
A Novel Method for Image and Video Compression based
on Two-Level DCT with Hexadata Coding

RODRIGUES, Marcos <http://orcid.org/0000-0002-6083-1303> and SIDDEQ,
Mohammed

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/26380/

This document is the Accepted Version [AM]

Citation:

RODRIGUES, Marcos and SIDDEQ, Mohammed (2020). A Novel Method for Image
and Video Compression based on Two-Level DCT with Hexadata Coding. Sensing
and Imaging, 21. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1

A Novel Method for Image and Video Compression based on Two-Level DCT

with Hexadata Coding

Mohammed. M. Siddeq
1
 and Marcos. A. Rodrigues

2

1NTU-Northern Technical University, Computer Engineering Dept., Kirkuk- IRAQ
2GMPR-Geometric Modelling and Pattern Recognition Research Group,

Sheffield Hallam University, Sheffield, UK
mamadmmx76@gmail.com, M.Rodrigues@shu.ac.uk

Abstract
In this paper a novel method for 2D image compression is proposed and demonstrated through

high quality reconstruction with compression ratios up to 99%. The proposed novel algorithm is

based on a two-level Discrete Cosine Transform (DCT) followed by Hexadata coding and

arithmetic coding at compression stage. The novel method consists of four main steps:1) A two-

level DCT is applied to an image to reinforce the low frequency coefficients and increase the

number of high frequency coefficients to facilitate the compression process; 2) The Hexadata

coding algorithm is applied to each high frequency matrix separately through five different keys

to reduce each matrix to 1/6 of their original size; 3) Build a probability table of original high-
frequency data required in the decoding step; and 4) Apply arithmetic coding to compress each

of the outputs of steps (2) and (3). At decompression stage, arithmetic decoding and a Fast

Matching Search Algorithm (FMS-Algorithm) decodes the high frequency coefficients of step

(2) using the probability table of step (3). Finally, two level inverse DCT is applied to decode the

high frequency coefficients to reconstruct the image. The technique is demonstrated on still

images including video streaming from YouTube. The results show that the proposed method

yields high compression ratios up to 99% with better perceptual quality of reconstructed images

as compared with the popular JPEG method.

Keywords: Image Compression, DCT, Hexadata Coding (HD-Coding).

1. Introduction
JPEG [1], [2] is the most widely used technique for image compression. It consists of simple steps and efficient

hardware and software implementations of JPEG are widely available. Although JPEG was first developed for 2D
image compression, it is also commonly used for encoding document-images (i.e. documents consisting of multiple

images). Unfortunately, document-images encoded by the JPEG algorithm show blocks of artefacts at higher

compression ratios [3,4]. Such artefacts significantly reduce the visual quality and clarity of the text, graphics and

images when decompressed. Recently, several new coding methods have been developed for image compression [5].

However, the encoding processes of these methods are also ultimately more complex than the JPEG algorithm. For

this reason, the JPEG algorithm remains the preferred coding method for image, document-image and video

compression, and especially firmware systems [6,7].

The contribution of this research is to introduce and demonstrate a new method for image compression based on

two-level DCT with Hexadata coding and arithmetic coding. The novelty of the proposed Hexadata compression

algorithm is to reduce coefficients in high-frequency matrices. A common knowledge in data compression is that
unrepeated coefficients or unrepeated sequences make it more difficult to compress data and, for this reason, the

novel proposed method helps out by squeezing six data items into a single value. This new idea is successfully

demonstrated on different types of high-quality images.

The advantages of the method are the elimination of block artefacts, high compression ratios and high perceptual

quality of the decoded images. This is contrasted with the JPEG technique whose main problem is very low visual

mailto:mamadmmx76@gmail.com
mailto:M.Rodrigues@shu.ac.uk

2

quality at higher compression ratios due to block artefacts and reduced colour level. Experiments described in

Section 6 show the superiority of the proposed method as compared to JPEG.

The steps in the proposed compression algorithm are illustrated in pseudocode as follows:

 Hexadata coding algorithm in pseudocode:

//Read image from disk:

img = read_image(path);

//Break image into non-overlapping blocks:

xBlock = divide_image_into_blocks(img);

//First level DCT:

bDCT = apply_DCT_to_each_block(xBlock);

bDCT_Q=Quantization_Process(Factor, bDCT);

//DC and AC coefficients are kept into separate matrices:

[DC1_Matrix, AC1_Matrix] = extract_DC_AC_coefficients(bDCT_Q);

//Divide DC1 matrix into non-overlapping blocks:

xBlock2 = divide_DC_matrix_into_blocks(DC1_Matrix);

// Second level DCT:

bDCT2 = apply_DCT_to_each_row(xBlock2);

bDCT2_Q=uniform_Quantization_Process(K, bDCT2);

 // For each row save DC values as array and AC as concatenated matrix:

[DC2_Array, AC2_Matrix] = extract_DC_AC_coefficients(bDCT2_Q);

// Apply Hexadata and arithmetic coding algorithms:

[AC_Encoding1] = HexaDataCoding(AC1_Matrix);

 [Compression_Level1] = ArithmeticCoding(Encoding1);

[AC_Encoding2] = HexaDataCoding(AC2_Matrix);

 [Compression_Level2] = ArithmeticCoding(Encoding2);

[Compression_Level3] = ArithmeticCoding(DC2_Array);

SaveCompressedData(Compression_Level1,Compression_Level2,Compression_Level3);

The rest of the paper is organized as follows. Section 2 introduces the Hexadata (HD) compression method, Section

3 elaborates on the two-level DCT, Section 4 describes the decompression steps, Section 5 presents experimental

results, Section 6 shows a comparative analysis with JPEG mainly from a visual perceptual quality assessment, and

finally Section 7 presents conclusions from the current study.

2. The Hexadata Compression Method
The Hexadata compression as proposed in this paper is applied to high frequency coefficients obtained from the
DCT. The proposed method is based on converting 6 data items to a single value using 5 different keys. Figure 1

represents the data flow.

Figure 1: The Hexadata coding algorithm converts a set of original data to a stream of compressed data. The

compression keys K1 … K5 are randomly generated.

The following steps illustrate the Hexadata compression method:

 Original data

Key=[K1,K2,K3,K4,K5]

Hexadata

Compression
Compressed data

3

Step 1: The method reduces each group of six data items to a single value; this single value can be seen as a

compressed-encrypted data as without knowing the compression keys the original data cannot be recovered.

The process is thus, based on a set of five different keys applied to the data hierarchically. The following

equation represents the first stage of Hexadata compression:

𝐸(𝑖) = 𝐾1 × 𝐷(𝑛) + 𝐾2 × 𝐷(𝑛 + 1) + 𝐾3 × 𝐷(𝑛 + 2) (1)

Where E(i) is the encoded output from the stream of original data D(n). The keys K1, K2, K3 are randomly

generated and i is the index of encoded data items.

Step 2: The output from step 1 is converted to another stream of encoded data by multiplying each two values

by their respective second level keys as shown in Figure 2 through the following equation:

𝑋(𝑗) = 𝐾4 × 𝐸(𝑖) + 𝐾5 × 𝐸(𝑖 + 1) (2)

Where X(j) is the final compressed output from previous encoded data E(i) and K4, K5 are the randomly

generated second level compression keys. Now the final encoded data are stored with index j.

Figure 2: The Hexadata compression algorithm: compression keys are hierarchically applied to the data.

The reason we refer to the proposed algorithm Hexadata (HD) compression is because the length (number of

items) of an array is minimized to 1/6 of their original length as each six items of data are converted to a single

value. The key values K1, K2, K3, K4 and K5 are generated by a key generator algorithm according to the

following steps [11,12]:

M = (max(data))/2; // max value of array to be compressed

K1 = 1; // set first 0 < key <=1

K2 = K1+M+F; // Where F >=1 is an integer scaling factor.

K3 = F*M*(K1+K2); // Where * is the multiplication operator.

K4 = rand; // second level keys randomly generated by

K5 = rand; // random function range=[0 – 1].

4

Figure 3: Illustration of the proposed Hexadata compression applied to a sample of high-frequency data.

3. The Two-level DCT Method
Siddeq and Rodrigues used two different types of discrete transforms (DWT and DCT) since 2014 reported in

various publications [8-12]. The rationale behind using different transformations is to try and increase the number of

high-frequency coefficients as these can help increasing compression ratios without loss of quality. In this research

we apply the DCT [1,2] twice as it is a very efficient transformation capable of producing the sought high-frequency

coefficients. The reason behind applying DCT twice is similar to DWT combined with DCT, as mentioned above in

previous research. In practical terms, we show in this paper that applying DCT twice increases the number of high-
frequency coefficients with reduced number of low-frequency coefficients, which is one of the advantages of the

DCT we want to fully exploit.

Lossy image compression methods make use of quantization that can be of many types such as scalar, uniform and

dot-division matrix [5]. Our method is based on dot-division matrix, with a quantization matrix n × n containing

data generated through Equation 3. The proposed compression algorithm begins by dividing an image into non-

overlapping n × n blocks (n ≥ 8) and then apply the DCT to produce de-correlated coefficients [3,4] followed by the

proposed quantization equation:

𝑄(𝑖,𝑗) = {
1, 𝑖 𝑎𝑛𝑑 𝑗 = 1
𝐿, 𝑖 𝑎𝑛𝑑 𝑗 ≠ 1

 (3)

Where i,j=1,2,…,n and the quantization factor is an integer L≥1. Each of n×n blocks are quantized by Eq. (3) using

dot division matrix followed by truncation of the result. The main reason to use this type of quantization is to

remove insignificant coefficients and increases the number of zeros in each block. The parameter L main role is to

increase or decrease the quality of an image. Thus, image details are reduced as the value of L increases. The range

of L depends on the maximum absolute value of DCT coefficients; thus, there is not a fixed limit for the factor L.

After the transformation, each block in the frequency domain consists of a DC-component at location (0,0)

representing the average value of the samples in the block while all other coefficients are called the AC coefficients.

Each DC-coefficient is saved into a one-dimensional array called the DC_array, whose size is thus, the number of
DC-coefficients in the image. The array is then divided into m sub-arrays (m ≥ 8) and each sub-array is transformed

by a one-dimensional DCT followed by a thresholding by the linear equation q(i)=K to remove insignificant

coefficients. We recommend using K ≥ 2 so not to lose fine details in the image. The reason to use a double DCT in

the sequence as described here is to increase the number of high-frequency components and reduce the DC-

components to a minimum. After this stage, all DC components are compressed by arithmetic coding.

Please note that only the AC coefficients are encoded by the Hexadata algorithm and then Arithmetic Coding, which

is a lossless transformation, plays an important role in helping to increase compression ratios significantly [15]. All

Hexadata coded data are then subject to arithmetic coding. Figure 3 illustrates the proposed method.

5

As part of Hexa-data coding, a probability table is built representing a set of unique input data. This table is required

at decompression stage. Figure 4 illustrates the probability data for some encoded data. We stress that sorting

ascending is a very important step in the proposed method to speed up decompression, as a binary search method is

used to determine the original data items composed of a single compressed value. For the same reason of speeding

up decompression, the relevant 6 data items are saved in the probability table side-by-side with the compressed data.

Figure 4: Illustration of probability table for compressed data. The input data is defined from Figure 3.

Figure 5: Proposed data transformations by two-level DCT and Hexadata Coding algorithm

Split DC value from each

array [1 x m] Second level of DCT applied
to each array [1 x m] of

DC-Matrix.

Block Block
nxn nxn

Block Block
nxn nxn

Block Block
nxn nxn
 .
 .
 .

 Split the image into blocks [n x n, first level
DCT applied to each blocks [n x n]
]

Split DC value from each

block [n x n]

Hexadata compression applied to the
High-frequency (AC’s coefficients)
matrix. Using Arithmetic Coding to
compress the final encoded high-
frequency coefficients

DC2-Array compress by
using Arithmetic
Coding

Input 2D image

DC1 DC2 DC3 DC4 DC5. . .DCP

Ac1 Ac2 ... Ac7

Ac1 Ac2 ... Ac7

Ac1 Ac2 ... Ac7

Ac1 Ac2 ... Ac7

Ac1 Ac2 Ac3 ... Acm

Ac1 Ac2 Ac3 ... Acm

Ac1 Ac2 Ac3 ... Acm

 .
 .
 .

Ac1 Ac2 Ac3... Acm

DC1 DC1

DC1

DC1

AC-Matrix

AC2-Matrix

DC2-Array
DC-Matrix

6

4. The Decompression Algorithm
To decode the data, we reverse the compression steps. Decompression begins with arithmetic decoding then

matching each compressed data with the outputs in the probability table. Thereafter, if the match is successful, the

result will be the relevant 6 data items representing the decoded data. The method comprises a binary search within

the probability table. Figure 6 illustrates the decoding steps. A Fast Matching Search algorithm based on binary

search compares, at every iteration, the estimated values (i.e. the possible decoded values) of the data items with the

items at the middle of the probability table. The probability table is split into 2, then each half (left or right) split into

2 again and so on. If the result matches then the estimated data items are the relevant 6 data representing the

decompressed data. Otherwise, if the estimated value is less than the one obtained from the probability table, then

the algorithm start searching again on the left sub-array or on the right sub-array if the value is greater [13]. There is

no possibility of “Not Matched”, because all the probabilities have been saved in the probability table at

compression stage. This decoding method runs much faster than our previous algorithm proposed in the Patent WO

2016/135510A1 [14].

Figure 6: Reversing the Hexadata algorithm at decompression.

The inverse Hexadata algorithm is based on binary search algorithm, where matches in the probability table

represent the decoded data. All high-frequency coefficients are decompressed by the inverse Hexadata algorithm and

combined with the decompressed DC values (i.e. DC values decompressed by arithmetic decoding). The inverse

DCT is then applied to the combined data obtaining the DC components. Similarly, the decoded DC components are

combined with the decompressed high-frequency values followed by an inverse two dimensional DCT to obtain the

original decompressed image. The decompression algorithm is illustrated in Figure 7.

5. Experimental Results
The proposed algorithm was implemented in MATLAB R2014a running on an Intel Core i7-3740QM

microprocessor (8-CPUs) with Video card: GTX 960 NVIDIA. Before compression, we transform the RGB colour

image to YCbCr format, which is used by most image compression algorithms for efficiency reasons [1,2]. Also,

most image information is present in the first layer “Y” called brightness, while other components of “CbCr”
contain less information about the image [3] and can be compressed more aggressively.

In this section we describe results in two parts:

1) We apply the method to general 2D images of different sizes and evaluate the quality of the images and their

RMSE and SSIM [19].

2) We apply the proposed compression and decompression technique to a stream of video images.

Table 1 shows the first part of results by applying the compression method to four selected images shown in Figures

8, 9, 10 and 11.

7

Table 1: Compressed and Decompressed images by our approach.

Image
 Name

Original
Image Size

(MB)

1
st

 Level
DCT block

size

2
nd

 Level
DCT

data size

Quantization Factor
CR:1

Compressed
Size
(KB)

RMSE SSIM
Y Cb Cr

Girl

High Quality 19.7 32 x 32 8 5 20 20 57 353 1.43 0.97

Medium Quality 19.7 32 x 32 8 10 40 40 109 184 1.59 0.98
Low Quality 19.7 32 x 32 8 30 70 70 248 81.1 2.04 0.82

Backyard

High Quality 48.2 32 x 32 8 9 10 10 18 2.59 3.2 0.91

Medium Quality 48.2 64 x 64 8 20 20 20 99 495 7.3 0.899

Low Quality 48.2 64 x 64 8 20 20 20 178 276 8.2 0.892

BMW

High Quality 38.7 32 x 32 8 20 50 50 46 854 4.8 0.893

Medium Quality 38.7 32 x 32 8 50 150 150 78 504 7.4 0.886

Low Quality 38.7 64 x 64 8 10 20 20 149 265 9.2 0.878

Big Ben
High Quality 28.5 32 x 32 8 50 50 50 41 706 6.9 0.95

Medium Quality 28.5 32 x 32 8 100 100 100 75 389 9.5 0.881

Low Quality 28.5 64 x 64 8 150 200 200 116 251 12.1 0.81

Note that the total compressed image sizes in Table 1 include the probability table which is saved in the header file

(see Figure 4). The information in the probability table is needed at decompression stage and it can be used as part

of an encryption key for security applications as, without this information, the image is un-recoverable. CR in Table

1 refer to Compression Ratio [2]

Figure 7: Steps in the proposed decompression algorithm

Compressed
Data

Inverse Hexa-data Algorithm
To decompress high-frequencies

coefficients

Decoded DC values by

Arithmetic Decoding
Inverse DCT applied to

re-generate new DC values

DC1 Ac1 Ac2 ... Acm

DC2 Ac1 Ac2 ... Acm

DC3 Ac1 Ac2 ... Acm

 .
 .
 .
 .

DCk Ac1 Ac2 ... Acm

Inverse Hexa- Data Algorithm
To decompress high-frequencies

coefficients

Inverse DCT applied on each

block to reconstruct

decompressed 2D image

Decoded Hexa

data by Arithmetic

Decoding

Decoded Hexa data by

Arithmetic Decoding

8

Compression ratio= 0.0175, RMSE=1.43 Compression radio=0.0091, RMSE=1.59

Compression ratio= 0.004, RMSE=2.04

Figure 8: Decompressed image by our approach: (left-top) represents high quality decompressed

image with RMSE=1.43 by keeping most of details of the image, (Right-top) medium image quality

RMSE=1.59 by removing some high-frequencies coefficients, which is not much different from

previous decompressed image, (Middle-down) decompressed image and RMSE=2.04 which is a lower

quality image as quantization removes some details from the low and high-frequency coefficients.

Degradation (block artefacts) show in the zoomed in image.

9

RMSE=3.2 RMSE=7.3 RMSE=8.2

 Compression Ratio=0.053 Compression Ratio=0.01 Compression Ratio=0.0055

Zoomed-in part of the decompressed Backyard images

Figure 9: Decompressed image by our approach. Left column: high quality decompressed image with

RMSE=3.1 by keeping low-frequency details and most of high-frequency details. Middle column:

medium image quality with RMSE=7.3 part of high-frequencies coefficients removed by quantization

process, which is not much different from the original image. Right column: decompressed image with

RMSE=8.2 represents a lower quality image as quantization removes some details of the low and most

of high-frequency coefficients. Moreover, the DCT block size varies according to image quality; this is

to demonstrate the ability of our proposed algorithm of using different block sizes.

Compression Ratio=0.02, RMSE=4.8

10

Compression Ratio=0.012, RMSE=7.4

Compression Ratio=0.0066, RMSE=9.2

Zoomed-in part of the decompressed BMW images

Figure 10: Our approach compresses a high-resolution 2D image to over 99%. Top row: represents

decompressed 2D image with RMSE=4.8 still a high-resolution image. Middle row: decompressed 2D

image with RMSE=7.4, in this stage most of high-frequencies are removed and some low-frequency

data are changed. Although the RMSE is larger than previous value, image details are still preserved.

Bottom row: decompressed image with RMSE=9.2 is a lower quality reconstruction.

Compression Ratio=0.024, RMSE=6.9

11

Compression Ratio=0.013, RMSE=9.5

Compression Ratio=0.008, RMSE=12.1

Figure 11: Decompressed image by our approach. Top row: high quality decompressed image with

RMSE=6.9 by keeping low-frequency details and most of high-frequency details with quantization

factor (L=50). Middle row: medium image quality with some degradation with RMSE=9.5and high-

frequency coefficients partially removed by quantization factor (L=100). Bottom row: decompressed

image with RMSE=12.1is a lower quality image as some details of the low and most of high-frequency

coefficients are removed by quantization. This level of compression (over 99%) shows block artefacts.

Having demonstrated the algorithm for still images, we turn our attention to video compression. Table 2 illustrates

results of the proposed method. The quality of video is largely dependent on the quantization factor used and the DCT

block size. In general, it can be stated that the larger the quantization factor the lower the quality of the image, and the

smaller the DCT block the higher the quality of the image. Two video sequence samples are shown in Figures 12 and

13.

12

Table 2: Video compression and decompression by our approach applied to YCbCr layers to each image

independently.

Video
Name

Original
 video Size

(MB)

Number of
frames

Each
image size

(MB)

1
st

 Level
DCT block

size

2
nd

 Level
DCT

data size

Quantization
 Factor

CR:1
Compressed
Video Size

(MB)

Average
 RMSE

 Average
SSIM

Y Cb Cr

Video_1

379.52 64 5.93 32x32 16 15 35 35 391 0.97 1.7 0.972

379.52 64 5.93 64x64 16 35 45 45 387 0.98 2.29 0.951

379.52 64 5.93 64x64 16 50 50 50 412 0.92 2.67 0.92

Video_2

336.6 128 2.63 32x32 16 10 25 25 369 0.91 2.7 0.93

336.6 128 2.63 16x16 8 50 100 100 374 0.899 5.2 0.88

336.6 128 2.63 16x16 16 100 150 150 391 0.892 7.4 0.789

Note that on video compression quoted in Table 2 each frame is compressed independently and each frame has its

local information (keys, probability table). Therefore, each compressed frame includes its local information

independently. The reason behind using different block sizes of 16x6 and 8x8 is to show the ability of our proposed

method to compress images at higher compression ratios using different block sizes. Changing block sizes can

reduce the DC-components and increase the AC-coefficients as shown by our experiments. Comparing with the

JPEG algorithm, the fact that JPEG is fixed on one level DCT and on block size of 8x8 is a handicap leading to

lower image quality at high compression ratios.

Frame1 Frame 2 Frame 3 Frame 4 Frame 5

...
Frame 6.... Frame 38 Frame39 Frame 40 Frame 41

Frame 42 Frame 43 Frame44 Frame 45 Frame 46

Frame 47 Frame 48 Frame49 Frame 50 Frame 51

Frame 52 Frame 53 Frame 54 Frame 55 Frame 56

Frame 57 Frame 58 Frame 59 Frame 60 Frame 61

13

Frame 62 Frame 63 Frame 64

(a). Decompressed Video_1 consist of 64 frames, average RMSE =1.7

Frame 57 Frame 58 Frame 59 Fram e 60 Frame 61

Frame 60 Frame 61 Frame 62 Frame 63 Frame 64

(b). Shows last 10 frames from the decompressed Video_1, average RMSE=2.29

14

Frame 57 Frame 58 Frame 59 Fram e 60 Frame 61

Frame 62 Frame 63 Frame 64

(c). Shows last 10 frames from the decompressed Video_1, average RMSE= 2.67

Figure 12: Decompressed video "Behind Enemy Lines Movie CLIP (2001) HD". (a) Shows decompressed video

with average RMSE for 64 frames at 1.7, and compression ratio of 0.989. (b) Shows just the last 10 frames from the

decompressed video for comparison with previous frames in (a). Some degradation is observed in the decompressed

and the average RMSE for 64 frames is 2.29 yielding compression ratio of 0.993. (c) RMSE =2.67 for all frames.

The last 10 frames show degradation in the decompressed video. The degradation is negligible in comparison with

previous decompressed frames in (b). The compression ratio is 0.995.

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6 Frame 7 Frame 8 Frame 9 Frame 10

...
Frame 11 Frame 12 Frame 101 Frame 102 Frame 103

Frame 104 Frame 105 Frame 106 F rame 107 Frame 108

15

Frame 109 Frame 110 Frame 111 Fr ame 112 Frame 113

Frame 114 Frame 115 Frame 116 Frame 117 Frame 118

Frame 119 Frame 120 Frame 121 Fr ame 122 Frame 123

Frame 124 Frame 125 Frame 126 Fr ame 127 Frame 128

(a). Decompressed Video_2consist of 128 frames, average RMSE =2.7

Frame 111 Frame 112 Frame 113 Frame 114 Frame 115

Frame 116 Frame 117 Frame 118 Frame 119 Frame 1 20

Frame 121 Frame 122 Frame 123 Frame 124 Frame 125

16

Frame 126 Frame 127 Frame 128

(b). Shows just the last 18 frames of 128 decompressed Video_2 frames, average RMSE =5.2

Frame 112 Frame 113 Frame 114 Frame 115 Frame 116

Frame 117 Frame 118 Frame 119 Frame 120 Frame 121

Frame 122 Frame 123 Frame 124 Frame 125 Frame 126

Frame 127 Frame 128

(c). Shows just the last 18 frames of 128 decompressed Video_2 frames, average RMSE =7.4

Figure 13: Decompressed video "MotoGP™_Indianapolis_2014_Best_slow_motion". (a) Shows the

decompressed video for 128 frames with average RMSE=2.7, and video compression ratio of 0.942. (b) Shows just

the last 18 frames from the decompressed video for comparison with previous decompressed frames in (a), some

17

degradation appeared in the decompressed video. The average RMSE for 128 frames is 5.2 and compression ratio of

0.982. (c) Shows the last 18 decompressed frames which shows some degradation with RMSE of 7.4and

compression ratio of 0.989 (i.e. the degradation appears only after zooming-in).

6. Comparison with the JPEG Technique
The JPEG technique applied to the images and videos used in Section 5 yields good visual quality with lower

compression complexity. However, the JPEG technique is unable to produce good visual quality at higher

compression ratios, as the quality of the image is significantly degraded [15, 16]. Meanwhile the colour levels are

reduced; in other words, real greyscales are lost yielding unreal 2D images. Figures 14, 15 and 16 show a

comparison between JPEG and the proposed HD coding compression technique. The comparison is based on visual

properties at higher compression ratios.

 JPEG, RMSE=10.2, compressed size=112KB

HD-Coding, RMSE=2.04, compressed size=80.1KB

JPEG, RMSE=16.5, compressed size=295KB

HD-Coding, RMSE=8.2, compressed size=276KB

JPEG, RMSE=11.8, compressed size=303KB

HD-Coding, RMSE=9.2, compressed size=265KB

18

JPEG, RMSE=15, compressed size=261KB

HD-Coding, RMSE=12.1, compressed size=251KB

Left column: compressed and decompressed images by JPEG technique compared with our proposed HD coding

(right column) at higher compression ratios. The JPEG technique could not reach the expected compressed size,

also degradation clearly appears in the images. The JPEG compression reduces the colour levels in the image for

higher compression ratios, and this affects image quality.

Figure 14: Visual quality comparison between JPEG and our proposed HD coding technique.

(a) As we can see samples of "Video_1" compressed by JPEG technique (i.e. each image compressed

independently, total compressed video size= 2.31 Mbytes, Average RMSE = 11.5).

19

(b) Samples of "Video_1" compressed by our proposed technique HD-Coding (i.e. each image compressed

independently, total compressed video size= 1.99 Mbytes), Average RMSE = 7.4. (See Table 2)

Figure 15: (a) shows the decompressed Video_1 by JPEG at higher compression ratio, the stream of the images is

completely degraded, especially the details on the face. (b) Decompressed same video at higher compression ratio,

we can clearly recognize the face of the actor and the expression on his face.

(a) As we can see samples of "Video_2" compressed by JPEG technique (i.e. each image compressed

independently, total compressed video size= 4.0 Mbytes, average RMSE = 6.8).

20

(b) Samples of "Video_2" compressed by our proposed HD coding technique (i.e. each image compressed

independently, total compressed video size= 4.05 MB), average RMSE = 7.4 (see Table 2).

Figure 16 (a) shows the decompressed Video_2 by JPEG at higher compression ratio, the stream of the images is

slightly degraded. (b) Decompressed same video at higher compression ratio, we cannot identify degradations, but

the RMSE is slightly higher than JPEG's RMSE, which means mathematically (i.e. according to RMSE rules) JPEG

is better than our approach in this case.

Additionally, we applied our proposed algorithm to three greyscale images which are very popular in digital image

compression [2,3] providing thus, a direct comparison for common images used in the literature. Table 3 and Figure

17 shows results of our proposed algorithm for greyscale images while Figure 18 shows results for JPEG

compression.

 Table 3: Compressed greyscale images at higher compression ratios by our proposed method

Image
Name

Original
Image Size

1st Level DCT
block size

2nd Level DCT
data size

Quantization
Factor

CR:1

Compressed
Size

RMSE SSIM

Lena 1.0 MB 16x16 8 70 32 31.6 KB 4.79 0.776

Woman 256 KB 8x8 8 50 9 26.1 KB 14.01 0.678

Apples 1.37 KB 32x32 8 70 55 25.2 KB 4.29 0.808

The comparison between JPEG and our proposed method in Figures 15 and 16 are based on the RMSE and higher

compression ratios. Our proposed algorithm shows superior performance to JPEG compressing Lena and Apples

images while for the Woman image JPEG is the winner. This means our proposed algorithm works very well for

larger images or more complex images (>=1 MB) as the proportion of high frequency components increases.

21

Lena Compressed size=31.6 KB, Women Compressed size=26 .1 KB, Apples Compressed size=25.2 KB

(Compressed images by our proposed method)

Figure 17: Our method: (Left): Lena's image compressed by our method with RMSE=4.79, (Middle) Woman's

image with RMSE=14.01, (Right) Apple's image with RMSE=4.29.

Lena Compressed size=32.1 KB, Women Compressed size=24 .4 KB, Apples Compressed size=29 KB

(Compressed images by JPEG technique)

Figure 18: JPEG method: (Left) Lena's image compressed by JPEG with RMSE=5.9, (Middle) Woman's image

with RMSE=9.3, (Right) Apple's image with RMSE=6.4.

A further comparison with previous work of Siddeq and Rodrigues which was based on two discrete transformations

DWT and DCT is made here. Note that a main disadvantage of previous work is the complexity of the compression

algorithms [9,10,11]. Table 4 shows the compression ratio for the Minimize-Matrix-Size algorithm (previous work

[10,11,14]) compared with our proposed approach described in this paper. It is important to stress the novelties of

the proposed approach which are the reduced number of steps at compression and decompression stages, resulting in

faster reconstruction from compressed data with higher compression ratios. Additionally, the compression is

intrinsically more secure with five different keys which presents an advantage to image compression of security

sensitive images and videos.

22

Table 4: Comparison Matrix Minimisation algorithm with our proposed Algorithm

Image
Name

Original Image
Size

Matrix Minimisation
algorithm (previous work [10,11,14])

Our proposed

Algorithm

CR:1
Compressed

Size
RMSE SSIM CR:1

Compressed
Size

RMSE SSIM

Lena (Greyscale) 1.0 MB 10 99 KB 3.8 0.781 32 31.6 KB 4.79 0.776

Woman
(Greyscale)

256 KB
3

67 KB 4.7 0.729
9

26.1 KB 14.01 0.678

Apples
(Greyscale)

1.37 KB
25

56 KB 2.3 0.854
55

25.2 KB 4.29 0.808

Girl
(Colour)

19.7 MB
34

582 KB 1.7 0.91
248

81.1 KB 2.04 0.82

Back yard
(Colour)

48.2 MB
25

1.9 MB 4.8 0.902
178

276 KB 8.2 0.892

BMW
(Colour)

38.7 MB
32

1.2 MB 5.9 0.891
149

265 KB 9.2 0.878

Big Ben
(Colour)

28.5 MB
32

906 KB 7.9 0.85
116

251 KB 12.1 0.81

Video_1
(Colour)

379.52 MB
35

10.8 MB
3.9

(Average
RMSE)

0.831
190

1.99 Mbytes
(Compressed

Video Size)

2.67
(Average

RMSE)
0.92

Video_2
(Colour)

336.6 MB
28

12 MB
6.9

(Average
RMSE)

0.792
83

4.04 Mbytes
(Compressed

Video Size)

7.4
(Average

RMSE)
0.789

To summarize the comparative analysis, results show that our proposed compression algorithm is capable of

compressing images at higher compression ratios over 99% with no substantial degradation. In other words, it can

compress to higher compression ratios than the JPEG technique and our previous work. However, the length of the

compressed information placed at the header file required at decompression stage (e.g. the probability table which

can be quite large) negatively affect file sizes.

The main contributions of the proposed method are highlighted as follows.
A- Faster than and with higher compression ratios than our previous work [10,11,14]. The main reason is that

search runs sequentially in previous work with decoding time from seconds to minutes depending on the

size of image. In the work presented here, decoding times are less than a second to a few seconds
depending on the size of the image.

B- Images are compressed using five different keys while in our previous work we used three different keys.

This means that the proposed method has higher security credentials than previous work as keys can be

used as password protecting the file.

7. Conclusion
This paper presented a new method for image and video compression and demonstrated the quality of compression

through RMSE and visual quality of reconstructed images. Similar to JPEG technique which is based on the DCT,

our proposed HD coding method is based on a two-level DCT, and is significantly different from JPEG in the way

the transformations are applied. It embodies a number of additional steps at compression stage where the most

important and significant ones are the compression of high frequency data by the Hexadata algorithm, leading to
increased compression ratios, and the coding of the data by using five different keys which are generated by a key

generator.

At decompression stage, a binary fast matching search algorithm is used to recover the high-frequency matrix, using

the same five symmetric keys (i.e. the same keys used in the compression steps). Another feature of the algorithm is

its reduced complexity making it much faster than any of our previous work. The results demonstrate that the

23

approach yields high image quality at high compression ratios compared with JPEG technique and our previous

work. Furthermore, it is demonstrated that it is able to reconstruct video frames at high compression ratios.

On the down side, the complexity of HD coding method with multiple steps is greater than that of existing codecs

such as JPEG due to the coding of each six items of data which also increases the execution time for large images.

We are working on increasing the compression ratio of header file information and on increasing performance
through concurrent programming techniques and results will be reported in the near future.

As future work, we intend to address the issue of security by protecting the generated keys (and perhaps some

further information from the header such as probability table) by encrypting those with standard algorithms such as

AES which are proven methods. This would make the proposed method a per-file compression technique with

partial encryption as, without the encrypted information, data cannot be recovered.

References
[1] I.E. G. Richardson (2002), Video Codec Design, John Wiley &Sons.

[2] K. Sayood (2000), Introduction to Data Compression, 2nd edition, Academic Press, Morgan Kaufman Publishers.

[3] R. C. Gonzalez and R. E. Woods (2001), Digital Image Processing, Addison Wesley publishing company.

[4] Yaqin Xie, Jiayin Yu,Shiyu Guo,Qun Ding and Erfu Wang (2019), Image Encryption Scheme with Compressed Sensing
Based on New Three-Dimensional Chaotic System, Entropy 2019, 21(9), 819; https://doi.org/10.3390/e21090819.

[5] Md. Ahasan Kabir and M. Rubaiyat Hossain Mondal (2018), Edge-Based and Prediction-Based Transformations for
Lossless Image Compression, Journal Imaging 2018, 4(5), 64; https://doi.org/10.3390/jimaging4050064 - 04 May 2018

[6] Jose Balsa,Tomás Domínguez-Bolaño,Óscar Fresnedo,José A. García-Naya andLuis Castedo (2019), Transmission of
Still Images Using Low-Complexity Analog Joint Source-Channel Coding, Sensors 2019, 19(13), 2932;
https://doi.org/10.3390/s19132932 - 03 Jul 2019

[7] Halah Saadoon Shihab, Suhaidi Shafie, Abdul Rahman Ramli and Fauzan Ahmad (2017). Enhancement of Satellite
Image Compression Using a Hybrid (DWT–DCT) Algorithm. Sens Imaging (2017) 18: 30.

https://doi.org/10.1007/s11220-017-0183-6

[8] M.M. Siddeq and G. Al-Khafaji (2013), Applied Minimize-Matrix-Size Algorithm on the Transformed images by DCT
and DWT used for image Compression, International Journal of Computer Applications, Vol.70, No. 15.

[9] M.M. Siddeq and M.A. Rodrigues (2014) A Novel Image Compression Algorithm for high resolution 3D Reconstruction,
3D Research. Springer Vol. 5 No.2.DOI 10.1007/s13319-014-0007-6

[10] M.M. Siddeq and Rodrigues, Marcos (2015). Applied sequential-search algorithm for compression-encryption of high-
resolution structured light 3D data. In: BLASHKI, Katherine and XIAO, Yingcai, (eds.) MCCSIS: Multiconference on
Computer Science and Information Systems 2015. IADIS Press, 195-202

[11] M.M. Siddeq and Rodrigues Marcos (2015). A novel 2D image compression algorithm based on two levels DWT and
DCT transforms with enhanced minimize-matrix-size algorithm for high resolution structured light 3D surface
reconstruction. 3D Research, 6 (3), p. 26. DOI 10.1007/s13319-015-0055-6

[12] Siddeq, Mohammed and Rodrigues, Marcos (2017). A Novel High Frequency Encoding Algorithm for Image
Compression. EURASIP Journal on Advances in Signal Processing, 26. DOI: 10.1186/s13634-017-0461-4.

[13] Knuth, Donald (1997),Sorting and Searching: Section 6.2.1: Searching an Ordered Table, The Art of Computer
Programming 3 (3rd Ed.), Addison-Wesley. pp. 409–426. ISBN 0-201-89685-0

[14] Sheffield Hallam University, Mohammed M Siddeq, and Marcos A Rodrigues (2016). Image Data Compression and
Decompression Using Minimize Size Matrix Algorithm. WO 2016/135510 A1.

[15] ShuyunYuan, Jianbo Hu (2019). Research on image compression technology based on Huffman coding, Journal of
Visual Communication and Image Representation Volume 59, February 2019, Pages 33-38

[16] Peiya Li, Kwok-Tung Lo (2019). Joint image encryption and compression schemes based on 16 × 16 DCT, Journal of
Visual Communication and Image Representation. Volume 58, January 2019, Pages 12-24

[17] YouTube (2019), Behind Enemy Lines (3/5) Movie CLIP HD.https://www.youtube.com/watch?v=XFdEntyO6TY, last
access Jan-2019.

[18] YouTube (2019), MotoGP™ Indianapolis 2014 -Slow motion.https://www.youtube.com/watch?v=XFdEntyO6TY, last
access Feb-2019.

[19] Wang Zhou, Bovik, Alan C., Sheikh, Hamid R., and Simoncelli, Eero P (2004). Image Quality Assessment: From Error
Visibility to Structural Similarity. IEEE Transactions on Image Processing, Volume 13, Issue 4, pp. 600–612, April 2004

https://www.mdpi.com/search?authors=Yaqin%20Xie&orcid=
https://www.mdpi.com/search?authors=Jiayin%20Yu&orcid=
https://www.mdpi.com/search?authors=Shiyu%20Guo&orcid=
https://www.mdpi.com/search?authors=Qun%20Ding&orcid=
https://www.mdpi.com/search?authors=Erfu%20Wang&orcid=
https://doi.org/10.3390/e21090819
https://www.mdpi.com/search?authors=Md.%20Ahasan%20Kabir&orcid=
https://www.mdpi.com/search?authors=M.%20Rubaiyat%20Hossain%20Mondal&orcid=0000-0002-8582-9197
https://www.mdpi.com/2313-433X/4/5/64
https://www.mdpi.com/2313-433X/4/5/64
https://doi.org/10.3390/jimaging4050064
https://www.mdpi.com/search?authors=Jose%20Balsa&orcid=0000-0002-1520-3279
https://www.mdpi.com/search?authors=Tom%C3%A1s%20Dom%C3%ADnguez-Bola%C3%B1o&orcid=0000-0001-7470-0315
https://www.mdpi.com/search?authors=%C3%93scar%20Fresnedo&orcid=0000-0002-2905-9052
https://www.mdpi.com/search?authors=Jos%C3%A9%20%20A.%20Garc%C3%ADa-Naya&orcid=0000-0002-1944-4678
https://www.mdpi.com/search?authors=Luis%20Castedo&orcid=0000-0002-3801-012X
https://www.mdpi.com/1424-8220/19/13/2932
https://www.mdpi.com/1424-8220/19/13/2932
https://doi.org/10.3390/s19132932
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://link.springer.com/article/10.1007%2Fs13319-015-0055-6
http://shura.shu.ac.uk/15443/
http://shura.shu.ac.uk/15443/
http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Addison-Wesley
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-89685-0
http://shura.shu.ac.uk/13334/
http://shura.shu.ac.uk/13334/
https://www.sciencedirect.com/science/article/pii/S1047320318303717#!
https://www.sciencedirect.com/science/article/pii/S1047320318303717#!
https://www.sciencedirect.com/science/journal/10473203
https://www.sciencedirect.com/science/journal/10473203
https://www.sciencedirect.com/science/journal/10473203/59/supp/C
https://www.sciencedirect.com/science/article/pii/S104732031830292X#!
https://www.sciencedirect.com/science/article/pii/S104732031830292X#!
https://www.sciencedirect.com/science/journal/10473203
https://www.sciencedirect.com/science/journal/10473203
https://www.sciencedirect.com/science/journal/10473203/58/supp/C
https://www.youtube.com/watch?v=XFdEntyO6TY
https://www.youtube.com/watch?v=XFdEntyO6TY

