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The surface roughness of the coronary artery is associated with the onset of
atherosclerosis. The study applies, for the first time, the micro-scale variation
of the artery surface to a 3D coronary model, investigating the impact
on haemodynamic parameters which are indicators for atherosclerosis.
The surface roughness of porcine coronary arteries have been detailed
based on optical microscopy and implemented into a cylindrical section of
coronary artery. Several approaches to rheology are compared to determine
the benefits/limitations of both single and multiphase models for multi-
scale geometry. Haemodynamic parameters averaged over the rough/
smooth sections are similar; however, the rough surface experiences a
much wider range, with maximum wall shear stress greater than 6 Pa com-
pared to the approximately 3 Pa on the smooth segment. This suggests
the smooth-walled assumption may neglect important near-wall haemo-
dynamics. While rheological models lack sufficient definition to truly
encompass the micro-scale effects occurring over the rough surface, single-
phase models (Newtonian and non-Newtonian) provide numerically stable
and comparable results to other coronary simulations. Multiphase models
allow for phase interactions between plasma and red blood cells which is
more suited to such multi-scale models. These models require additional
physical laws to govern advection/aggregation of particulates in the
near-wall region.

1. Introduction
The progression and impact of cardiovascular disease (CVD) is often directly
related to the health of the coronary arteries [1]. CVD is the leading cause of
death worldwide [2] accounting for 31% of global deaths in 2016, as well as
being detrimental to other conditions [3]. Recent advances in computational
fluid dynamics (CFD) have allowed for detailed study into coronary haemo-
dynamics [4,5], in particular, the relationship between atherosclerosis and flow
parameters such as wall shear stress [6–9] (WSS). A detailed overview on the
use of patient-specific models by Taylor and Figueroa [10] highlighted many clini-
cal applications [11–15], with the most relevant to this study being predictions in
the progression of atherosclerosis [16,17], arterial fibrin clots [18] and thrombus
formation [19], as well the effect of arterial stenosis on blood flow [20–22]. The
lumen wall is assumed smooth for all coronary models to date. Studies into the
roughness of the coronary lumen have shown that its texture plays a role in
the early formation of atherosclerosis [23–25], with an increase in roughness result-
ing from endothelial damage [26]. Accurate estimation of in vivo lumen roughness
using ultrasoundmay be useful clinically for diagnostic purposes, however, this is
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Figure 1. Partially rough coronary artery with identical rough/smooth sections defined opposite.
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challenging, with limitations on resolution [26]. Furthermore,
other imaging methods and geometry processing techniques
under current clinical use are unable to capture the surface
roughness of coronary arteries. However, the surface roughness
(Ra) of porcine coronary arteries have recently been character-
ized ex vivo using optical microscopy [27–29], atomic force
microscopy and scanning electron microscopy [30].

Blood is a heterogeneous, thixotropic fluid which presents
challenges to its accurate simulation using CFD. It is comprised
of red blood cells (RBCs) and other cells (e.g. monocytes,
leucocytes, etc.) suspended within a plasma continuum [31].
A comprehensive review of computational approaches to
blood modelling is provided by Bessonov et al. [32]. One
approach taken to simulate blood is to model it using a single-
phase rheological model. Single-phase models treat blood
as a homogeneous fluid, with either a constant (Newtonian)
viscosity or a shear-dependent viscosity (non-Newtonian).
Non-Newtonian blood viscosity models enable the shear-
thinning behaviour of blood to be modelled; however, blood is
treated as a single constituent fluid. This neglects the contri-
bution of the cellular phases (RBCs, platelets, white blood
cells, etc.) suspended within the plasma, which at lower
shear rates often aggregate causing rouleaux formation [33]
and greatly increase the viscosity of the mixture [34]. Multi-
phase models, instead, can be used to simulate blood as
dilute suspension of RBCs within a plasma continuum. Thus,
the flow of RBCs can be distinguished from that of the sur-
rounding plasma. These multiphase models often use an
Eulerian–Eulerian approach which has previously been used
in other simulations [35–40] to investigate cardiovascular path-
ologies, evolving theory developed by Gidaspow [31] with an
assessment of drag/lift/mass modelling of RBCs for cardio-
vascular modelling by Yilmaz et al. [34]. An advantage of the
multiphase models is their ability to capture local variations
in haematocrit (RBC concentration) arising from fluid
dynamics and can then apply this to the viscosity of the
blood, compared to the assumed uniform distribution of the
single-phase models. No current single or multiphase CFD
models of blood flow through coronary arteries simulate sur-
face roughness. Therefore, it is unknown how predictions
from these models vary with surface topology.
The current study aims to investigate, for the first time, how
a realistically rough walled segment of the coronary artery
impacts on the well-established haemodynamic parameters
used to assess coronary health and how roughness might
impact the onset and progression of atherosclerosis. A com-
parison of common approaches to blood rheology has been
performed to assess their capability of modelling flow features
at a micro-scale. Briefly, three approaches to modelling blood
rheology are compared: a Newtonian blood model, non-New-
tonian single-phase models (Carreau, Carreau–Yasuda, and
generalized power law), and multiphase models (Quemada–
Das and MKM5). The models are compared using transient
simulations of blood flow through a simplified macro-scale
coronary artery, with comparisons focusing on how flow over
a smooth segment of the artery differs to flow over a segment
which includes micro-scale roughness.
2. Methods
2.1. Geometry
2.1.1. Artery segmentation
This model considers an idealized, short cylindrical section of the
left anterior descending (LAD) coronary artery with a constant
diameter of 3.5 mm chosen based upon in vivo data [41–43].
The artery wall is predominantly smooth, with a rough-surfaced
segment of arc length 0.8 mm (26.2°) along the length of the
artery. It is constructed from 10, 0.8 mm long segments giving
a total length of 8 mm. Ten segments were sufficient for the
roughness to impact on the local haemodynamics without
being overly computationally intensive. For best comparisons
between the rough and smooth walls within the same model,
an identical smooth segment is computationally defined directly
opposite the rough wall (figure 1), with all results being evalu-
ated over a 4 mm length starting 2.4 mm from the inlet.

2.1.2. Rough surface generation
The surface roughness of the porcine coronary LAD artery in the
circumferential and longitudinal directions have been reported
as RaC = 1.04 ± 0.45 μm and RaL = 0.89 ± 0.27 μm, respectively,
with no variation along the length of the artery [28]. To generate
the rough surface, representative profiles of surface height
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Figure 2. (a,b) Circumferential and longitudinal height profiles respectively. (c) Rough surface on 0.8 mm artery segment. (d ) Representative surface roughness
taken from optical microscopy. (Spikes are imaging artefacts, their causes are explained by Burton et al. [30].)

Figure 3. Variation of mesh size on a portion of the rough segment.
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(figure 2a,b) in each direction were segmented into 16 × 0.05 mm
sections and fitted to cubic B-splines. The circumferential profile
was applied along a 0.8 mm section of the arterial circumference,
with the longitudinal profile running perpendicularly (along the
length of the artery). By extruding these two profiles along each
other, an idealized three-dimensional (3D) rough surface (figure 2c)
can be created and then repeated to form the rough section of the
artery. A comparison between the surface generated using the
height profiles from the literature [27] and a representative
sample of the porcine artery surface from optical microscopy
data is shown in figure 2c,d.

2.2. Mesh
A detailed mesh is required to capture the smooth variation in
surface texture. This was achieved using a combination of both tet-
rahedral and prism elements varying in size due to curvature, with
elements having aminimum edge length of 0.2 µm and 18 inflation
layers around the lumen surface. This was chosen so that the near-
wall haemodynamics on the rough artery were computed over
several elements. To ensure a mesh-independent solution, simu-
lations were performed on a shortened model at six equally
spaced increasing levels of mesh refinement. The area-averaged
WSS over the rough surface was calculated for each mesh
refinement level, until the percentage difference between each
refinement was below 0.5%. This resulted in a 65 million element
mesh (figure 3) with an average orthogonal quality and skewness
of 0.77 and 0.22, respectively [44].

2.3. Rheological models
Blood exhibits both Newtonian and non-Newtonian properties
which can be described by fitting experimental viscometer data
[45–48] to constituent viscous definitions which can be functions
of the volume fraction of the RBCs (haematocrit) or, more typi-
cally, just the shear rate of the fluid (equation (2.1)). This study
will examine six models, with the effective model viscosity
under varying shear given in figure 4 and the accompanying
model definitions in table 1.

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dij �Dij

q
, ð2:1Þ
where _g is the shear rate of the fluid, D is the strain rate tensor
with i, j = 1, 2, 3 as the inner products.

Where μp is the viscosity of plasma, ;rbc is the haematocrit
(phase volume fraction) and ;rbc,crit is the critical haematocrit
for which the RBCs no longer behave as a fluid. The Newtonian
model assumes a constant viscosity, both Carreau models use a
simplistic asymptotic polynomial shear-thinning definition and
the generalized power-law model combines the Casson [55]
and Carreau models with a simple power law. The final two
models (Quemada–Das and MKM5) are based upon multiphase
mixture theory where RBC’s viscosity varies with both local
shear forces and haematocrit [56]. The MKM5 model parameters
have been revised [57] based upon a curve fitting to the Brooks
et al. [45] experimental data. As both multiphase models above
describe the viscosity of whole blood, to determine the intrinsic
viscosity of the RBC’s themselves, equation (2.2) below is used;

mrbc ¼
mblood � (1� ;rbc)mp

;rbc , ð2:2Þ

where μblood is the definition of viscosity in the Quemada–Das
and MKM5 models as shown in table 1.



0.001

0.01

0.01 1 10
shear rate (s–1)Newtonian

Carreau–Yasuda

MKM5 45% haematocrit

Carreau
generalized power law

Quemada–Das 45% haematocrit

100 1000

vi
sc

os
ity

 (
Pa

.s
)

0.1

1

Figure 4. Variation in model viscosity for varying shear rate.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200327

4

3. Numerical methods
3.1. Governing equations
3.1.1. Single-phase Navier–Stokes
The commercial finite volume (FV) solver Fluent (Ansys v. 19.2,
Ansys Inc, PA, USA) was used to solve the Navier–Stokes
equations governing the behaviour of a 3D incompressible
fluid (equations (3.1) and (3.2)) for all of four the single-phase
models (Newtonian, Carreau, Carreau–Yasuda andgeneralized
power law).

@ui
@xi

¼ 0 ð3:1Þ

and

@ui
@t

þ uj
@ui
@xj

¼ @

@xj
m
@ui
@xj

� �
� 1
r

@p
@xi

, ð3:2Þ

where ui is the velocity vector in the i direction, p is the fluid
pressure, ρ is the density of the fluid, x is the coordinate in i or
j direction and μ is the fluid viscosity and t is time. The viscous
definitions for these models is given in table 1, with the density
of blood [58–60] set as ρ = 1060 kg m−3.
3.1.2. Multiphase rheological formulation
A Eulerian–Eulerian multiphase mixture model was
implemented, which considers blood as a composition of a
Newtonian continuum (plasma) with a non-Newtonian
particulate suspension (RBCs) whose viscosity depends on
local shear and haematocrit. With RBCs accounting for greater
than 99% of the cellular volume fraction [61] other particulates
are not considered here. The fundamental laws governing
phase volume fraction, continuity of mass/momentum for
primary/secondary phases p, q = plasma, rbc are given,
respectively, in equations (3.3)–(3.5).X2

n¼1

;n ¼ 1 , ð3:3Þ

@

@t
(;qrq)þr � (;qrq~vq) ¼ 0 ð3:4Þ

and
@

@t
(;qrqvq)þr � (;qrqvqvq) ¼ �;qrpþr � tq

þ
X2
p,q¼1

Kpqðvp � vqÞ

þ Fext, ð3:5Þ
where ρ is density, v is velocity, p is pressure (shared by all
phases), t is the stress–strain tensor, Kpq is the interphase
momentum exchange coefficient and ~Fext are the external
forces. The viscous definitions in table 1 coupled with phase
definitions for the density of plasma [45] and RBCs [62] being
ρp = 1003 kg m−3 and ρq = 1096 kg m−3

, respectively, leaves only
definitions of Fext and Kpq to be described. The main consider-
ation is the exchange of momentum between the two phases
which is closely coupled to the viscous drag experienced by
the RBCs. This relationship can be derived from the particulate
phases interfacial area [63], and drag force given by the
Schiller–Naumann [64] model for spheres as

Kpq ¼ 3
4
CD

rp;q(1� ;q)j~vp �~vqj
dq

ð3:6Þ

and

CD ¼
24(1þ 0:15Re0:687)

Re
if Re � 1000

0:44 if Re . 1000

8<
: , ð3:7Þ



Table 1. Rheological model definitions and parameters.

model viscosity definition (Pa.s) parameters

Newtonian [49] m ¼ 0:00345 —

Carreau [50] m ¼ m1 þ (m1 þ m0)[1þ (l _g)2]ðn�1Þ=2 m1 ¼ 0:00345, n ¼ 0:25

m0 ¼ 0:025, l ¼ 25

Carreau–Yasuda [51] m ¼ m1 þ (m1 þ m0)[1þ (l _g)p]ðn�1Þ=p
m1 ¼ 0:00345, n ¼ 0:22

m0 ¼ 0:056, p ¼ 1:25

l ¼ 1:902

generalized power law [52]

m ¼ k( _g)j _gjn( _g)�1

k( _g ) ¼m1 þ D m � exp � 1þ j _gj
a

� �
exp

�b
_g

� �� �

n( _g ) ¼ n1 � Dn � exp � 1þ j _gj
c

� �
exp

�d
_g

� �� �
m1 ¼ 0:0035, Dm ¼ 0:25

n1 ¼ 1, dn ¼ 0:45

a ¼ c ¼ 50, b ¼ 3, d ¼ 4

Quemada–Das [53] m ¼ mp 1� k;rbc
2

� ��2

,

k ¼ k0 þ k1
ffiffiffiffiffiffiffiffiffi
_g=gc

p
1þ ffiffiffiffiffiffiffiffiffi

_g=gc
p ,

k0 ¼ a0 þ 2
a1 þ ;rbc ,

k1 ¼ eb0þb1;rbcþb2;2rbcþb3;3rbc ,
gc ¼ ec0þc1;rbcþc2;2rbcþc3;3rbc

mp ¼ 0:00123

a0 ¼ 0:06106

a1 ¼ 0:04777

b0 ¼ 1:80096

b1 ¼ �3:66602

b2 ¼ 2:57412

b3 ¼ 0:02346

c0 ¼ �7:01332

c1 ¼ 34:38771

c2 ¼ �39:80154

c3 ¼ 13:99167

Not valid for k;rbc ¼ 2; yet this

occurs when 0 . ;rbc . 1

modified Krieger model 5 parameters [54]

(MKM5)

m ¼ mp 1� ;rbc
;rbc;crit

� ��n

n ¼ n1 if ;rbc , 0:2
n1þ nst if ;rbc . 0:2

�

n1 ¼ be�c;rbc ; nst¼bg 0�n

g 0 ¼ 1þ ( l _g)ng

mp ¼ 0:00123

;rbc;crit ¼ 0:95

b ¼ 8:78084

c ¼ 2:82354

b ¼ 16:27775

n ¼ 0:14275

l ¼ 1252:64407

ng ¼ 2
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where dq is thediameterof theRBC [32,65] chosen to be 8 µm,CD

is the drag coefficient for the RBC andRe is the relative Reynolds
number which is defined as

Re ¼ rpjvp � vqjdq
mp

: ð3:8Þ

In addition to this, a ‘virtual mass’ force is included which
concerns the change in inertia of the plasma during relative
RBC acceleration [66] which is defined as

Fvm ¼ 0:5;qrp
dpvp
dt

� dqvq
dt

� �
, ð3:9Þ
where the term dp/dt represents the phase material time
derivative of the form:

dp(;)
dt

¼ @(;)
dt

þ (vp � r);: ð3:10Þ

The lift force is not included in this model as it is not
appropriate for models with such a high concentration of
small particles (relative to the artery), and is more applicable
to larger dispersed flows in which highly separable flow
occurs [34].
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3.2. Boundary conditions
3.2.1. Inlet and outlet
The pulsatile variation of velocity over time, V(t), was
applied to the inlet using a Fourier fitted series (R2 = 0.998)
based upon velocity data for the LAD [67].

A simplified pulsatile model (equation (3.11)) has been
used to describe the fully developed laminar flow occurring
at the inlet as recommended by Chabi et al. for modelling
micro-scale features [68] (stents).

u(r,t) ¼ 2V(t) 1� r2

R2

� �� �
, ð3:11Þ

where V(t) is the variation of velocity shown in figure 5, r is
the radial position and R is the maximum radius of the artery
(adjusted for the increase in diameter due to the roughness).
Due to the short length of the artery, a transient outlet bound-
ary condition was not employed, instead, the outlet had a
constant 75 mmHg reference pressure applied based upon
in vivo measurements [69] which have been implemented in
similar coronary models [35,36,70].

3.2.2. Multiphase haematocrit
An initial uniformhaematocrit distributionof 45% is assumedat
the inlet based upon the healthy adult range [71] of 0.47 ± 0.07
with other similar studies also using this uniform distribution
[35–37,72]. This uniform distribution is assumed due to a lack
of in vivo data, however, to improve upon this uniform assump-
tion, the distribution of haematocrit (after diffusion/transport/
shear effects) at the outlet is copied periodically every 0.1 s to be
the inlet condition in an attempt to reach a more physiological
distribution. The final distribution at the outlet is available in
electronic supplementary material, figure S1.

3.3. Haemodynamic parameters
To assess the impact of surface roughness, and evaluate
the effects of viscosity on the near-wall haemodynamics the
following parameters were defined, as follows:

tw ¼ m
@ut
@n

����
wall

, ð3:12Þ

where τw is WSS, ut is the tangential wall velocity and n is the
unit vector perpendicular to the wall.

�tw ¼ 1
T

ðT
0
jtwj dt, ð3:13Þ
where �tw is the time-averaged WSS (TAWSS) over the length
of the cardiac cycle, T

�taaw ¼ 1
A

Xn
i¼1

�twjAij, ð3:14Þ

where �taaw is the area-averaged TAWSS (AATAWSS) which
provides an overall magnitude for each rough/smooth
segment defined previously.

ui ¼ 1
2

1� jÐ T0 tw dtjÐ T
0 jtwj dt

 !
, ð3:15Þ

where θi is the oscillatory shear index (OSI), a dimensionless
parameter introduced by He & Ku [73] where values close to
0.5 indicate flow oscillation, and values near 0 indicate no
flow reversal.

tr ¼ k
(1� 2ui)�tw

, ð3:16Þ

where tr is the relative residence time (RRT), which provides a
measure of the time fluid spends in an arbitrary near-wall
region first introduced by Himburg et al. [74]. The propor-
tionality constant k arises from the near-wall assumption
and is set as k = 1.

IL ¼ m

mN
, ð3:17Þ

where IL is the local non-Newtonian importance factor
(NNIF) first introduced by Ballyk et al. [52] where values
outside of unity indicate the presence of non-Newtonian
effects. The Newtonian viscosity of blood is set as that of
the Newtonian model in table 1 as μN = 3.45 mPa.s.

The two multiphase models (Quemada–Das and MKM5)
allow for the interactions between constituent parts of blood
and due to their separate material definitions, each phase has
its own associated variables such as velocity, shear, viscosity
and volume fraction. To calculate the same haemodynamic
parameters above (equations (3.12)–(3.17)) for the multiphase
models, the volume fraction of each phase is considered so
the properties in a given cell are weighted between the two
phases as given by equation (3.18).

Am ¼ ;rbcArbc þ ;plasmaAplasma , ð3:18Þ

where A denotes any physical property of the phase/mixture.



Table 2. Convergence parameters and solution information for the single and multiphase models.

phase cardiac cycles time step (s) minimum continuity residual HPC machines clock time (hours)

single 7 0.005 10−5 300 Intel Xeon ES-2640 v4

processors with 2TB DDR4 RAM

24

multi 0.001 300

Table 3. Haemodynamic parameters on the rough (R) and smooth (S) segments of the artery for all single-phase models.

parameter

Newtonian Carreau–Yasuda generalized power law

R S R S R S R S

AATAWSS (pa) 1.30 1.31 1.41 1.42 1.42 1.44 1.34 1.34

max WSS (pa) 6.50 2.68 5.58 3.40 6.29 3.26 6.51 3.00

min WSS (pa) 0.027 0.460 0.052 0.168 0.060 0.391 0.059 0.409

max RRT (pa−1) 34.4 0.7 12.0 0.8 14.4 0.7 15.5 0.7

max OSI 0.012 3.4 × 10−5 0.012 4.8 × 10−5 0.012 3.7 × 10−5 0.012 3.6 × 10−5

max NNIF 1 1 2.5 1.4 2 1.3 2.8 1.3

max shear (s−1) 1826 773 1504 925 1718 899 1800 851

min shear (s−1) 9.69 125.89 7.52 36.97 6.85 90.62 7.13 92.84
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3.4. Solver settings
The governing equations were solved iteratively using the
discrete form of the SIMPLE algorithm for the pressure–
velocity coupling (phase-coupled for the multiphase models
[75]), with a first-order time discretization. Computation was
performed as a distributed process across multiple cores on
high-performance computing (HPC) nodes, with optimized
efficiency through a customized message passing interface
(MPI). Solution parameters and machine specifications for
the solutions are listed in table 2. A smaller time step
was chosen for the multiphase models to avoid initial in-
stabilities due to the nonlinearity of the RBC viscosity
models. The models were solved for a total simulation time
of 5.6 s corresponding to seven cardiac cycles, with the
multiphase model chosen to have a smaller time step for
improved phase interactions.
4. Results
4.1. Single-phase
The haemodynamic parameters defined above (equations
(3.12)–(3.17)) were evaluated across the seventh cardiac
cycle, on the opposing rough/smooth segments of the
artery (figure 1) and shown in table 3.

The AATAWSS for the rough/smooth segments differs
by less than 1% in each single-phase model, despite the
much wider range of instantaneous WSS for the rough seg-
ment. Given the two segments lie on the same artery, the
average magnitudes of WSS are expected to be similar. The
two Carreau type models have the most similar predictions
of WSS, with the generalized power law more closely agree-
ing with the Newtonian model. All single-phase models
predict the same distribution of haemodynamic parameters
in table 3, with only the magnitudes and ranges differing
between each model.

The TAWSS on the rough segment varies by more than
double that of the smooth, with ‘peaks’ and ‘troughs’ of the
roughness experiencing a TAWSS of around 3.7 Pa and
0.08 Pa, respectively, for all single-phase models, with the
distribution for the generalized power law shown in figure 6a.

Both the maximum OSI and RRT are significantly greater
over the rough surface than the smooth surface,with the largest
RRT occurring in the Newtonian model being more than
double the closest non-Newtonian model. Overall, the magni-
tude of the OSI is negligible which is to be expected given the
straight cylindrical nature of this artery segment, with a uni-
form distribution on the smooth segment and a seemingly
random pattern of OSI on the rough segment, with concen-
trations around peaks in the circumferential roughness
shown for the Carreaumodel in figure 6b. The RRT distribution
is uniform over the smooth segment in all single-phasemodels,
with a magnitude ≈10× smaller than the rough segment.
Maximum RRT occurs unsurprisingly in the ‘troughs’ of the
roughness as the velocity in these areas approaches zero,
coupled with the lowest shear rates of between 7–10 s−1 result-
ing in an increased viscosity andminimal bloodwashout, with
the distribution shown for the Newtonian model shown in
figure 6c.

The non-Newtonian effects are much more pronounced on
the rough arterial segments, with the generalized power law
model predicting a peak IL ¼ 2:8 despite the lack of complex
geometry features such as plaques, bifurcations or curvature.
This range of NNIF is explained by the wide range of shear
rates occurring over the rough segment. The largest range of
shear rates on the rough and smooth surfaces occurs with the
Newtonian and Carreau models respectively; however, the
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Table 4. Haemodynamic and multiphase parameters for the rough (R) and smooth (S) segments for both multiphase models.

parameter

Quemada–Das
modified Krieger model 5 parameters
(MKM5)

R S R S

AATAWSS (Pa) 1.048 0.918 1.481 1.317

max WSS (Pa) 243.6 1.57 157 1.85

min WSS (Pa) 0.018 0.515 0.029 0.478

max RRT (Pa−1) 72.9 1.1 14.6 0.8

max OSI 3.6 × 10−1 7.75 × 10−7 2.25 × 10−1 1.01 × 10−6

max NNIF 718.6 1.48 2.14 × 105 2.22

max shear (s−1) 3.65 × 104 721 3.58 × 104 862

min shear (s−1) 0.22 213 2.17 138

max haematocrit 0.968 0.467 0.980 0.469

time-averaged haematocrit 0.461 0.459 0.456 0.461

time-averaged mixture viscosity (Pa.s) 0.005184 0.007515
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generalized power law has the greatest combined range of
shear rates, and thus the greatest NNIF value. The distribution
of NNIF is uniform across the smooth segment, with a similar
magnitude over the majority of the rough surface, except for
the troughs of the roughness where the NNIF reaches its maxi-
mumdue to the low shear conditions. TheNNIF distribution is
shown for the Carreau–Yasuda model in figure 6d.
4.2. Multiphase
All parameters in table 4 are calculated using the mixture
relationship (equation 3.18) for best comparisons between the
single and multiphase models, with maximum/minimum
values reported across the final cardiac cycle.

To compare the difference in AATAWSS on the rough/
smooth segments the relative difference between the final
magnitudes at the end of each cardiac cycle was calculated
using equation (4.1) and plotted below in figure 7.

�taaw,diff ¼ j�taaw,r � �taaw,sj
j�taaw,sj : ð4:1Þ

The difference in AATAWSS between the rough/smooth
segments for both multiphase models is around 13%,
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compared to the less than 1% in the single-phase models. The
MKM5 model’s prediction of WSS parameters is most similar
to the single-phase models, however, the inclusion of haemato-
crit in viscous calculations greatly increases themaximumWSS
andNNIF for bothmultiphase models. The AATAWSSmagni-
tudes for the Quemada–Das model are the lowest in this study
for both the rough/smooth segments, despite a stress distri-
bution similar to the generalized power law model in
figure 6a. The variation of WSS for the rough/smooth seg-
ments for all models is plotted in figures 8 and 9. For the
smooth segment, the variation in WSS is clearly proportional
to the velocity of the flow, and for every model, the WSS
follows this trend shown in figure 5. The rough segment
shows less of a change in WSS during the cycle, with a much
more consistent average, maximum and minimum WSS over
the surface, with the maxima occurring around the time of
peak velocity.

The magnitudes of RRT and OSI are greater in both multi-
phase models for both the rough/smooth segments, with
maximum OSI values approaching the 0.5 limit indicating
regions of highly oscillatory shear stress. The wide variation
in haematocrit shown over the surface in figure 11 results in
two extremes of viscous prediction and thus the extreme
values of NNIF. Despite these extreme variations in local
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shear of the RBC’s and haematocrit over the rough surface,
the overall average magnitudes of AATAWSS, RRT, haemato-
crit and mixture viscosity remain unaffected, implying that
these extremes are localized to very small regions.

The overall mixture viscosity predicted by the Quemada–
Das model was around 30% lower than that of the MKM5
model which is expected given the shear graphs plotted for
the inlet haematocrit in figure 4, with the variation during
the cardiac cycle shown in figure 10.

The haematocrit distribution over the smooth segment is
uniform around 0.46 in both models, however, the rough seg-
ment varies significantly with peaks in haematocrit occurring
with peaks in the roughness (figures 11 and 12) similar to the
OSI and TAWSS distribution of the single-phase models.
Areas with extremes of haematocrit will also experience
either high or low viscosity (figure 4) which will in turn
affect haemodynamic parameters such as NNIF and WSS.
Variations in haematocrit over the rough surface after 4.8 s
are further detailed in Figures 11 and 12.

The impact of surface roughness on the haematocrit is
clearly seen in figure 12a, where large changes in surface
height (e.g. −1 µm to 3 µm) result in a significant increase
in haematocrit for both multiphase models (0.2–0.8).
5. Discussion
Simulations of blood flow in a coronary artery with a partially
rough surface have been performed to investigate the effect
of a realistic surface texture on conventional haemodynamic
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parameters. Overall, the rough surface had a greater variation
in the parameters reported in tables 3 and 4 in particular
the WSS, RRT and shear rate, with values averaged across
the entire rough/smooth segments being similar. The
smooth-walled assumption has been previously used in all
cardiovascular models to date, which results in a uniform
distribution of the haemodynamic parameters shown in
figure 6 compared to the variation seen for all parameters on
the rough segment. As WSS is closely linked to the onset of
atherosclerosis, an increase in lumen roughness will lead to
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larger regions with low WSS which will then become more
susceptible to the onset of atherosclerotic lesions.
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5.1. Rough surface effects
Near-wall haemodynamics are known to relate to the
onset and progression of CVDs [76], with computational
approaches typically focusing on Lagrangian particle track-
ing methods within this region [77,78], or Eulerian models
evaluating the WSS/advection/diffusion close to the wall
[76,79], yet these do not include the endothelial surface
texture. This simplification arises because the region of inter-
est for coronary models is typically macroscopic, focussing on
the effects of stenosis or bifurcations where the surface
texture can be ignored.

For a straight cylindrical section of the coronary artery, the
physiological WSS magnitude varies between [6] 1 and 7 Pa
with a TAWSS magnitude of approximately [1,80] 1.5 Pa.
According to a clinical in vivo study of 506 patients, an
AATAWSS magnitude of 1–1.7 Pa can be considered moder-
ate [81], with all models predicting values between 1.3
and1.48 Pa for both the rough/smooth segments except for
the Quemada which was around 1 Pa. For further validation,
an estimate of WSS assuming Poiseuille flow for this diam-
eter is 1.39 Pa and therefore all single-phase models provide
a physiological magnitude of both WSS and AATAWSS on
both the rough/smooth segments.

The surface roughness of the coronary artery has been
examined as a factor in the onset of atherosclerosis [23–25],
where the lumen roughness increases due to endothelial
damage [26], and so models that focus on predicting likely
sites where atherosclerosis may form [82,83], or modelling
the accumulation of lipids/monocytes [84] in the artery
may benefit from considering this locally in those regions.
In addition, an in vitro study using human cultured endo-
thelium of the carotid artery showed increased particulate
adhesion in the presence of oscillating shear stress [85]. This
is similar to the findings in this study (e.g. figures 6b, 11
and 12a), where regions displaying peak OSI values appear
to correspond to the highest haematocrit as RBCs accumulate.
Furthermore, the elevated WSS at these peaks would impact
on other blood particulates such as platelets, where increased
WSS and shear forces are pivotal in the activation and
adhesion of platelets [86].

While full-scale arterial models with this texture are still
computationally unfeasible, the technique could be applied
to local regions to study interactions with medical devices
such as stents [87,88] or haemodialysis catheters [89,90].
With coronary artery stents having a thickness of approxi-
mately [59] 100 µm, the variation in surface roughness for a
diseased artery may impact on the local haemodynamics
around the struts.

While parameters averaged over the entire segments are
comparable, the much wider range occurring over the undu-
lations in the rough surface result in a maximum/minimum
WSS of around 6.4 Pa and 0.05 Pa for all the rheological
models. With regions of higher WSS thought to be athero-
protective [91,92], the AATAWSS for both segments is
sufficiently high to indicate a healthy functioning artery [6],
however, the ‘troughs’ of the roughness indicate regions
with a low enough WSS where endothelial dysfunction
may be a consideration even in this idealized geometry.
These effects would likely be exacerbated by arterial
curvature/stenosis, especially as the surface roughness
increases when the endothelium is damaged [26].
5.2. Rheological model effects
As the surface texture hasyet to bemodelled usingCFD, a com-
parison of the most common approaches to blood rheology
has also been performed, to assess their suitability for such
multi-scale models. Since blood exhibits both Newtonian and
non-Newtonian properties, the choice of rheological model
describing this behaviour can greatly impact on the assessment
of haemodynamic parameters [51,59,84], with the majority of
models being single-phase, whose viscosity only varies
under shear, with fewer models considering phase interactions
between plasma/RBCs and the effects of haematocrit. Previous
comparisons betweenmodels for coronary arteries have shown
that a Newtonian assumption consistently underestimates the
magnitude of WSS [51,93], and with the introduction of a
non-Newtonian importance factor by Ballyk et al. [52], it has
been shown that specific areas of the coronary artery (curva-
ture/stenosis/bifurcations) experience significant regions of
non-Newtonian flow [58,60,94] and as such an appropriate
model should be selected. Even with multiple comparisons
between viscous models [50,95–97], it is still challenging to
determine which non-Newtonian model is most suitable for
coronary models, and indeed likely depends on the focus of
the study and the pathology in question.

All single-phase models show a large range of shear rates
occurring over both the rough/smooth segments (table 3),
with the NNIF indicating again that even under normal
physiological conditions blood exhibits significant non-
Newtonian properties. At higher shear rates (greater than
500 s−1) all single-phase models predict a similar viscosity of
around 3.45 mPa.s, yet it is at the lower shear rates (less than
100 s−1)wherepredictionsofviscositydiverge (figure 4) impact-
ing the NNIF as well as the conventional parameters used to
assess atherosclerotic/stenotic regions. This low shear behav-
iour is crucial to modelling the rough surface accurately
[48,51], yet physiologically accurate viscometer measure-
ments for blood at low shear are difficult due to inherent
inaccuracies as well as blood’s dependence on temperature
and haematocrit [45,51].

While the single-phase models might oversimplify the
near-wall/low-shear haemodynamics occurring on the rough
surface, a multiphase model which considers haematocrit
and local RBC transport may improve upon this. The MKM5
multiphase model performs most similarly to the single-
phase models, with all parameters for both the rough/
smooth segments being in close agreement apart from Max
WSS/OSI/Shear/NNIF on the rough segment. This is likely
due to the instability of the multiphase models at extremes of
haematocrit [54]. Above a certain haematocrit, blood ceases
to behave as a fluid and the accumulation of RBCs alters the
local haemodynamics in these regions [37]. This aggregation
process is dependent on a range of biochemical factors
[54,98], and is not accounted for in the MKM5 model resulting
in predictions of high haematocrit/shear (figures 11 and 12a)
and hence much higher WSS/OSI/NNIF values in these
regions. While the link between surface roughness and
haematocrit is clearly shown in figure 12a, the large scatter
distribution in Figure 12b,c indicates the influence of additional
parameters in this near-wall region which might include: low
shear rate, flow stagnation and localized regions of high/low
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viscosity. As plasma is less viscous than RBCs, it exerts a lower
WSS magnitude, hence, the presence of an RBC depleted
region will promote poor endothelial function. As individual
RBCs are not simulated with this approach, additional effects
due to the elastic deformation of RBCs [99,100] may further
modify these micro-scale near-wall haemodynamics as RBC’s
deform around the surface texture. While this model combines
the variation in lumen roughness with multiphase cellular
transport, to further link the two scales, additional constraints
on near-wall flow such as advection/diffusion at the endo-
thelial surface or the aggregation/deformation of RBCs
would be desirable to better understand how RBC transport
effects these shear based parameters.

While all measures have been taken to ensure the accuracy
of the presented model, the study has certain limitations/
assumptions. The main limitation of the study was the use of
a simple cylindrical shape, while based upon in vivo dimen-
sions, the lack of any features such as arterial curvature/
stenosis, bifurcations or methods to induce flow disturbance
will compromise the development of natural recirculation/
oscillations. While this is detrimental to the physiological accu-
racy, the focus was the impact of realistic surface roughness,
and this geometry enabled controlled comparisons to be
taken between the two surface types. As the use of surface
roughness in a 3D model has now been established, similar
methodologies could be applied to more clinically relevant
applications, such as increasing surface roughness as a precur-
sor to arterial dysfunction, particle migration in the low shear
environments downstream of bifurcations and interactions
between stents and a rough-surfaced artery. Computation of
maximum WSS values was performed pointwise, and while
this provides sensible results for all single-phase models, the
resulting maximum WSS values for the multiphase models
were higher than expected for a physiological model. This
arose due to extremes of haematocrit occurring in the near-
wall region, in part potentially due to a lack of physical laws
governing aggregation of RBCs. One approach to reducing
the multiphase WSS predictions would have been to average
these values over a wider patch. However, for consistency
between all models (and to avoid introducing an artefact
to non-multiphase models), such a method was not used;
additionally, such an approach would require the use of a
parameter (e.g. patch area), the value of which would need
to be arbitrarily chosen.
6. Conclusion
Comparisons of well-established haemodynamic parameters
used in coronary artery models on both a smooth and realisti-
cally rough artery surface have shown that a rough surface
results in a greater range of values, and averages over the
rough/smooth segments are in good agreement. The combi-
nation of macro-micro scales to evaluate coronary flow over
these rough surfaces has highlighted how complex the near-
wall haemodynamics can be, even in a geometrically and
physiologically simple case. The different approaches to rheol-
ogy applied to this surface show that the single-phase models
provide a stable estimate of local haemodynamics as seen in
other studies, yet oversimplify the complex behaviour occur-
ring over the undulations at the lumen surface, particularly
in the Newtonian case. The use of multiphase models attempts
to further characterize the behaviour of blood in the low-shear/
micro-scale roughness region, and while the MKM5 appears
more suitable than the Quemada–Das, to truly encompass
the behaviour of blood/particulates at this boundary requires
considering additional phenomena such as advection/diffu-
sion at the endothelium, RBC aggregation/deformation and
the effects of fibrogen/plasma protein concentrations.
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