ⟩ = −z Q Q( ) sin cos 2
2
3

( )xx yy
2

(7)

τ θ ϕ= ⟨ ⟩ =z Q( ) sin sin 2
4
3 xy

2

(8)

where ⟨A(z)⟩ = ∫ A(z, ω)f(̂z, ω) dω, with f(̂z, ω) being the
orientational distribution function. Here, ωi = (θ, ϕ) denote the
polar and azimuthal angles describing the orientation of the
short axis of a particle. These equations allow us to write down
the five independent components of the nematic order

parameter tensor, ω ω δ= ̂ ̂ −αβ α β αβQ (3 )1
2

, in terms of the

order parameters in the laboratory-fixed frame

η ς= − +Q
1
2

3
4xx (9)

Figure 1. HDW potential: The wall sees a particle as a hard disc of
diameter D, which need not equal σ0. Varying D between 0 and σ0 is
equivalent to changing the degree of side-group penetrability into the
confining substrates and hence the substrate’s anchoring properties.
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Qαβ give the fraction of molecules oriented along the z-axis
(Qzz), along the bisectors of the yz-, xz-, and xy-quadrants (Qyz,
Qxz, and Qxy, respectively), and the difference between the
fractions of molecules oriented along the x- and y-axes (Qxx −
Qyy).
In an earlier paper,27 we characterized the overall nematic

order (both uniaxial and biaxial) and the biaxial order of the film
using the two scalar order parameters q and β2 originally
proposed by Hess et al.37
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(where Tr denotes the trace of a tensor), as well as some of the
individual components of Qαβ. In a more recent work,21 we
found that β2 is very noisy when TrQ≈ 0, i.e., in weakly ordered
regions, which may obscure any truly biaxial behavior. As we
shall see in Results, theQ tensor we obtain, be it from theory or
from simulation, is almost always approximately diagonal;
hence, it is appropriate to characterize biaxiality using Qxx − Qyy
instead. On the other hand, q turns out to be a convenient
measure of the degree of order with respect to a spatially varying
preferential direction of alignment, as is the case in our hybrid
films. Qzz, as usual, tells us whether alignment is homeotropic
(Qzz > 0) or planar (Qzz < 0).

■ SIMULATIONS
The effect of confinement was studied by performing NVTMC
simulations ofN = 864 HGO particles of length-to-breadth ratio
κ = 0.345, sandwiched between two hybrid substrates a distance
Lz = 6σ0 apart. Periodic boundary conditions were imposed in
the x and y directions. In simulation as well as in theory, the
reduced bulk density ρ* = ρσ0

3 (which we shall often refer to as
“bulk density” or simply “density”) is defined as just the number
of particles divided by the volume of the simulation box: it is not
the density of the bulk fluid coexisting with the confined fluid.
Each systemwas initialized at a low density (ρ* = 1.5) and gently
compressed by decreasing the box dimensions Lx and Ly while
keeping the substrate separation Lz fixed. At each density, run
lengths of 1 million MC sweeps (where one sweep represents
one attemptedmove per particle) were performed, with averages
and profiles being accumulated for the final 500,000 sweeps. It is
difficult to say how long a run needs to be to guarantee
equilibration, but blocks of 500−1000 time steps or MC cycles
are typical (for anN-atom system, one MC cycle isN attempted
moves).38 For our system, 500,000 attemptedmoves per particle
were performed during equilibration, which is in line with the

above: a system composed of 864 HGO particles is estimated to
need between 432,000 and 864,000 attempted moves per
particles to reach equilibration. Analysis has been performed by
dividing the stored system configurations into 100 equidistant
constant-z slices and computing averages of relevant observables
in each slice. This yields profiles of quantities such as the number
density ρ*(z), from which structural changes can be assessed.
Orientational order parameter profiles have also been calculated,
particularly
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which measures the variation across the confined films of
orientational order measured with respect to the substrate
normal. Here, N(z) is the instantaneous occupancy of the
relevant slice and θi is the angle between the substrate normal
(i.e., the z-axis) and the particle orientation ui.

■ RESULTS
All results presented are for κ = 0.345 and substrate separation Lz
= 6σ0. In what follows, Ds

b and Ds
t denote, respectively, the

dimensionless thin disc diameter at the bottom (left in figures)
and top (right in figures) substrates. Theoretical calculations
have been performed as described in ref 21.
Figure 2 plots ⟨q(z)⟩, the spatial average of q(z) across the

films, as a function of the reduced bulk density ρ* = ρσ0
3 for the

films discussed below. As in ref 27, ⟨q(z)⟩ is a continuous,
increasing function of ρσ0

3. It does not vanish even at the lowest
densities investigated because the substrates always induce some
orientational order. In our earlier paper,21 we estimated the bulk
I−N transition for HGOs of elongation κ = 0.345 to occur at ρ*
≈ 2.5 (from simulation) or ρ* ≈ 2.9 (from theory).
It is interesting to note that ⟨q(z)⟩ begins to rise at a slightly

lower density of ρ* ≈ 2.4 (from simulation) or ρ* ≈ 2.8 (from
theory) if the film is uniform homeotropic (Ds

b = 1.0, Ds
t = 0.7).

On the other hand, this rise is postponed to higher densities if
the film is uniform planar (Ds

b = 0.5,Ds
t = 0.0). These shifts in the

apparent I−N transition density are well captured by theory.
⟨Qxx(z) − Qyy(z)⟩, the spatial average of the biaxial order

parameter ⟨Qxx(z) − Qyy(z)(z)⟩ across the same films, is

Figure 2. Total nematic order parameter q(z) averaged over the whole
film vs bulk density for all (Ds

b, Ds
t) studied. Lines are from theory, and

symbols are from simulation (the thin lines connecting the symbols are
just to guide the eye). The variation appears to be always continuous.
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likewise plotted vs ρ* in Figure 3. As expected, there is no
biaxiality if the film is uniform homeotropic (Ds

b = 1.0, Ds
t = 0.7).

In contrast, for uniform planar alignment (Ds
b = 0.5, Ds

t = 0.0),
there is a clear biaxial signature but it fluctuates a lot. This
suggests that, as was the case with some symmetric-aligned
films,21 although the minor axes of particles are instantaneously
aligned along some direction in the xy-plane, that direction itself
changes on the scale of a few MC steps. Finally, a film whose
alignment changes continuously from homeotropic at one
substrate to planar at the other (Ds

b = 1.0, Ds
t = 0.0) exhibits a

more regular biaxial signal.
Figure 4 shows the reduced density ρ*(z) and Figure 5 shows

the total nematic order parameter q(z), with respect to the
substrate normalQzz(z) and biaxiality order parameterQxx(z)−
Qyy(z), for the most extreme asymmetric confinement,
corresponding to Ds

b = 1.0 and Ds
t = 0.0. At low bulk densities

ρ*(z) has a single peak at z ≈ Ds
b/2 near the bottom substrate, a

much higher peak right at the top substrate, z ≈ Lz, and a dip at
about z ≈ Lz − σ0/2. Both peaks are associated with freely
rotatingHGOs that either do not penetrate or fully penetrate the
left (bottom) or right (top) substrates, respectively. The dip
appears as the gap between a first layer of particles sliding edge-
on into the right (top) substrate and the bulk of the film.
As ρ* is increased, two new density peaks appear, one at a

distance ∼0.05σ0 from the left substrate and the other at a
distance 0.9σ0 from the right substrate; the former eventually
grows higher than the peak at z ≈ Ds

b/2.
Agreement between theory and simulation is fair for bulk

densities ρ* = 1.6 and ρ* = 2.5 but deteriorates dramatically for
ρ* = 3.1, for which theory predicts very strong layering with
periodicity ∼σ0 emanating from the right (recall this is the
planar-anchoring) substrate, which is not borne out by
simulation.
Predictions for the order parameters are even less accurate:

already for ρ* = 2.5, theory underestimates the extent of order in
the film. Then, for ρ* = 3.1, theory predicts that about three
quarters of the film starting from the planar-anchoring (right)
substrate are edge-on, and the remainder are face-on, with a
“wall defect” of reduced q(z) of thickness ∼σ0 in between.

Figure 3. Biaxial nematic order parameter Qxx(z) − Qyy(z) averaged
over the whole film vs bulk density for all (Ds

b, Ds
t) studied. Lines are

from theory, and symbols are from simulation (the thin lines
connecting the symbols are just to guide the eye). The biaxiality is
very small when (Ds

b= 1.0 andDs
t≥ 0.6), for which the alignment is face-

on throughout the whole film.
Figure 4. Reduced density profile ρ*(z) from theory (lines) and
simulation (symbols) of the maximally hybrid film corresponding toDs

b

= 1.0 (left, or bottom, substrate) and Ds
t = 0.0 (right, or top, substrate)

for reduced bulk densities ρ* = 1.6 (top), 2.5 (center), and 3.1
(bottom). The lowest density lies in the I phase, the intermediate
density in the I−N transition region, and the highest density in the N
phase.

Figure 5. Order parameters q(z) black solid lines and black filled
circles),Qzz(z) (red dashed lines and red open triangles), andQxx−Qyy
(blue dot-dashed lines and blue stars) for the system in Figure 4. Lines
are from theory, and symbols are from simulation.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://dx.doi.org/10.1021/acs.jpcb.0c05027
J. Phys. Chem. B 2020, 124, 7709−7716

7712

https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.0c05027?fig=fig5&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://dx.doi.org/10.1021/acs.jpcb.0c05027?ref=pdf


In contrast, simulation sees a linear variation of Qzz(z) across
the film, which, combined with a nearly-uniform q(z), instead
implies a gradual rotation of the direction of preferential
alignment. This effect is similar to what we observed for thin
films of rod-like HGOs also in maximally hybrid confinement,26

on the basis of which we expect the agreement between theory
and simulation to improve for larger substrate separations L.
The above configuration, which we call Lin, is adopted if Ds

b

andDs
t are sufficiently different (this statement will be quantified

below). Otherwise, the film will be uniform homeotropic (UH,
Figures 6 and 7) if Ds

b and Ds
t are both greater than about 0.5 or

uniform planar (UP, Figures 8 and 9) if Ds
b and Ds

t are both less
than about 0.5. In these cases, the agreement between theory
and simulation is comparable to that seen for symmetric films.21

Specifically in the UP case, for which there is more
pronounced layering, theory overestimates the density peak
spacing as well as their height. For the substrate separation Lz =
6σ0 considered here, theory is never able to reproduce the Lin
configuration.
Figure 10 shows snapshots of the simulated systems in Figures

4−9.
Figure 11 summarizes our simulation findings in (Ds

b, Ds
t)

space. It is seen that UP (edge-on) alignment dominates when
Ds

b and Ds
t are both substantially smaller than 1, whereas UH

(face-on) alignment is obtained for Ds
b and Ds

t both close to 1.
When Ds

b ≫ Ds
t (Ds

b ≪ Ds
t), there is homeotropic (planar)

alignment at the bottom (top) substrate, and the direction of
preferential alignment rotates linearly from one substrate to the
next (Lin).
The UP, UH, and Lin domains are separated by what appear

to be regions of bistability, i.e., where one can observe more than
one behavior, depending on the history and/or initial
conditions. Moreover, the Lin domain cannot reach the main

Figure 6. Reduced density profile ρ*(z) from theory (lines) and
simulation (symbols) of the hybrid film corresponding toDs

b = 1.0 (left,
or bottom, substrate) andDs

t = 0.7 (right, or top, substrate) for reduced
bulk densities ρ* = 1.6 (top), 2.5 (center), and 3.1 (bottom). The
lowest density lies in the I phase, the intermediate density in the I−N
transition region, and the highest density in the N phase.

Figure 7. Order parameters q(z) (black solid lines and black filled
circles),Qzz(z) (red dashed lines and red open triangles), andQxx−Qyy
(blue dot-dashed lines and blue stars) for the system in Figure 6. Lines
are from theory, and symbols are from simulation.

Figure 8. Reduced density profile ρ*(z) from theory (lines) and
simulation (symbols) of the hybrid film corresponding toDs

b = 0.5 (left,
or bottom, substrate) andDs

t = 0.0 (right, or top, substrate) for reduced
bulk densities ρ* = 1.6 (top), 2.5 (center), and 3.1 (bottom). The
lowest density lies in the I phase, the intermediate density in the I−N
transition region, and the highest density in the N phase.
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diagonal as equal substrate treatments only yield uniform
alignment states. It does, however, get very close, and there may
be a (presumably small) tristability domain on the main
diagonal. We are currently running further simulations and
theoretical calculations to verify this hypothetical scenario.

The regime diagram in Figure 11 is asymmetric. In particular,
the UP domain is larger than the UH domain, which suggests
that planar anchoring is stronger than homeotropic anchoring.
The HDW potential used here does not allow very precise
control of the anchoring strengths, so we can only speculate why
this is so. For hard rods, Schmidt et al.39 argued that the planar
wall should have a stronger aligning effect as it will align even an
individual rod: the only way a rod can be close to an
impenetrable wall is by being parallel to it. This should be
manifested in a higher value of the nematic order parameter
close to such a wall at low densities, when most of the film is still

Figure 9. Order parameters q(z) (black solid lines and black filled
circles),Qzz(z) (red dashed lines and red open triangles), andQxx−Qyy
(blue dot-dashed lines and blue stars) for the system in Figure 8. Lines
are from theory, and symbols are from simulation.

Figure 10. Configuration snapshots of hybrid-confined oblate HGO films. First row: Ds
b = 1.0 and Ds

t = 0.0; second row: Ds
b = 1.0 and Ds

t = 0.7; third
row:Ds

b = 0.5 andDs
t = 0.0. Left column: ρ* = 1.6 (I); middle column; ρ* = 2.5 (I + N); right column: ρ* = 3.1 (N). The substrates (not shown) are at

the top and bottom box faces. Colors give the orientation of a particle’s short axis: along x (red), along y (green), or along z (blue).

Figure 11. Regime diagram for a hybrid-confined HGO film of
thickness Lz = 6σ0. UH: uniform homeotropic (face-on); UP: uniform
planar (edge-on); Lin: linear rotation from homeotropic to planar; Bi:
bistable (conjectured); Tri: tristable (conjectured). The upper half of
the diagram can be obtained by exchanging Ds

b and Ds
t in the lower half

and is therefore not shown.
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isotropic, which indeed we found for prolate HGOs.27 Now for
oblateHGOs, the nematic order parameter is always larger at the
homeotropic wall for exactly the same reason: the only way a
disc can be close to a wall is by lying flat on it. But a face-on layer
of oblate HGOs has a very low density, much lower than that of
an edge-on layer, because each HGO takes up a lot of wall area.
This is in contrast with prolate HGOs, which each takes up very
little wall area, and thus can pack more densely, when
perpendicular to the wall. So, for oblate HGOs, we have a
very high degree of alignment of very few face-on particles at the
homeotropic wall and a somewhat lower degree of alignment of
many more edge-on particles at the planar wall. Contrast this
with the prolate HGOs, for which we have a higher density at the
homeotropic wall than at the planar wall, coupled with degrees
of alignment that are not very different at either wall.26,27 We
conjecture that it is the ability to pack more densely that makes
the edge-on anchoring of oblate HGOs stronger than their face-
on anchoring. However, this dominance of one wall over the
other appears to be rather marginal; recall that, in the case of
prolate HGOs, no firm conclusions could be drawn in this
respect.27

■ CONCLUSIONS
In this paper, we have presented a combinedMC simulation and
DFT treatment of an oblate HGO particle fluid in hybrid
confinement between parallel substrates. The anchoring can be
tuned at either substrate by varying the extent to which a particle
is allowed to penetrate it. If the anchorings at the two substrates
are not too different, then a state of uniform alignment, either
planar (UP) or homeotropic (UH), is realized. Otherwise, there
is a linear variation from planar alignment at one substrate to
homeotropic alignment at the other. These states correspond to
domains in the space of anchoring parameters (Ds

b, Ds
t). In

between these domains, there may be regions of bistability, or
even of tristability, where the configuration that is actually
realizedmay depend on system history and/or initial conditions.
Such bi- or tristable regions appear to be larger than for prolate
HGOs and are currently under investigation.
The Onsager approximation, combined with a simple

Parsons-Lee density rescaling, previously applied to confined
prolate HGO particle fluids, can yield semiquantitative
predictions for the density and orientational distribution in
the UP and UH states, for the relatively large elongation κ =
0.345. However, at higher densities, and especially close to
substrates that induce planar (edge-on) alignment, the theory
substantially overestimates the extent of layering as it also does
in the case of symmetric confinement.21 It is also not able to
reproduce the Lin state for a substrate separation Lz = 6σ0. On
the basis of a similar result for prolate HGOs of elongation κ =
3,26 we expect the theory to become more accurate for larger
substrate separations. It might therefore still be a useful tool to
model technological applications, in which typical film
thicknesses are much greater than just a few particle diameters.
We are currently working on implementing Schmidt’s FM-
DFT10 for our particular choice of substrates.
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