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A Review of Silhouette Extraction Algorithms for use within  

Visual Hull Pipelines 

Markerless motion capture would permit the study of human biomechanics in 

environments where marker-based systems are impractical, e.g. outdoors or 

underwater. The visual hull tool may enable such data to be recorded, but it 

requires the accurate detection of the silhouette of the object in multiple 

camera views. This paper reviews the top-performing algorithms available to 

date for silhouette extraction, with the visual hull in mind as the downstream 

application; the rationale is that higher-quality silhouettes would lead to 

higher-quality visual hulls, and consequently better measurement of 

movement. This paper is the first attempt in the literature to compare 

silhouette extraction algorithms that belong to different fields of Computer 

Vision, namely background subtraction, semantic segmentation, and multi-

view segmentation. It was found that several algorithms exist that would be 

substantial improvements over the silhouette extraction algorithms 

traditionally used in visual hull pipelines. In particular, FgSegNet v2 (a 

background subtraction algorithm), DeepLabv3+ JFT (a semantic 

segmentation algorithm), and Djelouah 2013 (a multi-view segmentation 

algorithm) are the most accurate and promising methods for the extraction of 

silhouettes from 2D images to date, and could seamlessly be integrated 

within a visual hull pipeline for studies of human movement or 

biomechanics. 

Keywords: markerless motion capture; biomechanics; silhouette extraction; 

background subtraction; semantic segmentation; multi-view segmentation. 

Introduction 

Accurate 3D kinematic data are needed by biomechanists to study and understand 

the movement patterns of humans (1). Marker-based systems, such as Vicon, are 

considered the gold standard for motion capture due to their accuracy (3)(2). The 

movement of markers attached to the skin of participants is used to infer the 
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underlying relative movement between two adjacent segments that form a joint (e.g. 

ankle), with the goal of precisely defining the movement of the joint (4). However, 

skin movement relative to the underlying bone is a primary factor limiting the 

resolution of detailed joint movement using marker-based systems (5)(6)(7)(8)(9). 

Also, fixing markers to a participant can be time consuming, especially if upwards 

of 30 markers are to be used and if the activity to be performed causes frequent 

detachment of markers due to profuse sweat or the performance of highly dynamic 

movements (6). 

Because of such limitations, researchers in biomechanics have long been trying to 

develop markerless motion capture tools (10)(11) or to adapt existing ones to their 

needs (12). One such tool is the visual hull, a shape-from-silhouette method first 

developed by Laurentini in 1994 (13) which uses 2D images to reconstruct the 

object of interest. In biomechanics, the visual hull has been used to study the 

biomechanical differences between three types of tennis serves (14)(15), to perform 

gait analysis (16), to study the biomechanics of the arm during front crawl 

swimming (12), and to analyse the movement pattern of gymnasts (17). The first 

step in the visual hull pipeline is to separate the object of interest (“foreground”) 

from the rest of the image (“background”), a process referred to as “silhouette 

extraction” in this paper
1
. To compute a visual hull, a silhouette needs to be 

extracted from each camera view (of which there may be several) at each frame of a 

possibly long video (13). Consequently, an automatic method for accurate silhouette 

extraction is necessary (18). The extent to which the accuracy of the silhouettes 

                                                
1 A silhouette is defined as the outer contour of an object. However, most algorithms discussed in this paper give as an 

output a mask of the object (i.e. a silhouette and the area enclosed by it). This is not an issue for the purposes of shape-

from-silhouette tools, as a silhouette or an object mask will behave similarly when used as inputs for the visual hull 

reconstruction. 
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influences the accuracy of the reconstructed visual hull has not been investigated 

yet. However, Grauman et al. (19) and Gall et al. (20) have suggested that a small 

segmentation error in even just one camera view could have a significant effect on 

the reconstructed visual hull. Though the authors did not quantify this “significant 

effect”, it is reasonable to assume that higher-quality silhouettes would produce 

higher-quality visual hulls, thus making silhouette accuracy a critical bottleneck in 

the reconstruction of a visual hull. When constructing a visual hull, a 3D point is 

labelled as part of the visual hull if and only if its projection lies within the 

silhouette on all the camera views; therefore, a view having errors in its silhouette 

could spoil the quality of the entire visual hull (21). Several authors who have 

applied the visual hull do not mention the silhouette extraction method used in their 

studies (22)(23), while others have used basic silhouette extraction methods 

(16)(24)(25)(26). The main reason such basic methods for silhouette extraction have 

been used for the visual hull in previous publications is simply because the studies 

mentioned above were published before the advanced methods of silhouette 

extraction available today had been developed. Nowadays, however, there exist 

several methods that can rival the silhouette segmentation accuracy of humans (27) 

and which take as little as a hundred milliseconds to extract a silhouette from a large 

high-quality image (28). It is our hope that, by presenting a detailed review of the 

methods available today for accurate silhouette extraction, future researchers in 

biomechanics will be able to make a more informed decision with regards to which 

silhouette extraction method to choose when using the visual hull as a tool for 

markerless motion capture. 
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The Computer Vision literature offers several algorithms that enable the 

extraction of accurate silhouettes. These algorithms fall into three categories: 

background subtraction, semantic segmentation, and multi-view segmentation
2
. 

Each category of algorithms has specific datasets used to test the algorithms and 

metrics used to evaluate their performance. In other words, algorithms that belong to 

different categories are tested on different datasets, with different metrics. This is 

because each category of algorithms is typically devoted to a specific task for which 

specialised datasets have been developed and for which the evaluation criteria are 

task-specific. For example, background subtraction algorithms are often used for 

surveillance-camera applications (30)(31)(32), while semantic segmentation 

algorithms not only detect the silhouette of the object in the image, but also label it 

as belonging to one of several possible classes (car, human, cat, dog, etc.) (33). For 

the purposes of the visual hull, any algorithm that extracts an accurate two-

dimensional silhouette from an image would be applicable (13). Nevertheless, the 

diversity of datasets and metrics used to evaluate methods that belong to different 

categories makes it difficult to identify the optimal method for the task at hand. 

Therefore, the main goal of this paper is to provide a reference for researchers 

looking for a silhouette extraction method to use in their shape-from-silhouette 

pipeline, focusing on applications in biomechanics of human motion. 

Within each category of silhouette extraction methods there are hundreds of 

algorithms. A detailed analysis of all of them would be prohibitively long and is 

therefore beyond the scope of this paper. Instead, what this review paper endeavours 

                                                
2 Methods that rely on depth data (RGB-D) will not be covered here, as they cannot be easily applied to the visual hull, 

which is the main focus of this review paper. For a detailed review of RGB-D methods, please refer to (29). 
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to do is to give an outline of each category of algorithms in terms of what their 

intended application is, what the most popular and best-performing methods within 

the category are, what datasets they are tested on, and what metrics are used to 

evaluate their performance. The choice to limit our analysis to a select few 

algorithms is reinforced by the fact that modern silhouette extraction methods 

significantly outperform traditional ones under all metrics, as we discuss in later 

sections. Consequently, only the algorithms that achieve the best results on the 

datasets of their respective category will be discussed here. Review papers whose 

scope is limited to listing and discussing all the algorithms, old and new, present 

within an individual category of algorithms already exist; for more details on a 

particular category, the reader is invited to read the corresponding reviews, which 

will be highlighted throughout this paper. 

Given the importance of silhouette accuracy for visual hull accuracy (19), it would 

be expected that previous research that used the visual hull for biomechanical 

applications would have used highly refined silhouette extraction methods; this is 

not the case. Vlasic et al. (24) and Furukawa et al. (25) justified the use of a 

rudimentary silhouette extraction algorithm in their visual hull pipeline by stating 

that in a controlled laboratory setting it is possible to artificially manipulate the 

scene so that in each camera view the object would appear against a monotone, dark 

background, thus making the task of silhouette extraction trivial. While their 

reasoning is certainly valid, it confines their algorithm to the highly controlled setup 

they adopted and it renders its application within biomechanics virtually impossible 

outside of a laboratory, since the background can scarcely be controlled in most 
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settings that require the motion capture of humans (12). Mündermann et al. (22) 

performed a study regarded as a guideline for the number of cameras required to 

construct a sufficiently accurate visual hull for biomechanical applications; the 

method they used for silhouette extraction, however, was not mentioned. Similarly, 

Nobuhara et al. [41] developed a post-processing tool to refine the visual hull, but 

did not mention the silhouette extraction method used to obtain the initial visual 

hull. Ceseracciu et al. (12) used a basic Gaussian Mixture Model (34) to extract the 

silhouettes of underwater swimmers. However, as we discuss in Section 3.2, this 

method is too inaccurate to be used in a swimming pool, which presents one of the 

most challenging backgrounds imaginable: constant motion at the water-air surface, 

possible colour camouflage of the person against the wall of the swimming pool, 

frequently and randomly changing lighting intensity, and bubbles present around the 

edges of the silhouette. 

The main contributions of this review paper are the following: 1) we present an 

overview of methods for silhouette extraction that belong to different categories of 

algorithms. Although reviews that focus on individual categories already exist in the 

literature, to the best of our knowledge this is the first paper to compare methods, 

datasets, and metrics across different categories; 2) having discussed the different 

methods, we highlight the ones that would make the strongest candidates for use 

within a visual hull pipeline. Both points constitute a novelty in the literature and 

could help researchers interested in the visual hull in making a more informed 

decision regarding what silhouette extraction algorithm to use. 
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Background Subtraction 

Overview 

Background subtraction algorithms seek to separate the moving objects 

(foreground) present in an image from the static background (35)(36). Their main 

application is within intelligent video surveillance tasks like the automatic tracking 

of objects within a scene or their recognition (i.e. assigning them a class label), both 

of which are typically applied to videos recorded from surveillance cameras placed 

on roads (37), at airports (38), or within buildings (30)(31)(39). Background 

subtraction algorithms are developed to meet the specific challenges of this field of 

computer vision, such as gradual changes in the intensity of the lighting of the 

scene, insertion in the scene of new background objects (a man carries a bag and 

then leaves it on the floor: should the bag be treated as background or as 

foreground?), and dynamic background objects such as waving trees or water 

rippling in a lake (35)(40). Furthermore, the algorithms need to be able to model any 

generic object, the shape and size of which may vary considerably: from an 

airplane, to a person, to a bike, to a cat. Also, because background subtraction is 

typically only the first step within a complex Computer Vision pipeline (41), its 

computation should happen in real time or close to it, meaning that researchers often 

have to balance a trade-off between speed of execution and accuracy (35). If the 

objective is to use a background subtraction algorithm within a markerless motion 

capture system, the computational complexity problem is simplified considerably, 

mainly because the object that the algorithm needs to be able to segment is not 

generic: all humans have similar shapes and sizes, and using this a priori knowledge 
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to introduce bias into the model would mean that a simpler algorithm could be used 

(42); this, in turn, would translate into faster computation. Secondly, biomechanical 

analyses are not constrained to happen in real-time like most video surveillance 

tasks; this means that speed of execution could be sacrificed in favour of accuracy, 

which is of paramount importance in biomechanics (16). 

Traditional
3 

methods for background subtraction that rely on hand-crafted features 

are still widely used because they are computationally affordable and easy to 

implement (35). However, the field of background subtraction, like many others in 

Computer Vision, has been revolutionised by the advent of deep learning (43)(44); a 

glance at the leaderboards of the most popular background subtraction benchmarks 

(27) will reveal that methods that use deep learning occupy all the top leaderboard 

positions in terms of accuracy. Since researchers looking to implement visual hull 

algorithms would only be interested in the best performing silhouette extraction 

methods, this review paper will focus on these more recent methods that use deep 

learning for background subtraction
4
. Due to its frequent use within visual hull 

pipelines, the “basic 

                                                
3 In this context, the term “traditional” refers to algorithms that do not employ deep learning.  

4 For a thorough review of traditional methods for background subtraction, please refer to the review by Bouwmans 

et al. (35). 
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Figure 1. A) background initialisation frame; B) foreground object inserted into the scene; C) result of 

basic background subtraction. The amount of noise present in the output due to the dynamic 

background and the appearance of a shadow, coupled with false negatives caused by colour 

camouflaging, would translate into a noisy, inaccurate visual hull. 

background subtraction” algorithm is briefly discussed in this section. The most 

basic way to perform background subtraction is to take a reference image in which 

the object of interest does not appear and to subtract its pixel values from the pixel 

values of the image from which the silhouette is to be extracted. If the difference in 

intensity between the pixels of the two images is greater than an arbitrary threshold 

fixed a priori, the pixel is labelled as foreground; otherwise, it is labelled as 

background. Under strictly controlled laboratory conditions where the background is 

completely stable, the assumption of being able to obtain a clean reference frame 

unobstructed from the object of interest is easily met. In real-life conditions, 

however, the reference frame may not be obtainable, or it may be corrupted by the 
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presence of dynamic objects in the background (e.g. trees or moving water) or by 

the presence of shadows that appear once the object of interest is inserted in the 

scene. Furthermore, if the object and the background have similar colours (a 

phenomenon known as colour camouflaging), basic background detection will fail 

completely or, at best, cause numerous false negatives (35). For these reason, and as 

shown in Fig. 1, basic background subtraction is not adequate for use within 

markerless motion capture systems, in which variations of the background are, if not 

expected, at the very least probable. 

State of The Art 

Traditional background subtraction algorithms define and update background 

models, and then classify pixels by using hand-crafted features and simple 

equations. Conversely, algorithms based on deep learning skip the definition and 

update of a background model and instead allow the network to learn its own 

parameters by feeding it several labelled examples of background/foreground pixels. 

In other words, methods based on deep learning do not compare each pixel to a 

background model designed by hand; they learn to classify pixels based on 

examples of previously classified pixels they have seen. 

A particular type of deep-learning-based algorithm, Convolutional Neural 

Networks (CNNs) excel at tasks in Computer Vision(43)(45)(46), in part because 

they are translation invariant, which means that objects in new examples are 

recognised even if they appear in a different location than in past examples (47); this 

is an important feature when dealing with dynamic backgrounds and moving objects 

(47). Furthermore, the convolution operation can be easily parallelised on a GPU, 
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granting CNNs exceptional processing time (47). Readers interested in a more 

detailed of the application of CNNs to computer vision are referred to the review 

paper by Voulodimos et al. (48). 

The following sections present the most accurate CNN-based background 

subtraction algorithms present in the literature to date. The accuracy and processing 

time of each algorithm are discussed in detail in Section 2.3. 

Cascade MSCNN 

 

Figure 2. Cascaded structure of Cascade MSCNN. 

The Cascade Multi-Scale Convolutional Neural Network algorithm, developed by 

Wang et al. (47), is scene-specific, meaning that the network has to be trained for 

each video being analysed. Although this training strategy makes it cumbersome to 

run Cascade MSCNN on multiple new videos, it enables the algorithm to exploit the 

high redundancy present in frames that come from the same video, thus reducing the 

number of training examples required: whereas image classification networks are 

shown tens of thousands of images during training, Cascade MSCNN converges 

after 200 examples. The N = 200 training examples are selected at random from the 
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video and they are manually labelled by an experienced user, who labels each pixel 

as either foreground or background
5
. 

CNNs were built specifically as a tool for image classification. To adapt them for 

background subtraction, the intent of which is to label each pixel within an image, 

many authors use small patches (around 30x30 pixels) centred around the pixel to be 

classified, which are extracted from the image and fed to the CNN for classification. 

The CNN gives a label to the entire patch, and that label is attributed to the pixel in 

the centre of the patch (49). This patch-based approach allows very fine-grained 

accuracy, but it misses global information that is important to segment large objects 

(50). Imagine that a large cat (appearing on the image with size 300x300 pixels, for 

example) were to be segmented from the background. A 30x30-pixels patch at the 

centre of the cat would not be enough to tell whether those pixels belonged to the cat 

or not, because context and a point of reference are absent (all pixels in the patch 

would have similar colour properties). To address this issue, the Cascade MSCNN 

algorithm adopts a multi-scale approach: it resizes the original image twice, and 

these 3 images (size = 1, size = 0.75, and size = 0.5 of the original) are fed to the 

network separately, thus obtaining 3 separate predictions which are later averaged to 

produce a single output. 

Because CNNs process each pixel independently, they often produce isolated 

false positives and false negatives (47). To address this issue, the authors of Cascade 

                                                
5 The 200 frames extracted from each video act as a prior from which the model learns the distribution of the frames 

present in the video. In other words, the model assumes that the contents of the first 200 frames are representative 

“enough” (where “enough” cannot be easily defined mathematically) of the contents of all frames present in the video. 

In cases where this is not true (for example, videos that change scenery significantly, like a camera that starts in forest 

and during the course of the video ends underwater), the model’s ability to generalise from the first 200 frames will be 

lower. However, this problem can be circumnavigated by selecting the 200 frames so that all “phases” of the  video are 

represented; in the toy example from above, that would mean that some of the 200 frames would come from when the 

camera was in the forest, and some from when it was in the water.  
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MSCNN implemented a cascaded CNN model (illustrated in Fig. 2): the first part of 

the network, CNN-1, makes an initial prediction which is then fed, along with the 

original input image, to the second part of the network, CNN-2. This cascaded 

approach ensures that the predicted foreground mask is locally consistent (in other 

words, the number of isolated false positives and false negatives is reduced) without 

using postprocessing tools like Conditional Random Fields (CRF), which several 

authors have used in the past (51)(52) but which slow down training due to its 

computational complexity (47). Because both CNN-1 and CNN-2 have millions of 

parameters to train but only 200 images for training, they were pre-trained on a 

generic dataset (53) for transfer learning purposes. Then, during training, the 

weights of CNN-1 were fixed, and only the weights of CNN-2 were allowed to 

learn. The weights of CNN-1 were fixed (instead of having them learn with a low-

valued learning rate) so that the information that CNN-1 had learned during pre-

training would not be washed away during the second stage of training. This type of 

approach (which is but one of the possible ways to perform what is called “fine-

tuning”) assumes great confidence in the fact that the information encoded in the 

data used for pre-training was highly relevant to the task at hand. 

3D-Net 

3D-Net was designed to incorporate into the evaluation of an image the information 

shared with temporally adjacent frames. During training, the network is shown the 

frame being analysed as well as the 9 frames preceding it
6
. The temporal 

information present in this sequence of consecutive frames is progressively encoded 

                                                
6 Only the ground truth for the frame being analysed is provided to the network during training. 
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into denser and denser 3D convolutional modules (2D for space, 1D for time, see 

Fig. 3), until a prediction is made at the end of the last convolutional module. The 

redundancy present in temporally adjacent frames is leveraged to intentionally 

introduce bias into the system, much like Cascade MSCNN sought to exploit the 

redundancy present in multiple frames that came from the same video. Because 3D-

Net is trained on the entire dataset being analysed, the overfitting effect of the bias 

introduced into the system is alleviated, and the network can generalise to new 

videos without requiring further training. The concept of incorporating temporal 

information in the pixel classification task of a neural network is similar to the idea 

of updating the background in traditional algorithms. In this sense, 3D-net is the 

only deep-learning algorithm that was explicitly designed to adapt to changes in the 

background. However, videos recorded with a low frequency represent an issue for 

3D-net, because if the latency between consecutive frames is too large, the 

assumption of temporal contiguity between frames, on which the model is based, 

does not hold. 

Noticeably, the authors of 3D-Net do not mention any pre-training or weight 

initialisation strategies, which are universally recognised as a powerful tool to boost 

the accuracy of CNNs (43)(54)(55)(56; 57). 

BScGAN 

BScGAN (Background Subtraction conditional Generative Adversarial Network) is 

the latest published deep-learning algorithm to date (28) in the field of background 

subtraction. It is also the first instance of a conditional Generative Adversarial 

Network (cGAN) (58) being used for background subtraction. A cGAN consists of 
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two connected networks, called generator and discriminator. The generator learns to 

produce an output given an input modified by random noise
7
, while the 

discriminator learns to train the generator by comparing the ground truth and the 

output of the generator. In other words, the challenge of the generator is to produce 

an output that is as different from random noise and as close to a realistic output as 

possible; the challenge of the discriminator is to determine if the output of the 

generator is random noise or if it is a real, non-synthetic output. 

In the case of BScGAN, the real input shown to the generator during training 

consists of two images: one with the foreground object present, one with the 

foreground object absent (i.e. true background image). The real output shown to the 

discriminator is a hand-labelled mask of the object in the real input image. During 

testing, only the generator part of the network is active; therefore, the processing 

time of BScGAN is faster than that of Cascade MSCNN, since fewer components 

are active in BScGAN than are active in Cascade MSCNN. The processing time of 

BScGAN is further reduced by using entire images for testing instead of dividing 

them into patches. 

Internally, the generator of BScGAN has an encoder-decoder
8 
structure where 

both modules have the same architecture (based on U-net (59)) but reversed layer 

ordering. The internal architecture of the discriminator of BScGAN is a simple 

series of four convolutional and four downsampling layers. 

                                                
7 The distinction between a GAN and a cGAN is that the generator in a GAN is only shown random noise during the 

first stages of training, whereas the generator of a cGan is trained by using the random noise to modify a real i nput 

example. 
8 In an encoder-decoder network, the encoder module gradually reduces the spatial dimension and captures higher 

semantic information, while the decoder module gradually recovers the spatial information and brings the output back 

to the original size of the input. This kind of network is explained in more detail in Section 3.2.  
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Figure 3. Architecture of 3D-Net. 10 subsequent frames are used for the prediction of just the last one 

of them. CRP-1 to CRP-3 are 3D convolutional modules, whereas CRP-4 and CR and 2D 

convolutional modules. The kernel size of each upsampling layer (US-1, US-2, US-3, US-4) is 

different, granting the network multi-scale spatial resolution. (Image from [49]) 

FgSegNet 

In 2018, Lim and Keles published three papers on three different versions of their 

background subtraction algorithm, FgSegNet (50)(60)(61); to date, these 3 

algorithms occupy the top 3 positions of the leaderboard of the ChangeDetection.net 

background subtraction challenge described in Section 2.3 (27). Similarly to 

Cascade MSCNN (47), all versions of FgSegNet are scene specific (see Section 

2.2.1). The strategy used to select the N training frames from a video is identical to 

that of Cascade MSCNN, but in addition the N frames are randomly shuffled to 

avoid introducing excessive bias into the system by feeding it adjacent frames. 

The first version of FgSegNet (50) achieves multi-scale spatial resolution by 

using as input three copies of the same image, re-scaled using Gaussian filtering 

(62). The three images are then fed to a triplet of CNNs which share weights to 

reduce the number of training parameters. The backbone of all three CNNs is taken 
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from the VGG-16 network (63), an object recognition network that can be adapted 

to background subtraction by replacing its fully connected layers with convolutional 

layers
9
. The outputs of the triplet of CNNs are then fed to a decoder which makes 

the final prediction in the same resolution as the input image. 

In the second version of FgSegNet, called FgSegNet S (60), the triplet of CNNs is 

replaced by a single-input encoder-decoder structure. Multi-scale spatial resolution 

is achieved by placing a Feature Pooling Module (FPM) at the end of the encoder. 

Within the FPM, parallel dilated convolutional layers
10 

with different dilation rates 

allow the network to incorporate spatial information from multiple scales without 

re-scaling the image prior to training. 

FgSegNet v2 (61), the third version of FgSegNet, maintained the structure of 

FgSegNet S but modified the FPM module and the decoder. The updated decoder 

had a significant impact (+ 1-2%) on accuracy when the number N of training 

examples was low (25-50), but its impact was negligible (< 0.01%) for N = 200, 

which was the configuration that gave the highest accuracy. The exact impact of the 

modified FPM module cannot be evinced directly from the original paper of 

FgSegNet v2, since the authors did not include in the paper a detailed ablation study, 

highlighting the contribution of each module of their model to overall performance. 

In typical images for background subtraction, the ratio of background pixels to 

foreground pixels is in the order of 100:1, 1000:1, or even 10000:1 (60)(61). In 

supervised learning, having an imbalanced number of training examples for 

different class categories causes problematic bias during classification (64)(46); 

                                                
9 For more details on this, please refer to (33). 

10 Dilated convolutions are described in detail in Section 3.2.1. 
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such bias makes it harder for the network to generalise to new data (50). FgSegNet 

deals with the issue of the imbalanced data classes by penalising the loss more if a 

foreground pixel is classified as a background pixel than the contrary. In other 

words, the rare class (foreground) is given a larger weight than the dominating class 

(background) when computing the loss function. The weights for the two classes are 

derived on a frame by frame basis by considering the foreground/background pixel 

ratio for that specific frame. 

Datasets 

In 2014, a review paper by Bouwmans (35) on methods for background subtraction 

reported 9 “traditional” datasets (like the Wallflower (40) dataset) and 8 “recent” 

datasets. Since then, the ChangeDetection 2014 (CDnet2014) (27) and Background 

Models Challenge 2012 (BMC) (65) datasets, both of which appeared in 

Bouwmans’ “recent” category, have established themselves as the benchmark 

background subtraction datasets on which new algorithms are tested. 

CDnet2014 contains 53 video sequences (for a total of over 11,000 frames) 

divided into 11 categories which reflect specific challenging scenarios: Baseline
11

, 

Dynamic Background, Night, Shadows, etc. The videos were obtained using 

different cameras which had different resolution, frame rate, and compression 

parameters. Therefore, the resolution of the frames in CDnet2014 ranges from 

320x240 to 720x576 pixels. However, because most of the images are of size 

320x240, some authors (42)(47) resize all images to this resolution before training 

their networks. The ground truths made available for testing algorithms on 

                                                
11 The baseline category contains a mixture of mild challenges that belong to the other categories, and therefore is the 

easiest category for algorithms to analyse. 
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CDnet2014 (see Fig. 4 for an example) were segmented manually by human 

operators under the following guidelines: 

• A pixel should be labelled as foreground only if it is not part of the 

background; • Foreground objects are people, animals, vehicles, or man-made 

objects; 

• A moving object that suddenly stops (i.e. an abandoned bag) should be 

detected as foreground for a short period before being considered as 

background (where the definition of the word “short” is intrinsically 

subjective); 

• Reflections and spotlight halos are not considered as foreground; 

• Hard shadows should be manually labelled in order to enable the comparison 

of algorithms based on their robustness to shadows. 

Another popular dataset for background subtraction, the BMC dataset (65) is 

comprised of 20 synthetic videos rendered with the SiVIC simulator (66) and of 9 

real 

 

Figure 4. On the left: example of an image in CDnet2014. On the right: labelled ground-truth for the 

image on the left. 

videos acquired by static surveillance cameras. The 20 synthetic videos concern two 

urban scenes (a roundabout and a street) under different conditions, such as bad 
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weather, artificially added noise, or dynamic background. Though the BMC dataset 

is still used in the literature today (28), CDnet2014 is by far the most commonly 

used dataset. In particular, the BScGAN algorithm is the only algorithm of the ones 

discussed in Section 2.2 that reported results on the BMC dataset. Therefore, the 

BMC dataset is not included in Section 2.5, where we compare methods, since a 

comparison of the algorithms discussed in Section 2.2 would not be possible on this 

dataset. 

FgSegNet S and FgSegNet v2 were also tested on the SBI2015 dataset (67) and 

on the UCSD dataset (68). The SBI2015 dataset, which was originally designed as a 

benchmark for background initialisation algorithms, contains 14 videos with ground 

truth labels for each frame; of the modern background subtraction algorithms listed 

in Section 2.2, only FgSegNet S, FgSegNet v2, and Cascade MSCNN were tested 

on the SBI2015 dataset. The UCSD dataset contains 18 videos (with ground truth 

labels) which showcase highly dynamic backgrounds, and therefore it constitutes an 

excellent tool for gauging the effectiveness of a background subtraction algorithm in 

a complex environment such as those encountered during the recording of human 

movement activities. The only modern algorithms that were tested on the UCSD 

dataset were FgSegNet S and FgSegNet v2. Therefore, similarly to BMC, this 

dataset is not considered in Section 2.5. 

The shift towards a single, large, general-purpose dataset since Bouwmans’ 

review (35) is a positive change for the field of background subtraction. If 

algorithms are tested on different datasets, their direct comparison becomes 

ambiguous, or in some cases impossible. Furthermore, by testing an algorithm on a 

dataset that is too narrowly focused on a specific challenge (for example, dynamic 
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backgrounds), the algorithm will tend to overfit the dataset, thus losing 

generalisability. However, some authors still choose to test their algorithms on 

datasets with very narrow focuses. For example, 3D-Net (42) was tested on 

CDnet2014 and on the ESI dataset (69), which focuses on a challenge (rapidly 

changing scene illumination) that is absent from CDnet2014. This practice is not to 

be discouraged. Indeed, authors should be incentivised to test their algorithm on 

general-purpose datasets like CDnet2014 to demonstrate that their model generalises 

well and to allow a direct comparison with other methods, and then to test their 

algorithm on a dataset that reflects the specific challenge that their algorithm wants 

to address. 

Metrics 

The CDnet2014 framework includes 7 metrics to measure the accuracy of 

background subtraction algorithms (27). The metrics included in CDnet2014 are 

Specificity, False Positive Rate (FPR), False Negative Rate (FNR), Percentage of 

Wrong Classification (PWC), Precision, Recall, and F-measure. 

Intuitively, Recall is the ability of a model to find all the relevant cases (called 

True Positives, or TP) within a dataset, while Precision is a measure of how many 

of the cases labelled as relevant actually were relevant. An algorithm is considered 

accurate if it achieves high recall without sacrificing precision. The F-measure is a 

weighted harmonic mean of precision and recall, and as such it allows to express 

the accuracy of a model with a single parameter, thus enabling an immediate 

comparison between algorithms. For this reason, the F-measure is the most widely 

reported parameter of accuracy for background segmentation algorithms. However, 
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since it does not incorporate true negatives in its computation, it is sensitive to 

imbalanced data, and background subtraction ground truths are inherently 

imbalanced, as mentioned in Section 2.2.4. Such an imbalance between the two 

classes is particularly problematic for deep learning methods, which suffer from bias 

when trained on heavily imbalanced data. For this reason, Lim and Keles (50), 

developers of FgSegNet, have used, along with the metrics of CDnet2014, the 

Matthews Correlation Coefficient (MCC). The MCC metric is defined as: 

𝑀𝐶𝐶 =
𝑇𝑃∙𝑇𝑁−𝐹𝑃∙𝐹𝑁

√(𝑇𝑃+𝐹𝑁)(𝑇𝑃+𝐹𝑃)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 (1) 

where FP, FN, TN and TP denote the number of False Positives, False Negatives, 

True Negatives, and True Positives, respectively. The use of the MCC metric for 

imbalanced data was proposed by Boughorbel et al. (70). Unlike the F-measure, 

which assumes values in the interval [0,1], the MCC takes values in the interval [-1, 

1], with 1 = complete agreement, −1 = complete disagreement, and 0 = 

uncorrelation between the prediction and the ground truth. Although the use of the 

MCC in background subtraction has been limited to only a few studies (50)(60), it is 

likely that with the growing popularity of deep learning methods it will also gain 

popularity. 

Vacavant et al. (65), authors of the BMC dataset, advocate the use of the Peak 

Signal to Noise Ratio (PSNR) metric, defined as: 

𝑃𝑆𝑁𝑅 =
1

2
∑ 10 log10

𝑚

∑ ||𝑆𝑖(𝑗)−𝐺𝑖(𝑗)||2𝑚
𝑗=1

𝑛
𝑖=1   (2) 
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where Si(j) and Gi(j) are the j
th 

pixels of image i (of size m) in the sequences S 

and G, respectively (where “sequence S” and “sequence G” are two of the videos in 

the test set of the BMC dataset). Vacavant et al. also propose the use of what they 

call “application quality metrics”: the Structural Similarity (SSIM) (71) and D-score 

(72) metrics. The D-score evaluates the localisation of the errors (i.e. where on the 

image the false positives are located), whereas the SSIM is a perception-based 

metric that measures the perceived change in structural information in an image 

(71). To date, no other researchers have used these metrics for background 

subtraction. 

Wang et al. (47) suggest two metrics (FPED = False Positive Error Distance, 

and FNED = False Negative Error Distance) to quantify how far from the nearest 

foreground object the wrongly classified pixels are. Both of these metrics are 

conceptually similar to the D-score used by Vacant et al. and, similarly to the D-

score, both of them are unused in the background subtraction literature. 

Finally, authors often report the computational speed of their method 

(42)(47)(50)(60)(61), expressed in terms of training time or frames per second 

(FPS). This metric is fundamental in the field of intelligent video surveillance, 

where real-time computation is often necessary. Therefore, in this field it is 

sometimes necessary to sacrifice accuracy for speed of execution. 



25 

 

 

 

Evaluation of Methods 

 

Table 1. Results of Background Subtraction Algorithms Tested on CDNET2014 

Algorithm Average F-

Measure 

Average Recall Average 

Precision 

Average PWC Average MCC FPS (320x240) 

Cascade MSCNN 0.9209 0.9506 0.8997 0.4052 0.9274 12.5 (GPU) 

3D-Net 0.9507 0.9609 0.9499 0.2650 - - 

FgSegNet 0.9770 0.9836 0.9758 0.0559 0.9863 17.99 (GPU) 

FgSegNet_S 0.9804 0.9896 0.9751 0.0461 - 21 (GPU) 

FgSegNet v2 0.9339 0.9476 0.9232 0.3281 - - 

 

Table 1 compares the accuracy of the algorithms presented in Section 2.2, in 

terms of the metrics discussed in Section 2.4, on the CDnet2014 dataset. Since they 

are not part of the CDnet2014 challenge, the FPED, FNED, and D-score metrics 

were omitted from Table 1; the MCC metric, due to its relevance for deep-learning-

based methods, was included, although most authors do not report this metric. The 

results in Table 1 were collected by reviewing the actual papers and by browsing the 

online leaderboard for CDnet2014
12

. The CDnet2014 leaderboard was particularly 

useful for determining the processing speed of the algorithms, which not all authors 

reported in their papers. 

FgSegNet S and FgSegNet v2 were the only algorithms to be tested on the UCSD 

dataset. Therefore, the inclusion of the UCSD dataset here would defy the purpose 

                                                
12 http://changedetection.net/ 
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of this section, which is to compare the best-performing algorithms on the most 

popular datasets available. The SBI2015 and BMC datasets were omitted for the 

same reason. 

Table 1 shows how FgSegNet v2 is the most accurate method under all metrics 

considered, except for the MCC which was not reported by the authors and is not 

one of the metrics available on the CDnet2014 website. However, the processing 

speed of FgSegNet v2 is far slower than that of BScGAN, which in fact is orders of 

magnitude faster than any other method reported in Table 1. 

Semantic Segmentation 

Overview 

Garcia-Garcia et al. (33) defined semantic segmentation as the task of “assigning 

each pixel in an image to an object class”. A more precise definition is given by 

Thoma (73), who defines semantic segmentation as “the task of clustering together 

parts of images which belong to the same object class”. Zhu et al. (74) give yet 

another definition, arguing that semantic segmentation is the task of “dividing a 

natural image into some non-overlapped meaningful regions”. Using a clear 

vocabulary is essential in order to avoid confusion of terms. For instance, the 

meaning of the terms “object” and “meaningful” in Zhu et al.’s definition is 

subjective: people who are told to segment the “meaningful” parts of the “objects” 

in an image will most likely segment different things (75). This means that, if the 

definition of what is to be segmented is not clear, semantic segmentation is an ill-

posed problem. To clarify the terminology used in the rest of this section, we 
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propose the following categorisation of semantic segmentation algorithms 

(following (73)), based on four criteria: 

• Operation state (interactive vs passive). Examples of interactive algorithms are 

the segmentation tools present in Adobe Photoshop and MATLAB [98], which 

require the user to click on the background to mark it or to provide a coarse 

initial segmentation which the algorithm will then refine (73). Passive 

algorithms, on the other hand, do not allow the users to interact with the image 

or manipulate it in any way; 

• Allowed classes (multiple vs binary). As stated earlier, a clear definition of the 

object classes that need to be segmented is fundamental. Most algorithms fix a 

priori the number of classes, which can be multiple (cat, house, car, person, 

etc) or binary (e.g. foreground vs background; cat vs non-cat). In this sense, by 

taking the definition of semantic segmentation of Garcia-Garcia et al. (33) 

reported above, background subtraction could be interpreted as a sub-category 

of semantic segmentation in which only the foreground and background 

classes exist. However, as pointed out by Zhu et al. (74) and Thoma (73), 

semantic segmentation clusters together groups of pixels, thus nullifying the 

issue of isolated false positives/negatives found in background subtraction (see 

Section 2.2.1) and distinguishing the two fields; 

• Type of input data (greyscale vs coloured, 2D vs 3D data, including vs 

excluding depth data); 

• Degree of supervision (unsupervised vs weakly-supervised vs fully-

supervised). Unsupervised methods do not have access to a label or ground 
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truth during training, whereas fully-supervised algorithms have at their 

disposal a ground-truth for each image to be segmented (74). Weakly-

supervised methods use partial or coarse annotations, and as such often belong 

to the “interactive” operation state category. 

Currently, semantic segmentation research is focused on the multi-class category, 

because it has more widespread applications (33)(76). Nevertheless, multi-class 

algorithms can easily be re-trained for a binary classification problem such as the 

one encountered during the first step of a visual hull pipeline (i.e. segmenting the 

foreground, class1, from the background, class0). For this reason, this section of the 

review will not be restricted to binary classification algorithms. However, because 

3D data and depth data cannot be integrated into a shape-from-silhouette pipeline, 

algorithms that deal with such data will not be analysed here. 

The applications of semantic segmentation range from the detection of road signs 

(77), to the segmentation of brain scans for the detection of tumours (78)(79), to the 

detection of objects in satellite images (80) 

State of the Art 

Traditional approaches to semantic segmentation relied heavily on domain 

knowledge to build an algorithm with domain-specific features (73), colour being 

the feature used most commonly (73)(74). Although no colour space has been 

proven to be superior to all others in all contexts (81), RGB is often chosen due to 

its simplicity and support by programming languages; occasionally, the HIS colour 

space is chosen due to its property of being invariant to illumination 

(82)(83)(84)(85). An example of domain-specific features are the “poselets” 
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introduced by Bourdev and Malik (86) for human pose estimation. Poselets are 

manually added extra keypoints such as “left shoulder” or “right shoulder” which 

aid in the task of detecting the poses of people in a scene (87)(88). 

As was the case for background subtraction, the field of semantic segmentation 

was revolutionised by the advent of Deep Learning, and in particular of Fully 

Convolutional Neural Networks (FCNs, which are a particular kind of CNN): a 

glance at the most popular semantic segmentation datasets (89)(90) will reveal that 

almost the entirety of the new research in semantic segmentation adopts networks 

based on the FCN architecture. For this reason, and because traditional semantic 

segmentation algorithms are not used in the visual hull literature like traditional 

background subtraction algorithms were, this review will omit the analysis of 

traditional methods for semantic segmentation; for a review of this category of 

algorithms, please refer to (73)(74). 

CNNs applied to semantic segmentation face two challenges: 1) because their 

structure was originally designed for the task of image classification, they lose 

feature resolution at each layer (in other words, the deeper the layer the more 

complex the features it encodes, but also the lower its awareness of spatial 

resolution; this is because the dimension of the feature maps is halved at each depth; 

2) objects may exist at multiple scales, thus requiring the network to have both large 

and small fields of view. Both of these challenges have been addressed extensively 

by the algorithms discussed in this section. 

Including in the following analysis every algorithm that uses CNNs for semantic 

segmentation would not help us reach the objective of this paper. As was the case 

for Section 2.2, then, this section focuses on the top-performing methods in this 
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category of algorithms. The algorithms discussed in this section were chosen by 

looking at those with an Average Precision (described in Section 3.4) on the 

PASCAL VOC 2012 dataset (89) (described in Section 3.3) of at least 90% in the 

“person” category. Although the threshold of 90% was chosen arbitrarily, it allowed 

us to single out the top ten algorithms for the semantic segmentation of humans, 

thus providing ample choice to users interested in applying one such tool to a visual 

hull pipeline. 

DeepLab 

Different versions of DeepLab, an algorithm developed by researchers at Google, 

have been at the top of semantic segmentation leaderboards for years (33)(76)(89). 

One of the main features of DeepLab is its use of atrous convolutions to solve the 

issue of the loss of feature resolution in the deep layers of CNNs. Atrous 

convolutions (from the French “a trous”, with holes), also known as dilated 

convolutions, expand the resolution of the filter in the convolutional layer according 

to a parameter called dilation rate; in practice, this process fills with zeros the 

empty elements of a dilated filter (see Fig. 5). Atrous convolutions allow to control 

the resolution at which features are computed within the network, and to scale their 

resolution multiple times without having to learn new parameters like in an encoder-

decoder structure. For a two-dimensional signal, for each location i on the output 

feature map y and a convolution filter w, an atrous convolution is applied over the 

input feature map x as follows: 

 y[i] = x[i + r ·k] ·w[k] (3) 
k 
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where the atrous rate r determines the stride with which the input signal is sampled. 

During training, DeepLab uses patches cropped from the original image. Because of 

the atrous convolutions present in DeepLab, a large crop size is required to avoid 

that filter weights with large atrous rates be applied to the zero-padded region (i.e. 

the empty space within the dilated filter). 

DeepLabv3 was introduced in 2017 (91) and has undergone several iterations 

since. Its backbone is ResNet-101 (46), a network for image recognition pre-trained 

on the ImageNet dataset (92). In DeepLabv3, the last blocks of ResNet are re-

purposed using Atrous Spatial Pyramid Pooling (ASPP). First proposed by (93), the 

ASPP is a module of four cascaded atrous convolutional layers with different atrous 

rates that allows DeepLab to capture multi-scale information at the level of the 

features learned by the network (91), instead of at the level of the input features (like 

in Cascade MSCNN). In two separate experiments, DeepLabv3 was pre-trained on 

the MS-COCO dataset [110] and on the JFT-300M dataset
13 

[114]; both pre-training 

regimens noticeably improved the performance of DeepLabv3(94), as we discuss in 

Section 3.5. 

 

Figure 5. Atrous convolutions allow the network to obtain varying spatial resolution by changing the 

dilation rate (D). The number of parameters to learn (in this figure, 9, one for each coloured square) 

does not change, since the empty elements within the filter are filled with zeros). 

                                                
13 The version of DeepLab3 pre-trained on the JFT-300M dataset takes the name of “DeepLab3-JFT”, while the version 

of DeepLab3 pre-trained on the MS-COCO dataset simply takes the name of “DeepLabv3”. 
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DeepLabv3+ (95) further improved upon DeepLab3 by implementing an 

encoderdecoder structure that uses DeepLab3 as the encoder module and a simple 

series of upsampling layers and convolutional layers as the decoder module. 

Furthermore, it reduced the computational complexity of the algorithm by adopting 

depthwise separable convolutions: the standard convolution operation is factorised 

into a depthwise convolution, which performs a spatial convolution independently 

for each input channel, and a point-wise convolution, which combines the output 

from the depthwise convolution step. Another reason why DeepLabv3+ performs 

better than DeepLab3 is because it adopts the more powerful Xception (96)(97), 

instead of ResNet-101, as its backbone network. Furthermore, it was pre-trained on 

ImageNet and JFT-300M in two separate instances. 

 

Figure 6. Architecture of the MSCI network. On the left, a traditional convolutional neural network 

structure encodes features into layers of progressively smaller reception fields. Each pair of adjacent 

layers is connected “horizontally” using bi-directional connections, which progressively incorporate 

information from different receptive fields into the final prediction (to the right). (Image from (98)) 

MSCI 

In order to capture the multi-scale information present in the data, the MSCI 

algorithm (98) combines the outputs of pairs of adjacent layers, as shown in Fig. 6. 

Whereas in most multi-scale architectures the information flows in a unidirectional 

fashion, in MSCI the connections are bi-directional, with long short-term memory 

(LSTM) chains connecting feature maps of different resolutions. These intertwined 
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connections are present both horizontally and vertically in the network structure 

(illustrated in Fig. 6), granting exceptional integration of the different levels of 

information present at each layer. Using the structured edge detection toolbox (99), 

MSCI divides the input image and each subsequent feature map into sets of non-

overlapping regions called super-pixels. The neurons that correspond to 

neighbouring super-pixels are densely connected with bi-directional LSTM 

connections, which allow great local consistency to the segmentation: the super-

pixels form a sort of “patchwork” of small patches of high resolution, which are 

tightly interwoven together to make seams disappear, thus granting high fidelity to 

the contours of the segmented objects. MSCI uses ResNet-152 [64] as its backbone 

network and the model is pre-trained on the MS-COCO dataset (90) following 

(100)(101). 

ExFuse 

Many networks that use an encoder-decoder architecture gradually fuse the 

information from the bottom layers, which is low-level
14 

but high-resolution, with 

the information from the top layers, which is high-level but low-resolution. It is the 

case, for example, of U-Net (59), which was adopted by several authors as the 

backbone network for their semantic segmentation algorithm (102)(103)(100)(104). 

Zhang et al., authors of ExFuse (105), argue that fusing “pure” low-level and high-

level features is inefficient and leads to inaccurate results, and propose to introduce 

more semantic information in low-level features and more spatial information in 

                                                
14 Information is progressively encoded as the layers get deeper. Therefore, the first layers will contain information 

that is scarcely encoded, and which is consequently defined as low-level. An example of a low-level feature is an edge 

map of the original image, which requires little encoding to obtain. 
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high-level features, thus increasing the content overlap between distant layers that 

will be fused together. They introduce more semantic information into low-level 

features using three strategies: 

• they rearrange the layers of the backbone network (ResNeXt 101 (106)) to be 

more evenly distributed instead of being clumped up in the deep blocks; 

• they use auxiliary supervision at the early stages of the encoder, a practice 

inspired by Deeply Supervised Learning (107)(108); 

• they do not fuse layers in a binary fashion as in U-Net (59); instead, before 

being fused with its high-level counterpart, each low-level layer is combined 

with the ones directly above it using a novel module called “semantic 

embedding branch”, the purpose of which is to embed more semantic 

information into low-level features before they are fused with high-level 

features. 

They introduce more spatial information into high-level features using two 

strategies: 1) they use auxiliary supervision on the first deconvolutional module of 

the decoder; furthermore, the original deconvolution of the module is replaced with 

Sub-Pixel Upsample (109), which enlarges the feature map just by reshaping the 

spatial dimensions; 2) they introduce the “Densely Adjacent Prediction” 

mechanism, which enables feature points of the decoder to estimate the semantic 

information of adjacent points; the final segmentation for each point is obtained by 

averaging all the associated scores. 
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DPC 

Inspired by the Neural Architecture Search (NAS) model (110)(111), the Dense 

Prediction Cell (DPC) method developed by Chen et al. (112) does not rely on 

human expertise to manually construct a neural network for semantic segmentation. 

Instead, they construct a space of possible network architectures and use an 

optimisation tool (113) to select the most optimal architecture within the space. 

They populate the space using most state-of-the-art semantic segmentation 

algorithms, such as (91)(93)(97)(101). As the optimisation tool selects random 

architectures from within the search space to evaluate them, the selected architecture 

has to be trained. However, training large networks for semantic segmentation is a 

time-consuming task, and iterating through a search space of several architectures 

would be prohibitively expensive in terms of computational time. Therefore, the 

authors developed a proxy task on which to train the candidate architectures. The 

objective of a proxy task is to provide the candidate architecture a task that is quick 

to evaluate and that gives an output that is easily relatable to the large-scale task 

(112). To achieve this goal, the authors employed, as a proxy task, a smaller 

network backbone and cached the feature maps produced by the network backbone 

on the training set, and then directly build DPC on top of it. The optimisation tool is 

then run on the architecture search space using the proxy task; after optimisation has 

ended, the selected architecture is tested on the large-scale task. 

Datasets 

The dataset most referenced in recent semantic segmentation research is 

undoubtedly the PASCAL VOC 2012 dataset (89). The PASCAL Visual Object 
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Classes (VOC) project ran challenges evaluating performance on object class 

recognition algorithms from 2005 to 2012, each year developing a new or modified 

dataset; starting from 2007, a semantic segmentation challenge was added. The 

2012 dataset consists of 28,952 images split into 50% for training-validation (with 

public ground-truths) and 50% for testing (with private ground-truths); of these 

28,952 images, only 9,993 are labelled for segmentation (see Fig. 7 for an example 

of an image in PASCAL VOC 2012). For each image in the dataset, the bare-

minimum label consists of bounding boxes that surround objects that belong to one 

of the following twenty-one categories: person, bird, cat, cow, dog, horse, sheep, 

aeroplane, bicycle, boat, bus, car, motorbike, train, bottle, chair, dining table, potted 

plant, sofa, tv/monitor, and background. All human labellers, the number of which 

is not shared by PASCAL VOC, were provided with the same guidelines for the 

segmentation of the ground-truths: 

• only segment objects whose bounding boxes have been labelled; 

• labelled pixels MUST be the object; pixels outside a 5-pixel border area 

MUST be background. Border pixels can be either; 

• pixels which are mixed e.g. due to transparency, motion blur or the presence 

of a border should be considered to belong to the object whose colour 

contributes most to the mix; 

• aim to capture thin structures where possible, within the accuracy constraints. 

Structures of roughly one-pixel thickness can be ignored e.g. wires, rigging, 

whiskers; 

• if a number of small objects are occluding an object e.g. cutlery/silverware on 

a dining table, they can be considered part of that object. The exception is if 
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they are sticking out of the object (e.g. candles) where they should be 

truncated at the object boundary. 

PASCAL VOC also provides a public leaderboard that reports the accuracy of the 

methods submitted to the website. The size of the images in PASCAL VOC 2012 

varies but is generally within 500x500 pixels. 

 

Figure 7. On the left: example of an image in PASCAL VOC 2012. On the right: labelled ground-truth 

for the image on the left. 

The Microsoft Common Objects in Context (MS-COCO) dataset (90) is also 

widely referenced in the semantic segmentation community. For the object 

segmentation task, MS-COCO includes over 200,000 images (all of which are fully 

annotated) split into 80 categories. However, MS-COCO focuses on instance 

segmentation
15 

rather than on semantic segmentation. In instance segmentation, all 

objects in the image that belong to different instances of the same object class must 

be labelled separately (see Fig. 8 for an example). Therefore, the methods reported 

in Section 3.2, which are semantic segmentation algorithms, were never tested on 

MS-COCO. Nevertheless, most of the algorithms in Section 3.2 use MS-COCO to 

pre-train their network, under the assumption that a network pre-trained on a large 

dataset like MS-COCO will perform better than a randomly pre-trained network 

                                                
15 This review focuses on methods for silhouette extraction that can be applied to markerless motion capture. Because 

such a silhouette extraction algorithm would only have to deal with a single object in the image (i.e. the human subject 

being recorded), instance segmentation algorithms, which focus on the segmentation of multiple objects of the same 

class, were not considered in this review. 
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(33). The size of the images in MS-COCO varies but is generally within 640x640 

pixels. 

Another popular dataset in the semantic segmentation literature is the Cityscapes 

dataset (114), which focuses on urban scenes
16

. Semantic segmentation algorithms 

are often applied to autonomous driving or urban scene recognition tasks, making 

 

Figure 8. Example of an image in MS-COCO with superimposed ground-truth. Each instance of an 

object class is labelled separately. For example, each person in this image is segmented using a 

different colour. 

Cityscapes a particularly important dataset on which to test algorithms. The dataset 

consists of 5,000 fully-labelled images and 20,000 coarsely-labelled images (see 

Fig. 9 for an example of an image in Cityscapes) extracted from videos shot in 50 

different cities during daytime. The labels are divided into 30 classes, including 

“person” and “rider” to distinguish pedestrians from people on vehicles. The images 

in Cityscapes are considerably larger than those in other popular datasets, with a 

resolution of 2040x1016 pixels. 

Finally, some semantic segmentation algorithms (like MSCI) are tested on scene 

labelling datasets like NYUDv2 (115), PASCAL-Context (116), and SUN-RGBD 

(117); MS-COCO also has a scene labelling challenge. Unlike the object-centric 

                                                
16 Although this dataset is more pertinent to algorithms designed for self-driving cars or similar applications,  

we include it in this review paper because it features human beings as one of its object classes, and because it is such a 

widely recognised benchmark dataset that many readers will be familiar with it.  
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PASCAL VOC, these datasets focus on the segmentation of scenery and “stuff” like 

grass, sky, and wall. Because this application does not match the one on which this 

review focuses, these datasets will not be discussed further here. 

Metrics 

The concepts of recall and precision were introduced in Section 2.4. In background 

subtraction, these metrics are often combined into a single metric, the F-measure; in 

semantic segmentation, recall and precision are used to calculate a metric called 

average precision (AP). Let us assume that a segmentation model has a confidence 

threshold T on its predictions: the model gives a certain label to a pixel if its 

confidence in the label exceeds T. To this model score threshold correspond a value 

of recall and a value of precision. The Average Precision summarises the shape of 

the precision-recall curve obtained by varying the threshold of the model so that 

eleven equally-spaced recall levels are obtained (r = [0,0.1,0.2,...,1]). In other 

words, the AP is the mean precision at a set of eleven equally spaced recall levels: 

𝐴𝑃 =
1

11
∑ 𝑝𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 (𝑟)𝑟𝜖{0,0.1,…,1}   (4) 

The precision at each recall level r is interpolated by taking the maximum precision 
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Figure 9. Top: example of a finely labelled image in Cityscapes. Bottom: examples of a coarsely 

labelled image in Cityscapes. 

measured for a method for which the corresponding recall exceeds r: 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑 (𝑟) = max𝑟̃:𝑟̃≥𝑟 𝑝(𝑟̃)  (5) 

where p(r) is the measured precision at recall r. This metric penalises methods 

which e e detect only a fraction of examples with high precision, since it 

forces the algorithm to have precision at all levels of recall [109]. But how is the 

threshold T set, and what does it represent? In the case of PASCAL VOC 2012, T 

corresponds to an Intersection over Union (IoU) value greater than 0.5 (89). The 

IoU metric measures how well the ground-truth object overlaps the object predicted 

by the model: 

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛
=

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (6) 

In the PASCAL VOC 2012 dataset, the metric reported is AP at IoU > 0.5; in 

other words, a prediction is considered positive if IoU > 0.5, and this threshold 

allows to calculate eleven values of recall with corresponding values of precision, 



41 

which in turn allow to calculate the AP. In the MS-COCO dataset, the metric used is 

the meanAP (mAP): the AP is averaged over 10 values of IoU, providing a much 

stronger metric that rewards methods that are better at precise localisation (118). 

The Cityscapes dataset does not use AP as its main metric and focuses on IoU 

instead. However, since the IoU metric is known to be biased toward object 

instances that cover a large image area (114), Cityscapes also introduces a metric 

called instance-level IoU (iIoU). iIoU is computed exactly as in equation 18, but TP 

and FN are computed by weighting the contribution of each pixel by the ratio of the 

class’ average instance size over the size of the respective ground truth instance. 

Because this metric only pertains to cases where multiple instances of the same 

object class are present in an image (a condition that will never occur in human 

motion capture scenarios), the iIoU metric is not be considered further in this 

review. 

PASCAL VOC 2012 and MS-COCO do not report values of running time for the 

algorithms described in Section 3.2. On the website for the Cityscape dataset
17

, the 

running time of 43 of the top 125 methods is reported; none of the 43 methods for 

which the running time is reported are in the top 20 list. 

Evaluation of Methods 

Table 2 compares the accuracy of the algorithms presented in Section 3.2, in terms 

of the metrics discussed in Section 3.4, on the PASCAL VOC 2012 dataset. Results 

on the MS-COCO datasets are not reported in this section because MS-COCO deals 

with instance segmentation, which is not pertinent to the focus of this review paper. 

                                                
17 https://www.cityscapes-dataset.com/ 
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Similarly, because the Cityscapes dataset focuses on urban traffic scenes, results of 

methods tested on this dataset are not be reported in this section. 

The results reported in Table 2 correspond to the AP values of each method at 

IoU > 0.5. The rightmost column reports the AP values for the “person” category, 

while the centre column reports the AP values averaged across all twenty categories 

of PASCAL VOC 2012. Table 2 shows how the top ten algorithms for semantic 

segmentation evaluated on PASCAL VOC 2012 are very close to each other in 

terms of AP in the “person” category. Nevertheless, the more recent versions of 

DeepLab, in particular DeepLabv3+ JFT (95) and DeepLabv3+ AASPP (still 

unpublished), are the most accurate semantic segmentation methods available to 

date. 

Table 2. Results of Semantic Segmentation Algorithms Tested on PASCAL VOC 2012 

AP (%) 

Algorithms mean person 

DeepLabv3 85.7 92.1 

DeepLabv3-JFT 86.9 92.3 

DeepLabv3+ 87.8 92.8 

DeepLabv3+ JFT 89 93.8 

DeepLabv3+ AASPP (unpublished) 88.5 93 

MSCI 88 92.8 

ExFuse 87.9 92.3 

DPC 87.9 92.5 

SRC-B-MachineLearningLab (unpublished) 88.5 92.9 

DFN (unpublished) 86.2 91.7 
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Multi-View Segmentation 

Overview 

To reconstruct a visual hull, multiple images of the same object recorded by 

cameras in different positions are required, and from each image the silhouette of 

the object has to be extracted. So far, this review has dealt with algorithms that 

solve silhouette extraction in a monocular manner (i.e. one camera view at a time). 

Therefore, in a visual hull pipeline, the algorithms of background subtraction or 

semantic segmentation described in Sections 2 and 3 would need to be applied to 

each camera view independently. This monocular approach does not take advantage 

of the redundancy present in a set of co-temporal images of the same object. Multi-

view segmentation algorithms attempt to exploit such redundancy, usually in the 

pursuit of one of two goals: to improve the overall accuracy of the system (21), or to 

reduce its processing time (119). If colour (119)(120) or geometric (21)(121)(122) 

consistency are enforced across camera views (i.e. we expect to see similar colours 

in all camera views at a certain point in space), it becomes possible to correct errors 

in the segmentation in one camera view using the information present in another. As 

argued by Nobuhara et al. (21), however, merely relying on colour consistency 

between camera views may lead to errors. In the monocular case, background 

subtraction algorithms operate on the assumption that the colour of the background 

is different from the colour of the foreground. In the multi-view case this 

assumption is not self-evident, because if the object has a colour that is completely 

different from the background in one viewpoint but is similar to that of another 

view, extraction of consistent silhouettes can be difficult. Therefore, some authors 
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(21)(121)(122) prefer to model their algorithms using geometric consistency 

constraints instead. 

State of the Art 

Research in this field is not as active as in the fields of background subtraction and 

semantic segmentation. To the best of our knowledge, the latest article proposing a 

new method of multi-view segmentation was published in 2016 (123). For 

comparison, in 2018 alone there have been three versions of FgSegNet (see Section 

2.2.4) (50)(60)(61). Although research in this area could be said to be stagnant, 

methods published in the early 2010s already achieved exceptional accuracy, and 

the fact that most of these algorithms were developed specifically for integration 

within a visual hull pipeline makes them relevant to this review paper. As was the 

case for Sections 2.1, 2.2, and 3.2, only the top-performing algorithms of this 

category are reported in the following section. However, unlike in the fields of 

background subtraction and semantic segmentation, multi-view segmentation does 

not have a benchmark dataset that ranks methods based on their accuracy. 

Therefore, the algorithms reviewed in this section were selected by thoroughly 

reviewing the literature and establishing which algorithms performed best in terms 

of accuracy and/or runtime. Also, algorithms which could not be seamlessly 

implemented in a visual hull pipeline for markerless motion capture are not included 

in this section. For example, methods that rely heavily on interactive inputs from 

users (124)(125)(126) would complicate the overall system excessively, and are 

therefore not considered in this section. 
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Because the authors of the papers reviewed in this section did not name their 

algorithms like the authors of background subtraction and semantic segmentation 

algorithms did (e.g. FgSegNet, DeepLab, etc), in the following sections we will 

refer to the multi-view segmentation algorithms being discussed by using the last 

name of the first author of the paper, followed by the year in which the paper was 

published. 

Nobuhara 2009 

The method developed by Nobuhara et al. (21) tries to solve multi-view 

segmentation and visual hull reconstruction simultaneously using an iterative 

process. Initially, rough silhouettes are extracted and used to create a rough visual 

hull, which in turn is projected back onto each camera view. Geometric constraints 

are then employed to correct the silhouettes, which are used to create a slightly more 

refined visual hull. This iterative process continues until a convergence criterion 

(described later in this section) is met. The constraints used in Nobuhara 2009 are 

the following: 

• Intersection constraint (IC): the projection of the visual hull on every camera 

view should be equal to the silhouette on that camera view; 

• Projection constraints (PC): each 2D camera view can be segmented into 

regions so that each region fully belongs to either the foreground or the 

background. This constraint operates on the assumption that two adjacent 

points on the surface of a 3D object with similar properties, different from 

those of the background, have similar projections on the 2D camera view 

(127); 
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• Background subtraction constraint (BC): the sum of differences of pixel 

intensity between the regions identified as background and the regions 

identified as foreground should be greater than a certain threshold; this 

constraint is equivalent to applying basic background subtraction (as described 

in Section 2.1) on top of the multi-view segmentation algorithm. 

The entire region of each camera view is used as the initial silhouette for that 

camera view; these initial “silhouettes” produce a gross over-estimation of the visual 

hull volume. The PC constraint is then used to establish the initial foreground and 

background regions, yielding a new approximation of the silhouette of the object, 

which is polished using the BC. At this point, a new visual hull is constructed and 

then projected onto each camera view, where its projection is subjected to the 

carving effect of the PC, IC, and BC constraints, in that order. This iterative process 

is repeated until the carving effect of the PC and BC violates the IC; in this sense, 

the IC serves as a stop criterion for the algorithm. 

Djelouh 2012 

Methods, like Nobuhara 2009, that rely on the joint extraction of 2D silhouettes and 

reconstruction of the 3D object (121)(122)(128) are computationally expensive 

(129). Instead of reconstructing a dense 3D representation of the object from which 

to define geometric constraints, Djelouah 2012 (129) proposes to use sparse samples 

that only convey colour information. Given a sample point in 3D space, in each 

camera view its projection is identified by a certain pixel intensity value (i.e. a 

colour); the n colours present at the n pixel projections of the sample define a colour 

n-tuple, which is the basic unit on which Djelouah 2012 operates. The n-tuple does 
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not convey 3D positional information like visibility or neighbourhood (see 

“Projection Constraint” in Section 4.2.1), which means that the complexity of the 

problem is reduced. Furthermore, using sparse samples (10,000 in total) instead of a 

dense 3D representation (for example, (130) used 8,000,000 voxels for their dense 

3D representation) reduces the running time of the algorithm. 

In Djelouah 2012, background and foreground colour models are built for each 

camera view independently following (131)(127). The n-tuple is then checked 

against the colour distributions in each camera view: for a sample to be labelled as 

“foreground”, it needs to lie in the foreground region of all n camera views; if even 

a single camera view labels the projection of the sample as background, the sample 

is labelled as background and the other camera views do not need to be checked, 

thus additionally saving computational power. The sparse 3D sampling, which 

consists of 10,000 samples, is then combined with the per-view colour models, 

yielding a dense segmentation in all camera views. 

Kowdle 2012 

Like Nobuhara 2009, the algorithm developed by Kowdle et al. (132) performs 2D 

segmentation and 3D reconstruction jointly. Firstly, a piecewise planar, layer-based 

depth map is estimated for each camera view by combining stereo matching 

(obtained via semi-global matching (133)) with appearance cues based on colour 

models. The depth maps consist of a set of 3D planes, and each pixel in a camera 

view is assigned to one of these planes. The depth maps are then refined using a 

Gaussian Mixture Model learnt for each surface. Secondly, the algorithm establishes 

which planar surfaces belong to the object by using appearance and depth cues, as 
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well as by verifying that they be visible in multiple camera views. After each 

surface has been labelled as either “object” or “background”, their projection in 

each 2D camera view yields an initial segmentation. Thirdly, these initial 

segmentations are fused across multiple views using a probabilistic model, thus 

generating the final segmentation; this third step is similar to enforcing silhouette 

consistency in multiple views (see “PC” in Section 4.2.1). However, since in this 

case the 3D representation is provided by the depth maps and not by a dense 3D 

geometric reconstruction of the object as in Nobuhara 2012, Kowdle 2012 achieves 

higher computational efficiency, which is further boosted by the fact that the 3D 

representation is computed only once, and not repeated through several iterations as 

in Nobuhara 2012. 

Djelouah 2013 

Like Djelouah 2012, Djelouah 2013 (134) uses sparse 3D samples to obtain an 

initial sparse segmentation which is later refined. Unlike in Djelouah 2012, though, 

colour consistency across views is not the only cue that is used. Djelouah 2013 can 

be divided into an initialisation phase, an iteration phase, and a final segmentation 

phase. During initialisation, the image is divided into superpixels using the SLIC 

algorithm (135), and similar superpixels are linked together using appearance 

descriptors; for each superpixel, a colour model is initialised using a custom-made 

k-means model. Links between superpixels from successive frames are established 

using a time consistency descriptor based on optic flow. The spatial and time links 

between superpixels are then used to minimise a Markov Random Field (MRF) 

energy function, which in turn is used to update the colour models for each camera 
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view; the MRF optimisation is iterated until an arbitrary convergence threshold is 

reached, after which time a pixel-level graphcut segmentation (136) is performed 

using the colour models derived from the superpixel segmentation. The innovation 

of Djelouah 2013 is not its use of superpixel-segmentation as an intermediate step (a 

strategy already reported by Campbell et al. (136)), but rather its use of sparse 3D 

samples (100,000, unlike the 10,000 in Djelouah 2012) to link superpixels, and the 

presence of time links between consecutive frames. This latter innovation allows 

Djelouah 2013 to exploit the redundancy between adjacent temporal frames to 

further increase segmentation accuracy, a strategy reminiscent of the background 

subtraction algorithm 3D-Net described in Section 2.2.2. 

Datasets 

Unlike in background subtraction and semantic segmentation, in multi-view 

segmentation there is no single benchmark dataset on which all algorithms are 

tested. Instead, most authors develop their own image sets to evaluate their method 

or use image sets developed by other authors. 

Djelouah 2012 (129) was tested on eight datasets (Arts Matriaux, Bear (132), 

Bike (132), Bust (137), Couch (132), Car (132), Pig (130), Rabbit (130)). The 

Couch and Bear datasets were also used by Kim et al. (138), who also developed the 

Tree, Lion2, and Lion3 datasets, which were not used by any other authors. 

Nobuhara 2009 (21) was first tested on virtually-constructed cubes, and then tested 

on images that the authors acquired themselves and which are not public. Gallego et 

al. (128) also developed their own private image set. Kowdle 2012 [156] was tested 

on the Couch, Teddy, Bike, Chair1, Chair2, and Car datasets, all of which were 
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developed by the authors of Kowdle 2012. Djelouah 2013 (134) reports results on 

the Couch, Bear, and Car datasets used in Djelouah 2012, and additionally use the 

Chai1 dataset from (132). Kolev et al. (130) report results on, amongst others, a 

“Bust” dataset: closer inspection will reveal that this dataset is not the same as the 

one with the same name used by Djelouah 2012. Similarly, Djelouah 2013 reports 

results on a “Buste” dataset, which is actually the “Bust” dataset from Djelouah 

2012. Although linguistically trivial, these differences and similarities between 

dataset names may lead to confusion if care is not taken in analysing the results 

reported by different papers. Furthermore, the lack of a cohesive benchmark dataset 

on which to test algorithms means that different methods cannot be easily compared 

to one another. Additionally, the datasets listed above usually comprise between 8 

and 45 images of a single object. This limited amount of data means that methods 

tested on such datasets could be subject to overtraining and may not generalise well 

to new examples. Therefore, care needs to be taken when evaluating their results. 

Metrics 

The accuracy metrics used by authors to evaluate their methods are not consistent 

across papers. For example, Gallego et al. (128) only report qualitative results in the 

form of images, while Nobuhara et al. (21) report results in terms of F-measure (see 

Section 2.4). Djelouah 2012 (129) uses three metrics defined by Lee et al. (139) 

(Mean Error, Hit Rate, and False Alarms), and also defines two novel metrics, 

Accuracy and Missed Rate. These metrics are defined as follows: 

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =
𝑁(𝑊𝐹

𝐵)+𝑁(𝑊𝐵
𝐹)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 (7) 
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𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁(𝑊𝐹

𝐹)

𝑁(𝑊𝐹
𝐹)+𝑁(𝑊𝐵

𝐹)
 (8) 

𝐹𝑎𝑙𝑠𝑒 𝑅𝑎𝑡𝑒𝑠 =
𝑁(𝑊𝐹

𝐵)

𝑁(𝑊𝐹
𝐵)+𝑁(𝑊𝐵

𝐵)
 (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (10) 

𝑀𝑖𝑠𝑠𝑒𝑑 𝑟𝑎𝑡𝑒 = 1 − 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 (11) 

where N(Wb
a
) refers to the number N of pixels W labeled as a in the ground truth 

and b by the algorithm. It can be proven that Mean Error, Hit Rate, and False 

Alarms are identical to, respectively, the PWC, Recall, and FPR metrics mentioned 

in Section 2.4 for background subtraction, while Accuracy and Missed Rate, as 

defined in equations 22 and 23, correspond to the IoU (see equation 18) and FNR 

(see Section 2.4) metrics, respectively. Kowdle 2012 (132) and Djelouah 2013 (134) 

report results in terms of Intersection over Union (IoU). The IoU metric reported for 

multiview segmentation algorithms should not be confused with the results for 

semantic segmentation algorithms reported in Table 2, which are expressed in terms 

of Average Precision at fixed values of IoU. In semantic segmentation, the IoU 

value is fixed to allow the network to determine its confidence in making a 

prediction for the label of a pixel; Average Precision is then used to evaluate the 

method. Therefore, multi-view segmentation algorithms reported in Section 4.5 

should not be directly compared to semantic segmentation algorithms reported in 

Section 3.5. In other words, semantic segmentation algorithms and multi-view 

segmentation algorithms cannot be put in the same table for easy comparison. This 

does not mean that general conclusions cannot be drawn regarding the validity of 
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one algorithm from the first domain over an algorithm from the other; indeed, in the 

discussion we present an analysis of which algorithms perform best under different 

conditions. 

Evaluation of Methods 

Nobuhara 2009 achieved an F-measure of 0.975 on the data used by the authors 

(which is private). Since this was the only metric reported for the method and since 

no other methods were tested on this data, this method is not included in any tables 

in this section. The processing time of Nobuhara 2009 was not reported by the 

authors. 

The results of Djelouah 2012 on the Arts Martiaux, Bear, Bike, Bust, Couch, Car, 

Pig, and Rabbit datasets using the Mean Error, Hit Rate, and False Alarms metrics 

are reported in Table 3. Furthermore, the results of Djelouah 2012 on the Couch, 

Bear, Car, and Chair1 datasets using the Accuracy metric are reported in Table 4. 

The results of Kowdle 2012 and Djelouah 2013 for the above datasets are also 

reported in Table 4. 

Table 3. Results of Djelouah 2012 on the datasets considered 

Metrics 

Dataset Mean Error (%) Hit Rate (%) False Alarm (%) 
Bust 0.2±0.1 99.4±0.01 0.7±0.3 

Arts Martiaux 0.5±0.2 97.5±0.3 2.7±1.4 
Couch 1.2±0.8 97.0±2.8 0.1±0.1 
Bear 2.7±1.5 94.5±0.8 7.0±9.0 
Car 2.8±0.8 98.8±0.8 16.7±8.8 
Bike 2.4±1.1 96.7±2.1 25.0±13.3 
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Table 4. Results of Djelouah 2013, Djelouah 2012, and Kowdle 2009 on the datasets considered 

Method 

Dataset Djelouah 2013 Djelouah 2012 Kowdle 2009 

Couch 99.0±0.2 98.8±0.8 99.6±0.1 

Bear 98.0±1.0 98.8±0.4 98.8±0.4 

Car 97.0±0.8 - 98.0±0.7 

Chair1 98.6±0.3 88.0±2.0 99.2±0.4 

 

Table 4 shows how Kowdle 2012 outperforms both Djelouah 2012 and Djelouah 

2013, albeit by small margins; indeed, if the standard deviation reported in Table 4 

is taken into account, the difference between the three methods is almost trivial, 

with the exception of Djelouah 2012 on the Chair1 dataset, for which it achieves 

10% lower accuracy than the other two methods. Djelouah 2012 relies entirely on 

colour information to perform its segmentation, and its reliance on colour makes it 

susceptible to errors when the foreground and background present similar colours, 

which is the case for the Chair1 dataset, thus explaining the lower accuracy of 

Djelouah 2012 on this dataset. 

What separates Kowdle 2012 from Djelouah 2012 and 2013 is the processing 

time: for a 640x480 pixels image, Kowdle 2012 takes 2 minutes (132), Djelouah 

2012 takes 2 seconds (129), and Djelouah 2013 takes 10 seconds (134). 

Discussion and Future Work 

Most images used in biomechanics have a resolution of 1280x1024 pixels or above 

(2), whereas the resolution of the images in background subtraction and semantic 

segmentation datasets varies from 320x240 to 640x480 pixels. This fact has two 

implications. Firstly, the methods described in Sections 2.2 and 3.2 would need to 



54 

be re-trained on larger images to better understand how their computational times 

scale with image size. Although computational time is not as strict a constraint for 

biomechanics as it is for applications such as intelligent surveillance (see Section 

2.1), in a case where two algorithms have almost equal accuracy the faster one will 

be the obvious choice. For example, a biomechanist would be more likely to prefer a 

method such as Djelouah 2013 (134) over Kowdle 2012 (132), which is only 

marginally more accurate but almost 12 times slower. 

The second way in which larger images would affect the training of silhouette 

extraction methods has to do with the patch-based approach described in Sections 

2.2 and 3.2. When dealing with small images such as the ones in CDnet2014, the 

use of patches of 30x30 pixels is justified by the fact that, since the images 

themselves are no larger than 640x480 pixels, the objects in the images do not 

exceed the size of 30x30 pixels by much. When the scale of the object and that of 

the patch are comparable, it is sufficient to use a multi-scale approach as in Cascade 

MSCNN (47) and FgSegNet (50) to introduce enough global information to solve 

local inconsistencies. When dealing with large images, however, the objects to be 

segmented could be considerably larger than 30x30 pixels, and such a small patch 

could lack the global information necessary to classify the pixel correctly. Two 

ways to address this issue that would not evert the architecture of existing networks 

would be to either use larger patches (which, however, could cause a loss of fine-

grained detail in the segmentation), or the use of a “deeper” multi-scale approach. 

For example, Cascade MSCNN resizes the original image twice, thus feeding to the 

network an image of size 1, one of size 0.75, and one of size 0.5; in other words, it 

uses a multi-scale “depth” of 3. It is left to future works to test whether a deeper 
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multi-scale approach (e.g. depth = 5, using images of size 1, 0.8, 0.6, 0.4, and 0.2 of 

the original image size) would be able to retain more global information than 

shallower multi-scale approaches (e.g. depth = 3) when dealing with large images. A 

third option, adopted for example by the background subtraction algorithm 

BScGAN (see Section 2.2.3), would be to dispense with the patch-based approach 

altogether. Implementing this strategy into networks that rely on patches for 

training, though, could require significant modification of the network’s 

architecture. 

A glaring issue with the state of the literature is the fact that algorithms that belong 

to different categories are tested on different datasets, using different metrics. This 

makes it difficult to compare methods that belong to different categories. 

Nevertheless, some conclusions can be drawn from Tables 1 to 4. For instance, 

FgSegNet v2 (61) and DeepLabv3+ JFT (95) are the most accurate algorithms in 

their respective categories, and both could be applied to a visual hull pipeline for 

markerless motion capture. Accuracy metrics, however, should not be the sole 

determiner of what algorithm to choose for a visual hull pipeline: the choice should 

be guided by the specific needs of the task at hand. For instance, BScGAN [36] is 

one of the most accurate background subtraction algorithms available to date (see 

Section 2.5), but it requires, for each training example, a frame unobstructed by the 

foreground object so that it can build its background model. In open-world human 

motion capture, having a frame clear of the foreground object for each frame to be 

analysed is not always possible, and therefore BScGAN may not be an ideal choice 

for this specific task. Similarly, as discussed in Section 4.5, Kowdle 2012 (132) 
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does not outperform other multi-view algorithms by a large enough margin to 

warrant its much longer computational time, and therefore it would probably not be 

a good fit within a markerless motion capture pipeline. Also, it should be noted that 

although the accuracy of multi-view segmentation algorithms seems exceptionally 

high, with Kowdle 2012 achieving IoU = 99.6 ± 0.1 (see Section 4.5), these 

methods were tested on very few images and it is possible that they overfit the very 

specific cases presented to them during training; there is no information relative to 

the accuracy of multi-view segmentation algorithms on datasets different from the 

ones on which they were trained. 

Supervised methods are inherently dependent on the type of data they are trained on. 

New algorithms should be tested on general-purpose datasets like CDnet2014 and 

PASCAL VOC 2012 to show that they can be used for many different tasks. 

However, were algorithms like FgSegNet and DeepLab to be trained on images that 

exclusively show humans performing movements, their accuracy on the task of 

segmenting humans performing movements would increase. Therefore, the results 

presented in Tables 1 and 2 should not be taken at face value, and further studies on 

human-specific datasets are required to understand the full potential of supervised 

methods for silhouette extraction in specialised tasks. Conversely, multi-view 

segmentation methods do not explicitly learn from data, so the amount of data 

available is not necessarily correlated with the accuracy of the model. Therefore, it 

is reasonable to assume that supervised methods of background subtraction and 

semantic segmentation will out-scale multi-view segmentation algorithms as more 

task-specific data is acquired. Nevertheless, multi-view segmentation methods are 
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promising and should be researched further, particularly because of their direct link 

with shape-from-silhouette methods. This link also means, however, that multi-view 

segmentation algorithms cannot be directly compared to background subtraction and 

semantic segmentation algorithms: multi-view segmentation algorithms require 

multiple image of the same object to function, whereas background subtraction and 

semantic segmentation algorithms are always trained and tested on single images. A 

solution to this issue would be to establish a large multi-view dataset that allowed 

the direct comparison of algorithms that belong to all three categories. Such a 

dataset would need to contain multiple objects seen from multiple views (16+, as 

suggested by Mu¨ndermann et al. (22)) per object. Such a dataset could bridge the 

gap between background subtraction, semantic segmentation, and multi-view 

segmentation algorithms that does not allow their direct comparison. The problem 

would lie in the selection of the images to put into the dataset: too general-purpose, 

and supervised algorithms would not display their full potential on specific tasks 

(like human segmentation for markerless motion capture); too narrow, and it would 

limit the universal applicability of the algorithms and the interest of the researchers. 

A possible solution would be to establish a general-purpose dataset like CDnet2014 

and PASCAL VOC 2012 on which to benchmark the algorithms, and similar but 

task-specific datasets to demonstrate the task-specific accuracy of the algorithms. 

Along with the datasets, the metrics used to evaluate methods should also be 

standardised. Background subtraction algorithms often report results in terms of F-

measure because it is an easy metric to compute and it is intuitive to understand 

what it represents. However, as pointed out by Lim and Keles (50), the F-measure is 
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susceptible to errors in the presence of imbalanced classes. Therefore, the AP metric 

used in PASCAL VOC 2012 (see Section 3.3) would likely constitute a better 

choice for a standard metric to use across categories of silhouette extraction 

algorithms. Additionally, the MCC metric used by (50) should be reported more 

often by authors, given its inherent resilience against imbalanced data. 

Conclusion 

The applicability of the visual hull algorithm to the task of markerless motion 

capture of human motion is hindered by the reliance of the visual hull on perfect 2D 

silhouettes of the object from each camera view. Traditionally, the capture volume 

is manipulated in such a way as to make the distinction of the foreground from the 

background trivial, thus removing the requirement for advanced silhouette 

extraction methods. However, the background cannot be easily manipulated in most 

open-world motion capture settings, and therefore highly accurate silhouette 

extraction methods are necessary in order to apply the visual hull to this task. This 

paper reviewed the literature on silhouette extraction methods in search of the 

algorithms most relevant to the application of the visual hull to biomechanics. 

Therefore, only the most accurate algorithms in their respective category were 

reported and discussed. What emerged from this review was that FgSegNet v2 (a 

background subtraction algorithm), DeepLabv3+ JFT (a semantic segmentation 

algorithm), and Djelouah 2013 (a multi-view segmentation algorithm) are the most 

accurate and promising methods for the extraction of silhouettes from 2D images. 

Furthermore, Section 5 provided some preliminary guidelines for future works in 

this field. In particular, options for the establishment of a new dataset that enables 
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the direct comparison of methods from different categories were discussed, as well 

as recommendations as to which metrics of accuracy to use in the future. 
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