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Abstract. The conservation of historic structures must be carried out through treatments that use materials which 12 

are compatible with the originals. In recent years, nanolime has been considered one of the most promising 13 

products for the consolidation of calcareous substrates due to its characteristics of high compatibility with the 14 

treated susbstrate and durability. The effectiveness of nanolime products has been proven for superficial 15 

consolidation treatments (e.g. plasters and wall-paintings), and research nowadays is focused on the study of the in-16 

depth consolidation effectiveness of porous substrates. The aim of this paper is to undertake preliminary 17 

investigations of compatible nanolime treatments for Indiana limestone (US) and a weathered marble. Nanolime 18 

was synthetized by anion exchange resins and dispersed in isopropanol and ethanol.  The consolidation 19 

effectiveness was assessed by studying changes in porosity, drilling resistance, surface cohesion and aesthetic 20 

appearance (colour). Results showed that nanolime yielded the highest consolidation effectiveness when treated 21 

samples were kept in high relative humidity environments (~75%RH) or regularly sprayed with carbonated water 22 

in a laboratory environment (~50%RH). These results suggest that for an on-site consolidation treatment with 23 

nanolime in dry environments, treated surfaces could be regularly sprayed with carbonated water to increase 24 

consolidation effectiveness.   25 

mailto:jorge.otero.h@gmail.com
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1. Introduction  26 

In conservation work, there is a dictum that consolidation should be done using materials which are compatible 27 

with the original substrate [1]. This statement from the Venice Charter for the Restoration of Historic Monuments, 28 

sums up the importance of the compatibility of any treatments applied to Cultural Heritage structures with 29 

significant value (artistic, cultural or historical). Calcareous stones are important construction materials employed 30 

in Cultural Heritage and widely used around the world. These historic structures are susceptible to several 31 

weathering processes, which cause structures to lose some of their original properties [2].  32 

 33 

The mechanical properties of weathered historic structures are aimed to be restored using consolidating products. 34 

One of the most important points is that the used consolidant must meet the “compatibility with the original 35 

substrate” condition, as stated by the 1972 Italian Carta del Restauro [3] and considered as one of the three 36 

conservation principles by Brandi [4]. In the last four decades, most of the consolidating products used for 37 

restoration treatments are silica-based precursors (e.g. TEOS or MTMOS) [5]. These products were originally 38 

developed for the consolidation of sandstone, and then extended to other types of stone thanks to their ease of 39 

application, good penetration capability, immediate strength enhancement and effectiveness for silica-based 40 

substrates [6]. However, in the case of calcareous substrates, these consolidants present low physical and 41 

mechanical compatibility with the treated material, which in many cases cause cracks and significant damage in the 42 

long term [5-7]. For this reason, lime-based consolidants such as lime-water were traditionally preferred due to 43 

their higher compatibility with the matrix and durability [8,9]. The consolidation effect of lime-water (aqueous 44 

suspension of lime particles) occurs by the carbonation reaction of lime particles (portlandite (Ca(OH)2)) when 45 

exposed to atmospheric CO2 and H2O, producing new CaCO3, which is obviously totally compatible with the 46 

matrix of calcareous materials. Thus, this method presents a high compatibility with the substrate as it “adds more 47 

of its natural cementing materials to the substrate”. However, the lime-water consolidation technique presents 48 

some important limitations such as a reduced impregnation depth (few millimetres), a very slow carbonation 49 

process, a low amount of lime particles applied in each application, and a limited access of lime particles to the 50 

pores with small diameters; which in many cases leads to unsatisfactory treatments [10].  51 

 52 

Nanolime is based on the lime-water technique and keeps the same high compatibility with the substrate but 53 

presents higher consolidation properties due to the smaller size of the lime nanoparticles and especially the higher 54 
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amount of consolidant and a lower amount of water introduced to the stones [8, 11, 12]. Nanolime has been 55 

successfully synthetized by several methods: diols [13, 14], w/o microemulsions [15], aqueous solutions [16,17], 56 

solvothermal reactions [18, 19] plasma metal reaction method [20] or anion exchange kinetics [21, 22]. The latter 57 

method synthetized nanoparticles which present higher reactivity and smaller particle size [23, 24].  58 

 59 

The consolidation effect of nanolime occurs by the same carbonation reaction as for lime-water; however, the 60 

smaller size of the lime particles improves the penetration providing access to smaller pores and faster carbonation 61 

process due to the higher specific surface of nanoparticles [12]. Since its development in 2001, nanolime has been 62 

effectively tested for the consolidation of several substrates such as wall-paintings [13], lime-mortars [24], 63 

limestones [25], biocalcarenites [23,26], and other historic materials such as paper [16], canvas [27], bones [28] or 64 

wood [18]. Recently this type of nanolime has been also applied successfully on in-situ and long-term applications 65 

[19, 29, 30, 31, 32].  66 

 67 

2. Research Aim 68 

This paper describes the preliminary investigations of compatible nanolime treatments for  Indiana limestone, a 69 

stone that has been used in many buildings in the US,  as well as for weathered marble, to test out its effectiveness 70 

prior to testing it  in-situ on the weathered marble (from Texas, Md) sills of the west facade of the Reynolds Center, 71 

previously the Patent Office Building, which houses both the Smithsonian’s National Portrait Gallery and the 72 

American Art Museum (Washington, D.C., USA). The consolidation effectiveness of two types of nanolime 73 

(dispersed in ethanol and isopropanol) was assessed by studying changes in porosity, drilling resistance, superficial 74 

cohesion and aesthetic appearance.   75 

 76 

3. Materials and methods 77 

3.1 Limestone and Marble Samples 78 

- Indiana limestone: This stone, which is shown in Figure 1, is a limestone which is one of the most 79 

commonly used building materials in the USA [33]. The stone is a sedimentary rock composed of bioclasts 80 

and intraclasts cemented together by sparry calcite cement. The rock can be classified as a biointrasparite 81 
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[34] or Grainstone [35]. This stone was cut into 5 x 5 x 5 mm cubes for testing. This stone was referred to 82 

as “I”.  83 

 84 

a)   b)  85 

Figure 1. a) Indiana limestone cubic samples; b) steromicroscope image of the limestone. 86 

 87 

The elemental composition of this stone was calculated by XRF which shows that the stone is composed of 88 

97.7 (±0.2) of Ca, 0.81 (±0.01) of Si, 0.45 (±0.003) of P, 0.18 (±0.001) of Fe, 0.61 (±0.02) of Mg, 0.19 89 

(±0.001) of S and 0.03 (±0.001) of Sr.  90 

 91 

The mineralogical composition was determined by X-Ray Diffraction (PANalytical XPert PRO) where 92 

XRD patterns were recorded with a step size of 0.026˚2θ, in the angular range 20-70°2θ. The samples were 93 

ground and sieved through an 80 µm sieve mesh and placed over an XRD zero-background sample holder. 94 

X-ray data were fitted using the pseudo-Voigt profile function. Specimen displacement, polynomial 95 

coefficients for the background function, lattice parameters, profile parameters, and Gaussian and 96 

Lorentzian profile coefficients were refined and XRD data was analysed by Rietveld refinements [36, 37]. 97 

XRD-Rietveld refinement shows that the only mineral detected is calcite (CaCO3, ICSD #00-005-0586), 98 

suggesting that any other mineral phases (e.g. feldspar containing P, Si, Fe, Mg, Sr and S, which were 99 

elements detected by the XRF) could be present in amorphous or poorly crystallised phases or in amounts 100 

below the instrument detection level (< 1%).  101 

 102 

The pore structure was determined by Mercury Intrusion Porosimetry (MIP) which shows that the porosity 103 

of this stone is 11.41 (±0.86) % and its density is 1.974 (±0.121) g/cm3 104 

 105 
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- Weathered marble: This stone, which is shown in Figure 2, is a weathered marble which was probably 106 

part of a cornice from a building to be remodelled, in Washington D.C, USA. It was taken from a pile of 107 

architectural marble blocks stored in the stone deposit at the Smithsonian Garber facility (Suitland, Md.). 108 

This stone presents similar weathering conditions to the weathered marble sills of the west facade of the 109 

Smithsonian’s National Portrait Gallery and the American Art Museum (Washington, D.C., USA). The 110 

stone is a fine-grained marble with two weathered surfaces (black crust). This cornice was cut into 50 x 50 111 

x 50 mm cubes with one of the faces being curved as shown in Figure 1a. This stone is referred to as “M”. 112 

 113 

    a)   b)  114 

Figure 2. a) marble samples; b) steromicroscope image of the marble sample 115 

 116 

The elemental composition of this stone was determined by XRF (Philips PW2400) on pressed powder 117 

samples (Retsch PP-40 pellet press). XRF results for the superficial black crust and the core of this stone 118 

are reported in Table 1.  119 

 120 

XRD-Rietveld refinement shows that the only detected mineral in the marble core is Calcite (CaCO3, ICSD 121 

#00-005-0586). However, quantitative analysis by Rietveld refinement of the black crust shows the 122 

mineralogical composition of the black crust is 84.4% calcite (CaCO3, ICSD #00-005-0586), ICSD# 123 

980086161) and 15.6% gypsum (calcium sulphate, CaSO4, ICSD# 01-076-1746). This result was 124 

confirmed by XRF (Table 2), which showed that the black crust consists mainly of gypsum (CaSO4), 125 

probably resulting from the reaction of CaCO3 with acidic rain [38]. 126 

 127 

Table 1. XRF analysis of the marble sample (wt %). 

  Ca P Si Al S Sr Ti 

Core 98.7 0.69 0.38 - - 0.04 0.19 
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(±0.3) (±0.03) (±0.1) (±0.02) (±0.002) 

Black 

crust 

96.4 

(±0.3) 

0.41 

(±0.01) 

0.45 

(±0.06) 

0.14 

(±0.02) 

2.4 

(±0.03) 
- - 

 128 

The pore structure of the weathered portion of the stone (outer 1 cm from the surface) was determined by 129 

Mercury Intrusion Porosimetry (MIP) by means of a PASCAL 140/240 instrument. The contact angle was 130 

taken to be 140°. Samples for MIP consisted of two stone fragments measuring approximately 8x8x15 mm 131 

which were dried in a fan-assisted oven at 60 ºC until constant weight. MIP results shows that the porosity 132 

of the weathered surface is 6.0 (±0.52) % and the density is 2.144 (±0.08) g/cm3. 133 

 134 

 135 

3.2 Nanolimes  136 

Nanolime was synthesized through an anionic exchange process carried out at room conditions (± 50% RH, ± 137 

20°C) by mixing under moderate stirring an anion exchange resin (Dowex Monosphere 550A OH by Dow 138 

Chemical) with an aqueous calcium chloride solution (CaCl2 by Sigma-Aldrich), as described in the literature [21, 139 

22, 39]. The concentration of chlorides was monitored during the process using a chloride strip (Fisherbrand® 140 

Chloride Strips). The decrease of chloride content during the synthesis was very rapid and the synthesis was 141 

stopped when the ion exchange process was completed (zero kinetic exchange), with a residual chloride content 142 

below 100 mg/L. Following the synthesis, the supernatant water of the produced nanolime was extracted through a 143 

pipette and substituted by an alcohol maintaining the concentration at 25 g/L. Two nanolime dispersions were 144 

prepared: i) 25 g/L nanoparticles in isopropanol (IP25); ii) 25 g/L nanoparticles in ethanol (ET25). The synthesized 145 

nanolime presents nanoparticles with size of approximately  20-80 nm, which are highly reactive to carbonation [11, 146 

24, 25-27].  147 

 148 

A small residual water (W = 5%) remained in the IP25 and ET25 dispersions, as this practice enhances the 149 

carbonation process [30]. Dispersions were kept in a refrigerator (T < 5 °C) prior to the application to minimize the 150 

Ca(OH)2 particles conversion into Ca alkoxides [40].   151 

 152 

3.3 Nanolime treatments  153 
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Samples were kept at laboratory conditions (50% (±5) RH) for 7 days before treatment. The treatments were 154 

carried out by brush in the same laboratory conditions. Treatments started two days after the nanolime synthesis to 155 

increase their effectiveness [40]. Prior to the treatment, both nanolime dispersions (ET25 and IP25) were placed in 156 

an ultrasonic bath (60 Hz) for 30 minutes to minimize nanoparticle aggregation. Each nanolime was applied by 157 

brush on a dry and clean surface of the specimens. IP25 was applied by brushing on two of the weathered faces of 8 158 

marble specimens (M), whereas E25 was applied by brushing on 4 Indiana limestone samples (I). Previous 159 

research showed that nanolime deposition in-depth within a substrate can be highly influenced by the nanolime 160 

evaporation rate, being nanolime products with slightly slower evaporation rate more suitable for coarse porous 161 

substrates and nanolime with faster evaporation rate more suitable for fine porous substrates [19]. Based on this 162 

findings, nanolime dispersed in ethanol was applied to the marble samples due to the higher evaporation rate, while 163 

nanolime in isopropanol, which is the most commonly used solvent for nanolime, was used for the Indiana 164 

limestone samples.   165 

The application was stopped when no absorption was observed (surface remains wet for at least one minute). 166 

Following saturation, the samples were left to dry and then retreated again after 24 hours when samples were 167 

completely dry. The treatment was repeated twice for both nanolimes. Upon treatment completion, the marble 168 

samples (M) were stored in different environments to evaluate the influence of Relative Humidity on nanolime 169 

carbonation: i) two of the treated marble samples were placed in a desiccator with a saturated solution of Mg(NO3)2 170 

(RH~55%), which were referred to as M55; ii) two of the treated marble samples were placed in a desiccator with a 171 

saturated solution of NaCl (RH~75%), which were referred to as M75; iii) two samples of treated marble were 172 

exposed to the room environment conditions (50±5% RH, T = 20±5°C), which were referred to as MR; and iv) two 173 

of each treated marble were exposed to room conditions and daily sprayed with carbonated water at room 174 

conditions, which were referred to as MRS. A set of 2 untreated marble control samples (M-CO) were stored in the 175 

same room. 176 

For the Indiana limestone, treated samples were kept in two environments: i) two of the treated Indiana samples 177 

were exposed to the room environment conditions (50±5% RH, T = 20±5°C), which were referred to as IR; and ii) 178 

two other treated Indiana samples were exposed to room conditions and were sprayed daily with carbonated water 179 

(~10 mL of commercial carbonated sparkling water containing approximately 6-8 g/L CO2 was daily used) at room 180 

conditions, which were referred to as IRS. A set of untreated control samples was also stored in the same room 181 
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environment conditions, IR-CO (control samples of Indiana). All samples were analysed after curing them for 28 182 

days in the above conditions.  183 

 184 

3.4 Consolidation effectiveness 185 

 186 

For the Indiana samples (I), apparent porosity was measured, for each treatment, by immersing two cubic samples 187 

in water for 48 hours at room atmosphere as described in ASTM C 67-00 [41]. For the marble samples (M), pore 188 

size distribution and open porosity were measured by MIP. Tests were carried out on two samples taken from the 189 

treated surfaces (the outer section up to a depth of 50 mm) and on two control samples. MIP was only carried out 190 

on Marble samples due to the lack of availability of I samples.  191 

 192 

The influence of nanolime treatments on both Indiana (I) and  marble (M) surface cohesion was evaluated by 193 

'Scotch Tape Test’ (STT) according to ASTM, 2009 [42]. The test was carried out on treated and control samples 194 

with a mean of 9 measures for each sample.  195 

 196 

The consolidation action of both nanolimes was also evaluated by means of a Drilling Resistance Measurement 197 

System (DRMS) from SINT-Technology, regularly used in the literature for assessing consolidation effectiveness 198 

[43]. Tests were performed on both control and treated samples using drill bits of 5 mm diameter, rotation speed of 199 

600 rpm, rate of penetration of 15 mm/min and penetration depth of 20 mm. Drilling resistance values were 200 

calculated as the mean of 6 tests per each treatment. 201 

 202 

The cross-section area of the surfaces of both Indiana and marble treated and control samples were observed under 203 

a Scanning Electron Microscope (Hitachi S-3700N). Micro-graphs were taken with an ETD detector and an 204 

accelerating voltage of 20 kV. Specimens were coated with a 20nm thick layer of gold using a Quorum Q150T 205 

coater unit to prevent surface charging.  206 

 207 
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Any colour changes in both stones caused by treatments were evaluated with a spectrophotometer (Minolta 208 

CM508D Colorimeter) with the CIE-Lab system [44], using 30 readings taken in different areas per each treated 209 

and control sample. Total colour variation (ΔE) was calculated by the formula: 210 

∆𝐸 =  √𝛥𝐿∗2 +  𝛥𝑎∗2 + 𝛥𝑏∗2  

where ΔL* is the change in luminosity (white-black parameter), Δa* (red-green parameters) and Δb* (blue-yellow 211 

parameters) where the difference is with respect to the treated and the control sample.  212 

 213 

 214 

4. Results and Discussions                                             215 

4.1 Consolidation effectiveness 216 

 217 

The apparent porosity of cubic Indiana limestone samples treated with ET25 was obtained by immersing the 218 

samples for 24 hours in water at atmospheric pressure. Table 2 shows apparent porosity and open porosity of 219 

treated and untreated samples. Both treated samples, IR (stored in room condition) and IRS (stored in room 220 

condition and regularly sprayed with carbonated water), have slightly lower porosities than the control. This 221 

suggests that a certain amount of nanolime penetrated and carbonated in the Indiana limestones, although the high 222 

standard deviation makes this decrease not statistically significant. 223 

Table 2. Calculated Apparent porosity (% g/g) and Open porosity (cm3/cm3) 

Sample I-CO IR IRS 

Apparent Porosity % w/w 5.99 (±0.52) 5.75 (±0.44) 5.88 (±0.39) 

Open Porosity % v/v 13.44 (±0.4) 12.96 (±0.21) 13.04 (±0.31) 

 224 

 225 

The pore structure properties of the weathered marble treated with IP25 and control samples were obtained by MIP 226 

and are summarised in Table 3. It is evident that all treatments affected the pore structure of the weathered marble 227 

by reducing the open porosity. The highest porosity decrease was observed for the samples which have been treated 228 

and sprayed regularly with carbonated water, MRS (~60% decrease), followed by those treated and kept in a 75% 229 

RH environment, M75 (~50% decrease). This is in line with the literature, as is well-known that the carbonation 230 

process is strongly influenced by moisture and CO2 exposure [2]. 231 

Table 3. Pore structure properties of treated and 
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control marble samples measured by MIP 

Sample 

Open 

porosity 

(%) 

Total pore surface area 

(m
2
/g) 

M-CO 6.00 (±0.24) 3.49 (±0.11) 

MR 3.85 (±0.33) 2.35 (±0.19) 

MRS 2.44 (±0.12) 1.48 (±0.12) 

M55 3.11 (±0.29) 1.38 (±0.09) 

M75 3.00 (±0.30) 1.76 (±0.18) 

 232 

 233 

The pore size distributions of treated and untreated marble samples are shown in Figure 3. All treatments yielded a 234 

reduction in the population of pores with diameters between 0.02 µm and 30 µm, and this reduction is more 235 

pronounced for the samples treated with MRS, M-75 and M-55. The pore size regions of 0.1-0.2 µm and 30-50 µm 236 

seem to have been less affected by the treatments.  237 

a)  b)  238 

c) d)   239 

Figure. 3. Differential volume of intruded mercury versus pore diameter of treated and untreated marble samples: a) MR; b) 240 
MRS; c) M55; d) M75.  241 

 242 

The results of the Scotch Tape Test (STT) for both Indiana limestone and weathered marble are shown in Table 4. 243 

All treatments yielded decreased values for the material removed (ΔW ≈ 54 - 83%). These results confirm that all 244 
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surfaces are more compact after nanolime treatments in all tested environmental conditions. The samples sprayed 245 

with carbonated water (IRS and MRS) yielded the highest increase in superficial cohesion (ΔW ≈ 77.2 and 82.8%, 246 

respectively). Marble samples stored at 75%RH (M75) yielded higher superficial cohesion than marble samples 247 

stored at 55%RH (M55), confirming that keeping samples in high relative humidity environments (~75%RH) 248 

increases the consolidation effectiveness [45].  249 

 250 

Table 4. Scotch Tape Test (STT): experimental results 

  
Released material 

(mg/cm
2
)  

ΔW (%) SD  
  

ICO 5.59 - 0.86 

IR 2.55 54.3 0.93 

IRS 1.28 77.2 0.19 

M-CO 9.01 - 2.17 

MR 3.56 60.5 1.66 

MRS 1.56 82.8 1.47 

M55 4.52 49.9 1.78 

M75 2.9 67.9 1.54 

Scotch area: 3 x 1.5 cm; SD (standard deviation of released material) 

 251 

 252 

Drilling resistance results for the Indiana limestone samples are shown in Figure 4a and Table 5. The Indiana 253 

limestone shows a constant drilling resistance throughout the 20 mm drilling depth (F ~ 15N (±1.34)). The samples 254 

treated with ET25 stored in room conditions showed no increase in the drilling resistance. In contrast, the samples 255 

treated with ET25 and sprayed with carbonated water (IRS), showed an increase in the drilling resistance (F ~ 16.5 256 

N (±1.43)) within the outer 2-3 mm of the sample. These results are also in line with STT results that show that IRS 257 

samples present higher superficial cohesion after treatment. However, the increase in the drilling resistance in IRS 258 

sample is close to the experimental error. 259 

 260 

Drilling resistance results for the marble samples are shown in Figure 4b and Table 5. The drilling resistance of the 261 

weathered layer (up to 10-12 mm deep) is lower than in the core of the sample. The drilling resistance average in 262 

the outer 10 mm of the stone is F ~ 37.4N (±11.35), while for the inner 10 mm is F ~ 53.5 N (±1.36). This result 263 

confirms that the formation of gypsum (CaSO4) (see section 2.1) decreased the compactness of the stone on the 264 

surface. The treated marble samples which were sprayed with carbonated water (MRS) yielded a significant 265 

increase in the drilling resistance of the external weathered layer (ΔF ~ 51.82%) up to 10 mm. In contrast, samples 266 
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kept in the same room conditions (<50%RH) but not sprayed (MR) did not present any increase in the drilling 267 

resistance. This result clearly shows that a regular input of moisture enhances the carbonation of nanolime when in 268 

low relative humidity environments. Additionally, results also suggest that the inner values, due to the lower 269 

weathering of samples, are not affected by the treatment. MR and MR55 treated samples obtained lower drilling 270 

resistance compared to the control samples, probably due to the presence of a thicker layer of gypsum on their 271 

surface compared to the control samples. Marble samples which were treated and kept at 75%RH (M75) developed 272 

the highest increase in drilling resistance on the external weathered layer (ΔF ~ 72.12 %). This confirms that a high 273 

relative humidity environment increases the nanolime effectiveness by providing a constant supply of moisture 274 

which enhances nanolime carbonation more than an intermittent input of moisture 275 

 276 

a)  277 

b)  278 

Figure 4. DRMS measurements of untreated (black line) and treated (colours) samples: a) Indiana limestone; b) marble 279 

 280 

Table 5. DRMS: experimental results  
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ICO 14.09 (±0.89) 15.49 (±0.62) 

IR 14.4 (±0.61) 15.41 (±0.76) 

IRS 16.06 (±1.43) 15.51 (±0.97) 

M-CO 37.42 (±11.35) 53.03 (±1.62) 

MR 30.20 (±7.89) 49.15 (±3.66) 

MRS 45.84 (±9.79) 57.38 (±1.72) 

M55 34.05 (±9.40) 53.56 (±1.83) 

M75 51.98 (±10.94) 58.76 (±1.62) 

 281 

 282 

Cross-sections of treated surfaces were examined by SEM. In the case of the Indiana limestone, treated and 283 

untreated samples presented no significant differences in terms of morphology, as it is difficult to distinguish 284 

between the newly formed calcite crystals from nanolime and the calcite from the limestone. However, SEM 285 

images suggest that some newly formed calcite crystals from nanolime are present in the IRS samples, which seem 286 

to present smaller size compared to the calcite from the limestone (Figure 5c). This would be in line with DRMS 287 

and STT results, which show that these samples present higher drilling resistance in the surface which is attributed 288 

to the higher presence of carbonated nanolime particles.   289 

 290 

a)   b)  291 

c)  292 

Figure 5. SEM images of Indiana Limestone samples all at 5,000X:  a) I-CO; b) IR; c) IRS, where the orange arrows point to 293 

probable calcite crystals from the nanolime. 294 

 295 
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SEM images of marble samples show some hexagonal plates of portlandite crystals in the core of the samples 296 

which were kept at room conditions (MR) and at 55%RH (M55) (Fig. 6a and 6b). SEM images also suggest the 297 

possible presence of some gypsum crystals (Fig.6a and 6b). In contrast, no portlandite crystals were observed in 298 

samples which were sprayed with carbonated water (MRS) or kept at 75%RH (M75). Furthermore, both MRS and 299 

M75 seem to have higher amount of calcite crystals in the pores, which present smaller crystal size than the marble 300 

grains (Fig 6b and 6d). These results suggest that the increase in strength and the reduction in porosity of both 301 

samples (MRS and M75) could be attributed to a higher carbonation degree of the lime nano-particles. Recent 302 

research studies showed that the carbonation of nanoparticles synthetized by this method (anion exchange resins) 303 

dispersed in alcohol solvents can take more than a month to occur in low RH environments (<50%RH) and at high 304 

concentrations (i.e. 25 g/L) [45, 46]. 305 

 306 

a)    b)  307 

c)    d)  308 

Figure 6. SEM images of treated marble samples all at 5,000X where the red arrows point to Portlandite, and the blue ones to 309 

gypsum crystals: a) M-CO: b) MR , c) M55, d) MRS, e) M7.  310 

 311 

 312 

The colorimetric analyses were carried out to evaluate the changes in L* (white-black parameter) and ΔE* (total 313 

colour variations) following treatment. Results (Table 6) show that all the treatments caused minor whitening of the 314 

stone surface with both ΔE* and ΔL* values above 5, apart from IR sample which resulted in both ΔE* and ΔL* 315 
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values <5. The whitening effect was slightly lower than that observed in the previous studies [14, 47]. This could 316 

be attributed to the fact that the application time  in the previous tests  was longer , resulting in an increased  317 

amount of nanolime deposition  on the surface [14,47]. These values are slightly higher than the threshold 318 

recommended for consolidation treatments [48]. However, despite the increase in both ΔE* and ΔL* values, a 319 

recent study found that the whitening effect induced by consolidations with nanolime slightly decrease to values 320 

which are not perceivable by naked eye after moisture and UV light exposure without compromising its mechanical 321 

properties [24].  322 

 323 

Table 6. Chromatic alterations for treated samples with regards to the control 

one.  
  

  ΔL* Δa* Δb* ΔE* 

IR 6.61 (±1.79) -0.74 (±0.04) -0.19 (±0.96) 6.65 

IRS 4.43 (±0.68) -0.59 (±0.13) -0.63 (±0.24) 4.51 

MR 2.26 (±0.43) -0.05 (±0.0.19) -1.37 (±3.46) 2.64 

MRS 2.95 (±3.31) -0.46 (±0.20) 1.81(±0.42) 3.49 

M55 1.18 (±1.93) -0.10 (±0.34) 1.32 (±0.66) 1.77 

M75 2.34 (±0.75) -0.55 (±0.12) 0.04 (±2.19) 2.4 

Mean Values determined on 30 measurements     

 324 

 325 

 326 

5 Conclusions 327 

This preliminary study has shown that nanolime can be used effectively for the consolidation of weathered marble 328 

stones with a gypsum surface layer. A solution of IP25 of nanolime synthetized by anion exchange processes is 329 

considered suitable for an in-situ application on the weathered marble sills of the west facade of the Reynolds 330 

Center, which houses both the Smithsonian’s National Portrait Gallery and the American Art Museum (Washington, 331 

D.C., USA). Nanolime may be applied during the wet season to increase the consolidation effectiveness, or, if  332 

applied during the dry season, marble surfaces should be sprayed regularly with carbonated water. In the case of the 333 

Indiana Limestone, which was not weathered, only a slight superficial consolidation was observed, although further 334 

research needs to be carried out on weathered samples.   335 

 336 

In both stones the treatments that involved exposure to high relative humidity or spraying (IRS, MRS and M75) 337 

yielded a slightly higher consolidation effectiveness. Both treatments successfully recovered the surface cohesion 338 

of the stones as measured by Scotch Tape Test (STT). The treated samples which were sprayed with carbonated 339 
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water (IRS and MRS) obtained a higher increase in the surface cohesion compared to samples kept in the same 340 

room conditions but without the addition of water by spraying. Marble samples kept at 75%RH obtained higher 341 

consolidating results than those kept at 55%RH which confirms that higher moisture conditions enhance the 342 

consolidation effectiveness. Drilling resistance results are in line with the STT results. Samples which were sprayed 343 

with carbonated water (IRS and MRS) obtained a higher increase in the drilling resistance in both types of stone 344 

than samples kept in the same environment without the input of moisture. IRS obtained a slight increase only in the 345 

outer 2 mm of the sample, whereas the consolidation in MRS stones occurred throughout the sample but especially 346 

in the outer 8 mm, where the weathered layer was consolidated. However, samples kept at 75%RH (M75) obtained 347 

the highest increase in drilling resistance of the external weathered layer. This suggests that a high relative 348 

humidity environment seems to increase the nanolime effectiveness by providing a constant supply of moisture 349 

which enhances nanolime carbonation more effectively than an intermittent input of moisture such as that provided 350 

by spraying.  Conversely, samples stored at room conditions (50% RH) and samples kept at 55%RH obtained the 351 

lowest drilling resistance due to a poorer carbonation rate. This could be associated with the reactivity of the 352 

nanoparticles. Recent research showed that the carbonation of nanoparticles synthetized by anion exchange resins, 353 

which are dispersed at high concentration (i.e. 25g/L) in pure alcohol solvents, can take more than a month to 354 

carbonate in low RH environments [46].  355 

 356 

Finally, these results suggest that for an on-site consolidation treatment with nanolime in dry environments, treated 357 

surfaces should be regularly sprayed with carbonated water to increase its consolidation effectiveness.   358 

 359 
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