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Abstract: 

CoCrMo alloy specimens were plasma nitrided using a High Power Impulse Magnetron 

Sputtering (HIPIMS) discharge. In this work  the effect of  nitriding voltage (-700 V to -1100 

V) on the microstructure, surface hardness, impact load fatigue resistance and fracture 

toughness (KIc) of the alloy has been investigated. 

Results revealed that the specimens treated at lower nitriding voltages (-700 V and -900 V) 

develop a nitrided layer consisting a mixture of Co4N+Co2-3N phases. As the nitriding 

voltage increased (-1000 V and -1100 V), this transformed into a thick layer consisting 

mainly of Co2-3N with a minor contribution from CrN/Cr2N phases. Accordingly, surface 

hardness tests after nitriding showed a significant improvement in hardness value (H= 23 

GPa) as compared to the untreated specimen, (H= 7.9 GPa). The impact resistance of the 

alloy also increased with the nitriding voltage. Impact crater profiling of the specimens 

subjected to impact load tests showed that the depth of the crater decreased significantly, 
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especially at higher nitriding voltages. At the end of the impact load test (one million 

impacts), the crater depth for an untreated alloy (12.78 μm) was found to be twice to the 

crater depth measured for the specimen nitrided at -1100 V (7.1 μm). Impact testing results 

indicate that the fatigue endurance limit of the CoCrMo alloy increased steadily and 

considerably with the increase of the nitriding voltage. HIPIMS plasma nitriding resulted in a 

layer material with improved plain strain fracture toughness (KIc), with higher values (KIc) = 

1011 MPamm1/2 (-700 V specimen) were calculated as compared to KIc = 908 MPamm1/2 for 

the untreated specimens. Critical material parameter ratios such as H/E (elastic index or 

elastic strain to failure) and H3/E2 (plastic index) of the nitrided layers were calculated using 

surface hardness (H) and elastic modulus (E) values obtained with the help of 

nanoindentation tests. Systematic improvement in the values of H/E and H3/E2 ratios 

calculated for all nitrided specimens validated the increase in fracture toughness and impact 

load fatigue resistance of the nitrided specimens as compared to the corresponding properties 

of the untreated CoCrMo base alloy. 

Keywords: HIPIMS Discharge; Nitriding; CoCrMo alloy; Fracture toughness; Impact Load 

Fatigue resistance. 
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1. Introduction: 

 CoCrMo alloy, also known as ASTM-F75, is widely used in the manufacturing of 

load-bearing prostheses such as hip and knee implants [1]. Addition of Mo (about 5-7 wt%) 

to CoCr alloy refines its grains and improves the mechanical properties, such as tensile 

strength [2, 3]. Whereas, the addition of chromium (Cr) at 28-30 wt % in the alloy matrix 

enhances it's corrosion resistance due to the formation of Cr oxides layers on the surface 

when exposed to a corrosive environment [2-6]. However, despite it's excellent corrosion 

resistance and tensile strength, this alloy suffers from poor wear resistance which minimises 

the lifetime of the implants [7].                                 

In recent years, surface hardening techniques such as gas nitriding, plasma nitriding/ 

carburising [3, 8], Ion Implantation [9-11], boronisation [12], oxidising and very recently 

High Power Impulse Magnetron Sputtering (HIPIMS) nitriding [13] have been used to 

improve the wear resistance and surface hardness of these CoCrMo alloys. In general, a few 

micrometres thick nitrided layer on the surface improves wear resistance by one order of 

magnitude and significantly reduces the coefficient of friction [14, 15]. The improvement in 

surface hardness, tribological and fatigue properties have been attributed to the formation of a 

compound layer (M2-3N; M=Fe, Co) followed by a diffusion layer (M4N; M=Fe, Co) [14].  

The phase composition of the compound layer has shown a strong dependence on the process 

temperature. It has been reported that when a nitriding treatment is carried out in the 

temperature range of 450 °C, the compound layer is based on CrN phase due to the 

precipitation of Cr. Tang et al., (2014) [16] found that nitriding of CoCrMo alloy at a process 

temperature of about 1000 ºC for one hour leads to the formation of Cr2N, whereas at 800 °C 

no nitride formation was observed. Wang et al., (2010) [2] mentioned that nitriding at 

temperatures higher than 700 °C leads to the formation of a nitrided layer comprising of a 

mixture of CrN and Cr2N. They also reported that an increase in process temperature 
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conglomerates the surface material to form nanoparticles which leads to a rise in the surface 

roughness (Ra) value.  

On the other hand, few researchers had reported the layers to be free of Cr based phases when 

the process temperature was below 450 °C. Pichon et al., (2010) found that temperature 

around 400 °C promotes the formation of metastable γN phase without any Cr based 

compound layer [17]. Wei et al., (2004) demonstrated that CoCrMo alloy nitrided at 400 °C 

using high-intensity ion plasma nitriding (HIIPN) showed a nitrided layer (γN) thickness of 

about 0.5 µm. However, the rise in temperature resulted in a dramatic increase in layer 

thickness and composition from 6.5 µm at 500 °C (Cr2N and parent ɛ phase) to 23.6 µm at 

700 °C (CrN+Cr2N and parent phases), with an increase in Ra value [11, 18]. Bazzoni et al., 

(2013) showed that the formation of a 4 to 5 µm thick compound layer (γN at 350 °C and 

γN+Cr2N at 450 °C) improves the wear resistance and lowers the friction coefficient 

compared to those of the untreated specimens [19]. Bayak et al., (2010) have reported a 

decrease in the fatigue limit of the CoCrMo alloy due to nitriding [20]. Literature on the 

temperature (and hence energy availabe for diffusion), phase formation and changes in the 

mechanical properties, especially wear resistance after nitriding can be found, however, to the 

best of our knowledge, an extensive study on the fatigue and fracture toughness behaviour of 

plasma nitrided CoCrMo alloys that has never been reported.  

HIPIMS technology is a recent development in the field of DC magnetron sputtering 

technique. HIPIMS utilises transient impulse (short pulses) glow discharge with very high 

power and current densities which results in the generation of a dense and energetic plasma, 

rich in both, reactive gas ions and metal ions (if employed for coating) [21]. Thus, when 

utilised for nitriding, the HIPIMS discharge is rich in activated atomic nitrogen (N+) and 

diatomic nitrogen ions (N2
+) compared to conventional plasma [22], where plasma 

composition is mainly dominated by diatomic N2
+ [22]. This facilitates higher diffusion rates 
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and in general a rapid nitriding rate, however at lower temperatures than conventional 

nitriding. In the previous studies, the authors had demonstrated the use of HIPIMS discharge 

for plasma nitriding of CoCrMo alloys [13]. It was found that the microstructure was 

sensitive to the nitriding voltage (-700 V to -1100 V) applied to the specimens and not to the 

temperature as it was fixed at 400 °C. However, detailed investigation on the relationship 

between the properties and microstructure of these layers was not reported. In the current 

work, mechanical properties such as nanohardness, toughness, KIc and impact fatigue 

resistance of these nitrided layers have been evaluated. A rational relationship between the 

performance and the microstructure has been presented. 

2. Experimental Details: 

2.1 Materials and Method: 

Disc-shaped specimens of 25 mm diameter and 6 mm thickness, made from CoCrMo alloy 

(ASTM F75) were prepared up to mirror-like appearance (Ra= <15 nm) by using the standard 

metallographic procedure. The chemical composition of ASTM F75 can be found elsewhere 

[1]. Before loading into the chamber, samples were cleaned in an automated industrial-sized 

cleaning line containing various water baths based on industrial detergents such as alkali 

solutions along with ultrasonic agitation to remove organic contaminants from the surface. 

Following this cleaning stage, the samples were rinsed  by deionised water and vacuum dried 

at a temperature of 90 °C.  Plasma nitriding using HIPIMS discharge was carried out in an 

industrial-sized PVD machine (Hauzer techno Coating 1000-4, The Netherlands) equipped 

with two HIPIMS (Hüttinger Elektronik Sp. z o.o., Warsaw, Poland) and two DC power 

supplies and a dedicated bias power supply (Hüttinger Elektronik Sp. z o.o., Warsaw, Poland) 

with an arc suppression unit [23]. Samples were mounted on a rotating table in the middle of 

the chamber and subjected to three-fold rotation, which allowed for uniform exposure of the 
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surface to the ion bombarding flux. The nitriding voltages were varied between -700 V to -

1100 V in order to investigate a wide range of bombarding energies. The temperature was 

precisely monitored with specially designed electronically isolated thermocouples mounted 

on the substrate table in the vacuum chamber allowing direct temperature measurement 

during the process. The system is equipped with high precision gas flow controllers operating 

in the range of 0-500 sccm to control the gas flow of nitrogen-hydrogen mixture (N2:H2) and 

argon (Ar). Plasma emission monitoring (Gencoa SpeedFlo) was used to control the reactive 

gas flow during the process. The process temprature and pressure were set constant at 400 °C 

and 8.3×10-3 mbar respectively for all the experiments. Detailed information on the plasma 

nitriding processes using HIPIMS discharge can be found in the previous publication [13].  

2.2 Characterisation technique: 

The mechanical properties of HIPIMS nitrided specimens were characterised using various 

advanced analytical techniques. 

❖ Plan and cross-sectional scanning electron microscopy (CS-SEM) studies were carried 

out using  FEI Quanta 650 3D DualBeam FIB FEG-SEM  equipped with a secondary 

electron detector (SE). The Focused Ion Beam (FIB) capability available in the SEM was 

also used for milling in order to image the areas of interest. Prier to imaging, the 

manually prepared cross-section surfaces were polished using 1 µm diamond paste and 

etched for 16 seconds using Marble's reagent (HCL+H2O2 etchant) to reveal the nitrided 

layer in the SEM studies.  

❖ CSM-Anton Paar nanohardness tester was used to obtain elastic modulus and 

nanohardness values of all the specimens using a maximum load of 5 mN. 

❖ CemeCon impact load tester was used to evaluate the impact load fatigue behaviour of 

the nitrided and untreated specimens under dynamic loading conditions. The counterpart 
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was tungsten carbide (WC) ball of 6 mm diameter. A fixed normal load of 500 N was 

applied during all tests. 

❖ Impact craters were profiled using a profilometer (DEKTAK 150 STYLUS) with a 

resolution of 33 nm.  

❖ The fracture toughness values of all specimens were calculated using the formula 

proposed in [24-26]. 

𝐾𝑙𝐶 = 𝛿 (
𝐸

𝐻
)
0.5

(
𝑃

𝑐3/2
) 

Where, E (Nmm-2) is the elastic modulus of nitrided layer, H (Nmm-2) is the Vickers 

microhardness, P (N) is the fixed applied load (50 kgf), and c (mm) is the average radial 

crack length obtained from the indentation impression using a SEM. 

3. Results and Discussion: 

3.1  Microstructure Analysis 

Figure 1 shows the SEM cross-sectional view of the specimens nitrided with nitriding 

voltages of -700 V to -1100 V. It was clear from the above images that the nitrided layer 

thickness increased proportionally with an increase in the nitriding voltage. Out of all the 

treated specimens, the thickest nitrided layer of around 5 µm  was observed for the specimen 

nitrided with -1100 V. The layer thickness measured for the specimen plasma nitrided with -

700 V, -900 V and -1000 V was found to be around 1 µm, 1.6 µm and 3.62 µm respectively. 

Apart from the thickness, the variation of the nitriding voltage impacted significantly on the 

phase composition of the layers formed. Specimens nitrided with -700 V and -900 V were 

found to have a mixture of both S-phase (also known as white diffusion layer (Co4N) and a 

grey compound layer made up of Co2-3N. The diffusion layer thickness decreased with an 

increase in nitriding voltage. At the higher nitriding voltages of -1000 V and -1100 V, the 
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diffusion layer was difficult to resolve and was not clearly visible. Apart from the Co2-3N 

compound layer (Co4N+Co2-3N), presence of CrN and Cr2N was also detected. A detailed 

investigation of elemental composition and texture of these nitrided layers has been presented 

in a previous publication [13]. The XRD data (not presented here) for these specimens 

confirmed the presence of both Co4N and Co2-3N, also termed as expanded austenite phase 

γN(111) and γN(200). Interestingly, as the nitriding voltage increased from -700 V to -1100 V, 

the texture of the nitrided layers also changed from a predominant (200) orientation to a 

mixture of both (111) and (200) orientations. Table 1 summarises these results and has been 

included in this paper for reference.   

3.2 Impact Fatigue Analysis: 

In order to evaluate the effectiveness of the nitriding process, the impact resistance response 

of the specimens was tested using a dedicated impact load tester. In this test, a fixed normal 

load of 500 N was applied, whereas the number of total impacts was varied to better trace the 

impact size progression with time. For each specimen, the test was interrupted initially after 

250 impacts and then progressed to 1.106 impacts. The craters were depth profiled using a 

Dektak Stylus profilometer by conducting a linear scan across the crater after each stage.. The 

values of the initial crater depth (di) after 250 impacts and final, crater depth (df) after 1.106 

impacts are summarised in Table 2.  

From Table 2, it is apparent that the deepest crater, after both, 250 and 1.106 impacts were 

observed for the untreated alloy, which was around 12.73 µm. The HIPIMS plasma nitrided 

specimens showed a better response against both initial and final impacts compared to the 

untreated specimen. In the case of the specimen nitrided at -1100 V, the values of di= 7.16 

µm and df = 7.23 µm observed respectively were the lowest values amongst the specimens 

investigated. The steady decrease in both di and df values with an increasing nitriding voltage 
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demonstrated that nitriding significantly improved the impact load resistance of the surface of 

the CoCrMo alloy. 

Figure 2(a), shows the crater surface morphology of the untreated alloy after one million 

impacts. The impact area can be divided into two different zones; Zone 1: the area around the 

periphery of the crater and Zone 2: middle of the crater. Zone-1 distinctively showed an 

accumulation of wear debris displaced from the impact crater. High magnification SEM 

image of zone-1 revealed that the surface deformed via a continuous formation of shear bands 

(parallel to each other). These bands appeared to criss-cross each other, as shown in figure 

2(c). Also, cracks near the bottom of these shear bands were detected in the FIB-CS 

((Focused Ion Beam-cross section), figure 2b). On the other hand, in zone 2, the crater was 

found with islands of metal oxides adhered to the base metal which had a thickness of about 

0.7 µm confirmed via FIB-CS and EDS (Energy Dispersive Spectroscopy) elemental 

mapping (figure 2d and figure 4 respectively). Despite the high number of impacts of one 

million, no evidence of any crack formation in the underneath material was observed in this 

zone. It is believed that plastic deformation, oxidation of the surface followed by subsequent 

removal of these oxides due to cracking seemed to be the main mechanism of crater 

formation.   

The impact crater surface analysis of specimen nitrided at -700 V to -1100 V revealed that in 

this voltage range the diameter (and consequently the depth of the craters) reduced with 

higher rate from 575 µm for -700 V to 518 µm for -1100 V as shown in figure 3 and Table 2. 

However, in all cases the increase in nitriding voltage resulted in an improvement in impact 

resistance of the nitrided layer which can be attributed to the synergistic effect of the changes 

in thickness, surface texture, microstructure, phase composition and hardness on the increase 

in the shock-absorbing capacity of the nitrided layer.  



10 

 

EDS elemental mapping was performed to better understand the chemistry of the various 

compounds formed on the surface of the craters. The colour coded EDS elemental maps are 

shown in figure 4. In general, brighter the colour (assigned to an element) in the map, higher 

is the concentration of that element. In addition to the main elements such as Cobalt (Co), 

Chromium (Cr) and Molybdenum (Mo) of the alloy and Nitrogen (N) due to the treatment,  

the elements Oxygen (O) and Tungsten (W) were also investigated to reveal the effect of the 

surrounding environment (impact due to oxidation) and potential material transfer due to the 

impact wear of the WC counterpart. The analyses showed that the crater surface of the 

specimen nitrided at -700V was fully covered with an oxide layer. The amount of oxide 

formation reduced gradually as the voltage increased from -900 V to -1100 V, as shown in 

figure 4 and FIB-CS images, figure 5(b-d). One possible reason for this behaviour could be 

the increase in the amount of CrN/Cr2N in the nitrided layers. In concurrence, the material 

transfer from the WC counterpart also increased. This behaviour can be attributed to the 

overall increased hardness and toughness of the nitrided layer. 

The sub-surface microstructure of the material beneath the impact craters of the nitrided 

specimens was investigated by FIB-SEM analyses, figure 5. In the case of specimens nitrided 

at -1000 V and -1100 V (figure 5c-d), fatigue cracks within the base metal beneath the 

nitrided layer were observed. Interestingly, no such cracks were observed in the case of -700 

V and -900 V specimens. In this study, the nitrided layers formed at -900 V showed the best 

combination of oxidation resistance and impact energy damping capability. Whereas, in the 

case of -1000 V to -1100 V, impact energy absorbed by nitrided layers has transferred to the 

base metal resulting in crack formation.  

 An important correlation between the plasticity index, H3/E2 and impact response was 

presented by Chen and co-workers in 2011 where they found that the specimen with higher 

plasticity index, (H3/E2) was found to have a better response against nano impact [27].  
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Table 1 summarises the data regarding the surface nanohardness (H), elastic modulus (E), 

texture coefficient (T*), elastic index (H/E) and plasticity index (H3/E2). It can be stated that 

whilst the hardness values of the nitrided layers produced at different nitriding voltages were 

found approximately similar, the E values showed an increase from 265.5 GPa for -700 V to 

343.1 GPa for -1100 V.  This is reflected by the values of the plasticity index where the 

maximum plasticity index, H3/E2 (H= 22 GPa and E= 265.5 GPa) value of 0.15 was observed 

for specimen nitrided at -700 V whereas it decreased to 0.10 (H= 23 GPa and E= 343.1 GPa) 

for specimen nitrided at -1100 V. Hence specimens nitrided with -700 V and -900 V 

demonstrated the best impact energy damping capability therefore resulting in excellent 

resistance against impact fatigue cracking, even though the nitrided layer thickness was much 

lower as compared to the specimens treated at -1000 V and -1100 V. It is believed that the 

impact energy was transferred from nitrided layer to the base metal, thereby leading to an 

increase in the fatigue crack density (within and beneath the compound layer). Thus impact 

test results suggest that -900 V, despite the thinner layer, shows the best combination of high 

oxidation resistance and high value of the plasticity index H3/E2.  

3.3 Fracture Toughness (KIc): 

To evaluate the fracture toughness value KIc of the relatively thin nitrided layer, an alternative 

method based on vickers indentation was used on HIPIMS nitrided and the untreated alloys 

[26-30]. In this indentation based method, the contact pressure is independent of the 

indentation size (IDS) and the quality of the indentation is evaluated in terms of plastic 

deformation and crack propagation from the edges and corners of the residual indentation 

impression. A STRUERS microhardness tester equipped with a vickers indenter (pyramidal 

shape) was used to make indentations. A fixed and excesivelly high penetration load of 50 

kgf was applied irrespective of the nitrided layer thickness in order to promote crack 

initiation. 
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Figure 6 shows the calculated KIc value for the untreated and the nitrided specimens at 

different nitriding voltages. KIc value for the untreated specimen was around 906.9 MPamm1/2  

a relatively high value as expected for the softer base material, (Table 1). The highest KIc 

value of 1011.7 MPamm1/2 was found for the -700 V specimen. A further increase in the 

nitriding voltage (-900 V) deteriorated the KIc value to 872.9 MPamm1/2. However this value 

increased further as the nitriding voltage increased from -900 V to -1100 V, as shown in 

figure 6. The change in KIc value could be linked to the change in the texture of the 

compound layer [31]. The texture analyses of the specimen nitrided with -700 V showed that 

the predominant crystallographic orientation of the compound layer was (200). Whereas, at 

higher nitriding voltage from -900 V to -1100, the compound layer developed a mixed texture 

of (111) and (200). As the volume fraction of (200) texture increased from 56.42 % (-900 V) 

to 72 % (-1100 V), the fracture toughness value showed an increment accordingly. 

Investigation of the surface morphology of the impression after indentation is also essential in 

order to evaluate the resistance of the nitrided alloy against cracking. In the vickers 

indentation method, usually, two kinds of crack modes namely Palmquist and radial cracking 

along the edges of the indenter, can be observed [29]. As per the formula, KIc is inversely 

proportional to the crack length formed along the edges of the indentation after unloading. 

Figure 7(a-c) shows the indentation impression on the surface of the untreated specimen for a 

fixed normal load of 50 kgf. No evidence of any types of cracks along the edges of the square 

impression due to a fracture was evident in the SEM studies. This suggested that the 

untreated alloy had high resistance against cracking as expected for a lower hardness and 

high plasticity material. However, high magnification SEM analysis of the indent showed 

shear cracking along the diagonals of the impression (figure 7b). Formations of such crack 

can be attributed to the manufacturing defects (micro-voids) and the associated localised 

strain around these. Further analysis of the area around the indentations showed that the 
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surface deformed plastically during the loading-unloading cycle, which was also made 

evident due to the presence of shear bands, [32] around the indentation (figure 7c). 

Figure 8(a-c) shows the indentation made on the specimen nitrided at -700 V. In this case, the 

area around the square edges and corresponding corners of the impression were found crack 

free which indicates a good fracture toughness of the nitrided layer. However, further detailed 

surface analyses revealed interesting features of the deformation behaviour of such layers. 

For example, shear cracks were found in the areas near to the intersection of the diagonals 

(figure 8b) and very adjacent to the diagonals formed due to the point load concentration and 

high strain rates. Figure 8c shows the area where the diagonals meet at one of the corners of 

the square impression. In this image, shear bands along with the cracks and the surface 

texture of the nitrided surface were prominantly evident.   

For specimens at higher nitriding voltages of -900 V, -1000 V and -1100 V, both Palmquist 

and radial mean type cracks were detected. Most of these cracks had their origin and 

extinction within the faces of the impressions, which followed the direction of loading. For 

specimens nitrided with -900 V, initiation and propagation of these cracks (Palmquist and 

radial) can be seen in figure 9(a-d). They were predominantly present around the boundary of 

the square impression (figure 9(a-b)). Similar to -700 V specimen, the cracks within the 

centre of impression (figure 9c) were found, but with higher density. Figure 9(d) shows a 

high magnification image of the radial cracks near the edges of the square. Apart from these 

cracks, shear bands which were further forced away from the indentation were also found 

(figure 9a). It is considered that hemispherical plastic zone (or semi-circular plastic zone) and 

radial stresses are responsible for the formation of these primary shear bands during the 

indentation [33-35].  
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Figures 10(a-c)-11(a-c) exhibit the impression after indentation on the specimens treated at -

1000 V and -1100 V respectively. It can be concluded from above images that as nitriding 

voltage increased from -1000 V to -1100 V, the number of radial cracks along the edges and 

around the corners decreased while the cracks within the impression (pyramidal faces) 

increased in population and became wider and symmetrical.  

The difference in the fracture behaviour of the layers nitrided at lower voltages (-700 V, - 900 

V) as compared to those produced at higher nitriding voltagees, (- 1000 V, - 1100 V) can be 

explained based on the specific hardness to Young’s modulus ratios. A layer with a high 

value of H3/E2 ratio designates the surface to be of a high toughness with reduced plastic 

deformation. Also, a high H/E ratio defines the crack density, which means specimens with a 

high H/E ratio will have less crack population than the specimen with the lower value of H/E 

[38]. In our work, we also found similar trends where H/E ratio decreased with an increase in 

nitriding voltage. Hence in this work, -700 V specimen was found to be having the best KIc 

value since it had the least crack population (Palmquist and Radial) despite being the thinnest 

of all nitrided layers. However, when compared to the untreated alloy properties the HIPIMS 

plasma nitrided layers consistently showed a significant hardness increase and significant 

increase of the H3/E2
 values in some cases up to almost two orders of magnitude, (see Table 

1) and therefore enhanced fracture toughness. 

It has been widely reported that state of the art nitriding improves hardness, but results in 

surface embrittlement [36, 37]. In our case, similar hardness increase was observed  

associated with the changes in the phase composition of the nitrided layer. However, in this 

work, we found that as the nitriding voltage increased the number of the shear band (after 

impact load tests) decreased which evidenced an improvement in the fracture toughness of 

the treated layers. In addition to the above made argument regarding increased KIc values, it 

can be speculated that this unusual behaviour is also due to structure specific properties 
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namely nitrided layer density. This is expeted to be much higher thanks to the high energy 

ion bombardment, (ion peening) achieved with utilisation of the highly ionised HIPIMS 

discharge. 

4. Conclusions: 

1. CoCrMo alloys were plasma nitrided at various nitriding voltages (-700 V to -1100 V) 

using HIPIMS discharge in an industrial-sized PVD machine. The SEM cross-section 

analysis revealed that the thickness of the nitrided layer is proportionate to the 

nitriding voltage. At the higher nitriding voltages of -1100 V, the thickness of the 

nitrided layer reached 5µm.  

2. The nanohardness test showed that high hardness values of upto 23 GPa (-1100 V) 

could be achieved with HIPIMS nitriding, which was a significant improvement as 

compared to the untreated specimen, 7.9 GPa. 

3. HIPIMS nitriding significantly enhanced the impact load behaviour of the base 

CoCrMo alloy. After one million impacts at 500 N normal load the crater depth on the 

treated specimens steadily reduced with nitriding voltage from 11.98 µm for nitriding 

voltage of -700V to 7.23 µm for voltage of -1100 V. In comparison the untreated 

substrate formed larger crater with depth of 12.78 µm  under the same test conditions. 

4. Systematic improvement in the values of H/E and H3/E2 ratios calculated for all 

HIPIMS nitrided specimens validated the increase in fracture toughness, (KIc value)  

and impact load fatigue resistance of the nitrided specimens as compared to the 

corresponding properties of the untreated CoCrMo base alloy. The best results were 

achieved (no crack formation in the nitrided layer and the base material beneath the 

impact load crater) with a nitriding voltage of -900 V. 
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Figure Captions 

Figure 1: CS-SEM micrographs of specimens nitrided at (a) -700 V (b) -900 V (c) -1000 V 

and (d) -1100 V. 

Figure 2: SEM micrographs (a) impact crater on the untreated alloy after 1.106 impacts, (b) 

FIB cross-section near shear bands (SB) (c) SB near the impact crater and (d) FIB-CS in zone 

2 (middle) of the impact crater. 

Figure 3: SEM micrographs of impact craters on the specimens nitrided at (a) -700 V (b) -

900 V (c) -1000 V and (d) -1100 V after one million impacts. 

Figure 4: Elemental mapping of impact craters on the untreated and plasma nitrided 

specimens at -700 V to -1100 V. 

Figure 5: Sub-surface SEM micrographs of impact craters on the specimens nitrided at (a) -

700 V (b) -900 V (c) -1000 V and (d) -1100 V. 

Figure 6: Calculated fracture toughness (KIc) values of the untreated and specimens nitrided 

at -700 V to -1100 V. 

Figure 7: SEM micrographs of (a) indentation on the untreated specimen (b) a high 

magnification image of the deformed area along the diagonal and (c) area near the edge and 

corner of the square impression. 

Figure 8: SEM micrographs of (a) indent on specimens nitrided at -700 V (b) high 

magnification image of center of the impression and (c) one of the edges of the square 

impression. 
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Figure 9: SEM micrographs of (a) the indent on the surface of the specimen nitrided at -900 

V (c) high magnification image of center of the impression and (d) one of the edges of the 

square impression. 

Figure 10: SEM micrographs of (a) indents on the surface of the specimens nitrided at -1000 

V (b) high magnification image of center of the impression and (c) one of the edges of the 

square impression. 

Figure 11: SEM micrographs of (a) indents on the surface of the specimens nitrided at -1100 

V (b) high magnification image of center of the impression and (c) one of the edges of the 

square. 

 

 

Table Captions 

Table 1: Texture (T*), nanohardness (H), Youngs modulus (E), calculated elastic and plastic 

index as well as nitrided layer thickness (LD: diffusion thickness, LC: compound layer 

thickness, and LT: total layer thickness) of the untreated specimen and the nitrided specimens. 

Table 2: Impact crater depth values of the untreated and the nitrided specimens after initial 

impacts (250) and final impact (one million impacts). 
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Figure 5 



26 

 

 

Figure 6 

 



27 

 

Figure 7 

 

Figure 8 

 

Figure 9 



28 

 

 

Figure 10 

 

Figure 11 

 

 

 

 

 

 

 

 

 



29 

 

Specimen  

Texture 

(T*) 

H (GPa) E (GPa) H/E 

H3/E

2 

Nitrided layer 

Thickness (µm) 

γN 

(111) 

γN 

(200) 

LD LC LT 

Untreated - - 7.9 ± 0.14 249.4 ± 4.94 0.037 0.008 - - - 

-700 V 1.51 98.4

8 

22.1 ± 0.67 265.5 ± 4.30 0.083 0.153 0.13 1.10 1.06 

-900 V 43.5

4 

56.4

5 

22.98 ± 

0.53 

289.6 ± 3.76 0.078 0.135 0.28 1.32 1.60 

-1000 V 33.8

3 

66.1

6 

21.0 ± 1.17 271.6 ± 14.02 0.077 0.126 - 3.62 3.62 

-1100 V 28 72 23.0 ± 1.50 343.1 ± 30.91 0.067 0.103  4.91 4.91 

 

Table 1 

Specimen Name 
Initial Impacts (250), di 

depth (µm) 

Final Impact (106) depth, df 

(µm) 

Untreated 12.73 12.78 

-700 V 8.71 11.98 

-900 V 9.07 11.34 

-1000 V 6.85 7.29 

-1100 V 7.16 7.23 

 

Table 2 

 

 

 


