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ABSTRACT

New and emergent computing architectures and software engineer-

ing practices provide an opportunity for environmental models

to be deployed more efficiently and democratically. In this paper

we aim to capture the software engineering practices of environ-

mental scientists, highlight opportunities for software engineering

and work towards developing a domain specific language for the

configuration and deployment of environmental models. We hold

a series of interviews with environmental scientists involved in

developing and deploying computer based environmental models

about the approach taken in engineering models, and describe a

case study in deploying an environmental model (WRF: Weather

Research Forecasting) on a cloud architecture. From these studies

we find a number of opportunities for A) software engineering

methods and tools such as Domain Specific Languages to play a

role in abstracting from underlying computing complexity, and

for B) new architectures to increase efficiency and availability of

deployment. Together, we propose they will allow scientists to

concentrate on fundamental science rather than specifics of the

underlying computing.

CCS CONCEPTS

• Applied computing→ Environmental sciences; • Software

and its engineering→ Abstraction, modeling and modular-

ity;

KEYWORDS

Environmental Science, Model Driven Engineering, Cloud Comput-

ing, Environmental Modelling, WRF
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1 INTRODUCTION

A key task in Environmental Science (ES) is developing compu-

tational models of environmental phenomena so that behaviours
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can be understood, projected in to the future, and the effect of

disturbances can be studied. Environmental modelling is used to

evaluate uncertainty, risk assessment, and mitigation strategies

around flood/ drought, food security and the impact of climate

change (that has major consequences for the economy and society).

Modelling involves working with complex data sets and com-

puting systems with sufficient resources to derive model output in

a timely manner. The models can become highly complex tied to

specific computing architectures and frequently evolve with both

the scientist’s understanding of the particular phenomena and the

understanding of software and computing architectures. This limits

the potential of the models produced, by making them difficult to

deploy to alternative architectures, and to interface to other models

and systems.

In our work we advocate a novel approach based on a combi-

nation of model-driven engineering coupled with software frame-

works, whichwe envisagewill enable a paradigm shift in the flexible

and tailored support offered by cloud computing for given appli-

cation domains. We plan to develop Domain Specific Languages

(DSLs) and software frameworks to abstract away from complex

underlying computing architectures and data processing, develop-

ing tools to allow the environmental scientist to concentrate on the

science of the environment, and enable the environmental models

produced to run on appropriate architectures and interface to other

models and systems. We will specifically deploy environmental

models, which are traditionally run locally or on High Performance

Computing (HPC) facilities, on cloud architectures to take advan-

tage of on demand scaleablity, accessibility and connected cloud

services such as data stores and analytics.

In this paper we i) aim to capture the software engineering prac-

tices and associated systems administration skills of a diverse group

of environmental scientists, from this ii) highlight opportunities

for software engineering in this domain and iii) develop a case

study deployment of a complex weather model where we create an

automated model deployment on cloud architecture. The goal of

this work is to understand the domain with a view of influencing

future development of a DSL for the configuration and deployment

of environmental models in the cloud.

We take a highly user engaged and agile approach, first taking a

broad perspective and holding a series of interview / observations

with a range of environmental scientists, then gaining focus with

feedback on our development with a group of expert users, and will

continue development with an embedded group of end users.

This paper makes three main contributions:
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• Interview based study of software engineering practices

amongst environmental modellers, highlighting opportu-

nities for SE tools in environmental modelling and opportu-

nities for the SE community in ES.

• Deployment of the WRF model in a cloud architecture with

an exploration of the qualities including cost / performance

comparison, and feedback from expert users about the pos-

sibilities this opens up such as reduction in barriers to use

and likely use cases in their work.

• Emerging insight to be used in developing a DSL for deploy-

ing environmental models in the cloud.

1.1 Approach

We conduct this research in an agile, highly user-engaged manner

taking inspiration and guidance from the Speedplay innovation

management framework, which was developed across multiple

participatory technology innovation projects [5]. This involves

working in multiple iterative "sprints", each a cycle which furthers

both domain understanding in users and researcher, and the tech-

nology being developed. In this the development team can start

building without being experts in the complex domain, rather they

are guided by embedded experts as co-researchers and the evalua-

tion of prototypes reveal understanding as the project plays out.

Figure 1: Project Cycles, inspired by Ferrario et al.[5].

Each Sprint is an iterative "plan, act, reflect" cycle which starts

with a broad perspective on the chosen domain, and iteratively

builds on the last to focus through developing technology and un-

derstanding, and ends with a focal point (FP). The spiral in figure

1 represents the research team starting with a broad perspective

on the domain, here we engaged a cross section of Environmen-

tal Scientists developing or using models in their work, from soil

chemistry to bee populations to world climates. These informal in-

terviews both up-skilled the research team with domain knowledge,

and an understanding of the many ways in which environmental

scientists are developing and deploying models - and the associated

SE skills and system administrations tasks.

At the end of the first cycle, the focal point brought the team

together to reflect on understanding, review the skills and research

interests in the team and choose an avenue of enquiry from the

many possibilities. Here the spiral starts to focus, however other

avenues (or offshoots) are recorded and may be explored later. At

this focal point the team elected to use the Weather Research and

Forecasting (WRF) model (see later section) as a case study and

developed the technology towards the project goals. The second

FP, was a "show and tell" in which a panel of experts who use and

develop WRF in their work were shown the developments, and this

allowed the team to further focus investigation by brainstorming

use cases for the development in their work.

The planned third cycle will engage specific user groups for the

selected use cases and we plan to continue this spiral of cycles,

each iterating on developments and knowledge gained through

the previous. This will lead to a technology that will be a good fit

to the intended use, and embeds users and experts in the process

frequently for evaluation and feedback and creates engaged domain

"champions" of the technology developed.

2 BACKGROUND AND RELATEDWORK

2.1 Environmental Modelling

Creating and executing computational models of environmental

phenomena is a key task for many environmental scientists. En-

vironmental modelling is a large and diverse research field which

spans domains from climate prediction to soil chemistry, and covers

global to local scales. Environmental models are typically used to

bridge observational paucity and predict the future. This has soci-

etal benefits though informed decision making on environmental

impacts, for example with respect to climate change and its impacts

on extreme events, biodiversity loss and food security.

For a given area, a plethora of environmental models exist each

with different assumptions, levels of physical parameterisations,

modelling approaches and complexity. Simple environmental mod-

els can run on individual workstations while other, more complex,

models require dedicated HPCs. Model simulations are often com-

bined as ensembles requiring large computational resources, par-

ticularly for climate prediction through: i) running the same model

multiple times while varying the starting point (initial condition en-

sembles [7]) or assumptions (perturbed physics ensembles [11]); or

ii) running multiple (distinct) models, created at separate research

institutions, that use different interpretations and assumptions of

the same underlying physics but which predict the same output

variables. Additionally, different models can be combined in pre-

dictive cascades (e.g. coupling climate and hydrological models to

project future flooding). These cascading, integrated models (which

must also allow for uncertainty) are used in decision and policy

frameworks. Ensemble techniques are important to manage model

uncertainty (driven by the chaotic nature of natural systems and

lack of data for model initial conditions), a key issue in Environ-

mental Science.

Moving environmental models to cloud architectures has the po-

tential to revolutionise Environmental Science through supporting

an open, collaborative and integrative approach. This area, however,

is in its infancy with only initial insights gained through projects
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such as EVOp 1. Although there have been initiatives to develop

‘community’ models in some domains, there has been no research

into raising the level of abstraction by using cloud services. In order

to achieve a status of ‘models in the cloud’, it is necessary to sig-

nificantly raise the abstraction of the underlying cloud services, to

manage the distributed computation and allow scientists to freely

operate in their specific domain. Therefore, a real opportunity for

SE to provide high-level support for cloud execution of a large and

diverse range of environmental models.

2.2 Environmental Models and Cloud
Computing

Cloud computing is a technological paradigm evolved over time

from existing technologies like grid computing, utility computing,

virtualisation and autonomic computing [6]. Cloud computing sup-

ports the provisioning of on-demand, varying levels of services over

the internet such as Infrastructure as as Service, where users can

choose from a heterogeneous pool of physical resources, Platform

as a Service offering platform level software and Software as a Ser-

vice. Cloud computing has opened up a world of new opportunities

with its qualities such as scalability, elasticity, reduction in capi-

tal expenditure, on-demand unlimited resources, heterogeneous

options, virtualisations and pay per use faclities. Large companies

such as Amazon (AWS), Google, Microsoft and others are striving

to provide reliable and cost-efficient cloud platforms to users.

Exploration of cloud computing services in ES is an under-

research area. The climateprediction.net (CPDN) project started as

an initiative to address the uncertainties associated with climate

model parameters [10]. This project is currently running on the

BOINC framework comprised of volunteer computing resources.

Considering the limitations of the BOINC based infrastructure in

terms of scaleability, anticipation of performance and control over

resources lead the researchers to start looking for cloud offerings,

specifically AWS at considerable effort.

In research related to Numerical Weather Prediction, researchers

at NASA’s Marshall Space Flight Center and Ames Research Center

collaborated on the use of the WRF model by making use of pub-

lic and private cloud resources [9]. STRC-EMC was a case study

deployed on AWS EC2 and discussed the opportunities enabled

through the usage of cloud resources, especially for those who have

no access to large scale HPC infrastructure. The research empha-

sised the on-demand nature of cloud computing and the use case

of running simulations if HPC access is lost in a disaster.

Similarly, Chen et al. [2] evaluated the performance and relia-

bility of running the Community Earth System Model (CESM) on

AWS EC2. CESM is a widely used climate model developed by the

National Center for Atmospheric Research (NCAR). In this experi-

ment CESM is deployed on the StarCluster which is an open source

cluster computing toolkit for creating a cluster on AWS EC2 nodes.

Comparable results were seen when compared to the simulation

execution time on the local HPC. In contrast they found the black-

box nature of cloud services can result in variable performance.

However, scaleability and creation of reusable machine images was

considered a useful feature for climate scientists.

1http://www.evo-uk.org/

2.3 Software Engineering and Environmental
Science

In his call to action for software engineers, Easterbrook [3] specifi-

cally identifies "Computer-Supported Collaborative Science" as a

fundamental way in which software engineering can contribute to

addressing the grand challenge of climate change. He identified that

through supporting earth system models with software engineer-

ing tools and techniques we can accelerate the process of getting

scientific ideas into working code. In his keynote at MODELS’16 2,

Blair specifically identified the Model Driven Engineering (MDE)

community of software engineers as having the tools that could

revolutionise the way Environmental Modellers work, through

abstraction of complex computing systems, allowing them to con-

centrate on the science. Through this work we are responding to

these calls.

Easterbrook and Johns [4] performed an eight-week observa-

tional study at a national weather forecasting agency, and compre-

hensively documented the software engineering practices of the

organisation and structure of the models in development and use.

In our study we take a broader perspective and interview individ-

ual scientists from academic and government research institutes

about a broad range of environmental models. Easterbrook and

Johns found environmental model coding is usually done in-house

by domain experts. These experts typically do not have SE back-

grounds, and perform model coding in addition to their day jobs,

i.e. performing science [4]. The typical structure for large models

consists of a small number of code owners and a larger set of con-

tributors [4], often called "community models". For example, global

climate models (e.g. CESM 3) are typically split into components

that represent both physical boundaries and the different research

communities, i.e. ocean and atmospheric science. The development

of these large, multi-faceted community models can take decades

and involve hundreds of scientists. Consisting of millions of lines of

code in some cases, disentangling their structure in a SE perspective

can be challenging [1]. Here, Easterbrook argues for the engage-

ment of the software community as they ".. bring a unique set of

skills related to the analysis and (re-)design of complex technical

systems" arguing that "software and computational thinking are

critical components of the solution" [3].

There has been work towards implementing DSLs and MDE in

other scientific disciples, for example Whittle et al. [14] generated

Fortran code from a high level graphical specification, compos-

ing code from a subroutine library. However in environmental

modelling, there are no such examples of languages orchestrating

systems from components in this way.

3 CYCLE 1: INTERVIEWSWITH
ENVIRONMENTAL SCIENTISTS

In our first project cycle we held a series of interviews with envi-

ronmental scientists with the aim of gaining an understanding of

practices, including software engineering practices in developing

and deploying environmental models. This is the first cycle of user

engagement and embedding domain experts in the project.

2https://www.youtube.com/watch?v=2T11Gpq0PEg
3http://www.cesm.ucar.edu/
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3.1 Selection of Participants

We selected the interviewees from a broad range of environmental

disciplines to gain experience of a wide range of practices. They

were chosen specifically as a group that develop or use computer

based models of the environment. Five interviewees gave us a range

of perspectives and was achievable in the time available, although

we note the low number means the findings are not statistically

significant and may be subjective. There was a mix of academic

(A,B) and independent research institutes (C) involved. The partici-

pants come from partner institutions and departments on the same

campus, and had never worked with the interviewers before. Some

details are listed below, names have been changed:

• TERRY (A)- Completing PhD student, using a community

developed global climate model (CESM) to conduct experi-

ments.

• GEORGE (C)- Statistician, developing their own statistical

model of insect populations.

• CLAIRE (C)- Quantitative Ecologist, tasked with connecting

models that were never designed to be connected.

• ROLAND (A)- Postdoctoral Researcher, using a community

weather model (WRF) to study urban heat islands in Africa.

• TATIANA (B)- Collaboratively developing a soil chemistry

model in a multi-site team.

3.2 Interview Technique

The interviews took the form of a semi-structured conversation

about the interviewees work - we asked them to introduce and

demonstrate the model they work with / on, show us code and

scripts they had developed themselves and run the model. Addi-

tionally, we prompted the interviews using the question framework

shown below if it was not covered naturally in conversation. The

interviews lasted between 1.5 and 3 hours.

• Individual - the types of model the individual works with

and how frequently they work with models. If they write

new models or adapt existing models, which programming

languages / tools / frameworks are used. The individual’s SE

background and experience.

• Model specifics - how the model runs and is deployed. In-

clude information related to the architecture and computa-

tional requirements of the environmental model. The archi-

tecture specifies if the model is designed as a stand-alone

module or composed of other integrated or coupled meth-

ods/models.

• Automation - captures information related to the availabil-

ity and description of work-flows, scripts or GUI to run that

model.

• Architecture - describes the computational architecture the

model is running on, i.e distributed, shared, cluster based,

etc.

• Data Formats & storage - informs about the type and for-

mats of input and output data required to execute a model

simulation. It also details any hardware and software related

requirements for storing the input and output data.

• Pre-processing & deployment - keeps track of any re-

quirements or programming tasks necessary as pre-requisites

related to data, model or model deployment.

• Processing - informs about the duration of different model

simulations and the general practices the scientist follows

to keep track of running simulations.

• Analysis & visualisation - describe the software tools used

by the scientists in order to analyze and visualize model

outputs from the data produced.

• Limitations & enhancements - discuss general practices

that scientists follow and what challenges they are faced

with, and to identify different aspects of human values.

Two researchers visited the interviewee in their normal work

place and recorded the conversation and screen interactions using

a video camera. The interviews were transcribed and we took a

grounded theory approach to coding, here individually coded by

the two researchers. At the first pass the researchers met to agree

on the coding framework to use, and findings are presented below

grouped by these themes.

3.3 Findings

The interviews provided the researchers with rich insight into the

software engineering practices engaged by our group of environ-

mental scientists, and the variety of approaches taken in running

and engineering models.

3.3.1 Technical.

Computational Demands and Resources. The resources re-

quired to run models generally varies with the number of runs,

resolution of the grids and geographical areas. Although they can

be compiled for local machines, global climate and weather models

are run on HPCs by our interviewees. TATIANA, GEORGE, and

CLAIRE usually develop their model runs on desktop computers,

and each encountered problems with transferring the models to

HPC. Scaling up to HPC is required if additional processing power

is required, for example when performing many parallel runs of

a model, or running the model at a much higher spatial resolu-

tion. TATIANA’s Matlab model required some additional skillsets

to deploy on the HPC. One of the main challenges for CLAIRE’s

experiment was getting a pre-compiled model to run on their multi -

PC setup: "The main challenge we had, which seems ridiculous was

that we couldn’t get the DLL to work on a machine that wasn’t the

one it was compiled on for 3 or 4 months, because the person that

set it up didn’t know how to compile it to run on other machines".

None of our interviewees used models or services deployed in the

cloud directly in their environmental modelling work.

For our interviewees, data exchange was performed with flat

files and FTP was used to move the data between individuals local

computers and HPCs.

For CLAIRE, there was a miscalculation or perhaps a lack of

recognition of the value of computing expertise in the project:

"[They thought] both the time for the ICT people downstairs and

the computing resources were free ... they weren’t".

Computational Skills and Expertise. Each of the intervie-

wees had self-taught themselves the system administration and

programming skills required to install, develop and deploy their

models. None had a formal education in computer science or soft-

ware engineering. CLAIRE: "I’ve never been taught to do anything

on a computer apart from at school", TATIANA: "... my training in

programming is pretty limited. It’s more just I’ve picked it up as
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I’ve gone on". For example there was little understanding of object

oriented programming, or attempts to design systems or software

architectures before building models amongst interviewees.

There was a shyness in showing the interviewers code they had

written TERRY: "Go easy on my scripts, I’m just learning", and hints

at an understanding of a missed opportunity GEORGE: "... there’s

just a tendency to jump in and say, "I’ve got the data, let’s start." By

the time you’ve written ten lines of code, that quickly becomes a

hundred, it quickly becomes, "Well, we can’t start again now.""

For ROLAND, the major challenge in running experiments was

installing the model - as this required systems administration skills

such as installing dependencies and navigating command line tools.

CLAIRE had called on a member of an informatics team in her

organisation to help deploy the model developed to multiple physi-

cal nodes, but was not able to use their skills at much as desired as

their time was not budgeted for in the original project proposal.

Code Understanding. The programming and scripting lan-

guages the models our interviewees are written include scientific

and mathematical languages such as Fortran, Matlab, and R. In the

case of TERRY and ROLAND Bash scripts are written to prepare

data and deploy the models they work with. Some general purpose

languages including Python are sometimes used in the analysis of

output data. The choice for which language and environment used

falls to familiarity TERRY: "I’ve got many, many scripts written and

created in Bash. So, if I want to do something else I just look those

previous scripts and just modify a bit what I need to do" but there

is an awareness that other options are there GEORGE: "I’m doing

some things in R here that would probably be more efficient to do

in Python".

The programming language can be a barrier for the scientist to

understand the science of the model CLAIRE: "I really don’t know

what’s going on in it because I did not write it... it took me ages to

read through the Fortran file because I don’t read Fortran really".

Whereas GEORGE prefers the configurability of Notepad++ to

an IDE, IDEs are used to develop and also run "local scale" models-

R Studio used by CLAIRE, Matlab, visual studio and xcode by TA-

TIANA, but world weather and climate models require the use of

command line skills and bash scripts to deploy (ROLAND, TERRY),

there is no integrated environment or framework used for those.

Version Control. GEORGE described using Git for his model

code, but offered some insight into why others don’t use version

control when working alone on models: "I think if there’s only you

that works on it, there’s less of an impetus for putting it in Git".

Similarly CLAIRE has recently started to use Git in preference to

change log headers in source code files, but describes why people

are hesitant: "I mean definitely a bit of a cultural thing about we

don’t really have a good version control culture ... some of them

have never heard of [version control]". TATIANA describes one

problem of working in multi-site teams without version control: "I

don’t fully understand why some bits are changed, or how they’re

doingwhat he says they’re doing", and GEORGE the recent situation

before implementing version control: "everyone would have slightly

different versions because you have this thing of Chinese whispers".

TERRY manually documents changes in headers at the top of script

files - "This is the way I document when I do this. When I write the

script, and then, if I add any change I keep tracking that. Then, a

description, what the script does". Similarly ROLAND does not use

version control system for his scripts.

We asked if the interviewees implemented any method of ver-

sioning model run outputs- GEORGE: "No, I don’t have any version-

ing of outputs, and in fact I have got into a bit of a mess with that,

actually ... Obviously, when you run this you’re supposed to name

these yourself". TERRY archives what he considers to be useful to a

portable harddrive, "... when you are doing a study, later you usually

regret not saving more data", but when publishing articles "They

keep the data publicly available with DOI and with that people

can retract the data and check whether my study is correct or do

something else".

Fault tolerance / resilience. The community climate model

and weather models are relatively fault tolerant, allowing the scien-

tist to restart where the model stopped. However crashes or faults

in these models are usually due to invalid boundary conditions or

similar, indicating a problem with the way the model was set up.

CLAIRE struggled with one model as it would crash apparently

randomly without warning. This would output data as it went al-

lowing some data to be used. The model would have to be manually

restarted from the time of failure to continue, it would not recover

automatically.

(In)efficiency. There is some inefficiency in some tasks, for

example in the large volume of data exchanged between computer

systems, and having to download large flat files to extract a smaller

amount of data which the environmental scientist is interested in.

In terms of architecture, GEORGE highlights that a single language,

single environment approach may not be desirable- GEORGE: "This

whole thing is written in R, and that is optimal for the statistical

modelling bit because that’s what R’s good at, but for a lot of the

other things, it’s not ideal. For a lot of that spatial intersections and

whatnot, I’m sure Python is more efficient".

When programming, code reuse through building functions and

modules is sometimes constrained by the environment or familiarity

with the environment -GEORGE: "But when I write in R, I’m more

like ’follow the trend’ and write a straight line of code. And if you

need to repeat it then copy and paste. After some time, I really got

frustrated and I was more like, no. If I need to reuse, there should

be some way that I call simply, just as I do in the Java". GEORGE

goes on to hint at the improvements that could be made through

working with software engineering: "if you knew that from the

outset and you planned it, you might say, ’Well, what we need is,

we need a person who could do this and could easily do something,

write something, write some Python code or whatever, do that.’

And then all we’ll have to do is link that to this and sort of sketch

it out. And we never did that ... we’d just dive in".

Compatibility. Interfacing of data amongst our interviewees is

always done with flat files through CSV files, netCDF files and Excel

documents. The models they demonstrated to us do not interface to

other types of data store or have other interfaces beyond command

line or IDE deployment and yet there is a growing need for this.

Coupling models is rarely done, and is a real challenge. CLAIRE

required a regression function to interface models "There was no

design at the start for them to be brought together ... we put in

place some simple regression that sits in between the two models

and acts as a kind of calibration".

SE in ES: Opportunities for Software Engineering and Cloud Computing in Environmental Science ICSE-SEIS’18, May 27-June 3, 2018, Gothenburg, Sweden,
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TATIANA would like to use other models in her work, but inter-

facing them is a concern "... there’s lots of candidates out there that

you could use rather than creating a new model. Then it’s things

like what programming language are they in? Are they going to

mesh with [model name] very easily?".

3.3.2 Scientific.

Model Understanding. The interviewees all have a high level

of understanding of how the models they are using work. However

the depth of understanding varied across the set of interviewees and

the teams which they work with. CLAIRE: "... brought together they

were in different languages and then the process space modellers

do not really understand the statistical model and vice-versa", and

TATIANA "I’m a geographer not a mathematician but I could follow

them".

Uncertainty.Modellers deal with uncertainty in their models

in different ways. Each global climate model run produces a differ-

ent output, and it is up to the Environmental Scientist to design

ensemble model runs to explore uncertainty arising because of this

variability TERRY: "Greenhouse gas concentrations, aerosols, the

temperature of the ocean is the same so it’s going to give you some-

thing different because the chaos of the system is going to give

you some kind of variability". Sometimes models are designed to

capture and preserve this uncertainty GEORGE: "What you actually

get at the end is a map, so there’s two maps here. We’ve got the ac-

tual thing on the left, the bees, and then the uncertainty associated

with that. We were quite keen to keep the two together so this idea

that we always want to present the uncertainty. This is a statistical

model, so there’s always uncertainty associated with it. The output

is preserved and the two are always linked. In the NetCDF file, as

well, both the estimate and the uncertainty are in the NetCDF file".

But this methodology does not extend to source data GEORGE: "[..]

in statistics, that’s often ignored, that you assume the data you’re

dealing with is the truth. That’s not always the case, obviously.

Yeah, the uncertainty here is the uncertainty as a result of that

modelled relationship, not [the source data]".

Dealing with uncertainty is something environmental scientists

would like improve. One barrier is the complexity of the computa-

tion required to track it GEORGE: "... keeping track of uncertainty,

... making sure it’s propagated through, is sort of easy technically

because you could just say, well, what we’re going to do is we’re

just going to take samples, we’re just going to do a sort of Monte

Carlo re-sampling thing and just put it through each component

of the model a hundred times and let that work its way out in the

end. Which is sort of easy enough to do, but that’s computationally

where things get very complicated". CLAIRE: "And it takes 5min

for each square (there are 200,000) so even doing the uncertainty

analysis on that it would take us years, so we cannot do that".

Data Sorting and Extraction.Data preperation is a significant,

sometimes complex and key task performed by our interviewees.

The volume of data needed for input and generated by the mod-

els is often significant (terabytes) and usually downloaded locally,

processed and re-uploaded. In the case of the climate model, the

data is in the form of flat files that need to be downloaded, pro-

cessed and re-uploaded -TERRY: "... first we look through raw files,

then extract the variables we need via NCO commands, and that is

very simple ... using this file and put it in this new file.... Instead of

having terabytes, you’ll have gigabytes, and that will help ..." this

work is done by a script the scientist wrote themselves with their

own strategy because the tools aren’t available, or shared to do this

GEORGE: "I didn’t find any standard functions to do this. I adopted

my own version".
Sometimes simple tasks like unit conversion are done manually

in data preparation scripts - GEORGE: "... rainfall is in an odd unit

like kilogrammes per metre squared per hour. ... I just wanted

millimetres, and so yeah, there was a bit of a conversion ... That was

just a case of multiplying it out, but there’s not many R-libraries for

specific manipulation like that ... ". Translating resolutions of grids

and data is also done independently CLAIRE: "Oh this is just a bit

silly, we wrote it very inefficiently just translates grid references

in a very long way into that." ROLAND: "... it was LiDAR, kind of

satellite data product to get all the building heights for the UK ...

Because the model I’m running is a kilometre resolution, so I don’t

really want individual building heights. I was kind of aggregating

those two, at a kilometres resolution. So, I did that for the model".

None of our interviewees described their models interfacing

with data sources other than flat files, such as netCDF and CSV.

TATIANA: "I’ll show you this in the Matlab, basically there’s a CSV

file for each plant functional type, which has ... Plant parameters

for each plant type". One institution had a data store that serves flat

files, and these did not have well documented meta data GEORGE:

"The data is numeric on 1-23, but they’re actually classes, it’s a

classification, so 1 actuallymeans broadleaf woodland. You’ve got be

careful that you acknowledge that that isn’t a numeric, which from

my understanding it’s not obvious in a netCDF ... That information

unfortunately is not in the netCDF".

3.3.3 Human.

Time Management. Most of the interviewees work on one

project at a time, but some are split across multiple projects using

different models - CLAIRE "i might only work on 3 or 4 on an

average week".

Ownership - GEORGE described issues with agreeing sharing

data across project partners "While they have the data, they’re not

going to let it out the door" and "the computation aspect wasn’t

so much of an issue, as much as just a space where everything

could be, the data, the code, and whatnot, and there was some

sort of control over what versions what people were using". The

ownership of a model is sometime maintained and access controlled

by individuals or research groups and in some cases it is undefined -

TATIANA: "So, this model was [written by] a guy called Terry... and

then Fiona was working on it. I say Terry; there was other people

as well, but I think he was the leader of the paper. And then Fiona

started working on it in combination with these people at [another

institution], and they added ... to it.... So, it’s still evolving". There

is a recognition that the models produced and used can go on to

influence big decisions - CLAIRE "The idea is its all very policy

relevant. It is always little bit scary. But then what’s we do".

Multi authorship. TATIANA described problems with shar-

ing the development of a model "...I’m having issues because he’s

changed variable names, and things like that." and using differ-

ent naming conventions "Rather than cooling and plant functional

types he calls them land use parameters".
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3.4 Focal Point: Insight and Opportunity

After the interviews cycle was conducted, the research team re-

grouped at this focal point and summarized the key opportunities

and insight they found from observing the way the interviewees

worked and the tools that were used.

3.4.1 Insight from Interviews. The findings above clearly draw

parallel to the opportunities for SE to engage with scientists high-

lighted by Easterbrook [3], however without influence from this the

research team looked for cross cutting themes in the interview data

that were present at all levels of model development, summarised

here:

• Ahigh level understanding of systems administration skills is

required when installing, configuring and deploying models.

This understanding is self taught.

• Data is stored as it "always has been", in flat files and ex-

changed via FTP. Data is prepared locally then uploaded to

the processing computer (usually HPC facility).

• Alternative architectures are rarely considered or under-

stood - we observed models written on a local machine, then

adapted at some effort to run on HPC. HPC may be the best

architecture for some core computations, but many other

tasks may be better suited to other architectures

• Models are often monolithic written in a scientific language,

restricting the ability for each component to be deployed to

appropriate compute architecture.

• Models are generally not developed with interfacing or cou-

pling to other models in mind, however this is becoming an

increasingly common task.

• Implementation of version control supports collaboration

and understanding of changes.

3.4.2 Opportunities for SE in ES. These themes can be translated

into the following opportunities for SE in environmental science.

• Abstraction. There is a real opportunity to raise the level

of abstraction and allow scientists to deploy models without

needing to become systems administrators. Model Driven

Engineering provides the tools through Domain Specific

Languages to be able to do this.

• Framework Support. Build frameworks and environments

that support separation of the scientific tasks from data

preparation, allowing each component to be developed in

appropriate languages and deployed to most appropriate

architectures. Defined interfaces will allow models to con-

nect to other models, "queryable" data sources (rather than

flat files) and other services. Support scaling of models from

desktop to cloud and HPC.

• Flexible Architectures. These frameworks and DSLs can

facilitate deployment to new and emergent architectures,

allowing scientists to take advantages of on demand compute

in the cloud and alternative architectures such as GPU nodes.

• Education. None of our sample of interviewees had any

formal software engineering training. More understanding

of software engineering by the model developers would help

them to structure developments in more scale-able, reusable,

fault tolerant manner.

4 CYCLE 2: AUTOMATED DEPLOYMENT OF
WRF TO CLOUD ARCHITECTURE

In the second cycle we address the first two of the opportunities

highlighted in the previous section through cloud deployment,

experimentation and feedback from an expert group. We create

an easy to use cloud deployment of the WRF weather forecasting

model, and this provides insight into DSL devlopment. Here, we

raise the level of abstraction through reducing the complexity of

deployment and leveraging the on demand scale-ability of cloud

architecture. At each subsequent cycle we will take our latest work

to a relevant user group to feedback and inform development.

This section describes the WRF model, cloud deployment, scripts

developed and the feedback from an expert users group at a "show

and tell" focal point marking the end of project cycle 2.

4.1 The WRF model

TheWRFmodel [13] is a large community-based endeavour (around

40,000 users), supported by NCAR. The model is primarily used

for atmospheric research and forecasting across a wide range of

scales (thousands of kilometres to meters). The diverse range of

extensively validated science WRF can simulate includes regional

climate, air quality, urban heat islands, hurricanes, forest fires, and

flooding through coupling with hydrological models.

WRF takes the initial state of the atmosphere and propagates

this forward spatially and temporally by numerically solving (and

conserving) equations of mass, momentum and energy. A suite of

parameterisations is used to account for sub-grid scale or processes

too complex to be accounted for by the model, e.g. radiation. The

model is typically run for short time periods, days to months and

uses a nested domain structure is used to increase horizontal resolu-

tion over the required study area, i.e. to limit unnecessary increases

in computational time.

WRF is chosen as a case study here for the following reasons: i)

WRF installation is viewed as a barrier to use; ii) cloud resources will

enable WRF users to conduct simulations beyond current capability

[12]; iii) WRFs open-source nature and portability; and iv) the

benefits SE will provide to WRFs large community user base. The

goal is to remove time-consuming user computing difficulties that

that could otherwise be spent on core environmental science.

Shared
Data Storage

Shared
Data Storage

Master Node

Libraries- GNU/GCC Fortran, Zlib, 
mpich, netcdf, Jasper, libpng, NCL

WRF, WPS

Compute Node 1
Libraries- GNU/GCC Fortran, Zlib, 
mpich, netcdf, Jasper, libpng, NCL

Compute Node ..
Libraries- GNU/GCC Fortran, Zlib, 
mpich, netcdf, Jasper, libpng, NCL

Compute Node n
Libraries- GNU/GCC Fortran, Zlib, 
mpich, netcdf, Jasper, libpng, NCL
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Figure 2: MPI cluster on Microsoft Azure IaaS.
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4.2 WRF Cloud Infrastructure

We deployed WRF on a Microsoft Azure cluster, the basic architec-

ture of this cluster is shown in Figure 2. The architecture of theWRF

model itself is complex, described by [13]. We deployed WRF to a

Message Passing Interface (MPI) supported cluster composed of 9

standard compute nodes from the Microsoft Azure Dsv3-series each

having a 3.2 GHz Intel Xeon E5-2673 v4 (Broadwell) processor. Of

the 9 nodes, 1 node is a master node taking care of all the compila-

tion and providing a means of sharing the storage and computation

with all the nodes. The computational specification of cluster nodes

are described by Table 1.

We used a predefined image of Ubuntu Server 16.06 LTS for each

of the cluster machines and each node has 8 processors with 32

GiB RAM and temporary storage of 64 GiB that is considered a

secondary storage for each compute node.We used the GNU Fortran

and GCC to compile WRF. The cluster provides primary storage of

100 GiB shared amongst nodes via the Network File System (NFS).

The shared location contains all the simulation related input/output

data and files required forWRF configuration as well as compilation.

All the cluster nodes and storage are deployed in Western Europe

under one secure virtual network and have friction less access to

enable data sharing and execution of MPI based jobs.

4.3 Cost & Performance Insight

In order to gain insight into the cost and performance of WRF

deployment, the same simulation was run on a HPC cluster4 and

the Azure cluster using different numbers of nodes. It is not ex-

pected to achieve comparable performance since the Azure cluster

is composed of ordinary general purpose nodes rather than ded-

icated HPC supported nodes with high infiniband access. Rather,

the intention is to use this performance data to explore use cases in

which cloud deployment on general purpose nodes is appropriate.

No GPU nodes are used here.

A 24-hour WRF simulation was centred over the Lagos, Nigeria

metropolitan area using WRF version 3.9.1.1. The reason for choos-

ing this location was interest in the rapid urbanisation the city has

undergone in the last few decades and its impact on local climate.

The simulation used four nested domains, with increasing horizon-

tal resolution (3:1 ratios) from 27 km in the outer domain to 1 km

in the inner domain. The domains each contained 91 x 91 grid cells,

i.e. covering a horizontal distance of 2500 km in the outer domain

and 91 km in the inner domain. The model was configured with

default physics and parameterisations, with exception of setting

the single-layer urban canopy model [8] for the urban physics. The

free-to-use NCEP (National Centers for Environmental Prediction)

6-hourly, 1-degree horizontal Final Operational Model Global Tro-

pospheric Analyses data were used for initial and lateral boundary

conditions.

The results of running simulation on HPC cluster as well as

Azure with varying numbers of processors are shown in Figure 3. A

clear reduction in execution time is seen for both HPC and Azure as

the number of processors is increased from 8 to 64. This indicates

that a cluster composed of ordinary general purpose compute nodes

can also be used to effectively run WRF simulations.

4http://www.lancaster.ac.uk/iss/services/hec/
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Figure 3: WRF simulation execution time over Azure cloud

and HEC.

Another experiential insight is seen when the price is calculated

for running the same simulation on different numbers of proces-

sors on the Azure cluster. Table 2 shows the cost of running these

simulations, where minimum compute cost is less than a dollar

and maximum is approximately equal to $3. This shows a potential

benefit for the scientist who do not have access to high perfor-

mance computing infrastructure (or does not want to wait in the

queue) and can run their models within affordable budget. The

cost of a dedicated HPC cluster is not considered in this work, a

per-simulation price would be almost impossible to calculate since

it is dependant on so many factors. Instead we focus here on the

opportunities cloud technologies bring above a HPC offering.

These results show the flexibility of cloud deployment in terms

of speed and cost. Surprisingly, the execution time of running the

model on 32 and 64 processors is almost the same, however 64

processors have a higher cost. This indicates that inWRF there is an

optimal threshold of assigning number of processors to a simulation

depending on simulation size. Finding this optimal deployment is

subject to future work.

4.4 Qualities of Cloud Deployment

Here we discuss some of the qualities of the cloud deployment.

Raising the level of abstraction. The deployment complexity

is reduced by abstracting away complex procedures of WRF instal-

lation and deployment. This is done by providing executable scripts

that can take care of all the dependencies starting from downloading

libraries to setting up environment for running a WRF simulation.

The scripts are able to deploy WRF on a private Linux machine or

a virtual machine on some public cloud provider’s infrastructure.

A walk though guide is also provided for enabling end users to

create a compute cluster on Microsoft Azure’s infrastructure for

WRF deployment without being an expert in the cloud computing
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Table 1: Computational specifications of Azure Compute instances.

Series Instance Cluster Node vCPU RAM Storage IOPS/MBps Expected Price

Type (GiB) (GiB) N/W Performance ($/h)

General Standard Master x 1 8 32 64 12,800/192 4/High 0.357

Purpose D8sv3 Compute x 8 8 32 64 12,800/192 4/High 0.357

Table 2: Cost and performance of running WRF simulation

on Azure cluster.

X Processor Execution Time Cost/hr Total Cost

Cluster (minute) (/node) ($)

8 (1x8) 109.51 0.369 0.738

16 (2x8) 78.38 0.369 1.47

32 (4x8) 53.49 0.369 1.44

64 (8x8) 55.48 0.369 2.952

domain. The user is also provided with the necessary steps to fol-

low for creating machine images that can increase the deployment

progress and enhance reproducability.

Leveraging cloud services.Auser can have access to on-demand

resources with no upfront cost, where they can choose from a pool

of heterogeneous options providing different virtual machine con-

figurations. Here, a user can save HPC queue time by running a

simulation on cloud infrastructure. Additionally, clouds can offer

data analytics, machine learning and container fabrication services.

Democratising models. Providing the mechanisms to deploy

environmental models in cloud environments can open up access

for all. Not just well funded research institutes with their own HPC

resource, anyone interested would be able to deploy models and

run experiments in the cloud.

Performance and cost. The performance of the HPC always

outstripped the cloud deployment on standard nodes. As cloud

services are developed this performance gap may change. Cloud

deployment is "on demand" with no queue time required, so experi-

ments can be run instantly. A "per use" cost enables flexibility, but

may not be a comparable cost when comparing overall performance

and usage of a HPC.

4.5 Focal Point: Feedback from expert WRF
users

In the cycle 2 focal point the cloud deployment was demonstrated

to a group of 6 expert regular WRF users in a "show and tell" event.

Here we held a brainstorm session to identify appropriate use cases

for cloud deployment of WRF and identify potential end users to

get engaged in developing the DSL for deployment.

All users present regularly run research experiments using WRF,

three were involved in some kind of model development, three

were involved in teaching and one was most interested in using the

output from WRF as input to other models.

We first described the project, and our outline plans for the

future. WRF was deployed during this time using the unattended

automated script. We then held a brainstorm and discussion session

to get feedback on this mechanism of deployment and the experts

proposed likely situations where cloud deployment would be useful

(use cases), the impacts / benefits to their work and where it may

not be appropriate to deploy in the cloud.

Immediately the experts saw the removal of a key barrier to use

of WRF by the simplification of the installation process. Through

discussion the following use cases for WRF in the cloud emerged:

• A) New users. For example, Masters level students who usu-

ally take 3 months to learn how to install and configure the

model before doing any science.

• B) Those who just want to run the model in a standard way

and get some results to feed into other models or projects.

• C) Power users whomaywant to quickly deploy for a project,

perhaps in a parallel execution in the cloud without wanting

to wait for a HPC queue.

A future DSL may need to cater for these users, however the

"power users" will likely bemore familiar with navigating command

lines and scripting so may just need guidance on cloud deployment,

or a DSL for architecting this deployment.

The WRF experts were excited by the potential of connecting

WRF to other cloud services, such as data stores, machine learning

and analytics etc. and leaving the data in the cloud to reduce the

amount of data transfer, taking the data to the services.

The people in the room were also very interested the concept

of developing models from the outset as "micro services", with the

intention of reusing services in other ways.

5 CYCLE 3: FUTUREWORK- DSL
DEVELOPMENT

From our expert user group, we distilled 3 interesting avenues of

enquiry for our work:

• 1) Develop a DSL for cloud deployment of WRF with the 3

user groups identified.

• 2) Connect WRF cloud to wider cloud services - for example

connect the output to a useful data store that can be queried

e.g. geosparql and analytics services.

• 3) Work with a model built from "scratch", and build it using

micro services orchestrated by a development of the DSL.

Cycle 3 will address the first point from the above. We will

do this by forming user groups from each of the use cases and

collaborate by embedding users in fortnightly cycles of DSL design

and development. A focal point will be formed by meeting with the

expert users in another Show and Tell event.

To further abstract from underlying computing, WRF and the

automated script will be wrapped in a docker container, with a

DSL designed to configure this deployable container and the ar-

chitecture to which it is deployed. This will be configured by the

SE in ES: Opportunities for Software Engineering and Cloud Computing in Environmental Science ICSE-SEIS’18, May 27-June 3, 2018, Gothenburg, Sweden,

69



ICSE-SEIS’18, May 27-June 3, 2018, Gothenburg, Sweden, W. Simm et al.

requirements of the scientist’s experiment and the constraints (time,

cost), themselves configured by DSL.

6 CONCLUDING REMARKS

This work seeks to raise the level of abstraction for environmental

scientists to allow them to concentrate on their science rather than

configuring supporting computing systems. We do this by engaging

with scientists to understand their domain and produce technolo-

gies that are fit for purpose. In doing so, we wish to leverage new

architectures to facilitate deployment, and to interface environmen-

tal models to each other and to the wider service fabric in the cloud

such as data stores and analytics engines.

In this paper we presented findings from a series of interviews

with environmental scientists working with different kinds of mod-

els, unveiling the way in which they work and the degree of fa-

miliarity they have with systems administration, software engi-

neering and understanding of compute architectures. We found a

high degree of system administration is required, data is not stored

efficiently and alternate architectures are not used. Programming is

monolithic, without defined interfaces, and there is little a thought

to code or service reuse.

We find opportunities for SE to engage with ES, to educate in

methods and techniques, and highlight the opportunities for abstrac-

tion and framework support to provide tools to enable scientists

to leverage flexible architectures. This would allow more models

to be connected and run more efficiently, and to allow scientists to

concentrate on the science, resulting in a better understanding of

phenomena and uncertainties which would hopefully be reflected

in better policy informed by results.

Toward this, we built an automated cloud deployment of a com-

plex weather model, which experts could see instantly would break

down barriers to entry of new scientists, and allow connection to

cloud service fabrics. This paves the way for future work develop-

ing DSLs to allow scientists to describe experiments in their own

language and abstract from the systems configuration and complex

deployment required by models.

Supporting this work is the Speedplay methodology [5], rooted

in participatory design that sees the computer scientists and envi-

ronmental scientists in equal partnership, developing together. In

this research we will go full circle, not just unravelling and under-

standing the opportunity, but designing and building technologies

with end users embedded in the process. This will give the resultant

tools and techniques the best chance of being adopted and will

inform the future development of environmental models.

We have seen that despite doing a lot of software engineering

and computing, Environmental Science as a discipline has not kept

pace with advancing technologies in these fields. There are op-

portunities to work with Environmental Scientists to make a real

transformative difference in the discipline, and help them to better

understand our environment and help policy makers to make the

right decisions for the future of our planet.
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