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Maximise absorbed wave power with wave energy converter arrays in time domain 
Fuat Kara  
Sheffield Hallam University, S1 1WB, fuat.kara@shu.ac.uk  
 
Abstract 
 
A three-dimensional transient numerical code ITU-WAVE based on potential theory and Neumann-
Kelvin approximation is extended to take into account wave interaction in an array system using two 
and four truncated vertical cylinder arrays. ITU-WAVE panel code is validated against analytical results 
before applied to power absorption from ocean waves for different array configurations. The effects of 
the separation distances between array system and heading angles on energy absorption in both sway 
and heave modes are studied by the support of numerical simulations which show more power 
absorbed in sway mode than in heave mode and sway mode has wider bandwidth than heave mode for 
energy absorption. It is also shown wave interactions are stronger when the array systems are close and 
these wave interactions are reduced significantly and shifted to larger times when the separation 
distance is increased. The wave interaction is much stronger at the same separation distance and 
heading angle in heave mode than in sway mode. Numerical experience shows that more power is 
absorbed in sway mode than heave mode in both two and four array systems at any separation 
distances and heading angles when the bodies in array system have the same displacement in both sway 
and heave modes.     
 
Keywords: time domain, transient free-surface Green function, boundary integral equation, absorbed 
power, relative capture width, array interaction, interaction factor, truncated vertical cylinder 
 
1. Introduction 

 
The current development pace of wave energy converters indicates the possibility of the deployment of 
these converters as arrays at commercial scale. The accurate predictions of wave loads, motion 
characteristics, and power requirements are of critically important for the design of these devices which 
are in sufficiently close proximity to experience significant hydrodynamic interactions. The oscillation of 
each body radiates waves assuming that other bodies are not present. Some of these radiated waves 
interact with other bodies which can be considered as incident waves and wave diffraction occurs as the 
consequences while some others radiate to infinity. The response of the fluid between arrays can affect 
overall power generation which could increase or decrease power generation compared to isolated 
device. The power generation due to hydrodynamic interaction depends on separation distance, 
geometrical layout, direction of the incident wave, geometry in the array, incident wave length, mooring 
configurations, control strategies etc. 
 
The pioneer work of Budal (1977) on wave energy converter arrays introduced the point absorber 
approximation in which the response amplitude are considered as equal for all devices and optimal 
power absorption are independent from device geometry. Besides, the characteristic dimensions (e.g. 
diameter) of the devices are considered small in terms of incident wave length. This approximation 
implicitly means that wave diffraction is not significant and can be ignored (Thomas Evans 1981, Falnes 
1984). In these studies, the overall absorbed power increase or decrease are measured by interaction 
factor q-factor (q > 1 is for power increase and q < 1 is for power decrease) which is the ratio of power 
from an array to N times power from an isolated device. This q-factor is used to optimize the array 
layout in order to get maximum power (Fitzgerald and Thomas 2007). One of the important finding from 
this work was that the average value of q-factor is unity when overall heading is taken into account. This 
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implicitly means the power absorption is constructive in some headings while the power absorption is 
destructive in other headings (Wolgamot et.al. 2012).      
 
The restriction of point absorber approximation related to diffraction waves was removed by the use of 
plane wave analysis in which interaction of diverging waves considered as plane waves between devices 
are taken into account while the near-field wave (or evanescent waves) effects are ignored implying 
separation distance between devices are large relative to wavelength (Spring and Monkmeyer 1974, 
Simon 1982, McIver and Evans 1984). The restriction on separation distance between devices or 
exclusion of near-field waves was overcome by the use of multiple scattering method in which the 
superposition of incident wave potential, diverging and near-field waves, and radiated wave by devices. 
In this way, the wave field around devices can be represented exactly (Ohkusu 1972, 1974, Mavrakos 
et.al. 2004). As the accurate solution requires high number of diffracted and radiated wave 
superposition with iteration, this process increases the computational time significantly (Linton and 
McIver 2001).  
 
The restriction on the computational time was avoided by the use of the direct matrix method in which 
the multiple scattering prediction are combined with a direct approximation (Kagemoto and Yue 1986) 
and unknown wave amplitudes are predicted simultaneously rather than iteratively. As the numerical 
results of this approach which is exact depending on infinite summation truncation were very accurate 
compared to other numerical approximations, this method was applied to many different engineering 
problems including near trapping problem in large arrays (Maniar and Newman 1997), very large 
floating structures (Kagemoto and Yue 1993, Kashiwagi 2000), tension-leg-platforms (Yilmaz 1998), wave 
energy converters (Child and Venugopal 2007).   
 
In addition to above exact formulations, the numerical tools to predict hydrodynamic interactions for 
multi-bodies are studied extensively by many researchers including van’t Veer and Siregar (1995) who 
used the strip theory in which the hydrodynamic interaction s are considered as two-dimensional flow. 
The unified theory was used to overcome the low frequency limitations of strip theory (Breit and 
Sclavounos 1986, Ronaess 2002). These two-dimensional approaches give poor predictions as the 
hydrodynamic interactions including separation distances between the bodies are neglected in the 
calculations.  
 
As the hydrodynamic interactions are inherently three-dimensional, three-dimensional numerical 
approximations need to be used for accurate prediction of the wave loads and motions over multi-hulls 
as three-dimensional effects play a significant role in the dissipation of wave energy between hulls. The 
hydrodynamic interactions effects are automatically taken into account as each discretized panel would 
have its influence on all other panels in three-dimensional numerical models. The viscous Computational 
Fluid Dynamics (CFD) methods for full fluid domain or viscous CFD in the near field and inviscid CFD in 
the far field can be used for the prediction of three-dimensional non-linear flow field due to incident 
waves. However, the required computational time to solve these kinds of problems is not suited for 
practical purposes yet. 
 
An alternative approach to a viscous solution is the three-dimensional potential flow approximation to 
solve the hydrodynamic interactions. The computational time of potential (or inviscid CFD) which 
neglect the viscous effect is much less than viscous CFD and are used to predict the hydrodynamic loads 
over floating mono and multi bodies. The prediction of three-dimensional hydrodynamic interaction 
effects for multi bodies can be obtained using three-dimensional frequency and time domain 
approaches and two kinds of formulations were used for this purpose. These are Green’s function 
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formulation (Liapis 1986, King 1987, Kara 2000) and Rankine type source distribution (Betram 1990, 
Nakos et.al. 1990, Xiang and Faltinsen 2011).  
 
The Green function’s approach satisfies the free surface boundary condition and condition at infinity 
automatically, and only the body surface needs to be discretized with panels, while the source and 
dipole singularities are distributed discretizing both the body surface and a portion of the free surface in 
Rankine type formulation. The main disadvantage of Rankine type source distribution is the stability 
problem for the numerical implementation, since the radiation condition or condition at infinity is not 
satisfied exactly. The requirement of the discretization of some portion of the free surface using 
quadrilateral or triangular elements increases the computational time substantially. The time domain 
and frequency domain results are related by the Fourier Transform in the context of the linear theory. 
 
WAMIT (2012) is a commercial programme and uses frequency domain Green function to predict 
hydrodynamics loads over mono and multi bodies and used by many researcher for many different 
purposes including optimizing the damping characteristics of wave energy converters in the arrays, 
increasing the capture width of a line absorber with cylindrical floats, analysing the motions of a floating 
platform with several absorber attached (Bellew et.al. 2009, Stansby et.al. 2015). Other non-commercial 
three-dimensional frequency domain Green function approach is used by many other researchers to 
predict the effects of hydrodynamic interactions on absorbed power, captured with, separation 
distances, directionality, interaction factors, efficiency of the method in the case of large number of 
wave energy converters in the array, optimum control (Justino and Clement 2003, Borgarino et.al. 
2012).  
 
In the present paper, two and four truncated vertical cylinders in both sway and heave modes as a wave 
energy converter will be used to predict the absorbed energy from ocean waves. The time dependent 
hydrodynamic radiation and exciting forces impulse response functions (which are used for the time 
marching of the equation of motion in order to find displacement, velocity, and acceleration of the wave 
energy converter) are predicted by the use of the transient free-surface wave Green function (Kara and 
Kara et.al. 2000-2017). The present ITU-WAVE numerical results for array systems will be validated with 
analytical results. The effects of the separation distances and heading angles on relative capture width 
and interaction factor are studied in order to determine the maximum absorbed power from ocean 
waves and the constructive and destructive effects.  
 
2. Equation of motion of arrays 
 
A right-handed coordinate system is used to define the fluid action and a Cartesian coordinate system 
�⃗�𝑥 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧) is fixed to the body which is used for the solution of the linearized problem in the time 
domain Fig. 1. Positive x-direction is towards the forward, positive z-direction points upwards, and the 
z=0 plane (or xy-plane) is coincident with calm water. The bodies undergo oscillatory motion about their 
mean positions due to incident wave field. The origin of the body-fixed coordinate system �⃗�𝑥 = (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 
is located at the centre of the xy plane. The solution domain consists of the fluid bounded by the free 
surface 𝑆𝑆𝑓𝑓(𝑡𝑡), the body surface 𝑆𝑆𝑏𝑏(𝑡𝑡), and the boundary surface at infinity 𝑆𝑆∞  Fig. 1 (Kara 2000). 
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Fig. 1: Coordinate system and surface of the wave energy converters 
 
The following assumptions are taken into account in order to solve the physical problem. If the fluid is 
unbounded (except for the submerged portion of the body on the free surface), ideal (inviscid and 
incompressible), and its flow is irrotational (no fluid separation and lifting effect), the principle of mass 
conservation dictates the total disturbance velocity potential Φ(�⃗�𝑥, 𝑡𝑡). This velocity potential is harmonic 
in the fluid domain and is governed by Laplace equation everywhere in the fluid domain as ∇2Φ(�⃗�𝑥, 𝑡𝑡) =
0 and the disturbance flow velocity field 𝑉𝑉�⃗ (�⃗�𝑥, 𝑡𝑡) may then be described as the gradient of the potential 
Φ(�⃗�𝑥, 𝑡𝑡) (e.g. 𝑉𝑉�⃗ (�⃗�𝑥, 𝑡𝑡) = ∇Φ(�⃗�𝑥, 𝑡𝑡)). 
 
The dynamics of a floating body’s unsteady oscillations are governed by a balance between the inertia of 
the floating body and the external forces acting upon it. This balance is complicated by the existence of 
radiated waves which results from due to the oscillations of the bodies and the scattering of the incident 
waves. This means that waves generated by the floating bodies at any given time will persist indefinitely 
and the waves of all frequencies will be generated on the free surface. These generated waves, in 
principle, affect the fluid pressure field and hence the body force of the floating bodies at all subsequent 
times. This situation introduces memory effects and is described mathematically by a convolution 
integral. Having assumed that the system is linear, the equation of motion of any floating bodies may be 
written in a form (Cummins 1962)         
 

��𝑀𝑀𝑘𝑘𝑘𝑘𝑖𝑖 + 𝑎𝑎𝑘𝑘𝑘𝑘𝑖𝑖��̈�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) + (𝑏𝑏𝑘𝑘𝑘𝑘𝑖𝑖 + 𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘𝑖𝑖)�̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) + �𝐶𝐶𝑘𝑘𝑘𝑘𝑖𝑖 + 𝑐𝑐𝑘𝑘𝑘𝑘𝑖𝑖 + 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘𝑖𝑖�𝑥𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) + � 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑘𝑘𝑖𝑖(𝑡𝑡 − 𝑑𝑑)�̇�𝑥𝑘𝑘𝑖𝑖(𝑑𝑑)
𝑡𝑡

0
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𝑘𝑘=1

= � 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑘𝑘𝑖𝑖(𝑡𝑡 − 𝑑𝑑)𝜁𝜁(𝑑𝑑)
∞

−∞
   (1) 

 
where 𝑖𝑖 = 1,2,3, … ,𝑁𝑁 is the N number of body in the array systems. 𝑘𝑘 = 1,2,3, … ,6 represents six-rigid 
body modes of surge, sway, heave, roll, pitch, and yaw, respectively. The displacement of the floating 
bodies from its mean position in each of its rigid-body modes of motion is given 𝑥𝑥𝑘𝑘(𝑡𝑡) = (1,2,3, … ,𝑁𝑁)𝑃𝑃, 
N is the number of wave energy converters in the array, and the over-dots indicates differentiation with 
respect to time. �̈�𝑥𝑘𝑘(𝑡𝑡) and �̇�𝑥𝑘𝑘(𝑡𝑡) are acceleration and velocity, respectively. 𝑀𝑀𝑘𝑘𝑘𝑘 inertia matrix of the 
floating body and 𝐶𝐶𝑘𝑘𝑘𝑘 linearized hydrostatic restoring force coefficients. As the same floating body is 
used in the array the elements of both mass and restoring coefficients equal to each other for each body 
𝑚𝑚1 = 𝑚𝑚2 = ⋯ = 𝑚𝑚𝑁𝑁 = 𝑚𝑚 and 𝐶𝐶1 = 𝐶𝐶2 = ⋯ = 𝐶𝐶𝑁𝑁 = 𝐶𝐶, respectively. m and 𝐶𝐶 are the mass and 
restoring coefficient for mono-hull, respectively. 
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𝑀𝑀𝑘𝑘𝑘𝑘 = �
𝑚𝑚1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑚𝑚𝑁𝑁

�  𝐶𝐶𝑘𝑘𝑘𝑘 = �
𝐶𝐶1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐶𝐶𝑁𝑁

�  (2) 

 
The radiation impulse response function 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) is the force on the j-th body due to an impulsive velocity 
in the k-th body. The coefficients 𝑎𝑎𝑘𝑘𝑘𝑘, 𝑏𝑏𝑘𝑘𝑘𝑘, and 𝑐𝑐𝑘𝑘𝑘𝑘 accounts for the instantaneous forces proportional 
to the acceleration, velocity, and displacement, respectively. The memory function 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) accounts for 
the free surface effects which persist after the motion occurs. For the radiation problem the term 
‘memory function’ is used to distinguish this portion of the impulse-response function from the 
instantaneous force components outside of the convolution on the left-hand side of Eq. (1). The 
coefficient 𝑎𝑎𝑘𝑘𝑘𝑘 is the time and frequency independent constant, it depends on the body geometry and is 
related to added mass. The coefficients 𝑏𝑏𝑘𝑘𝑘𝑘  and 𝑐𝑐𝑘𝑘𝑘𝑘 are the time and frequency independent constants 
and depend on the body geometry and forward speed and are related to damping and hydrostatic 
restoring coefficient, respectively. The memory coefficient 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) is the time dependent part and 
depends on body geometry, forward speed, and time. It contains the memory effect of the fluid 
response. The convolution integral on the left-hand side of Eq. (1), whose kernel is a product of the 
radiation impulse response function 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) and velocity of the floating body �̇�𝑥𝑘𝑘(𝑡𝑡), is a consequence of 
the radiated wave of the floating body. When this wave is generated, it affects the floating body at each 
successive time step (Ogilvie 1964). 
 

𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) = �
𝐾𝐾11 ⋯ 𝐾𝐾1𝑁𝑁
⋮ ⋱ ⋮

𝐾𝐾𝑁𝑁1 ⋯ 𝐾𝐾𝑁𝑁𝑁𝑁
� , 𝑎𝑎𝑘𝑘𝑘𝑘 = �

𝑎𝑎11 ⋯ 𝑎𝑎1𝑁𝑁
⋮ ⋱ ⋮
𝑎𝑎𝑁𝑁1 ⋯ 𝑎𝑎𝑁𝑁𝑁𝑁

� , 𝑏𝑏𝑘𝑘𝑘𝑘 = �
𝑏𝑏11 ⋯ 𝑏𝑏1𝑁𝑁
⋮ ⋱ ⋮
𝑏𝑏𝑁𝑁1 ⋯ 𝑏𝑏𝑁𝑁𝑁𝑁

� , 𝑐𝑐𝑘𝑘𝑘𝑘 = �
𝑐𝑐11 ⋯ 𝑐𝑐1𝑁𝑁
⋮ ⋱ ⋮
𝑐𝑐𝑁𝑁1 ⋯ 𝑐𝑐𝑁𝑁𝑁𝑁

�  (3) 

 
The term 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) = (𝐾𝐾1𝑘𝑘 ,𝐾𝐾2𝑘𝑘,𝐾𝐾3𝑘𝑘 , … ,𝐾𝐾𝑁𝑁𝑘𝑘)𝑃𝑃 on the right-hand side of Eq. (1) are the components of 
the exciting force and moment’s impulse response functions including Froude-Krylov and diffraction due 
to the incident wave elevation 𝜁𝜁(𝑡𝑡) which is the arbitrary wave elevation and defined at the origin of the 
coordinate system Fig. 1 in the body-fixed coordinate system. The kernel 𝐾𝐾𝑘𝑘𝑘𝑘(𝑡𝑡) is the diffraction 
impulse response function; the force on the k-th body due to a uni-directional impulsive wave elevation 
with a heading angle of 𝛽𝛽. 
 
𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 are time independent and frequency dependent Power-Take-Off (PTO) damping 
and restoring coefficient matrices for each mode of motion, respectively. The diagonal elements of 
𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 is taken as the damping coefficient of the mono-hull at natural frequency of each mode 
𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜔𝜔𝑚𝑚) in order to absorb maximum power (Falnes 2002) while the off-diagonal terms are 
considered as zero for simplicity. The elements of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 is considered as zero for heave mode while 
for the sway mode, the diagonal elements of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 are taken as hydrostatic restoring coefficient of 
heave mode in order to have the same natural frequency and displacement in both heave and sway 
modes. In this case, it would be possible to compare heave and surge motions and power variables 
directly in order to decide which mode of motion are more beneficial for power absorption.    
 

𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 = �
𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜔𝜔𝑚𝑚) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜔𝜔𝑚𝑚)

�  𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃−𝑘𝑘𝑘𝑘 = �
𝐶𝐶1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝐶𝐶𝑁𝑁

�  (4) 

 
Once the stiffness matrix, inertia matrix, and fluid forces e.g. radiation and diffraction forces are known, 
the equation of motion of floating body Eq. (1) may be time marched using the fourth-order Runge-
Kutta method. 
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3. ITU-WAVE 
 
The hydrodynamics functions in the present paper are predicted with in-house ITU-WAVE three-
dimensional direct time domain numerical code. ITU-WAVE coded using C++ was validated against 
experimental, analytical, and other published numerical results (Kara and Kara et.al. 2000-2017) and 
used to predict the seakeeping characteristics (e.g. radiation and diffraction), resistance, added-
resistance, hydroelasticity of the floating bodies, wave power absorption from ocean waves with 
latching control. The fluid boundaries described by the use of Boundary Integral Equation Methods 
(BIEM) with Neumann-Kelvin linearization in the context of potential theory.  
 
The exact initial boundary value problem is then linearized using the free stream as a basis flow and 
replaced by the boundary integral equation applying Green theorem over three-dimensional transient 
free surface Green function. The resultant boundary integral equation is discretized using quadrilateral 
elements over which the value of the potential is assumed to be constant and solved using the 
trapezoidal rule to integrate the memory part of the transient free surface Green function in time. The 
free surface and body boundary conditions are linearized on the discretized collocation points over each 
quadrilateral element to obtain algebraic equation. 
 
4. Comparison with analytical results 
 
The present ITU-WAVE numerical results are compared with the analytical results of two and four 
truncated vertical cylinders (Kagemoto and Yue 1986) in order to validate the present numerical 
predictions.  
 
4.1. Two truncated vertical cylinder arrays 
 
Two truncated vertical cylinder Fig. 2 is used for numerical analysis as a first test case. It is assumed two 
cylinders have the same draft and radius R although present method can be applied for different draft 
and radius. The truncated cylinders have the radius of R, draft of 2R and hull separation to diameter 
ratio of d/D=1.3. It is assumed that two truncated cylinders are free for sway and heave modes and fixed 
for other modes. These two truncated cylinders are studied to predict sway and heave radiation and 
diffraction impulse response functions in time and added-mass, damping coefficients, and exciting 
forces in frequency domain. The time domain and frequency domain results are related to each other 
through Fourier transforms in the context of linear analysis. The present ITU-WAVE numerical results for 
sway and heave added-mass and damping coefficients and exciting forces (which are the sum of the 
diffraction and Froude-Krylov forces) with heading angle 𝛽𝛽 = 900 are compared with the analytical 
results of Kagemoto and Yue (1986). 

 
Fig. 2: Two truncated vertical cylinder with d/D=1.3 
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Fig. 3 shows the convergence test of radiation and diffraction impulse response functions for sway and 
heave modes. As two truncated vertical cylinder is symmetric in terms of xz-coordinate plane of the 
reference coordinate system, only single hull form is discretized for numerical analysis. Numerical 
experience showed that numerical results are not very sensitive in terms of non-dimensional time step 
size 𝑡𝑡 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡(𝑔𝑔/𝐿𝐿) of 0.01, 0.03, and 0.05 over the range of panel numbers of 96, 150, 216, 294 on single 
body of two truncated vertical cylinder whilst the numerical results are quite sensitive in terms of panel 
numbers as can be seen in Fig. 2 and the results at panel number 216 on single hull form is converged 
and used for the present ITU-WAVE numerical calculations for both two and single truncated vertical 
cylinder with the non-dimensional time step size of 0.05. 
 

 
Fig. 3: Two truncated vertical cylinder with d/D=1.3, non-dimensional radiation K22(t) and K33(t) and diffraction 

sway and heave K2D(t) and K3D(t) impulse response functions at beam seas 𝛽𝛽 = 900 
 
It may be noticed that the magnitude of radiation Impulse Response Functions (IRF) of two cylinder in 
heave mode Fig. 3 is approximately twice of IRF of single cylinder while it is less than double in the case 
of sway mode. The other distinctive difference of IRF of single and two cylinders in Fig. 3 is the 
behaviour of these IRFs functions in longer times in sway mode. IRFs of two cylinders have oscillations 
over longer times with decreasing amplitude in sway mode while single cylinder IRF decays to zero just 
after first oscillation. This behaviour of IRF implicitly means that the energy between two cylinders is 
trapped in the gap and only a minor part of the energy is radiated outwards each time the wave is 
reflected off the hull while all energy is dissipated in the case of single cylinder in sway mode and in both 
two and single cylinders in heave mode. It is expected that geometry of two bodies would significantly 
affects the radiated, diffracted, and trapped waves which result from due to standing waves in the gap. 
In the case of diffraction IRF in Fig.3, there are no significant differences in sway mode between single 
and two cylinders’ IRFs whilst it is doubled in heave mode.  
 
The time dependent radiation and exciting IRFs in time domain are related to the frequency dependent 
added-mass and damping coefficients and force amplitude, respectively in frequency domain through 
Fourier transforms when the motion is considered as a time harmonic motion. Added-mass 𝐴𝐴22(𝜔𝜔) and 
𝐴𝐴33(𝜔𝜔),  damping coefficients 𝐵𝐵22(𝜔𝜔) in Fig. 4 and exciting forces amplitudes 𝐹𝐹2(𝜔𝜔) and 𝐹𝐹3(𝜔𝜔) in Fig. 5 
is obtained by the Fourier transform of radiation sway IRF K22(t) and radiation heave IRF K33(t) of Fig. 3, 
and diffraction sway IRF K2D(t) and diffraction heave IRF K3D(t) of Fig. 3, respectively.  
 

 
Fig. 4: Two truncated vertical cylinders with d/D=1.3, non-dimensional sway and heave added-mass and damping 

coefficients. 
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ITU-WAVE numerical results of added-mass and damping coefficients in sway mode and added-mass 
coefficients in heave mode of two cylinders are satisfactory agreement with the analytical prediction of 
Kagemoto and Yue (1985) as can be seen in Fig. 4. In addition to two cylinders added-mas and damping 
coefficients in Fig. 4, the single cylinder results are presented as the comparison with two cylinders 
results. It can be seen in Fig. 4 the behaviours of two cylinders results in sway mode are significantly 
different from those of single cylinder due to trapped waves and hydrodynamic interactions in the gap 
of two cylinders whilst in heave mode single and two cylinders added-mass result does not show such 
difference as most of the energy is dissipated in this mode.  
 

 
Fig. 5: Two truncated vertical cylinders with d/D=1.3, non-dimensional sway and heave exciting force amplitude at 

beam seas 𝛽𝛽 = 900. 
 
The effects of diffraction hydrodynamic interactions in sway mode (at which interactions are effective in 
the whole frequency range) are much stronger than in heave mode as can be observed in Fig. 5. This 
interaction effects in sway mode are even stronger in a limited frequency range which is of interest for 
the motions of the bodies in array systems and is around kR =0.5 and kR = 2.0 of non-dimensional 
frequency in radiation and diffraction sway mode in Fig. 5.  
 
4.2. Four truncated vertical cylinder arrays 
 
Four truncated vertical cylinder Fig. 1 is used for numerical analysis as the second test case. As in two 
cylinders, it is assumed four cylinders have the same draft and radius. Four truncated cylinders have the 
radius of R and draft of 2R and hull separation to diameter ratio of d/D=2.0. It is assumed that four 
truncated cylinders are free for sway mode and fixed for other modes and are studied to predict sway 
radiation and diffraction impulse response functions in time and added-mass, damping coefficients, and 
exciting forces in frequency domain. The present ITU-WAVE numerical results for sway added-mass and 
damping coefficients and exciting forces with heading angle 𝛽𝛽 = 900 are compared with the analytical 
results of Kagemoto and Yue (1986). 
 
Fig. 6 shows the convergence test of radiation and diffraction impulse response functions for sway 
mode. As four truncated vertical cylinders are symmetric, only single hull form is discretized for 
numerical analysis. Numerical experience showed that numerical results at panel number 200 on single 
hull form is converged and used for the present ITU-WAVE numerical calculations for both four and 
single truncated vertical cylinder with the non-dimensional time step size of 0.05. 
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Fig. 6: Four truncated vertical cylinder with d/D=2.0, non-dimensional radiation K22(t) and diffraction K2D(t) sway 

impulse response functions at beam seas 𝛽𝛽 = 900 
 
When the two (Fig. 3) and and four (Fig. 6) truncated vertical cylinders’ radiation IRFs are compared, it 
can be observed that the amplitude of radiation IRFs of four truncated cylinders are approximately 2.5 
times higher than two cylinders’ radiation IRFs and four cylinders’ IRFs have oscillations over longer 
times with decreasing amplitude in sway mode compared to cylinders’ IRFs. This behaviour implicitly 
means that more energy capture between bodies in four cylinders than two cylinders. The same 
outcome is valid for diffraction IRFs too. 
 
Fig. 7 shows added-mass 𝐴𝐴22(𝜔𝜔),  damping coefficients 𝐵𝐵22(𝜔𝜔) and exciting forces amplitudes 𝐹𝐹2(𝜔𝜔) 
which are obtained by the Fourier transform of radiation sway IRF K22(t) of Fig. 6, and diffraction sway 
IRF K2D(t) of Fig. 6, respectively. ITU-WAVE numerical results of four cylinders are satisfactory agreement 
with those of Kagemoto and Yue (1985) as can be seen in Fig. 7. 
 

   
Fig. 7: Four truncated vertical cylinders with d/D=2.0, non-dimensional sway added-mass, damping, and exciting 

force amplitude at beam seas 𝛽𝛽 = 900. 
 

There would not be energy transfer or radiated waves from floating body to sea when the damping 
coefficients are zero as can be observed in Fig. 7. It may be noticed there are three resonance 
resonances behaviours in damping coefficients in sway mode which implies that high standing waves 
occur between the maximum and minimum damping coefficients (van Oortmersen (1979), Ohkusu 
(1969)). It may be noticed the peaks are finite at non-dimensional resonance frequencies as some of the 
wave energy dissipate under the floating body and radiates to the far field. 
 
5. The interactions of bodies in array system 
 
The radiation impulse response functions (IRF) for sway and heave modes in the case of two interacting 
bodies are presented for the range of different separation distances in Fig. 8. IRFs K12 (t) which 
represents the interactions between two truncated vertical cylinders is very strong and the same order 
with K11 (t), whilst the interactions become weaker as the separation distance between interacting 
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bodies are increased. The interactions IRFs on body 1 and body 2 have the same magnitude and sign as 
it is presented in Fig. 8. Giving one body an impulsive velocity in one mode causes a force in the same 
mode on the other body after some finite time t, which is the time it takes the wave to move the 
distance between bodies. This means that energy is trapped in the gap between bodies, only a minor 
part of the energy is radiated outwards each time the wave is reflected off the body. 
  

   
Fig. 8: Two truncated vertical cylinders with the range of different separation distances, non-dimensional radiation 

sway and heave Impulse Response Functions (IRFs). 
 
It may be noticed from Fig. 8 the dominant part of the interactions between these two vertical cylinder 
are shifted to the larger times as the separation distances increase. The exciting force IRFs (which are 
the sum of diffraction and Froude-Krylov forces) for sway and heave modes are presented in Fig. 9 for 
the range of different separation distances at heading angle 𝛽𝛽 = 900.  

 

    
Fig. 9: Two truncated vertical cylinders with the range of different separation distances, non-dimensional exciting 

sway and heave IRFs at beam seas 𝛽𝛽 = 900. 
 
It may be noticed from Fig. 9 when the separation distances increase, the interaction between incident 
wave and the first body which interact with the incident wave first is delayed for longer times, whilst it is 
contrary for the second body which in the wake of the first body in the case of heading angle 𝛽𝛽 = 900.      
 

    
Fig. 10: Four truncated vertical cylinders with d = 2.0*B and d = 8.0*B separation distances, non-dimensional 

radiation sway and heave Impulse Response Functions (IRFs). 
 

Radiation IRFs of sway and heave modes for four truncated vertical cylinder ae presented in Fig. 10 for 
the separation distance of 2.0*B and 8.0*B in order to predict the interaction of bodies in the array. As 
in two truncated, in the case of small separation distance of 2.0*B, the interaction between the bodies 
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are quite significant while the interaction effect decrease for larger separation distance of 8.0*B and the 
maximum response amplitude shifted to larger times.  
 

  
Fig. 11: Four truncated vertical cylinders with the range of different separation distances, non-dimensional exciting 

sway and heave IRFs at beam seas 𝛽𝛽 = 900. 
 

Exciting sway and heave IRFs for four truncated cylinder at beam seas 𝛽𝛽 = 900 and separation distance of d 
= 2.0*B are presented in Fig. 11. It may be noticed in Fig. 11 the exciting forces on body 1 and body 4 which is on 
the wake of body 1 as well as on body 2 and body 3 which is on the wake of body 2 have the same magnitudes  but 
opposite signs. This is the numerical prediction that is expected as the truncated four cylinder are symmetric both 
in x- and y-directions. The wave is reflected off the bodies and translating across the gap between hulls to hit the 
other body.  
 
6. Response Amplitude Operators (RAOs) in sway and heave modes 
 
As sway mode does not have restoring coefficient, PTO restoring coefficient of the truncated circular 
cylinder are taken as hydrostatic restoring coefficient of heave mode in order to have the same natural 
frequency and displacement in both heave and sway modes as indicated above. RAOs of two and four 
truncated vertical cylinder in sway and heave modes at beam seas 𝛽𝛽 = 900 are presented in Fig. 12. 
RAOs are taken by the use of Eq. (1) after time simulation of equation of motion achieving the steady 
state condition at the range of the different frequencies.  
 

  
Fig. 12: Two (right) and four (left) truncated vertical cylinders, sway and heave motions RAOs at beam seas 𝛽𝛽 =

900. 
 
It may be noticed that the motion of the second body which is at the wake of the first body at beam seas 
𝛽𝛽 = 900 in the case of two bodies Fig.2 and that of the second and third bodies which are at the wake 
of the first and fourth bodies, respectively in the case of four truncated cylinder Fig. 1 is higher around 
resonance frequency in both sway and heave modes. This is mainly due to the trapped waves between 
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hulls. In the case of four truncated vertical cylinder Fig. 1, it may also be noticed that the motion of the 
first and fourth body in the array system and the second and third body is exactly the same which is due 
to symmetry in terms of x- and y- coordinate systems Fig. 1.  
 
The heave motion amplitude in resonance frequency is more than two times of sway motion amplitude 
around resonance frequency. This is mainly due to the damping coefficients as sway mode damping 
coefficients are much bigger than heave damping coefficients around resonance frequency. As the 
motion is controlled by the damping coefficients around the resonance frequency and sway mode have 
much bigger damping coefficients, the sway motion is damped around resonance frequency compared 
to heave motion. However, the sway motion distributed wider frequency range as heave motion mainly 
concentrated at resonance frequency. 
 
7. Instantaneous and mean absorbed power 
 
The instantaneous power 𝑃𝑃𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡) absorbed by Power-Take-Off (PTO) system for each body in the array 
is directly proportional to exciting (which is the sum of diffraction and Froude-Krylov forces) and 
radiation forces on WEC and is defined as 
 

𝑃𝑃𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡) = [𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖(𝑡𝑡) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖(𝑡𝑡)] ∙ �̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡)                 (5) 
 
where 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) exciting forces which are due to incident and diffracted waves, 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑡𝑡) radiation forces 
which are due to the oscillation of WEC. 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖(𝑡𝑡) and 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑡𝑡) are given as in Eq. (1) 
 

𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑘𝑘𝑖𝑖(𝑡𝑡) = � 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑘𝑘𝑖𝑖(𝑡𝑡 − 𝑑𝑑)𝜁𝜁(𝑑𝑑)
∞

−∞
  (6) 

𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑘𝑘𝑘𝑘𝑖𝑖(𝑡𝑡) = −𝑎𝑎𝑘𝑘𝑘𝑘𝑖𝑖�̈�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) − 𝑏𝑏𝑘𝑘𝑘𝑘𝑖𝑖�̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑘𝑘𝑘𝑘𝑖𝑖𝑥𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) −� 𝑑𝑑𝑑𝑑𝐾𝐾𝑘𝑘𝑘𝑘𝑖𝑖(𝑡𝑡 − 𝑑𝑑)�̇�𝑥𝑘𝑘𝑖𝑖(𝑑𝑑)
𝑡𝑡

0
     (7) 

 
The power due to exciting forces 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖(𝑡𝑡) ∙ �̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) are the total absorbed power from the 
incident and diffracted waves, whilst the power due to radiation forces 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖(𝑡𝑡) = −𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖(𝑡𝑡) ∙ �̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡) 
are the power radiated back to sea due to the oscillation of the WEC. The mean (average) power 
𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡) absorbed by the PTO system over a time range 𝑇𝑇 is given by 
 

𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡) =
1
𝑇𝑇
�𝑑𝑑𝑡𝑡 ∙ [𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖(𝑡𝑡) − 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖(𝑡𝑡)] ∙ �̇�𝑥𝑘𝑘𝑖𝑖(𝑡𝑡)
𝑃𝑃

0

   (8) 

 
The averaging time 𝑇𝑇 must be much larger than the characteristics period of the incident wave which is 
approximately from 5s to 15s. In order to avoid the transient effects, only the last half of the time 
domain results are taken into account for the prediction of the mean absorbed power using Eq. (8) and 
other time dependent parameters. The total mean absorbed power 𝑃𝑃�𝑃𝑃𝑘𝑘(𝑡𝑡) for 𝑁𝑁 number of array 
systems and for mode 𝑘𝑘 is given as 

𝑃𝑃�𝑃𝑃𝑘𝑘(𝑡𝑡) = �𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝑡𝑡)
𝑁𝑁

𝑖𝑖=1

                  (9) 
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The total absorbed power with two and four truncated vertical cylinders in sway and heave modes at 
heading angle 𝛽𝛽 = 900 and separation distance d = 4.0*B are presented in Fig.12 using asymptotic value 
of Eq. (9). 
 

  
Fig. 12: Two (right) and four (left) truncated vertical cylinders, sway and heave total power at separation distance d 

= 4.0*B and beam seas 𝛽𝛽 = 900. 
 
The power absorption is concentrated around the resonance frequency in heave mode whilst power 
absorption has wider frequency range and the frequency bandwidth of power absorption is much larger 
in sway mode than heave mode. It may be noticed that power absorption are doubled in sway mode as 
number of WEC increased from two to four whilst absorbed power is not changed in the case of heave 
mode.    
 
8. Capture width and relative capture width 
 
A good wave energy converter is a converter which absorbs as much energy as possible from the 
incident wave. However, to absorb maximum power, the body must interact with the sea significantly, 
(i.e. the characteristic frequencies of the incident waves must be close to the resonance frequency of 
the body). The quantity employed to evaluate the performance of a device in term of power absorption 
is the capture width. At a given frequency, it is the ratio between the total mean power absorbed and 
the mean power per unit crest wave width of the incident wave train. The capture width 𝑙𝑙𝑒𝑒𝑐𝑐𝑘𝑘𝑖𝑖

(𝜔𝜔) for 
each incident wave frequency 𝜔𝜔, for each mode 𝑘𝑘, and for a body 𝑖𝑖 in array systems is defined as [Budal 
Falnes 1976] 
 

𝑙𝑙𝑒𝑒𝑐𝑐𝑘𝑘𝑖𝑖
(𝜔𝜔) =

𝑃𝑃�𝑖𝑖𝑖𝑖𝑖𝑖𝑘𝑘𝑖𝑖
(𝜔𝜔)

𝑃𝑃𝑤𝑤(𝜔𝜔)            (10)            
 

where 𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝜔𝜔) is the mean absorbed power and is obtained as the asymptotic value of the mean of 
the instantaneous power Eq. (8), 𝑃𝑃𝑐𝑐(𝜔𝜔) = 𝜌𝜌𝑔𝑔2𝜁𝜁02 4𝜔𝜔⁄  is the wave power in the incident wave train per 
unit crest length, 𝜁𝜁0 being the incident wave amplitude. The maximum capture width for heave mode is 
𝜆𝜆 2𝜋𝜋⁄ , whilst it is 𝜆𝜆 𝜋𝜋⁄  for surge or sway mode. Relative capture width is obtained by dividing capture 
width with width B of the wave energy converters 
 

𝑙𝑙𝑟𝑟𝑒𝑒𝑐𝑐𝑘𝑘𝑖𝑖
(𝜔𝜔) = 𝑙𝑙𝑒𝑒𝑐𝑐𝑘𝑘𝑖𝑖

(𝜔𝜔) 𝐵𝐵⁄   (11) 
 
If the relative capture width is greater than 1 at any incident wave frequencies, this implies that the 
absorbed power can be greater than the incident wave power at these frequencies. 
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8.1. Separation distance effect on capture width 
 
The relative capture width of two truncated vertical cylinders at heading angle 𝛽𝛽 = 900 in sway and 
heave mode are presented in Fig. 13 using Eq. (11). Relative capture width in both sway and heave 
modes for body 1 is less than single body at all frequency range whilst for body 2 it is contrary. This 
implicitly means that the wave interaction with body 1 has the destructive effects while the wave 
interaction has constructive effects for body 2 as wave energy trapped between hulls. This implies that 
the absorbed power can be greater than the incident wave power at these frequencies for body 2. 
 

    
Fig. 13: Two truncated vertical cylinders, sway and heave relative capture width at beam seas 𝛽𝛽 = 900 

 
Due to symmetry both x- and y-directions, in the case of four truncated vertical cylinders, capture width 
of body 1 and body 4 is the same as well as body 2 and body 3 in Fig. 14. The capture width for four 
bodies in beam seas 𝛽𝛽 = 900 using Eq. (11) is presented in Fig. 14. 
 

 
Fig. 14: Four truncated vertical cylinders, sway and heave relative capture width at beam seas 𝛽𝛽 = 900 

 
As in the case of two truncated cylinders in sway mode, the capture width for body 1 and body 4 has 
destructive effects (e.g. absorbed less power than isolated body) around resonance frequency at which 
most power is captured whilst body 2 and body 3 in the array system has constructive effects. It may be 
noticed in Fig. 14 the power is absorbed in wider frequency ranges in sway mode whilst the power is 
absorbed only around resonance frequency in the case of heave mode. It may also be noticed that in 
heave mode wave interactions have destructive effects compared to single body apart from separation 
distance of d = 6.0*B for body 2 and body 3.      
 
8.2. Heading angle effect on capture width 
 
The effect of heading angles on capture width at separation distance d = 2.0*B in both sway and heave 
modes are presented in Fig. 15 which shows that the maximum power absorbed in the heading angle of 
𝛽𝛽 = 900 in both sway and heave modes. When compared with heave mode which only absorbed power 
around resonance frequency, the bandwidth of absorbed power is larger in sway mode.   
 

 

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

sway - body 1 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

sway - body 2 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

heave - body 1 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

heave - body 2 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

sway - body 1, 4 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

sway - body 2, 3 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
py

ur
e 

w
id

th
 (-

)

w (rad/s)

heave - body 1, 4 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0
re

la
tiv

e 
ca

pt
ur

e 
w

id
th

 (-
)

w (rad/s)

heave - body 2, 3 - β = 90

d = 2.0*B

d = 4.0*B

d = 6.0*B

d = 8.0*B

single body

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

) 

w (rad/s)

sway - body 1 - d = 2.0*B

beta = 90

beta = 120

beta = 150

beta = 180

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

sway - body 2 - d = 2.0*B

beta = 90

beta = 120

beta = 150

beta = 180

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

heave - body 1 - d = 2.0*B

beta = 90

beta = 120

beta = 150

beta = 180

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

re
la

tiv
e 

ca
pt

ur
e 

w
id

th
 (-

)

w (rad/s)

heave - body 2 - d = 2.0*B

beta = 90

beta = 120

beta = 150

beta = 180



15 
 

Fig. 15: Two truncated vertical cylinders, sway and heave relative capture width at separation distance d = 2.0*B 
and range of different heading angles 

 
The effect of heading angles from 90 degrees to 180 degrees for four truncated vertical cylinder in both 
sway and heave modes are presented in Fig. 16 which shows relative capture width for separation 
distance d = 2.0*B. 
 

    
Fig. 16: Four truncated vertical cylinders, sway and heave relative capture width at separation distance d = 2.0*B 

and range of different heading angles 
 

More power is absorbed from ocean waves in heading angle 𝛽𝛽 = 1200 than other heading angle in sway 
mode for body 1 and body 2 whilst for body 2 and body 3 almost the same level power absorbed at 
heading angle 𝛽𝛽 = 1200 and 𝛽𝛽 = 900 in Fig. 16. In the case of heave mode, more power is absorbed in 
heading angle 𝛽𝛽 = 1800 for body 1 and body 4 whilst the heading angle 𝛽𝛽 = 1200 is the heading angle 
at which more power is absorbed for body 2 and body 3 in Fig. 16.  
 
9. Interaction factor 
 
The interaction factor due to diffracted and radiated waves gives information about the mean 
interactions between bodies of array systems and represents the mean gain factor for each body of the 
interacting systems of N bodies. Two kind of interaction factors are used in the present paper, standard 
𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) for a given incident wave frequency, mode 𝑘𝑘, and body 𝑖𝑖 in the array system and modified 
𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖

(𝜔𝜔). The overall power production from WEC are very sensitive to the interaction factor.  
Depending on separation distances between bodies, geometry of WEC, control strategies, wave length, 
and heading angles, standard 𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) factor can have constructive (𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) > 1) or destructive (𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) <
1) effect and given as (Thomas Evans 1981) 

𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) =
𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝜔𝜔)

𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘0(𝜔𝜔)
     (11) 

 
where 𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘0(𝜔𝜔) is the absorbed power from an isolated WEC. The constructive (𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) > 1) effect 
implicitly means that power absorption from array system increases in that particular wave frequency, 
whilst the power absorption decreases in the case of destructive (𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) < 1) effect.  
 
In the case of modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖

(𝜔𝜔) which is given in Eq. (12), the dominant wave 
interaction which results in maximum power absorption in the array systems and occurs around natural 
frequency of WEC are taken into account and weaker wave interaction in which the power absorption is 
lower are filtered out from the power prediction (Babarit 2010).  
 

𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖
(𝜔𝜔) =

𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘𝑖𝑖(𝜔𝜔) − 𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘0(𝜔𝜔)

𝑚𝑚𝑎𝑎𝑥𝑥𝜔𝜔𝑃𝑃�𝑖𝑖𝑚𝑚𝑖𝑖𝑘𝑘0(𝜔𝜔)
     (12) 
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The modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖
(𝜔𝜔) Eq. (12) can have constructive (𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) > 0) or destructive 

(𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) < 0) effect. 
   
9.1. Separation distance effect on interaction factor 
 
The interaction factor 𝑠𝑠𝑘𝑘𝑖𝑖(𝜔𝜔) for sway and heave modes at heading angle 𝛽𝛽 = 900 and different range 
of separation distances is presented in Fig. 17 using Eq. (11). It can be seen in Fig. 17 in both sway and 
heave modes for body 1 separation distance has destructive effects. 
 

 
Fig. 17: Two truncated vertical cylinders, sway and heave standard interaction factor at the range of different 

separation distances and heading angle 𝛽𝛽 = 900  
 
As expected the strongest effects are due to shortest separation distance d = 2.0*B. However, for body 2 
which is on the wake of the body 1, wave interactions have both constructive and destructive effects 
depending on incident wave frequencies.  
 
The modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖

(𝜔𝜔) for two truncated vertical cylinders in both sway and heave 
modes are presented in Fig. 18 using Eq. (12). It can be seen from Fig. 18 the effects of incident wave 
frequencies away from the resonance frequency are filtered out as mentioned above. This is valid for 
both sway and heave modes. 
 

 
Fig. 18: Two truncated vertical cylinders, sway and heave modified interaction factor at the range of different 

separation distances and heading angle 𝛽𝛽 = 900 
 

It may be noticed in Fig. 18 for body 1 in sway and heave modes the wave interactions are destructive 
while for body 2 the wave interactions are both constructive and destructive depending on the wave 
frequency. As in the relative capture width in Fig. 13 – 16, destructive or constructive wave interaction 
effects have wider frequency range in sway mode compared to heave mode at which power absorption 
is mainly around resonance frequency as can be observed from Fig. 18.  
 
9.2. Heading angles effect on interaction factor 
 
The modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖

(𝜔𝜔) Eq. (12) for two truncated vertical cylinders at separation 
distance d = 2.0*B and different heading angles in both sway and heave modes are presented in Fig. 19 
which shows that heading angle 𝛽𝛽 = 1500 in sway mode for both body 1 and body 2 has most 
favourable constructive effects at different incident wave frequencies.     
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Fig. 19: Two truncated vertical cylinders, sway and heave modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖(𝜔𝜔) at the range of 

different heading angles and separation distance d = 2.0*B 
 
In the case of heave mode at all heading angles, body 1 has destructive effect as can be seen in Fig. 19 
while at heading angle 𝛽𝛽 = 900 body 2 has maximum constructive effect compared to other heading 
angles. 
 
The modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖(𝜔𝜔) in sway mode for four truncated vertical cylinders is presented 
in Fig. 20 for the separation distance d = 2.0*B and different heading angles. As in the case of two 
cylinders Fig. 19 in sway mode, the most favourable heading angle is 𝛽𝛽 = 1500 which has more 
constructive effects compared to other heading angles for all bodies in the array system.    
 

 
Fig. 20: Four truncated vertical cylinders, sway modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖(𝜔𝜔) at the range of different 

heading angles and separation distance d = 2.0*B 
 

The modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖(𝜔𝜔) in heave mode for four truncated vertical cylinders is 
presented in Fig. 21 for the separation distance d = 2.0*B and different heading angles.  
 

 
Fig. 21: Four truncated vertical cylinders, heave modified interaction factor 𝑠𝑠𝑚𝑚𝑚𝑚𝑟𝑟𝑘𝑘𝑖𝑖(𝜔𝜔) at the range of different 

heading angles and separation distance d = 2.0*B 
 

Body 1, body 3 (except heading angle 𝛽𝛽 = 900), and body 4 in all heading angles has destructive effects 
in heave mode in the case of four truncated vertical cylinders as can be seen in Fig. 21 whilst body 2 in 
the array system has constructive effects in all heading angles except heading angle  𝛽𝛽 = 1800.  
 
10. Conclusions  
 
The numerical capability of present ITU-WAVE three-dimensional transient wave-structure interaction 
panel method is extended to predict the power absorption from ocean waves in array systems. The 
present numerical results in both sway and heave modes are validated with analytical results after 
obtain the radiation added-mass and damping coefficients as well as exciting force amplitude using 
Fourier transforms in order to present the results in frequency domain. 
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The numerical experience shows that power absorptions in sway modes in any separation distances and 
heading angles are much higher than in heave mode and have wider bandwidth in frequency range in 
sway mode. The absorbed wave power is much higher in heading angle 𝛽𝛽 = 1500 than any other 
heading angle in the case of sway mode in both two and four truncated vertical cylinders.  
 
In the case of heave mode, the most effective heading angle for constructive effect for two and four 
truncated cylinders are mixed. The maximum constructive effect is heading angle 𝛽𝛽 = 900 for two 
truncated cylinder whilst it is heading angle 𝛽𝛽 = 1200 for body 2 in the array system and is the heading 
angle 𝛽𝛽 = 900 for body 3 in the case of four truncated vertical cylinder.     
 
The numerical experience also shows that if the bodies in the array system are close the wave 
interactions are stronger at any wave headings and separation distances and the interaction effect is 
significantly diminished and maximum wave interaction when separation distance is increased. The 
wave interaction in heave mode is much stronger than in sway mode. 
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