
Antimicrobial Adaptation in Uropathogenic Escherichia coli

HENLY, Emma Louise

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/26109/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/26109/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


 
 

 
 

 
 
 

 

Antimicrobial Adaptation in Uropathogenic Escherichia coli 

 

 

 

 

 

 

 

 

Emma Louise Henly 

 

 

 

 

 

 

 

 

 

A thesis submitted in partial fulfilment of the requirements of 

Sheffield Hallam University 

for the degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

October 2019



i 

 

Candidate Declaration 
 

I hereby declare that: 

 

1. I have not been enrolled for another award of the University, or other academic 

or professional organisation, whilst undertaking my research degree. 

 

2. None of the material contained in the thesis has been used in any other 

submission for an academic award. 

 

3. I am aware of and understand the University's policy on plagiarism and certify 

that this thesis is my own work.  The use of all published or other sources of 

material consulted have been properly and fully acknowledged. 

 

4. The work undertaken towards the thesis has been conducted in accordance with 

the SHU Principles of Integrity in Research and the SHU Research Ethics 

Policy. 

 

5. The word count of the thesis is 50,991. 

 

 

Name Emma Louise Henly 

Date October 2019 

Award PhD 

Faculty Health and Wellbeing 

Director(s) of Studies Dr Sarah Forbes 

 

 
 

 

 

 

 



ii 
 

Abstract 

Catheter-associated urinary tract infections (CAUTIs) make up the largest proportion of 

hospital acquired infections. Uropathogenic Escherichia coli (UPEC) are a major 

causative agent of CAUTI partially due to the bacteria’s ability to form biofilms on the 

catheter surface in addition to their extensive array of virulence factors that facilitate 

infection. Anti- infective coatings for urinary catheters are a promising strategy to 

prevent bacterial attachment and subsequent biofilm formation on the catheter thus 

helping to prevent CAUTI. Concerns have been raised that exposure to biocides may 

select for biocide resistant populations of bacteria in addition to promoting cross-

resistance with third part agents such as antibiotics. This, in addition to further concerns 

over biocide cytotoxicity, has led to the search for alternative anti- infective coating 

agents that exhibit long-term antimicrobial activity and low-level cytotoxicity. Quorum 

sensing inhibitors (QSIs) have emerged as potential candidates to prevent such biofilm 

associated infections, however the long-term effects of QSIs and biocides in 

uropathogens is poorly understood.  

In this investigation, the impact of repeated exposure of eight UPEC strains to four 

biocides (PHMB, triclosan, BAC, silver nitrate) and three QSIs (cinnamaldehyde, 

furanone C30 and F-DPD) were evaluated. Antimicrobial susceptibility in planktonic 

(MIC and MBC) and biofilm (MBEC) states were determined before and after repeated 

exposure to each antimicrobial. Changes in pathogenicity were assessed in a Galleria 

mellonella waxworm model and through the use of cell invasion assays (SMC and 

HUEPC cell lines). Antimicrobial activity and cytotoxicity of antimicrobial 

impregnated polymers was assessed via inhibition assays and through agar overlay tests. 

After the initial assessment, the sol gel coating was determined to have the highest 

biocompatibility, and was assessed for antimicrobial activity in a continuous culture 

drip-flow biofilm reactor. In an attempt to understand the mechanisms that govern 

antimicrobial adaptation in UPEC, strain EC958 was subjected to full genome and 

RNA-sequencing and differential expression gene analysis.  

The results of these experiments show the multiple and varied effects that occur after 

exposure to broad-spectrum antimicrobials must be taken into consideration when 

developing a new antimicrobial coating as these effects have impacts on resistance, 

virulence, biofilm formation, and antibiotic resistance. 
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1.1.0 Introduction 

Urinary catheterisation is a technique for bladder emptying by employing a catheter 

(flexible tube) to drain the bladder or urinary reservoir [1]. Catheterisation is used to 

treat urinary retention resulting from a wide variety of conditions including: spinal cord 

injury, multiple sclerosis, neurological disorders, diabetes, injury to the bladder region 

or bladder cancer [2]. There are many complications associated with catheterisation 

largely due to contamination of the catheter surface during insertion with commensa l 

bacteria leading to infection. Catheterisation may result in urinary tract infection (UTI), 

potentially leading to pyelonephritis (infection of the kidney), and eventual bacteraemia 

(bacteria in the blood) [3]. These complications can lead to septicaemia, which can be 

fatal [3]. Bacterial infections are normally treated with courses of antibiotics, however, 

many uropathogenic bacteria are now developing resistance to multiple antibiotics [4]. 

Further complicating treatment is the formation of bacterial biofilms on the catheter 

surface which poses challenges in terms of recalcitrance and persistence resulting in 

difficult to eradicate infections.  

A bacterial biofilm is a coherent cluster of bacterial cells embedded in a gel- like matrix 

of extracellular polymeric substances (EPS) which includes polysaccharides, proteins 

and DNA [5]. Biofilms have been shown to be recalcitrant to many antimicrobial agents 

in addition to the actions of the host immune system making them far less susceptible to 

antimicrobials compared with their planktonic counterparts [5]. Biofilms show 

decreased susceptibility to antibiotics due to the shielding effect of the EPS, low 

metabolic activity of the cells within the biofilm and due to the actions of membrane-

bound efflux pumps that actively expel antimicrobial compounds from the cell [5]. Also, 

antibiotic-resistance genes are readily transferred between bacteria in a biofilm by 

horizontal gene transfer allowing the dissemination of resistance through a bacterial 

population [6]. Antibiotic treatment of catheter-associated urinary tract infections 

(CAUTIs) is often ineffective due to the antimicrobial recalcitrance of the biofilm and 

the potential for the generation of antibiotic resistance. It is therefore important that 

preventative treatments for these catheter-associated complications are investigated; this 

will reduce the financial burden on the healthcare system in terms of hospital 

admissions and treatment costs, and greatly improve patient health.  
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Biocides are  broad-spectrum antimicrobial chemicals whose purpose is to inhibit the 

growth of or kill microorganisms [7]. Catheters have been developed that have been 

coated with biocides [8] in order to reduce bacterial contamination of the catheter  

surface. However, previous research has suggested that long-term exposure to certain 

biocides can cause certain bacterial species to become more resistant to biocides in 

addition to third party agents such as antibiotics due to the presence of shared target 

sites between the antibiotic and biocide in addition to the activation of broad-range 

defence mechanisms such as increased efflux activity or decreased cell permeability [9]. 

This is termed 'cross-resistance' and is a cause for concern when considering the impact 

of biocide coated catheters on the antimicrobial susceptibility profiles of uropathogens. 

Furthermore, biocides may be associated with cytotoxicity in the host, especially at 

concentrations that would be required to fully eradicate a bacterial biofilm. 

A novel approach in the production of anti- infective catheter coatings is to use quorum 

sensing inhibitors (QSIs). Quorum sensing  (QS) is a process by which bacteria produce 

and detect signalling molecules and thereby coordinate their behaviour in a cell density 

dependent manner [10]. Quorum sensing it is an important contributor to the formation 

of bacterial biofilms in certain bacterial species. QSIs act to disrupt this communication 

between bacteria and provide a potential treatment option to prevent the establishment 

of bacterial biofilms and reduce biofilm formation. By combining quorum sensing 

inhibitors with traditional biocides it may be possible to prevent the formation of mature 

biofilms allowing eradication of the residual contaminating bacteria at lower 

concentrations of biocide than would be required to eradicate an established biofilm. 

The development of an anti- infective catheter coating which offers anti-biofilm and 

antibacterial and activity would therefore improve the outcome of antimicrobial 

treatment and help to prevent the establishment of CAUTIs. 

1.2.0 Catheter-associated UTI 

1.2.1 Financial cost of CAUTI on the NHS 

It is estimated that UTIs affect around 150 million people per year globally [11]. The 

NHS in England spent £434 million in 2013/14 treating 184,000 hospital admissions for 

a UTI [12]; 80% of these infections are associated with indwelling urinary catheters 

[13]. Catheterisation is, therefore, one of the most important risk factors for developing 
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a UTI and as such it has been shown that there is a 5-8% increase in risk of developing 

bacteriuria (bacteria in the urine) for every day that a catheter is inserted and almost all 

catheterised patients will have bacteriuria after four weeks of insertion [14]. It is 

therefore unsurprising that UTI's make up the largest proportion (45%) of hospital 

acquired infections (HAI) posing an impending infection risk to the populace and a 

financial burden on healthcare service providers [15]. It is estimated that approximately 

3% of people over the age of 65 require a catheter and, with an aging population, this 

figure is likely to increase [16]. With the treatment of CAUTI's costing the NHS on 

average £2000 per episode [16] it has become vital to prevent these infections before 

they become serious enough for hospitalisation.  

1.2.2 Other diseases associated with catheterisation 

Not only does insertion of a urinary catheter greatly increase the risk of developing a 

UTI but there are also many other complications associated with damage to the urinary 

tract as a result of catheterisation e.g. pyelonephritis, bacteraemia, carcinoma of the 

bladder, local periurinary tract infections, infection stones, blockage of catheter [1]. 

These complications can be serious and, in vulnerable patients, fatal. Currently 

Escherichia coli (E. coli) is the leading cause of blood stream infection in the UK with 

40,580 cases reported in 2016–17 and a mortality rate of 14.8% [17]. Of these cases, 

21% are linked to the presence of an indwelling urinary catheter [17]. 

Long-term catheterisation is a commonly used management option for elderly patients, 

where alternative treatments for bladder dysfunction are inappropriate or unsuccessful  

[18]. These patients are at an increased risk of developing CAUTI and associated 

secondary infections due to the hormonal, physiological and immunological effects of 

aging [18]. This has a detrimental impact on their quality of life and leads to a 

substantially increased morbidity and mortality rate.  

1.2.3 Antibiotic resistance in uropathogens 

It has become common practice to give catheterised patients prophylactic antibiotics 

however antibiotic resistance among uropathogens has become a substantial cause for 

concern. As such, the National Institute for Health and Care Excellence (NICE) has 

recently recommended that antibiotics should not be used to treat asymptomatic 

bacteriuria in adults with catheters and non-pregnant women, or to be used 
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prophylactically for patients with catheters [19]. Research carried out by Dewar et al. 

[20] has shown that antibiotic resistance has become very prevalent particularly among 

Gram-negative bacteria due to the production of extended-spectrum β-lactamases 

(ESBLs). Examples of antibiotics that Gram-negative bacteria isolated from community 

patients are resistant to include cephalosporins, penicillins, fluoroquinolones and 

trimethoprim [20]. 

1.2.4 Uropathogenic Escherichia coli (UPEC) 

E.coli is the most common causative agent of UTI, accounting for 80-90% of all 

reported uncomplicated UTI cases [21], 50% of nosocomial [22] and 65% of all 

complicated UTI infections (including CAUTI) [23]. UPEC are classified as the O 

(semantic) and K (capsular) serotypes and are distinct from the gastrointestina l 

serotypes as UPEC have extra genes that encode P fimbriae/ pyelonephritis associated 

pili (PAP) [24]. These genes are found in mobile genetic elements known as 

pathogenicity islands [21]. Other key virulence factors in UPEC include: Type 1 pili, 

lipopolysaccharide (LPS), flagella, curli, secreted toxins, secretion systems, and TonB-

dependent iron-uptake receptors [25].  

Type 1 pili terminate at the FimH adhesin which binds to mannosylated glycoproteins 

on human bladder epithelium [26] and other cell surfaces. PAP are homologous to type 

1 pili in that they share evolutionary origin therefore have a similar structure but not 

necessarily function [27]. The adhesin at the end of P fimbriae is called PapG and 

specifically binds to the globoside, galabiose 4 (GBO4), on the uroepithelium of the 

human kidney [28] and other cell surfaces. These unique structures make UPEC highly 

virulent urinary pathogens as they are able to adhere to the uroepithelia against the flow 

of urine facilitating colonisation of the host. PapG adhesins have been found in up to 

100% of strains causing UTI showing the clinical relevance of this virulence factor [29]. 

Other bacterial surface appendages have been associated with UPEC virulence - such as 

curli and flagella [25]. Curli secrete soluble monomers that are alike in characteristics to 

amyloid fibrils, which are associated with many human degenerative disorders such as 

Parkinson's disease [30]. These bacterial amyloids are involved in adhesion to surfaces, 

cell aggregation, host cell adhesion and invasion [31]. It has also been shown that curli 

play an important role in biofilm formation and are potent inducers of the host 

inflammatory response [31]. Flagella are organelles that provide motive force for 
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bacterial cells but they have also been implicated in cell invasion and infection of the 

urinary tract [32]. 

LPS molecules are found on the bacterial cell surface and consist of fatty acids lined to 

an oligosaccharide core, which in turn is bound to a long polysaccharide chain 

commonly called O antigen [25]. Mutations to genes encoding LPS have affected 

UPEC's susceptibility to detergents, and the ability to adhere to and invade urothelial 

cells [33]. When the waaL gene (O-antigen ligase gene) was deleted proinflammatory 

cytokine secretion was enhanced [33] indicating the role of LPS in evoking host 

immune response.  

UPEC are also able to secrete toxins, adhesins and enzymes via membrane vesicles 

which provide a way of delivering these elements to host cells without them being 

degraded by the extracellular environment [34]. Toxins that have been associated with 

UPEC strains are: α-hemolysin, cytotoxic necrotizing factor 1, vacuolating 

autotransporter toxin, and secreted autotransporter toxin [35]. 

Iron is a key nutrient for UPEC as it is required for cell division and pathogenesis [36]. 

As the urinary tract is an iron- limited environment, UPEC have numerous iron transport 

and iron chelating mechanisms such as yersiniabactin, salmochelin, aerobactin, and 

siderophores [25]. Siderophore receptors require the TonB cytoplasmic membrane-

localized complex which has been shown, in gene deletion mutants, to be critical for 

UPEC virulence [37]. 

1.3.0 Bacterial Biofilms in Catheter-associated UTI  

The formation of a bacterial biofilm can be divided into three stages: attachment, 

maturation, and dispersal [38] and can be seen in Figure 1.1. After the formation of a 

conditioning film, the bacterial cells attach to the surface due to the actions of reversible 

attracting forces such as electrostatic interactions and van der Walls forces. Irreversible 

attachment follows due to the binding of cell surface appendages such as bacterial pili to 

the underlying substratum. Following adhesion is the formation of microcolonies, the 

production of extracellular polymeric substance and the maturation of the biofilm. This 

maturation process is governed through the actions of quorum sensing between the 

bacterial cells. Once the biofilm has matured it will enter a phase of dispersal, whereby 

planktonic cells will be shed from the biofilm surface and will travel to a new site to 
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initiate the formation of a new biofilm [39]. It has been shown that biofilm development 

is dependent on environmental cues e.g. the availability of nutrients [39] in addition to 

the actions of quorum sensing molecules [5]. 

 

Figure 1.1 Biofilm formation on a solid surface. Biofilm formation is divided into three 
stages: attachment, maturation, and dispersal [38]. 

1.3.1 Intracellular biofilm communities 

During the first stages of infection and biofilm formation UPEC transition from 

reversible to irreversible binding to cell surface. It is this stage when the bacteria 

undergo genetic change to produce adhesins and pili structures (e.g. PAP and type 1 - 

see above) that allow this binding to cells [40].  

Not only do these structures allow attachment to the substratum of the urinary tract and 

therefore subsequent infection but they also allow the internalisation of UPEC into host 

cells to form intracellular biofilms (or intracellular bacterial communities [IBCs]) which 

can cause infection relapse in the form of recurrent UTI [40]. In the bladder, these 

intracellular biofilms have been shown to become encapsulated in a uroplakin shell that 

would protect the bacteria from antibiotics in the urine and the actions of the host 

inflammatory responses - allowing the bacteria within to proliferate, re- invade 

uroepithelia, and form a persistent reservoir [41]. 

1.3.2 Quorum sensing and bacterial biofilms 

Quorum sensing is density dependent bacterial communication whereby bacterial cells 

sense the concentration of signal molecules and activate QS-controlled genes in 

response [42]. As bacterial density increases the biofilm develops new characteristics 
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that are different to their planktonic bacterial counterparts, specifically the biofilm tends 

to be more virulent and less susceptible to antimicrobial drugs. 

Quorum sensing in UPEC is mediated by acyl-homoserine lactone (AHL) and 

autoinducer-2 (AI-2) (Figure 1.2) [43]. In Gram-negative bacteria, AHLs are the most 

common class of autoinducers [43]. They have a core N-acylated homoserine-lactone 

ring and can freely diffuse across the cell membrane [43]. There are three families of 

AHL synthases: LuxI, HdtS, and LuxM [44]. The LuxI family is the most 

comprehensively studied. This enzyme family uses S-adenosyl-methionine (SAM) and 

acyl-acyl-carrier-protein (acyl-ACP) as substrates to produce AHL and 5'-methyl-

thioadenosine [44]. E.coli cannot produce AHL as it does not have an AHL synthase 

gene [45]. However, it can respond to AHL because the bacteria produce SdiA which is 

a homologue of LuxR an AHL signal receptor [45]. LuxR receptors possess an amino-

terminal AHL-binding domain and a carboxy-terminal DNA-binding domain and are 

transcription factors for a range of QS controlled genes [44]. SdiA detects a broad range 

of AHLs and in the absence of AHLs, the protein is degraded [46].  

AI-2 consists of derivatives of 4,5-dihydroxy-2,3-pentanedione (DPD) [47]. It has been 

shown that AI-2 production is directly correlated to biofilm production in E.coli [48]. 

S-ribosylhomocysteine lyase (LuxS), the AI-2 synthase, is known to be present in more 

than 500 bacterial species [43]. The production of DPD is catalysed by LuxS although 

the enzyme also forms an integral part of the activated methyl cycle (AMC), which is an 

important metabolic pathway that serves to recycle homocysteine. During the second 

product of this reaction DPD undergoes spontaneous cyclization to form a mixture of 

different furanones collectively known as AI-2 [47]. At high cell densities, the AI-2 

molecules are actively transported into the cell by association of receptor LsrB in E.coli  

[49]. The AI-2 is then imported by the LsrABC transport system where it is 

phosphorylated by LsrK and is thought to interact with LsrR, relieving the repression of 

the lsr operon [46]. The resulting downstream reactions activate the transcription of 

target genes to produce a particular QS response [50]. It has been shown that AI-2 

controls 166 to 404 genes, including those for chemotaxis, flagellar synthesis, motility, 

and virulence factors in E. coli [48]. The LuxS/AI-2 system, or homologues of it,  is 

found in both Gram negative and Gram positive bacteria [48]. 
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Figure 1.2 Quorum sensing systems in E.coli. AHL is the most common system in 
Gram negative bacteria, E. coli express SdiA which recognises AHL and initiates 
transcription of QS controlled genes. AI-2 is the system that E. coli mostly uses, LuxS 

synthesises AI-2 and is recognised by LsrB. The phosphorylated AI-2 inhibits LsrR 
repression of QS controlled genes.  

1.3.3 Biofilm resistance 

Bacterial biofilms show tolerance or resistance to antimicrobial agents through a variety 

of mechanisms. The structure of the biofilm itself can cause antimicrobials to become 

less effective due to the shielding effect of the surrounding matrix. Subpopulat ions 

within the bacteria are slow growing or even dormant due to limited nutrients [51] or 

oxygen gradients [52] in the center of the biofilm which results in antibiotics that target 

active biological processes being less effective on these populations [53]. Also 

conditions within the biofilm (i.e. differences in pH and CO2) can affect the action of 

some antimicrobials e.g. the activity of tetracyclines are compromised at low pH [54]. 

Quorum sensing also has a role to play in biofilm antimicrobial tolerance, for example 

eDNA release is regulated by quorum sensing and this is known to be a chelator of 

aminoglycosides [55]. Activity of the bacterial cells, such as actively expelling 

antimicrobials through increased efflux pump activity also promotes the reduced 

susceptibility phenotype of biofilms [5]. In addition, bacteria are in closer proximity to 

each other so there is a higher chance of genetic transfer of resistance genes between 
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bacterial cells in a biofilm promoting the spread of antibiotic resistance throughout the 

biofilm community [6].  Additionally, when a selection pressure is introduced (such as 

antibiotics) the high density of bacterial cells induces increased competition and 

therefore selection for mutator phenotypes which means that there is a higher mutation 

rate within a biofilm compared to planktonic communities [56].  

Another mechanism of biofilm resistance is the propagation of persister cells. Persister 

cells do not undergo a genetic change nor do they grow in the presence of antibiotics 

like resistant cells [57]. However, persister cells are essentially dormant, and therefore 

multidrug resistant, which are able to re-establish biofilm after the treatment has ended 

[58]. In biofilms, persister cells make up around 1% of the population providing a 

reservoir of resistance [57].  

1.3.3 Biofilm associated infections 

Biofilms are associated with chronic infection which persists despite immune 

response/antibiotic therapy [5]. The surface of a catheter provides an optimum surface 

for a biofilm to form and the subsequent dispersion of viable planktonic bacteria from 

the biofilm can lead to bacteria infecting the bladder, kidneys and becoming systemic. 

Not only does the formation of a biofilm produce a reservoir for bacteria to infect the 

patient but the mass of the biofilm may even occlude the catheter lumen and obstruct 

urine outflow which could cause septicemia due to a back-flow of bacterial filled urine 

within the urethra. This is a particular problem in biofilms incorporating urease 

producing bacteria, such as Proteus mirabilis, as this species forms crystalline biofilms 

which occlude the catheter lumen [59].  

1.4.0 Quorum Sensing Inhibitors 

Quorum sensing inhibitors act by targeting the generation, dissemination, or reception 

of the QS signal [60]. There is now an interest in developing pharmaceuticals based on 

disrupting QS to treat or prevent chronic infections. Targeting the enzymes involved in 

synthesising AI-2 is a promising strategy.  Lux-S is an attractive target as it is only 

found in bacteria [10] and several Lux-S inhibitors have been synthesised [61]. 

Inhibiting Lux-S has been shown to limit biofilm formation [62], however it has also 

been shown that inhibition of Lux-S may lead to increased mutation rate plasticity, as 

demonstrated by increased resistance to rifampicin in E.coli [63]. 
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1.4.1 Dihydroxypentanedione 

Blocking the QS signal is primarily achieved by synthetically creating analogues that 

act as competitive inhibitors of the AI-2-binding site [60]. Dihydroxypentanedione 

(DPD) has been used to prevent AI-2 binding to the periplasmic receptor [64]. Isobutyl-

DPD and phenyl-DPD inhibited E. coli and P. aeruginosa biofilm formation and 

resulted in a removal of preformed biofilms in a microfluidics biofilm reactor [65]. 

 

Figure 1.3 Mechanism of action of DPD. The DPD molecule acts as a competitive 

inhibitor of the AI-2 binding site thereby inhibiting quorum sensing. 

1.4.2 Furanone 

A small variety of compounds including furanone, have been shown to inhibit AI-2 

signal transduction. Furanones, are natural compounds produced naturally in the 

environment by the red alga Delisea pulchra [10]. Furanone has been shown to inhibit 

AI-2 QS in Vibrio harveyi by decreasing the DNA binding ability of the response 

regulator LuxR [10]. In addition, the natural furanone covalently modifies and  

inactivates LuxS and accelerates LuxR turnover [66]. E.coli biofilm formation is 

inhibited by furanone as shown in previous studies [67, 68], which is in part due to the 

repression of AI-2 induced genes involved in chemotaxis, flagella, and motility [69]. 
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Figure 1.4 Mechanism of action of furanone. Quorum sensing inhibition is achieved by 
inhibition of LuxS and LuxR binding to target genes. Furanone also increases LuxR 
turnover. 

1.4.3 Cinnamaldehyde 

Cinnamaldehyde is a natural product from the bark of the cinnamon tree, and has been 

observed to inhibit AI-2 based quorum sensing in Vibrio spp. [49]. Cinnamaldehyde 

elucidates its quorum sensing inhibition by blocking the DNA binding ability of 

response regulator LuxR and can disrupt biofilm formation by reducing 

formation/accumulation of EPS [70]. Cinnamaldehyde treatment has been shown to 

affect biofilm formation and to increase biofilm susceptibility towards antibiotic 

treatment in P. aeruginosa [71]. 
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Figure 1.5 Mechanism of action of cinnamaldehyde. Cinnamaldehyde inhibits quorum 
sensing through inhibition of LuxR binding.  

1.5.0 Biocides 

Biocides have been used for many years being incorporated into soaps, cosmetics and 

disinfectants [72]. There are a variety of different types of biocide that are being 

investigated for use in humans, all have a very broad mechanism of action primarily 

focussing on the bacterial cell membrane. Therefore the composition of the bacterial 

cell membrane can have a significant impact on the efficacy of a particular biocide.  A 

representation of a Gram-negative cell membrane is shown in Figure 1.6. 
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Figure 1.6 The Gram-negative cell and Gram-positive cell membranes. The Gram-
negative membrane is composed of the outer phospholipid membrane, periplasmic 

space, and the inner phospholipid membrane. The Gram-positive cell membrane differs 
in the thicker peptidoglycan layer and only one plasma membrane. 
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1.5.1 PHMB 

Cationic biocides, such as polyhexamethylene biguanide (PHMB) and chlorhexidine, 

often rely on an initial attraction between the biocide and anionic bacterial membrane in 

order to exhibit their antimicrobial effect. PHMB, a polymeric biguanide, is a general 

disinfecting agent utilised by the food industry, used to disinfect swimming pools and 

can be found in in contact lens solution. PHMB is a polycationic linear polymer with a 

hydrophobic backbone and multiple cationic groupings separated by hexamethylene 

chains [73]. PHMB largely acts by displacing cations, such as calcium, in the bacterial 

outer membrane because it competes for negatively charged sites on the peptidoglycan 

underneath [74]. This disrupts the outer membrane and allows the PHMB molecules to 

further act on the inner membrane. Here PHMB  bridges with acidic phospholipids in 

the inner membrane causing membrane rigidity and resulting membrane fissures [75], 

this is followed by loss of K+ ions, and possible impairment of the function of 

neighboring proteins. This destroys the membrane integrity which causes leakage of 

intracellular components, affects the function of cell membrane associated proteins and 

causes eventual cell lysis [76]. The bacteria may be able to recover and reform the 

membrane at bacteriostatic concentrations but at lethal concentrations the cytoplasm 

coagulates as nucleic acids react with PHMB, the membrane precipitates and the cell 

undergoes lysis [75].   
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Figure 1.7 Mechanism of action of the cationic biocide, PHMB. PHMB displaces 
cations in the outer membrane and bridges with acidic phospholipids in the inner 
membrane causing membrane rigidity, leakage of intracellular proteins, and cell lysis. 
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1.5.2 Triclosan 

Triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether) is a bis-phenol commonly used in 

hand soaps [77]. In studies with E. coli, triclosan at subinhibitory concentrations 

inhibited the uptake of essential nutrients due to its disruptive effects on the bacterial 

cytoplasmic membrane, whilst at higher, bactericidal concentrations resulted in the 

rapid release of cellular components and cell death [78]. Triclosan directly damages the 

cell membrane by solubilising lipids within the membrane which disrupts the membrane 

structure leading to leakage and lysis [79]. At bacteriostatic concentrations, triclosan 

inhibits lipid biosynthesis via targeting ENR (enoyl-acyl carrier protein reductase) 

encoded by gene fabI [80]. Triclosan inhibits this enzyme by interacting with ENR and 

increasing its binding affinity to the cofactor NAD+ [81]. When triclosan, enzyme and 

cofactor are bound together this forms a stable ternary complex that cannot catalyse the 

reaction [79]. When the cell cannot synthesise fatty acids growth is inhibited.  Triclosan 

also acts by disrupting the glycolysis pathway by inhibiting a number of the enzymes 

involved (pyruvate kinase, lactic dehydrogenase, aldolase) and increasing the sensitivity 

of the pathway to acid inhibition [82]. 
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Figure 1.8 Mechanism of action of the biocide, triclosan. Triclosan directly damages 
the cell membrane by solubilising lipids within the membrane, and inhibits lipid 
biosynthesis via targeting ENR (enoyl-acyl carrier protein reductase). 
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1.5.3 Benzalkonium chloride 

Benzalkonium chloride (BAC) is a quaternary ammonium compound (QAC). QACs are 

often monocationic surfactants generally containing one quaternary nitrogen associated 

with at least one major hydrophobic component [73]. The proposed mechanism of 

action of BAC against microorganisms is: (i) adsorption to and penetration of the cell 

wall; (ii) binding of the polar head group to phospholipids within  the cytoplasmic 

membrane (lipid or protein), followed by membrane disorganization due to 

interdigitation of the alkyl tail into the membrane core; (iii) leakage of intracellular 

lower-weight material; (iv) degradation of proteins and nucleic acids; and (v) cell wall 

lysis caused by autolytic enzymes [83]. BAC will disrupt the phospholipid bilayer, 

proteins in the cytoplasmic membrane, and nucleic acids in cytoplasm [84]. BAC can 

also damage the outer membrane of Gram-negative bacteria, thereby promoting its own 

uptake [77]. Self-promoted uptake has been seen in other cationic biocides (such as 

PHMB and chlorhexidine) where the cation interacts with cross-linked cations in the 

outer membrane which causes structural and functional changes to the outer membrane  

and loss of the previously associated cations causing a reduction of electostatic charge. 

This leads an increase in outer membrane permeability to hydrophobic (cationic) 

compounds and a stronger electrostatic interaction between the cationic biocide and the 

anionic cell [85]. 
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Figure 1.9 Mechanism of action of the biocide, BAC. BAC binds to phospholipid head 
groups in the outer cell membrane, leading to membrane disorganisation, leakage of 
intracellular proteins, and cell wall lysis. 
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1.5.4 Silver Nitrate 

Silver has been used for antimicrobial benefits for many years. Silver ions interact with 

thiol (sulfydryl, SH) groups [86] which has been implicated in damaging the 

cytoplasmic membrane, intracellular proteins and DNA [77]. Silver has been found to 

inhibit the respiratory chain in E.coli by interacting with cytochrome a2 [87] and 

inhibiting phosphate uptake and exchange [88]. Silver ions also form complexes with 

DNA bases in preference to phosphate groups [89]. Silver ions inhibit several functions 

in the cell and this leads to the generation of reactive oxygen species, which are 

produced possibly through the inhibition of a respiratory enzyme by silver ions and 

attack the cell itself [90]. Utilising silver in medical applications has seen some success 

such as incorporation into antimicrobial impregnated wounds dressings [91].  
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Figure 1.10 Mechanism of action of the biocide, silver nitrate. Silver interacts with 
thiol (sulfydryl, SH) groups on both extracellular and intracellular proteins, and 
generation of reactive oxygen species causes cell death. 
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1.5.5 Biocide resistance 

As with antibiotics, the indiscriminate use of biocides has caused concern about the 

selection of biocide resistant bacteria [92]. Biocides have a broad spectrum of action 

therefore they act on multiple non-specific targets. With multiple targets, there is a 

lower chance that a single mutation will lead to resistance [93]. Despite this there are 

still multiple documented cases of biocide resistance in bacteria. Furthermore, there is 

concern that the development of resistance to biocides may also confer resistance to 

antibiotics due to the presence of shared target sites or due to phenotypic alterations in 

the bacteria physiology that alter electrostatic charge, decrease cell permeability or 

increase efflux. This has been shown to occur in Pseudomonas aeruginosa by mutation 

in the regulator gene controlling multidrug efflux pumps when exposed to triclosan [94].  

Gilbert et al. found that whilst the concentration exponent for PHMB was significantly 

different between planktonic and biofilm populations of E.coli [76] there was no 

evidence of acquired resistance to PHMB within the bacterial population [75]. However 

there are many changes that have been observed in E.coli when exposed to PHMB, 

these include: Loss of flagella, RbsD downregulation (ribose transporter), cell-cell 

aggregation, and tnaA downregulation (tnaA can signal biofilm formation) [95] 

indicating that biocide adaptation may have multiple consequences on the bacterial cell  

aside from the generation of insusceptability. 

It has been previously documented that significant decreases in BAC susceptibility after 

long-term bacterial exposure have not been detected [96]. However, QAC resistance has 

become an increasing area of concern since the use of these disinfectants have become 

more widespread [97]. As such, QAC resistance genes have been found in E.coli 

recovered from retail meat [98]. Changes in gene expression have been identified in 

BAC adapted E.coli including tolC, an efflux pump, and OmpA, porins [99]. A study by 

McCay et al [100] found that P. aeruginosa exposed to sub- inhibitory concentrations of 

BAC showed increased expression of multidrug efflux genes mexB, mexD, mexF and 

mexY. This increase in expression would decrease susceptibility to antimicrobials due to 

increased efflux. 

Previous investigations corroborate the selection of silver resistance in other Gram 

negative pathogens including E.coli [101], and high levels of silver resistance are 

already being documented in invasive Enterobacteriaceae [102] possibly due to active 
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efflux and loss of outer membrane porins [103]. Indeed, silver-resistant E.coli have been 

shown to have acquired mutations in ompR and cusS [103]. These mutations caused the 

loss of ompC/F porins and derepression of the CusCFBA efflux transporter. The 

combined effect of decreased cell wall permeability and increased efflux resulted in 

reduced concentrations of intracellular silver. 

Despite the previously mentioned evidence on the induction of biocide resistance in 

bacteria, understanding the real-world impact of bacterial resistance to biocides may be 

more complicated than previously thought. Forbes et al. [80] induced resistance to 

triclosan in Staphylococcus aureus (S. aureus) and this resulted in an increased 

susceptibility to antibiotics, reduced planktonic and biofilm growth, impaired 

haemolysis, coagulase and DNase activity, decreased competitive fitness and relative 

pathogenicity. The triclosan adapted strain demonstrated impaired cross-wall formation 

partially explaining growth deficits and also showed reduction in multiple cell surface 

adhesins potentially explaining decreased virulence [104]. This shows that biocide 

resistance may be associated with other functional deficits which brings into question 

how biocide adapted bacteria behave during infection. These previous data only 

concerned S. aureus so research into the effects of biocide resistance on other bacterial 

pathogens, such as E.coli, should be investigated. Yu et al. [93] discovered many genes 

were upregulated in triclosan resistant E.coli however they did not investigate whether 

these genes conferred resistance or perhaps had other effects. It is known that 

overexpression of sdiA is known to change cell morphology to rounder and shorter 

forms and can affect the expression of efflux pump proteins, it has also been linked to 

resistance to other drugs.  

Another important consideration is the formulation of biocides used. Most in vitro 

experiments use biocide in aqueous solution however in consumer products the biocide 

would be formulated with surfactants and sequestrants. Experiments to compare 

formulated with unformulated biocides revealed that formulated biocides were more 

potent and induced resistance was less significant compared with unformulated biocides, 

likely due to their multiple-target site mode of action [105]. In vitro studies that used 

unformulated biocides should therefore be viewed critically when discussing biocide 

resistance. 
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1.6.0 Current anti-infective catheter coatings  

Coating a catheter with an antimicrobial has become an increasingly popular area of 

research. Recently a coating was developed with immobilised acylase which was 

reported to reduce P. aeruginosa biofilm formation by 60% [106]. Acylase catalyses the 

degradation of AHL molecules and so inhibits quorum sensing by bacteria that use this 

system [107]. This is one of the first coatings that have been developed to incorporate 

quorum sensing inhibitors. Biocide catheter coatings have shown promising results 

[108] with triclosan being effective against E. coli and P. mirabilis biofilms [109, 110]. 

PLGA coatings containing cinnamaldehyde have been shown to be effective against E. 

coli biofilms [111, 112]. 

There are anti- infective catheter coatings already in clinical use. Silver coated catheters 

were among the first to be developed and two types of coating, silver oxide and silver 

alloy, were used [113]. Now a hydrogel silver alloy-coated latex catheter (CR Bard Inc.) 

is amongst the most popular used in practice, however results into the efficacy of this 

coating have been variable [114]. In certain investigations, silver coated catheters have 

been shown to be no more effective at preventing infections than non-coated catheters 

[113]. Devak et al. reported that the anti-attachment effect apparently seen in silver 

coatings was actually an effect of the hydrogel rather than the silver itself [115]. In a 

trial recruiting 6394 catheterised patients, it was found that there was no evidence to 

suggest that silver coated catheters benefited patients compared to non-coated catheters 

[114]. Considering the large body of evidence on the development of silver resistance in 

bacteria [116] this may be a consequence of adaptation of the bacteria to prolonged 

silver exposure causing a reduction in susceptibility. This would be particularly 

problematic when considering long-term catheterisation.  

Two further antimicrobial catheter coatings have been developed and evaluated in 

clinical studies, these are Nitrofurazone and aminocycline/rifampicin mixture [117]. 

The minocycline/rifampicin coating was not taken past the initial trial stages but 

nitrofurazone- impregnated urethral catheters are currently commercially available 

(Rochester Medical Corp) [114]. Trial data suggest that nitrofurazone coated catheters 

may be effective for the first 3 days after insertion but after that time there was no 

significant difference in incidence of CAUTI compared to non-coated catheters [114] 

highlighting the short-lived activity of certain coating agents. 
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1.6.1 Modified surface coatings 

A 'passive' coating is when the physicochemical properties of a surface is altered so 

bacterial attachment to the surface is prevented [118]. These types of coatings can be 

limited due to the surfaces being modified after implantation, often as a consequence of 

a conditioning layer of host proteins adhering to the device providing sites for bacterial 

adherence. Kingshott et al found that PEG modified stainless steel had no effect on 

bacterial attachment but PEG modified carboxylated poly(ethylene terephthalate) 

(PET−COOH) reduced bacterial attachment [119]. Silicone modified with polyethylene 

oxide (PEO) and polypropylene oxide (PPO) brushes showed limited effectiveness at 

reducing biofilm adherence and high variability between bacterial strains (adhesion, 

growth, and detachment of Staphylococcus species were affected but Pseudomonas 

aeruginosa was not) [120]. 

1.6.2 Active release coatings 

'Active' release coatings incorporate antimicrobials that are released over a period of 

time to reduce bacterial attachment to the surface [118]. Compounds that have been 

incorporated into active release coatings include silver [121], antibiotics [122], nitric 

oxide [123], and antibodies [124]. Schierholz et al found that the hydrophobicity of both 

the compound and the polymer matrix determines the release profile of the 

antimicrobial [125]. For example, hydrophilic molecules incorporated into hydrophobic 

polymers leached via an initial "burst" followed by substantially lower levels of release 

at extended periods. However, when molecule and polymer are both hydrophobic, there 

is a less significant initial release and a more sustained release over longer periods of 

time.    

Antibiotics have been incorporated into a variety of polymers including hydroxyapatite  

[122], polyurathane [126], and biodegradable polymers such as polylactide-co-glycolide 

(PLGA) [127]. Initial coatings with incorporated silver were shown to have limited 

efficacy in vivo [128]. It is thought that the reason for this is that the oxidised, active 

form of the silver ion (Ag+) is not released in metallic surface coatings [118]. Research 

has been done to develop coatings that actively release oxidised silver ions. Silver 

nanoparticles have become an increasing area of interest in this field. Yu et al have 

developed a poly(L-lactic acid) (PLLA) coating containing silver nanoparticles that 
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showed antibacterial activity and favourable biocompatibility [129]. A silver 

nanoparticle poly (lactic-co-glycolic acid) (PLGA) coating was developed for urinary 

catheters and showed enhanced resistance to encrustation compared with non-coated 

catheters, however the coating also contained norfloxacin (an antibiotic) [130] so it is 

unclear if the anti- infective properties of this coating can be solely attributed to the 

silver nanoparticles or are due to this combinatorial effect.  

1.6.3 Coatings with covalently bonded antimicrobials 

For some applications, the antimicrobials are incorporated directly onto the surface of 

medical devices by covalent bonds. Covalent bonds occur between atoms that share a 

pair of electrons and the attractive and repulsive forces between them form a stable 

bond [131]. The benefit of this method is that the antibacterial effect for the implant or 

device would be permanent rather than leaching out over time [132]. However there are 

limited numbers of compounds that can be incorporated in this way because the active 

site of molecules may be masked by the covalent attachment [133]. Furthermore, 

deposition of host proteins on the device surface may shield the effect of the adhered 

antimicrobial. 

Catheters are commonly made from silicone, polyethylene, polyurethane, or latex, all of 

which are hydrophobic and therefore can't bind molecules with much stability. The 

catheter material is 'functionalised' first (introduction of polar, ionic, or radical groups 

on the surface) to allow the binding of the antimicrobial molecules. This is usually done 

with plasma, gamma, or ultraviolet radiation [134].  

Antimicrobial compounds that have been covalently bound to silicon previously include 

quaternary ammonium silane (QAS), which has been incorporated onto silicon discs by 

oxidisation of the silicon with argon plasma, coating with QAS, and drying at 80ºC 

[135]. The coated silicon was implanted into rats and there were significantly fewer 

cases of infection with the coated sections compared with uncoated sections [135]. The 

nitrofurazone coating for urinary catheters is an example of covalently attached coatings. 

Nitrofurazone is a nitrofuran derivative chemically related to nitrofurantoin. The 

nitrofurazone is incorporated in a silicone matrix on the surface of the catheter [136].  
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1.6.4 Hydrogels 

Hydrogels are polymer networks with hydrophilic structures, meaning they are able to 

retain large amounts of water [137]. The nature of hydrogels being wet and slippery is 

advantageous for use in a catheter since this helps prevent damage to the urethral 

mucosa when inserted, in situ, and removed [134]. Vimala, et al created a hydrogel-

based coating that releases silver nanoparticles [138]. The hydrogels were shown to be 

antimicrobial with potency increasing with smaller nanoparticle size.  Hydrogels are 

increasingly being used to create nanoparticles as the free spaces within them can be 

used to synthesise and contain the nanoparticles [139].  

A study by Ahearn et al. [140] compared the anti-adhesion properties of 

hydrogel/silver-all-silicone-, and hydrogel/silver- latex-Foley urinary catheters compared 

with non-coated catheters. Interestingly, results varied depending on the bacteria tested, 

for example: there was a greater reduction in adhesion of E.coli to the coated latex 

catheter than the coated silicone catheter, whereas for P. aeruginosa it was the coated 

silicone catheter that showed the greater reduction. This could be due to the properties 

of the material itself or the modification process.  

1.6.5 Sol-Gel 

The sol–gel process involves the formation of an inorganic colloidal suspension (sol) 

and gelation of the sol in a continuous liquid phase (gel) to form a 3D network structure 

[141]. An advantage to the sol-gel manufacturing process over other glassy coating 

processes is that it can be conducted at much lower temperatures, such as room 

temperature [142]. Formation of sol-gel starts with simultaneous hydrolysis and 

condensation of monomers to form particles, growth of particles, and finally 

agglomeration of polymers networks within the liquid [142]. Active agents can be 

added to the porous sol-gel to be eluted out.  

Research has been carried out on the application of sol-gel coatings for medical devices 

and the results are promising. Nablo et al investigated the efficacy of stainless steel 

orthopedic implants coated in sol-gel [143]. The sol-gel was infused with nitric oxide 

(NO) donors which was shown to inhibit bacterial attachment to the implant over a 

range of temperatures and bacterial species [143]. This NO releasing sol-gel was also 

incorporated onto silicone elastomer and was shown to inhibit S. aureus biofilm 
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formation on the coated silicone [123]. This implies that the sol-gel can be successfully 

used to coat silicone catheters.  

1.7.0 Summary and Aims 

CAUTI's are becoming an increasing problem within hospitals and communities, 

contributing substantially to patient morbidity and mortality rates. The increasing threat 

of antibiotic resistance, and the ability of bacteria to form biofilms in the catheter, 

means that these infections are becoming increasingly difficult to treat. New therapies 

must be developed not only for the treatment of CAUTIs but to curb the increase in 

antibiotic resistance in uropathogens by reducing the need for antibiotic treatment and 

by providing alterative therapeutic strategies. The most common causative agent of 

CAUTIs is uropathogenic E.coli and it has been shown that when UPEC form a biofilm 

within the catheter it becomes less susceptible to antibiotics and shows increased 

virulence and pathogenicity. It is the action of AI-2 that mediates the formation of the 

UPEC biofilm and activates the genes responsible for the biofilm and virulence 

associated phenotypes. 

Quorum sensing inhibitors act to block the communication between bacteria in a 

biofilm by blocking the synthesis, dissemination, or reception of AI-2, thereby 

disrupting the biofilm establishment and making the infection easier to resolve. 

Biocides have a broad mechanism of action but issues with cytotoxicity at high biocide 

concentrations have been reported. By using combinations of biocides and QSIs it may 

be possible to disrupt biofilm formation and allow bacterial eradication at lower biocide 

concentrations than would be required to eradicate an established biofilm. Whilst there 

is evidence of the emergence of biocide insusceptibility in bacteria, the phenotypic 

adaptations exhibited by UPEC in response to biocides and QSIs has received little 

investigation. In order to develop a long- lasting anti- infective coating we need to 

initially understand the long-term effects of these agents in relevant pathogenic 

microorganisms.  

The aim of this project is to evaluate the impact of prolonged biocide and QSI exposure 

in a panel of UPEC isolates. These isolates comprise of two laboratory characterised 

strains (EC958 and CFT073) and six clinical isolates (EC1, EC2, EC11, EC26, EC28, 

and EC34) previously isolated from urinary tract infections (Stepping Hill Hospital,  

Stockport, UK). The isolates EC2, EC26, and EC34 have been previously identified as 
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ESBL producers. The biocides under investigation are PHMB, triclosan, BAC, and 

silver nitrate and the QSIs are cinnamaldehyde, (Z)-4-Bromo-5(bromomethylene)-

2(5H)-furanone (C30) and 4-fluoro-5-hydroxypentane-2,3-dione (F-DPD). 

Comprehensive screening of these potential coating agents will include detailed analysis 

of (i) the broad-range antimicrobial activity against UPEC in planktonic and biofilm 

growth, (ii) the effects that long-term antimicrobial exposure has on bacterial 

susceptibility and physiology (iii) the antimicrobials' biocompatibility with a 

mammalian cell line and (v) the association of the test compounds with different 

biomaterial polymers and their resulting antimicrobial efficacy and cytotoxicity.   
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Chapter 2 

 Biocide Exposure Induces Changes in Susceptibility, 

Pathogenicity and Biofilm Formation in Uropathogenic 

Escherichia coli. 
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2.1.0 Abstract 

Background: Uropathogenic Escherichia coli (UPEC) are a frequent cause of catheter 

associated urinary tract infection (CAUTI). Biocides have been incorporated into 

catheter-coatings to inhibit bacterial colonisation whilst ideally exhibiting low 

cytotoxicity and mitigating the selection of resistant bacterial populations. The effects 

of long-term biocide exposure on susceptibility, biofilm-formation and relative-

pathogenicity were compared between eight UPEC isolates. Methods: Minimum 

inhibitory concentrations (MIC), minimum bactericidal concentrations (MBC), 

minimum biofilm eradication concentrations (MBEC) and antibiotic susceptibilities 

were determined before and after long-term exposure to triclosan, polyhexamethylene 

biguanide (PHMB), benzalkonium chloride (BAC) and silver nitrate. Biofilm-formation 

was quantified using a crystal violet assay, and relative-pathogenicity was assessed via a 

Galleria mellonella waxworm model and cell invasion assays using bladder smooth 

muscle (SMC) and urothelial cells (HUEPC). Cytotoxicity and resulting 

biocompatibility index values were determined against an L929 murine fibroblast cell 

line. Results: Biocide exposure resulted in multiple decreases in biocide susceptibility 

in planktonic and biofilm associated UPEC. Triclosan exposure induced the largest 

frequency and magnitude of susceptibility decreases at MIC, MBC and MBEC, which 

correlated to an increase in biofilm biomass in all isolates. Induction of antibiotic-cross-

resistance occurred in 6/84 possible combinations of bacteria, biocide and antibiotic.  

Relative-pathogenicity significantly decreased after triclosan exposure (5/8 isolates), 

increased after silver nitrate exposure (2/8 isolates) and varied between isolates for 

PHMB and BAC. Biocompatibility index ranked antiseptic potential as 

PHMB>triclosan>BAC>silver nitrate. Conclusion: Biocide exposure in UPEC may 

lead to reductions in biocide and antibiotic susceptibility, changes in biofilm-formation 

and alterations in relative-pathogenicity. These data indicate the multiple consequences 

of biocide adaptation that should be considered when selecting an anti- infective 

catheter-coating agent. 

2.2.0 Introduction 

Catheter-associated urinary tract infections (CAUTI) are amongst the most commonly 

acquired healthcare associated infections contributing considerably to patient morbidity 

and posing an economic burden on healthcare service providers [144]. Complications 
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associated with catheterisation often arise due to contamination of the catheter surface 

with uropathogenic Escherichia coli (UPEC) during catheter insertion, leading to the 

formation of bacterial biofilms and subsequent infection. Patients undergoing long-term 

catheterisation are at a particular risk of acquiring CAUTI, with studies indicating a 5-

8% increase in the risk of developing bacteriuria for every day that the catheter remains 

inserted [14]. The majority of patients will exhibit bacteriuria after four weeks of 

catheterisation, potentially leading to further complications such as pyelonephritis and 

septicaemia [3, 14]. 

Bacterial biofilms are often recalcitrant to antimicrobial chemotherapy and to the 

actions of the host immune system, making biofilm associated infections such as 

CAUTIs difficult to treat [5]. Biofilms show decreased susceptibility to antibiotics, 

partially due to the shielding effect of the extracellular polymeric substance (EPS) 

encasing the bacterial cells [145], the low metabolic activity of the cells within the 

biofilm [146] and the activity of membrane-bound efflux pumps that actively expel 

antimicrobial compounds from the bacterial cell [5]. Furthermore, antibiotic-resistance 

genes are frequently transferred between bacteria within a biofilm by horizontal gene 

transfer allowing the dissemination of resistance through a bacterial population [6]. 

Antibiotic treatment of CAUTIs is therefore often ineffective due to the recalcitrance of 

the biofilm in addition to the increasing prevalence of antibiotic resistant uropathogens 

[147]. There is considerable interest in developing anti- infective catheter coatings that 

are refractory to microbial colonisation and subsequent biofilm formation in an attempt 

to prevent the establishment of CAUTI.  

Biocides are broad-spectrum antimicrobial chemicals that inhibit the growth of, or kill 

microorganisms [7]. Biocide coated urinary catheters have been developed 

incorporating biocides such as silver nitrate and nitrofurazone that are eluted from the 

surface of the catheter providing an antimicrobial gradient and a potential selective 

pressure for biocide resistant populations of bacteria [8]. Current clinical trial data has 

highlighted the limited antimicrobial efficacy of silver-impregnated catheters when 

compared to those without an antimicrobial coating, whilst nitrofurazone-containing 

coatings have been shown to exhibit only short-term antimicrobial activity and may 

therefore be ineffective in patients undergoing long-term catheterisation [114, 115]. 

This has fuelled the search for further anti- infective coating agents that display broad-

spectrum activity which is maintained after prolonged use. 



 

34 
 

Long-term exposure of certain bacterial species to biocides may cause the induction of 

biocide insusceptibility either through the selection of intrinsically resistant mutants or 

through induced phenotypic adaptations, bringing into question the long-term 

antimicrobial activity of various biocide containing coatings [148]. Concerns have also 

been raised that long-term biocide exposure may promote cross-resistance to antibiotics 

through the acquisition of mutations in shared target sites or through the activation of 

broad-range defence mechanisms [149], such as increased cellular efflux activity [150] 

or decreased cell permeability [77].  It can, however, be argued that whilst long-term 

biocide exposure may lead to reductions in biocide or antibiotic susceptibility in 

bacteria, these reductions are small and would not impact on the susceptibility of 

bacteria to the concentrations of biocide used in practice. Furthermore, such changes in 

biocide susceptibility may be accompanied with functional deficits impacting biofilm 

formation, pathogenicity and competitive fitness in bacteria [80]. Therefore in order to 

develop an effective anti- infective catheter coating the multiple long-term effects of the 

biocide used within the coating must be taken into consideration. 

Whilst previous investigations have evaluated the impact of long-term biocide exposure 

on the antimicrobial susceptibility of many clinically relevant bacteria, there is no 

current investigation into the multiple phenotypic consequences that may occur due to 

long-term biocide exposure in UPEC. The current study therefore aims to quantify the 

effects of long-term biocide exposure in eight UPEC isolates. The commonly used 

biocides PHMB, triclosan, BAC and silver nitrate were evaluated for their long-term 

antibacterial and anti-biofilm activity and their potential to induce antibiotic cross-

resistance. The impact that biocide exposure has on bacterial relative pathogenicity was 

assessed using a Galleria mellonella waxworm model and the biocides antiseptic 

potential was determined via calculating cytotoxicity in an L929 murine fibroblast cell 

line allowing the determination of a biocompatibility index value [151].  

2.3.0 Aims and objectives 

The purpose of this chapter was to evaluate the effects of long term biocide exposure on 

eight UPEC isolates. Previous studies have indicated biocide exposure impacts 

antimicrobial resistance, biofilm formation, and fitness in bacteria [80]. Biocides have a 

broad mechanism of action therefore it is posited that adaptation to biocide exposure 

would have multiple effects on the exposed bacteria.  
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The specific aims of the chapter were to: 

 Evaluate biocide susceptibility before and after biocide exposure using MIC, 

MBC, and MBEC assays. 

 Determine antibiotic cross resistance against biocide exposed UPEC. 

 Evaluate the ability of UPEC to form biofilms before and after biocide 

exposure using crystal violet assay. 

 Investigate the pathogenicity of UPEC before and after biocide exposure using 

Galleria mellonella model and primary cell invasion assays. 

 Determine the biocompatibility of the four biocides against an L929 cell line. 

2.4.0 Methods 

2.4.1 Bacteria and chemicals Six UPEC clinical isolates (EC1, EC2, EC11, EC26, 

EC28 and EC34) previously isolated from urinary tract infections (Stepping Hill 

Hospital, Stockport, UK) and two laboratory characterised UPEC strains EC958 and 

CFT073 were used in the investigation. Bacteria were cultured on Muller-Hinton agar 

(MHA; Oxoid, UK) and Muller-Hinton broth (MHB; Oxoid, UK) and incubated 

aerobically at 37 °C for 18 h, unless otherwise stated.  Biocides were formulated as 

follows: triclosan solubilised in 5% (v/v) ethanol. Polyhexamethylene biguanide 

(PHMB) (LONZA, Blackley, UK), benzalkonium chloride (BAC) and silver nitrate 

were prepared at 1 mg/ml in water and filter sterilised prior to use. All chemicals were 

purchased from Sigma–Aldrich (Poole, UK) unless otherwise stated. 

2.4.2 Long-term exposure of bacteria to biocides Bacteria were repeatedly exposed to 

biocides using an antimicrobial gradient plating system adapted from McBain et al 

[152].  In brief, 100 µl of a 5 × MBC concentration solution of biocide was added to an 

8 x 8 mm well in the centre of a 90 mm agar plate. Bacterial pure cultures were radially 

inoculated in duplicate from the edge of the plate to the centre, prior to incubation for 2 

days aerobically at 37°C. Biomass from the inner edge of the annulus of bacterial 

growth representative of the highest biocide concentration at which growth could occur 

was removed and used to inoculate a new biocide containing plate, as outlined above. 

This process was repeated for 12 passages. Control isolates passaged 12 times on 

biocide free media were also included. Bacteria were archived at -80 °C before and after 

biocide passage for subsequent testing. 
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2.4.3 Minimum inhibitory and minimum bactericidal concentration Minimum 

inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 

determined as described previously [80]. In brief, 2 × 5 ml overnight cultures of test 

bacteria were prepared in MHB prior to overnight incubation (18-24 h) at 37ºC and 100 

rpm. Cultures were diluted to an OD600 of 0.008 in 20 ml of sterile MHB to produce a 

bacterial inoculum for biocide susceptibility testing. Doubling dilutions (150 µl) of each 

test biocide were prepared in sterile MHB in a 96-well microtiter plate prior to addition 

of bacterial inoculum (150 µl).  Plates were incubated overnight (18-24 h) at 37ºC and 

100 rpm. The MIC was defined as the lowest concentration of biocide for which growth 

was completely inhibited (viewed as turbidity relative to a sterile negative control). To 

determine MBC aliquots (5 µl) were taken from the wells of the MIC plate and were 

spot plated onto Muller Hinton Agar (MHA) in triplicate. The plates were incubated 

statically for 18-24 h at 37ºC. The lowest test concentration for which visible bacterial 

growth was completely inhibited was deemed the MBC.  

2.4.4 Minimum biofilm eradication concentration Minimum biofilm eradication 

concentrations were determined using the Calgary biofilm device (CBD) as described 

previously [105].  Briefly, 2 × 5 ml overnight cultures of test bacteria were prepared in 

MHB and were incubated for 18-24 h at 37ºC and 100 rpm before being diluted to an 

OD600 of 0.008 in MHB to create a bacterial inoculum for biofilm susceptibility testing. 

100 μl of bacterial inoculum was added to each well of the CBD base, plates were 

incubated at 37ºC for 48 h to allow biofilm formation on the pegs. Doubling dilutions of 

biocides were prepared in sterile broth across a 96-well microtiter plate. Biofilms were 

exposed to antimicrobial compounds and incubated for 24 h at 37°C and 100 rpm. After 

incubation, the pegged lid was transferred to a 96-well plate containing 200 μl of sterile 

broth and was incubated for 24 h at 37°C and 100 rpm. MBEC was defined as the 

lowest concentration of biocide for which re-growth was completely inhibited (viewed 

as turbidity relative to a sterile negative control) indicating complete biofilm eradication.  

2.4.5 Crystal violet bacterial attachment assay 2 × 5 ml overnight cultures of test 

bacteria were diluted to an OD600 of 0.008 in MHB after incubation for 18-24h at 37º C 

and 100 rpm. 150 µl of diluted overnight bacterial culture was added to the wells of a 

sterile 96-well microtiter plate. Plates were incubated statically for 48 h at 37ºC. Media 

was removed from wells and replaced with 180 µl of crystal violet solution. The plate 

was left at room temperature for 30 minutes, crystal violet solution was decanted and 
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the wells were rinsed with 3 × 200 µl of PBS prior to drying for 1 h at 37ºC. The 

remaining crystal violet was solubilised in 250 µl of 100% ethanol. The A600 of the 

solubilised crystal violet solution was determined and compared to a sterile MHB 

negative control. 

2.4.6 Galleria mellonella pathogenicity assay The pathogenesis model was adapted 

from that of Peleg et al [153]. Final larval-stage G. mellonella (Live Foods Direct, 

Sheffield, UK) were stored in the dark at 4°C for up to 7 days, before randomly 

assigning 24 to each treatment group and incubating at 37°C for 30 min. Overnight 

suspensions of E. coli were pelleted via centrifugation at 13,000 rpm, washed twice in 1 

ml of PBS and then diluted appropriately to achieve an OD600 of 0.1 (5 × 105 - 8 × 105 

CFU/ml, as confirmed by colony counts on MHA). Aliquots of each suspension (5 µl) 

were injected into the hemocele of each larva via the last left proleg using a Hamilton 

syringe. Larvae were incubated in a petri dish at 37°C and the number of surviving 

individuals was recorded daily. An untreated group and a group injected with sterile 

PBS were used as controls. The experiment was terminated when at least two 

individuals in a control group had died or after 7 days of incubation. Two independent 

bacterial replicates were used to inoculate 24 caterpillars (12 per replicate) and 

significance in death rate was calculated using a log-rank reduction test (p≤0.01).  

2.4.7 Biocompatibility index Calculation of biocompatibility index (BI) was performed 

as described by Muller and Kramer [151]. To determine cytotoxicity, Neutral Red (NR) 

(3-amino- 7-dimethylamino-2-methylphenazine hydrochloride) assays and MTT [3-

(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide] assays were performed 

on an L929 cell line to establish IC50.  Procedures for the NR assay and the MTT test 

have been described in detail elsewhere [151]. The bacterial quantitative suspension 

tests were done in accordance with the guidelines for testing disinfectants and 

antiseptics of the European Committee for Standardization [154]. Suspension tests were 

performed in the presence of serum to determine the rf value, defined as the 

concentration of biocide that achieved a reduction in bacterial load of at least 3log10 

(99.9%). Suspension tests were conducted as follows, overnight bacterial cultures were 

diluted to 108-109 CFU/ml as determined by colony counts on MHA. Aliquots of 15 µl 

of inoculum were then transferred into 135 µl of biocide containing cell culture medium 

prior to incubation for 30 min at 37ºC.  For PHMB, BAC, and triclosan, the biocide was 

subsequently inactivated by transfer of 15 µl of the suspension into 135 µL of TSHC 
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(3% (w/v) Tween 80, 3% (w/v) saponin, 0.1% (w/v) histidine and 0.1% (w/v) cysteine). 

Silver nitrate was inactivated using TLA-thio (3% [w/v] Tween 80, 0.3% lecithin from 

soy bean, 0.1% [w/v] histidine and 0.5% [w/v] sodium thiosulphate). After 30 min of 

inactivation, 5 µl aliquots were spot plated onto MHA in triplicate. The plates were 

incubated statically for 18-24 h at 37ºC and CFU/ml was determined. The lowest test 

concentration which achieved at least a 3log10 (99.9%) reduction in bacterial load was 

deemed the rf value. BI is calculated as IC50/rf for each combination of biocide and 

isolate and indicates the antiseptic potential of the test compound.  

2.4.8 Antibiotic susceptibility Bacterial susceptibility was determined for trimethoprim 

sulfamethoxazole (25 µg), nitrofurantoin (50 µg), ciprofloxacin (10 µg), and gentamicin 

(200 µg). Antibiotic susceptibility tests were performed according to the standardized 

British Society for Antimicrobial Chemotherapy (BSAC) disc diffusion method for 

antimicrobial susceptibility testing [155]. 

2.4.9 Determination of mutation rate frequency Mutation rate frequency was 

determined as described by Miller et al [156]. In brief, 100 µl aliquots of diluted 

overnight culture obtained from single bacterial colonies were plated onto antibiotic free 

MHA plates and MHA plates containing 50µg/ml rifampicin in triplicate. Plates were 

incubated for 24h at 37ºC prior to determination of viable count. Mutation frequencies 

were expressed as the number of resistant mutants recovered as a fraction of total viable 

bacteria. 

2.4.10 Cell Invasion Assay Evaluation of % invasion was performed on primary 

normal bladder smooth muscle cells (SMC) and human urothelial epithelial cells 

(HUEPC). SMCs were grown in Vascular Cell Basal Medium supplemented with the 

Vascular Smooth Muscle Cell Growth Kit (ATCC, UK). HUEPCs were grown in 

urothelial cell growth medium supplemented with serum free supplements (Provitro, 

Germany). Cells were seeded in 24 well plates at a concentration of 8x104 cells/ml, with 

1ml of cell suspension per well. Plates were incubated at 37ºC, 5% CO2 for 48h. Cells 

were incubated with 500µl 2% Bovine Serum Albumin for 1 hour, at 37ºC, 5% CO2. 

Overnight bacterial cultures were diluted to 200x the number of host cells per ml in cell 

culture medium. Host cells were washed twice with PBS and 500µl bacterial suspension 

was added. Wells of bacterial suspension that did not contain host cells were also 

included ('survival' plate). All plates were incubated for 90 mins at 37ºC, 5% CO2.The 
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invasion plate was washed three times with PBS before 500µl media with 200µg/ml 

metronidazole was added. The plate was incubated for a further 60 mins at 37ºC, 5% 

CO2. The attach plate was washed three times with PBS. Cells of each well were lysed 

in the presence of 200µl dH2O for 1 minute per well. Lysate was removed and serial 

dilutions were carried out in PBS. Dilutions were plated out in triplicate onto MHA. 

This was repeated for the invasion plate and the 'survival' wells. Agar plates were 

incubated at 37ºC for 1 overnight and cfu/ ml were counted. 

2.5.0 Results 

2.5.1 Biocide susceptibility of UPEC in planktonic and biofilm states MIC (Table 

2.1), MBC (Table 2.2) and MBECs (Table 2.3) were determined for all test isolates 

before (P0) and after repeated passage either in the absence (C12) or presence of a 

specific biocide (P12). Change in biocide susceptibility after exposure was calculated as 

fold-change relative to the control (C12) (Table 2.4). Data indicates both the frequency 

of susceptibility change (≥2 fold) and the average magnitude of susceptibility change 

for each biocide.  

In terms of MIC, after repeated biocide exposure there was a ≥2 fold increase in 4/8 

isolates for BAC, 8/8 for silver nitrate and 8/8 for triclosan compared to the respective 

bacteria passaged in a biocide free environment (Table 2.1). In contrast 4/8 isolates 

showed a ≥2 fold decrease in MIC after exposure to PHMB. The average fold-change 

for MIC (C12 to P12) across the test panel of UPEC was 1.5 for BAC, 0.7 for PHMB, 2 

for silver nitrate and 807.1 for triclosan (Table 2.4). For MBC in the biocide exposed 

isolates (Table 2.2) there was a ≥2 fold increase in 4/8 isolates after BAC exposure, 8/8 

for silver nitrate and 5/8 for triclosan. In contrast 1 isolate showed a decrease in MBC 

after PHMB exposure. The average fold change in MBC after biocide exposure was 1.5 

for BAC, 0.8 for PHMB, 3.8 for silver nitrate and 5.4 for triclosan (Table 2.4). In terms 

of MBEC (Table 2.3), after repeated biocide exposure there was a ≥2 fold increase in 

7/8 isolates for BAC, 8/8 for PHMB and 8/8 for triclosan. Silver nitrate exposure led to 

a 1 increase in MBEC and 1 decrease. The average fold change in MBEC after biocide 

exposure was 4.5 for BAC, 29.2 for PHMB, 832.7 for triclosan and 7.8 for silver nitrate 

(Table 2.4). We observed a number of changes in MIC, MBC and MBEC after the 

passage of bacteria solely in a biocide free-environment when compared to the 

unpassaged parent isolate. We did not, however see any incidence of a control passaged 
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isolate (C12) exhibiting a significantly higher MIC, MBC or MBEC (P<0.05) than the 

respective biocide passaged isolate (P12) with the exception of PHMB where the 

biocide exposed isolates frequently exhibited a lower MIC and MBC than the 

unexposed parent strain and the control passaged isolate subsequently matched the 

susceptibility of the parent strain.  
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Table 2.1 Minimum inhibitory concentrations (μg/ml) for UPEC before exposure to biocide (P0), after 12 passages in the presence of the same 

biocide (P12), and after 12 passages in a biocide free environment (C12). Data represent mean MICs taken from two separate experiments each 
with four technical replicates. 

  

PHMB 

 

Triclosan 

 

BAC 

 

Silver Nitrate 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 0.5 0.2 

 

0.5 0.00001 2 

 

0.02 (0.01) 15.6 15.6 

 

15.6 31.3 62.5 

 

31.3 

EC2 0.2 0.2 0.2 0.1 15.6 0.05 (0.02) 15.6 31.3 15.6 31.3 62.5 31.3 

EC11 0.2 0.2 0.2 0.1 2 0.05 (0.02) 15.6 31.3 15.6 31.3 62.5 31.3 

EC26 0.5 0.2 0.5 0.2 125 0.03 15.6 31.3 15.6 31.3 62.5 31.3 

EC28 0.5 0.5 0.5 0.2 3.9 0.2 (0.06) 15.6 15.6 15.6 31.3 62.5 31.3 

EC34 0.2 0.2 0.2 0.03 15.6 0.02 15.6 15.6 15.6 31.3 62.5 31.3 

EC958 1 0.2 1 0.1 7.8 0.03 15.6 31.3 15.6 31.3 62.5 31.3 

CFT073 

 

1 

 

0.2 

 

1 

 

0.1 

 

15.6 

 

0.02 

 

15.6 

 

15.6 

 

15.6 

 

31.3 

 

31.3 

 

15.6 
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Table 2.2 Minimum bactericidal concentrations (μg/ml) for UPEC before exposure to biocide (P0), after 12 passages in the presence of the same 

biocide (P12), and after 12 passages in a biocide free environment (C12). Data represent mean MBCs taken from two separate experiments each 
with four technical replicates. 

 

  

PHMB 

 

Triclosan 

 

BAC 

 

Silver Nitrate 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 1 0.5 

 

0.7 (0.3) 0.002 7.8 

 

7.8 15.6 31.3 

 

15.6 31.3 62.5 

 

31.3 

EC2 1 0.5 1 7.8 31.3 7.8 31.3 31.3 15.6 31.3 62.5 31.3 

EC11 1 0.5 0.5 7.8 7.8 7.8 15.6 31.3 15.6 31.3 62.5 31.3 

EC26 0.5 0.5 0.5 7.8 125 7.8 62.5 31.3 15.6 31.3 62.5 31.3 

EC28 1 1 1 7.8 7.8 7.8 31.3 15.6 19.5 (8) 31.3 62.5 31.3 

EC34 1 0.5 0.7 (0.3) 7.8 62.5 7.8 15.6 15.6 15.6 31.3 62.5 31.3 

EC958 2 1 1.1 (0.5) 7.8 62.5 7.8 62.5 15.6 15.6 31.3 500 31.3 

CFT073 

 

15.6 

 

1 

 

1.1 (0.5) 

 

7.8 

 

31.3 

 

7.8 

 

15.6 

 

15.6 

 

15.6 

 

31.3 

 

31.3 

 

15.6 
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Table 2.3 Minimum biofilm eradication concentrations (μg/ml) for UPEC before exposure to biocide (P0), after 12 passages in the presence of 

the same biocide (P12), and after 12 passages in a biocide free environment (C12). Data represent mean MBECs taken from two separate 
experiments each with four technical replicates.  

  

PHMB 

 

Triclosan 

 

BAC 

 

Silver Nitrate 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 31.3 2000 

 

93.8 (36) 7.8 31.3 

 

0.5 250 500 

 

125 2000 3000 

 

3000 

EC2 31.3 2000 93.8 (36) 3.9 250 2 125 500 62.5 3000 3000 3000 

EC11 31.3 250 7.8 2 125 0.06 125 125 13.7 (4) 3000 3000 54.7 (16) 

EC26 31.3 500 78.1 (31) 1 5000 2 250 250 93.8 (36) 2500 3000 3000 

EC28 62.5 2000 62.5 3.9 125 7.8 125 125 125 4000 3000 2750 (500) 

EC34 15.6 500 7.8 1 250 0.2 (0.07) 62.5 62.5 11.7 (5) 3000 3000 1750 (975) 

EC958 62.5 1000 23.5 (9) 7.8 125 1 250 250 62.5 4000 4000 3000 

CFT073 

 

31.3 

 

500 

 

35.2 (20) 

 

2 

 

500 

 

1 

 

62.5 

 

250 

 

62.5 

 

2000 

 

500 

 

1500 (577) 
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Table 2.4 Fold changes are indicated for MIC, MBC, and MBEC in UPEC isolates after long-term biocide exposure compared with the 

respective isolate passaged in a biocide free-environment (C12). Changes (≥2 fold-change) are shown in bold.

  

MIC 

 

 

MBC 

 

MBEC 

 

Isolate 

 

PHMB 

 

 

Triclosan 

 

 

BAC 

 

 

Silver nitrate 

 

 

PHMB 

 

 

Triclosan 

 

 

BAC 

 

 

Silver nitrate 

 

 

PHMB 

 

 

Triclosan 

 

 

BAC 

 

 

Silver nitrate 

 

 

EC1 

 

-2.5 

 

97.7 

 

1 

 

2 

 

-1.4 

 

1 

 

2 

 

2 

 

21.3 

 

62.6 

 

2 

 

1 

EC2 1 312.5 2 2 -2 4 2 2 21.3 125 8 1 

EC11 1 39.1 2 2 1 1 2 2 32 2083.3 9.1 54.8 

EC26 -2.5 4166.7 2 2 1 16 2 2 6.4 2500 2.7 1 

EC28 1 19.5 1 2 1 1 -1.25 2 32 16 1 1.1 

EC34 1 781.3 1 2 -1.4 8 1 2 64 1250 5.3 1.7 

EC958 -5 260 2 2 -1.1 8 1 16 42.5 125 4 1.3 

CFT073 -5 

 

780 1 2 -1.1 4 1 2 14.2 500 4 -3 
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2.5.2 The impact of biocide exposure on UPEC biofilm formation Biofilm formation 

was determined via a crystal violet biofilm assay for each UPEC isolate before and after 

repeated biocide exposure and after passage in a biocide free media (Figure 2.11). 

Unexposed isolates displayed varying biofilm forming capabilities prior to biocide 

exposure with EC2 showing the highest level of biofilm formation follo wed by 

EC1>CFT073>EC11>EC28>EC34>EC26 and EC958. When repeatedly exposed to 

triclosan, all isolates (with the exception of CFT073) demonstrated a significant 

(ANOVA p≤0.05) increase in biofilm formation relative to the respective control. All 

isolates demonstrated a significant increase in biofilm formation after BAC exposure 

with the exception of EC2. For PHMB and silver nitrate, EC1 showed a significant 

increase in biofilm formation after repeated exposure to either biocide. PHMB exposure 

also induced decreases in biofilm formation in EC2 and CFT073. Differences in biofilm 

formation were determined to be irrespective of growth rate as we did not observe any 

significant (ANOVA p<0.05) change in growth rate or overall growth productivity 

when in binary culture (Figure 2.12).   

  

 

 

 

 

 

 



 

46 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Crystal violet biofilm assay indicating the effect of previous biocide 

exposure on biofilm formation in eight isolates of UPEC. Data shows the mean 
absorbance (A600) representative of biofilm formation for individual bacteria before and 
after long-term exposure to PHMB, triclosan, BAC or silver nitrate or after passage on a 

biocide free media (C12). Data represent samples taken from two separate experiments 
each with four technical replicates. For data that varied between replicates, SDs are 

given as error bars. Significance was determined using ANOVA; * p≤0.05. 
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Figure 2.2 Planktonic growth for eight UPEC isolates after exposure to four biocides. 
Control isolates passaged without biocide (C12) are also shown. 
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2.5.3 Relative pathogenicity of UPEC after long-term biocide exposure  A G. 

mellonella waxworm model was used to determine relative pathogenicity in UPEC 

isolates (Figure 2.3). Data indicate that prior to biocide exposure, EC2 was the least 

pathogenic and EC1 and EC958 were the most pathogenic isolates.  PHMB exposure 

induced significantly (log-rank p≤0.05) decreased relative pathogenicity in 3/8 isolates 

(EC11, EC34 and EC958) and a significant increase in pathogenicity for EC2 when 

compared to the respective control isolate (C12). BAC exposure induced significantly 

decreased pathogenicity in 6/8 isolates (EC1, EC11, EC26, EC28, EC34 and EC958) 

and significantly increased pathogenicity in EC2. Silver nitrate was the only biocide to 

only induce significant increases in pathogenicity which occurred in 2/8 isolates (EC11 

and EC28) and triclosan was the only biocide to induce only significant decreases in 

pathogenicity which occurred in 5/8 isolates (EC11, EC26, EC34, EC958 and CFT073).    
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Figure 2.3 G. mellonella survival curves for larvae injected with unexposed and 
biocide-exposed UPEC. Data represents 24 biological replicates. Control data from non-

injected larvae, larvae injected with PBS alone, and larvae injected with control isolates 
passaged on a biocide free media (Control) are also shown. * indicates a significant 

difference in pathogenicity when comparing biocide adapted isolates to the respective 
control strain (p≤0.05, log-rank reduction test). 
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2.5.4 Cell invasion Bacterial invasion of human cells was determined by cell invasion 

assay with each UPEC isolate before and after exposure for bladder smooth muscle 

(Figure 2.4) and urothelial cells (Figure 2.5). For the unexposed isolates, EC1 showed 

the highest percentage of invasion followed by EC11, EC2, EC28, EC34, EC958, 

CFT073 and EC26 in SMC. When exposed to PHMB, EC1, EC2, EC11, EC28, and 

EC34 showed an increase in SMC invasion. Exposure to BAC induced an increase in 

SMC invasion in EC958. Exposure to triclosan and silver nitrate had no significant 

effect on SMC invasion.  

For HUEPC, EC958 showed the highest rate of invasion of the unexposed isolates, 

followed by, CFT073, EC1, EC26, EC11, EC34, EC28, and EC2. Exposure to PHMB 

induced significantly increased cell invasion in EC26. Triclosan exposure induced 

increased invasion in EC1 and EC28. BAC exposure induced increases in cell invasion 

for EC26 and EC34. Exposure to silver nitrate induced increases in cell invasion for 

CFT073. 
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Figure 2.4 SMC invasion of eight strains of unexposed and biocide adapted UPEC.  * 
indicates significant (ONE –WAY ANOVA p<0.05) change in cell invasion compared 

with relative control. 
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Figure 2.5 HUEPC invasion of eight strains of unexposed and biocide adapted UPEC.  
* indicates significant (ONE –WAY ANOVA p<0.05) change in cell invasion 

compared with relative control. 
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2.5.5 Changes in antibiotic susceptibility after biocide exposure  Isolates were 

classed as resistant or sensitive to each antibiotic as defined by BSAC breakpoints [155]. 

Antibiotic susceptibility was determined for UPEC isolates before and after exposure to 

each biocide (Table 2.5). Data indicate that PHMB exposure induced CFT073 to 

become resistant to trimethoprim sulfamethoxazole and EC26 to become resistant to 

gentamicin. Exposure to triclosan induced nitrofurantoin resistance in EC958 and 

ciprofloxacin resistance in EC2. Triclosan exposure also induced intermediate resistance 

to gentamicin in EC2. Silver nitrate exposure induced EC2 to become resistant to 

ciprofloxacin as did BAC exposure. There were cases where isolates that were initially 

resistant to trimethoprim sulfamethoxazole became more susceptible after biocide 

exposure. This occurred in EC2 after exposure to PHMB, BAC, or silver nitrate and in 

EC11 after exposure to triclosan or BAC. This was also observed in EC11 for 

ciprofloxacin after triclosan exposure and CFT073 after BAC, triclosan or silver nitrate 

exposure.
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Antibiotic  

Exposure 
 

 

EC1 

 

EC2 

 

EC11 

 

EC26 

 

EC28 

 

EC34 

 

EC958 

 

CFT073 

T
r
im

e
th

o
p

r
im

 

S
u

lf
a

m
e
th

o
x

a
z
o

le
  

Unexposed 
 

31.8 (1.3) S 
 

0 R 
 

0 R 
 

0 R 
 

0 R 
 

0 R 
 

0 R 
 

30 (0.6) S 
PHMB 31.7 (0.8) S 30.3 (0.6) S 0 R 0 R 0 R 0 R 0 R 0 R 

Triclosan 31.5 (0.6) S 0 R 32.3 (0.3) S 0 R 0 R 0 R 0 R 28.8 (0.4) S 

BAC 29.7 (3.6) S 26 S 31 (0.6) S 0 R 0 R 0 R 0 R 28.8 (1.3) S   

Silver Nitrate 32.7 (0.6) S 25.5 (0.5) S 0 R 0 R 0 R 0 R 0 R 29.5 (0.5) S 

N
it

r
o

fu
r
a

n
to

in
 

 

 
Unexposed 

 
20.3 (0.3) S 

 
20.7 (0.3) S 

 
23.7 (0.3) S 

 
21.2 (1.5) S 

 
19.7 (0.5) S 

 
16.3 (1.2) S 

 
20.4 (1.4) S 

 
18 (0.6) S 

PHMB 20.3 (0.9) S 19.5 (0.5) S 25 (1) S 23.2 (3.1) S 19.2 (0.4) S 15 (0.6) S 19.8 (0.25) S 17.8 (0.8) S 

Triclosan 20 (0.6) S 20.5 (0.6) S 24.7 (0.3) S 24.2 (1.5) S 18.7 (1.4) S 18 (0.6) S 0 R 21.2 (0.4) S 

BAC 19.3 (0.3) S 18.5 (0.5) S 23.8 (0.3) S 23.3 (3.1) S 19.5 (1.5) S 15.2 (1.2) S 20.4 (0.1) S 17.2 (0.4) S 

Silver Nitrate 20.3 (0.3) S 18.8 (0.3) S 23.5 (1.6) S 23.3 (2.1) S 21.3 (0.5) S 15.8 (0.8) S 20 S 17.2 (0.4) S 
 

C
ip

r
o

fl
o

x
a

c
in

 

 

 
Unexposed 

 
31.2 (0.8) S 

 
34 (0.6) S 

 
13.8 (0.6) R 

 
0 R 

 
30 S 

 
0 R 

 
0 R 

 
0 R 

PHMB 31.3 (0.8) S 35 (0.6) S 0 R 0 R 30 S 0 R 0 R 0 R 

Triclosan 32.5 (0.5) S 0 R 29.5 (0.8) S 0 R 30.7 (1) S 0 R 0 R 33.2 (1.9) S 

BAC 30 (0.3) S 0 R 0 R 0 R 29.7 (0.8) S 0 R 0 R 31.2 (1.8) S 

Silver Nitrate 31.2 (0.3) S 0 R 0 R 0 R 29.7 (0.8) S 0 R 0 R 31.7 (2.1) S 
 

G
e
n

ta
m

ic
in

 

 

 
Unexposed 

 
26 (0.5) S 

 
27.7 (0.3) S 

 
25.5 (0.6) S 

 
14.3 (1.2) I 

 
18.2 (1) S 

 
16.5 (0.5) I 

 
26 S 

 
24.8 (0.4) S 

PHMB 25.5 (0.6) S 28.1 (0.4) S 27.3 (0.3) S 11.8 (0.8) R 18.5 (1.6) S 16.2 (1.2) I 26.4 (0.5) S 25 S 

Triclosan 25.8 (0.3) S 16 I 23.5 (0.6) S 15.8 (3.5) I 20.8 (1) S 20 (0.9) S 27 (0.6) S 28.3 (1.4) S 

BAC 26.5 (0.5) S 25.8 (0.8) S 25.3 (0.3) S 16.8 (0.8) I 18.8 (0.8) S 18 S 26.7 (0.6) S 24.7 (0.5) S 

Silver Nitrate 27.8 (0.3) S 27.2 (0.1) S 27 (0.3) S 15.2 (1.5) I 18.7 (0.8) S 17 (1.3) S 26.2 (0.3) S 24 S 
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Table 2.5 Data show the mean antibiotic inhibition zones (mm) or UPEC before and 
after biocide exposure (mm) and represent samples taken from two separate 

experiments each with three technical replicates. For data that varied between replicates, 
SDs are given in parentheses. S = Sensitive, I = Intermediate, R = Resistant, as defined 

by BSAC breakpoint (23). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

56 
 

2.5.6 Biocompatibility Index Cytotoxicity data for the four biocides against an L929 

cell line are shown in Table 2.6, rf values, indicating antimicrobial activity, and the 

corresponding BI values, highlighting the antiseptic potential of the compounds, are 

shown in Table 2.7. The order of cytotoxicity in relation to the biocide concentration 

was silver nitrate>PHMB>BAC>triclosan. The only isolate for which an rf value could 

be determined for silver nitrate was CFT073 as the rf values for the other isolates 

exceeded the maximum solubility of the biocide. Similarly, an rf value could not be 

determined in EC28 and CFT073 for triclosan as the rf value was greater than the 

highest achievable test concentration. BI values for the eight isolates were averaged for 

each biocide and the final ranked order of BI was PHMB>triclosan>BAC>silver nitrate 

indicating the antiseptic potential of the biocides. 
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Table 2.6 Mean concentration of biocides allowing 50% survival (IC50) of murine 
fibroblasts after 30 min at 37ºC as determined via Neutral Red (NR) and [3-(4,5-
dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide] (MTT) assays. Mean IC50 

based on mass and molecular weight (m.w.). Data indicates two separate experiments 
each with six replicates. 

 

 

 

 

 

 

 

 

 

Biocide 

 

NR IC50  

 

MTT IC50  

 

m.w. 

 

 

           Mean IC50 

 

 

 

PHMB 

 

0.02  

 

0.03 

 

2800 

 

0.026 0.000009 

Triclosan 0.19  0.14  289.54 0.16 0.00057 

BAC 0.07  0.03  340 0.047 0.00014 

Silver Nitrate 0.002  0.003  169.87 0.0027 0.000016 

 

mg/ ml                  mmol/ ml 
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Table 2.7 Data shows the concentration of biocide (mg/l) producing 3 log10 reduction (rf) after 30 min of exposure at 37ºC on eight isolates of 

UPEC and the resulting BI value. NC- not calculable, for certain combination of biocide and bacterial isolate the rf value exceeded the maximum 
solubility of the biocide. Data represent mean rf  values taken from two separate experiments each with four technical replicates. 

 

Biocide 

 

 

EC1 

 

 

EC2 

 

EC11 

 

EC26 

 

EC28 

 

EC34 

 

EC958 

 

CFT073 

  

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

 

PHMB  

 

0.02 

 

1.6 

 

0.06 

 

0.4 

 

0.01 

 

1.6 

 

0.02 

 

1.6 

 

0.3 

 

0.1 

 

0.1 

 

0.2 

 

0.5 

 

0.05 

 

0.02 

 

1.6 

 

Triclosan 

 

 

0.2 

 

0.7 

 

1.1 

 

0.1 

 

0.2 

 

0.7 

 

1.1 

 

0.1 

 

NC 

 

NC 

 

0.6 

 

0.3 

 

2.3 

 

0.07 

 

NC 

 

NC 

BAC 

 

0.07 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.3 0.2 0.2 0.6 0.08 0.07 0.7 

Silver 

Nitrate 

 

NC NC NC NC NC NC NC NC NC NC NC NC NC NC 0.01 0.2 

 

 



 

59 
 

2.5.7 Mutation rate frequency in UPEC isolates Mutation rate frequency was 

determined with regards to rifampicin resistance. We observed rifampicin resistant 

mutants from all UPEC isolates (Table 2.8). Mutation frequencies varied from 1.7 x 10-8 

for CFT073 up to 3 x 10-7 for EC2 with an overall mutation frequency rank order of 

EC2>EC28>EC11>EC1>EC34>EC958>EC26>CFT073.  

 

 

Isolate 

 

 

Mutation Rate  

 

EC1 

 

7.97 x 10-8 

EC2 3 x 10-7 

EC11 1.36 x 10-7 

EC26 3.41 x 10-8 

EC28 1.86 x 10-7 

EC34 6.81 x 10-8 

EC958 3.49 x 10-8 

CFT073 

 

1.69 x 10-8 

 

Table 2.8 Mutation rate frequencies of eight strains of UPEC for rifampicin resistance 

given as a fraction of the population.  

  



 

60 
 

2.6.0 Discussion 

The current investigation aimed to explore the phenotypic changes that occur in 

genetically mixed populations of UPEC as a result of long-term biocide exposure. 

Susceptibility of eight UPEC isolates to a panel of test biocides was determined in 

planktonic and biofilm states before and after long-term biocide exposure. Changes that 

biocide exposure had on biofilm formation, relative pathogenicity and antibiotic 

susceptibility were assessed. Furthermore, cytotoxicity and the corresponding BI values 

were determined for each biocide against an L929 murine fibroblast cell line indicating 

the antiseptic potential of the test agents.  

2.6.1 Biocide exposure induces changes in antimicrobial susceptibility in 

planktonic UPEC The data in this investigation highlights that long-term exposure to 

biocides may influence biocide susceptibility in UPEC. Bacterial susceptibility to 

biocides can be markedly affected by structural variations in the bacterial cell that (i) 

impact attraction of the biocide to the cell [77] (ii) lead to changes in cell permeability 

to the biocide [157] and (iii) cause modification in efflux activity allowing the bacteria 

to expel the biocide from the cell [158]. These modifications may account for some of 

the changes in biocide susceptibility observed in the current study, however the exact 

mechanisms that govern each specific adaptation depends upon a multitude of factors 

inherent to both the particular biocide and the bacterium [77]. Furthermore, previous 

studies have indicated that biocide exposure in bacteria may result in reversible 

phenotypic adaptations that occur as a consequence of temporary changes in gene 

expression, for instance the induction of stress responses [95]. In contrast, other 

investigations highlight that biocide exposure may lead to the selection of biocide 

resistant mutants with stable phenotypes that do not revert in the absence of the biocide 

[159]. This may reflect diversity within the mechanisms of action of biocides 

particularly with regards to target site specificity. Bacterial exposure to target site 

specific biocides such as triclosan readily appears to lead to the selection of mutations 

in target enzyme FabI [159] whilst induced insusceptibility towards membrane active 

compounds such as biguanides (PHMB) and quaternary ammonium compounds (BAC)  

is often associated with the induction of stress responses [160, 161]. 

In terms of initial antimicrobial efficacy, silver nitrate demonstrated the lowest activity 

against planktonic UPEC when compared with other test biocides at MIC and MBC. 
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We observed a high frequency of small magnitude decreases (≤2-fold) in silver nitrate 

susceptibility after long-term exposure resulting in comparatively high MIC and MBC 

values.  Silver is widely considered as an effective anti- infective urinary catheter 

coating agent and is used in currently marketed anti- infective urinary catheters [113]. 

However, previous investigations have also documented the selection of silver 

resistance in Gram negative pathogens [101] including E. coli and other invasive 

Enterobacteriaceae [102]. This resistance has been correlated to increased efflux 

activity [103] or a loss of outer membrane porins [116] thereby decreasing cell 

permeability, which may explain the induced reductions in silver nitrate susceptibility 

observed in our UPEC isolates.  

PHMB exposure induced a high frequency of small magnitude (≤2-fold) increases in 

susceptibility in planktonic UPEC at MIC and MBC. Previous data indicate that 

changes in bacterial susceptibility in response to membrane active compounds, such as 

biguanides, is usually attributed to alterations in the structural integrity of the bacterial 

cell envelope impacting cell permeability, modifications in the structure of LPS 

interfering in electrostatic interactions between the cationic biocide and cell envelope 

and due to increased cellular efflux activity, expelling the biocide from the cell [95], 

these mechanisms of resistance are in contrast with the data in the current investigation. 

Whilst other studies have also highlighted increases in PHMB susceptibility in bacteria 

after long-term exposure the underlying mechanisms that govern this adaptation 

remains unknown. It has been suggested that long-term exposure to biocides in bacteria 

may result in cumulative cellular damage and a resulting loss of fitness increasing 

bacterial susceptibility over time [148].  

Triclosan was the most potent antimicrobial before repeated biocide exposure in 

planktonic UPEC. However triclosan induced the largest frequency and magnitude of 

susceptibility decreases in MIC and MBC. Resistance of E. coli to triclosan has been 

widely documented and is believed to be due to a mutation in the target enzyme FabI 

[159], due to increased cellular efflux [150] and changes in the cell membrane 

composition that reduce permeability [162]. Triclosan- impregnated catheters have 

demonstrated marked efficacy in in vitro studies [108], and show little reduction in 

antimicrobial activity even after long-term use [163]. This may be due to the fact that 

whilst large susceptibility changes may occur in bacteria following triclosan exposure, 

as indicated in our data, the initial potency of triclosan means that the catheter maintains 
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a high level of antimicrobial activity even after the bacteria adapt to the presence of the 

biocide likely due to its multi-target site mode of action.  

BAC demonstrated lower initial antimicrobial activity against planktonic UPEC 

compared to triclosan and PHMB (MIC and MBC) and only induced minor reductions 

(≤2-fold) in susceptibility after long-term exposure. Changes in gene expression in BAC 

adapted E. coli have been previously identified revealing an upregulation of efflux 

pump membrane transporter yhiV and downregulation of the outer membrane porin 

ompA thereby increasing cellular efflux of BAC and reducing cell permeability towards 

the biocide [99].  

Repeated passage of bacteria on a biocide free media occasionally led to changes in 

biocide susceptibility within planktonic culture, however these changes occurred at a 

substantially lower magnitude and frequency than those observed after biocide 

adaptation and were predominantly increases in susceptibility. This potentially 

reemphasises the fitness costs associated with repeated culture. Significantly, we 

observed only five cases of significant reduction in biocide susceptibility when 

comparing the isolate passaged in the absence of biocide to the unexposed parent strain. 

This reduction in susceptibility could be attributed to the stress of repeated passage 

leading to protective stress responses. For example, reduced amino acid availability 

leading to the stringent response has been shown to cause reduced penicillin 

susceptibility in E.coli [164]. 

2.6.2 Biofilm formation and susceptibility in UPEC after biocide exposure  Bacteria 

that have adapted to the presence of biocides may exhibit further phenotypic alterations 

such as changes in growth rate, biofilm formation and competitive fitness, which may 

influence pathogenicity [13, 17]. After biocide exposure several UPEC isolates in the 

current study exhibited significant changes in biofilm formation. Whilst this biofilm 

formation is a complex multifactorial process, these changes could potentially be 

attributed to the selection of mutants with alterations in factors involved in the 

establishment of biofilms, such as adhesion, EPS production or maturation.  

Biocide exposure largely led to increases in biofilm formation particularly after 

exposure to BAC and triclosan. Of the 7 UPEC isolates that demonstrated an increase in 

biofilm formation after BAC exposure 6 had a corresponding increase in MBEC. All 7 

isolates that increased in biofilm formation after triclosan exposure also exhibited an 
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elevation in MBEC. PHMB exposure led to a significant decrease in biofilm formation 

for EC2 and CFT073 which did not correspond with decreases in MBEC, possibly 

indicating the recalcitrance of persister populations within the biofilm irrespective of 

biofilm biomass [165].  

BAC adaptation has been previously correlated to an increase in biofilm biomass in E. 

coli which is believed to be due to an increase in protein and polysaccharide content  

within the extracellular polymeric substance (EPS) [166]. This change in EPS 

composition may lead to reduced BAC susceptibility, as observed in our BAC adapted 

isolates.  

Yu et al. [93] utilised a genome-wide enrichment screen to demonstrate the genes 

involved in triclosan adaptation in E. coli. Microarray analysis revealed that triclosan 

exposure resulted in an increase in fimDFHI which encodes proteins involved in 

fimbrial biosynthesis, that have been shown to be positively associated with an increase 

in biofilm formation [167].  This may provide a potential link between the increase in 

biofilm formation and thus resistance caused by triclosan exposure in the UPEC isolates 

used in the current investigation.  

2.6.3 Changes in antibiotic susceptibility after biocide exposure in UPEC Concerns 

have been raised that biocide exposure may induce cross-resistance to clinically relevant 

antibiotics. In the current study we observed the generation of antibiotic resistance in 7 

out of a possible 84 combinations of bacteria, biocide and antibiotic. The biocide that 

induced the highest number of cases of cross-resistance in a previously susceptible or 

intermediate isolate was triclosan, which was to nitrofurantoin, gentamicin and 

ciprofloxacin. PHMB exposure led to trimethoprim sulfamethoxazole and gentamicin 

cross resistance. BAC and silver nitrate exposure led to one observed case of cross-

resistance each which was towards ciprofloxacin.  

There have been previous reports into efflux mediated cross-resistance between 

antibiotics and to triclosan reportedly due to upregulation of acrAB, encoding the 

AcrAB efflux pump [168]. Efflux pumps have also been correlated to observed cross-

resistance to between quaternary ammonium compounds and antibiotics in E. coli. Bore 

et al observed reduced antibiotic susceptibility in BAC-adapted E. coli which also 

coincided with an increase in the expression of acrAB and a downregulation in multiple 

outer membrane porins including OmpA, OmpF and OmpT [99]. Whilst there is 
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relatively sparse evidence on the generation of antibiotic cross-resistance due to PHMB 

exposure in bacteria, the mechanisms of uptake of PHMB is similar to that of 

aminoglycosides involving destabilisation of the bacterial cell membrane and LPS 

reorganisation [169]. Interaction between LPS and PHMB is known to be a key step in 

the initial interaction of the biocide with the bacterial cell in E. coli (31). This may 

suggest why an induced reduction in PHMB susceptibility in our UPEC isolates also led 

to a similar reduction in susceptibility towards gentamicin. Studies on silver resistance 

in E. coli have revealed acquired low-level cross-resistance to cephalosporins, similarly 

due to increased efflux and reduced porin expression [116].  In this study, there were 10 

cases of biocide exposure eliciting increased susceptibility to antibiotics namely 

towards trimethoprim sulfamethoxazole and ciprofloxacin. This display of "cross-

protection" has been noted in previous studies and has been suggested to be due to a 

potential increase in cell permeability in response to biocide adaptation however the 

underlying mechanisms remain unclear [80].  

2.6.4 Biocompatibility of test biocides in an L929 cell line To assess the suitability of 

an antiseptic agent both the antimicrobial activity and cytotoxicity must be considered. 

Silver nitrate showed the highest level of cytotoxicity in an L929 cell line and the 

lowest antimicrobial efficacy in the corresponding quantitative suspension test (rf value). 

Reduced activity of silver when in the presence of serum has been previously at tributed 

to binding of the silver cations to the electronegative serum components, which may 

explain the low level of antimicrobial activity in silver nitrate observed in the 

quantitative suspension test in the current study [170]. Silver ions have been 

demonstrated to interact with components of mammalian cells including the 

mitochondria, nuclei, endoplasmic reticulum and the cell membrane [171]. Interaction 

of silver ions with mitochondria reportedly causes mitochondrial damage and the 

release of reactive oxygen species (ROS) resulting in apoptosis suggesting a mechanism 

of silver-mediated cytotoxicity [172]. Whilst PHMB was shown to be the second most 

cytotoxic biocide tested, it exhibited a relatively low rf value resulting in the highest BI 

value out of all the test biocides. PHMB has previously shown low level cytotoxicity 

towards mammalian cells, including L929 cells, which is suggested to be due to the 

interaction of the biocide with the mammalian cell membrane leading to membrane 

damage [173]. BAC was the second least cytotoxic biocide tested and the showed the 

second highest level of antimicrobial activity in the presence o f serum in the 
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quantitative suspension tests. BAC has been shown to interact with guanine nucleotide 

triphosphate-binding proteins (G proteins) impacting cell signalling transduction in 

mammalian cells and causing DNA damage [174]. Cytotoxicity data indicated triclosan 

to be the least cytotoxic of all the test biocides. However the rf values were high 

resulting in the second highest BI value. Triclosan has previously shown reduced 

antimicrobial efficacy in the presence of serum, this is believed to be due to the 

bacteria’s ability to gain an exogenous supply of fatty acids from the serum, thereby 

bypassing the inhibitory effects of the biocide [175]. Additionally, previous studies 

report on triclosan interference with mitochondrial respiration [176] in addition a 

damaging effect on the plasma membrane and induced apoptotic cell death [177] 

suggesting a potential mechanism of cytotoxicity.  

2.6.5 Altered relative pathogenicity in biocide adapted UPEC Repeated biocide 

exposure to silver nitrate induced an increase in relative pathogenicity in 2/8 isolates of 

UPEC whilst PHMB exposed isolates exhibited a decrease in pathogenicity in 3/8 and 

an increase in pathogenicity in 1/8 isolates respectively. A decrease in pathogenicity 

was observed after triclosan exposure in 5/8 isolates and in 6/8 isolates after exposure to 

BAC. BAC also induced an increase in pathogenicity in 1 further isolate. Triclosan 

exposure has previously been shown to reduce relative pathogenicity in a G. mellonella 

waxworm model in certain bacterial species [104]. These pathogenicity changes were 

suggested to be due to changes in virulence factor production, specifically reduced 

DNase activity and a down-regulation in cell surface adhesins [178]. It has been shown 

that triclosan exposure specifically downregulates genes encoding the outer membrane 

proteins P-fimbriae and protein X in E. coli [179] which are integral for UPEC 

attachment to cell surfaces [180] and entry into host cells [181]. Isolates of E. coli that 

have been exposed to BAC have been shown to have increased hemolysin activity and 

enhanced virulence [182] which may explain the increase in pathogenicity for the BAC 

exposed isolates in the current study. To our knowledge there are no current studies 

regarding the effects of silver or PHMB exposure on bacterial virulence factor 

production and resulting pathogenicity. 

2.6.6 UPEC invasion into human cells after exposure to biocides It was observed 

that, on average, invasion was higher in HUEPC than in SMC. This would make sense 

as UPEC express genes that encode P fimbriae/ pyelonephritis associated pili (PAP)  

[24] and type 1 pili which both adhere specifically to uroepithelium [26, 183].When 
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exposed to PHMB, 5/8 showed an increase in SMC invasion. For HUEPC, exposure to 

PHMB induced increased invasion in 1/8 isolates. Exposure to PHMB has been shown 

to induce expression of adhesion gene ycgV and increase production of pili which are 

used as adherence factors [95]. This would explain increases in cell invasion. 

For HUEPC invasion triclosan exposure induced increased invasion in 2/8 isolates. 

Triclosan exposure has previously been shown to specifically downregulate genes 

encoding outer membrane proteins (P-fimbriae and protein X in E. coli) [179] which are 

integral for UPEC attachment to cell surfaces [180] and entry into host cells [181]. This 

data is therefore in contrast to what we see in the current investigation. 

Exposure to BAC induced an increase in invasion in 1/8 isolates for SMC. BAC 

exposure induced increases in HUEPC invasion for 2/8 isolates. BAC exposure has 

been shown to increase expression of efflux pumps [100] and decrease expression of 

motility associated genes [184]. But to our knowledge there are no studies that have 

investigated the effects of BAC on E.coli cell invasion or have identified genes 

associated with invasion/adhesion that are associated with BAC exposure.  

When exposed to silver nitrate, 1/8 isolates showed increases in HUEPC invasion. A 

study into the effects of ionic silver on E.coli found an upregulation of ydeS,R which is 

putatively involved in cell adhesion [185]. Bacteria first have to adhere to cells before 

being able to invade so an increase in cell adhesion could explain the increased invasion 

seen in this study.  

2.6.7 Consequence of variance in mutation rate frequency in UPEC Elevated 

mutation rates have been previously reported in E. coli strains [186]. Furthermore, the 

adapting populations generated in the current investigation may lead to the selection of 

hypermutators due to the selective pressures created during biocide exposure. We 

evaluated the mutation frequencies in our parent isolates to determine whether this 

correlated to a higher frequency of phenotypic adaptations after biocide exposure. 

Mutation rate frequency was determined to be ordered 

EC2>EC28>EC11>EC1>EC34>EC958>EC26>CFT072. When comparing mutation 

rate to incidences of biocide susceptibility change (MIC, MBC and MBEC) EC11 and 

CFT073 showed the highest frequency of changes in biocide susceptibility whilst EC28 

showed the least. We observed two cases of significant change in biofilm formation for 

each isolate with the exception of EC1 for which we observed four. In terms of 
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significant changes in relative pathogenicity, EC11 demonstrated four significant 

changes after biocide exposure, EC34 and EC958 showed three, EC2, EC26 and EC28 

showed 2 and EC1 and CFT073 showed one. These data indicate a lack of correlation 

between the frequency of mutation rate in the parent strain and the rate of phenotypic 

adaptation in the respective isolate after biocide exposure.  

2.7.0 Conclusion 

The use of biocides for the purpose of antisepsis has led to concern over the selection of 

biocide resistance in clinically relevant pathogens. Here it is demonstrated that long-

term exposure of UPEC to commonly used biocides can result in changes in biocide 

susceptibility which may be accompanied by further phenotypic alterations impacting 

biofilm formation, antibiotic susceptibility and relative pathogenicity. The multiple 

consequences of bacterial adaptation towards biocides should therefore be evaluated 

when considering a potential anti-infective catheter coating agent. 
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Chapter 3 

Impact of long-term quorum sensing inhibition in uropathogenic 

Escherichia coli 
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3.1.0 Abstract 

Background: Quorum sensing is a cell-cell communication system utilised in the 

density-dependent regulation of gene expression in bacteria and the subsequent 

development of biofilms. Biofilm-formation has been implicated in the establishment of 

catheter-associated urinary tract infections (CAUTIs) therefore quorum sensing 

inhibitors (QSIs) have been suggested as anti-biofilm catheter coating agents to prevent 

CAUTI. The long-term effects of QS inhibition in uropathogens are, however, not 

clearly understood. The effects of long-term exposure to potential QSIs cinnamaldehyde, 

(Z)-4-Bromo-5(bromomethylene)-2(5H)-furanone (C30) and 4-fluoro-5-

hydroxypentane-2,3-dione (F-DPD) were evaluated on susceptibility, biofilm-formation 

and relative-pathogenicity in eight uropathogenic Escherichia coli (UPEC) isolates. 

Methods: Minimum inhibitory, bactericidal and biofilm eradication concentrations 

were determined before and after QSI exposure. Biofilm-formation was quantified using 

crystal-violet and relative-pathogenicity was assessed in a Galleria mellonella model. 

Cytotoxicity and resulting biocompatability index values were determined in an L929 

murine fibroblast cell line. Cell invasion assays were performed against bladder smooth 

muscle (SMC) and urothelial (HUEPC) cell lines. Results: Cinnamaldehyde and 

furanone C30 led to multiple increases in susceptibility in planktonic and biofilm-

associated UPEC. Relative pathogenicity increased after cinnamaldehyde exposure (4/8 

isolates), decreased after furanone C30 exposure (6/8 isolates) and varied after F-DPD 

exposure (2/8 increases and 2/8 decreases). Cinnamaldehyde and furanone C30 both 

induced 1/8 increase in HUEPC invasion whilst F-DPD induced 1/8 decrease in SMC 

invasion. 9 out of 21 possible cases of antibiotic cross-resistance were generated. The 

order of biocompatibility was furanone C30 > cinnamaldehyde > F-DPD. Conclusion: 

The impact of long-term QS inhibition in UPEC should be considered when selecting an 

anti-infective catheter coating agent. 

3.2.0 Introduction 

Urinary tract infection (UTI) is the most common healthcare associated infection 

(HCAI), with between 43% and 56% of cases associated with the presence of an 

indwelling urethral catheter [15]. Long-term catheterisation carries a significant risk of 

symptomatic catheter associated urinary tract infection (CAUTI), which can lead to 

complications such as pylonephritis and subsequent blood stream infection [14]. 
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Uropathogenic Escherichia coli (UPEC) is a frequent cause of catheter-associated 

urinary tract infection (CAUTI). Currently E. coli is the leading cause of blood stream 

infection in the UK with a mortality rate of 14.8% [17]. Of these cases, 21% are linked 

to urethral catheterisation [17]. With an ageing population in the UK it is likely that the 

need for urinary catheters will continue to rise resulting in an increasing risk to health 

and an escalating cost for healthcare service providers. 

The treatment of CAUTI is complicated by the emergence of UPEC exhibiting multiple 

antibiotic resistances. In Europe and the US 50,000 people a year lose their lives due to 

antibiotic resistant pathogens with that number rising to 700,000 worldwide [187]. This 

number is predicted to reach 10 million deaths by 2050 if alternative therapies are not 

found [187]. There has therefore been significant interest in the development of 

strategies to help prevent infection that avoids the use of antibiotics. A novel approach 

in the production of anti- infective catheter coatings is to use quorum sensing inhibitors 

(QSIs).  

Quorum sensing  (QS) is a process by which bacteria produce and detect signalling 

molecules and thereby coordinate their behaviour in a cell density dependent manner 

[10]. It has been shown to be an important contributor to the formation of a bacterial 

biofilms in certain bacterial species and may be involved in the expression of various 

virulence factors [5]. QSIs act to disrupt this communicative process and provide a 

potential strategy to prevent the establishment of biofilm associated infections such as 

CAUTI, whilst exhibiting limited cytotoxic effects due to their bacterial target site 

specific mode of action.  

Quorum sensing in UPEC is mediated by acyl-homoserine lactone (AHL) and 

autoinducer-2 (AI-2) [43]. AI-2 consists of derivatives of 4,5-dihydroxy-2,3-

pentanedione (DPD) [47] with LuxS, the DPD synthase, present in more than 500 

bacterial species [43]. It has been shown that AI-2 production is directly correlated to 

biofilm production in E.coli [48].  DPD analogues have been used to prevent AI-2 

binding to the periplasmic receptor LsrB [64] and disrupt AI-2 based transduction.  4-

fluoro-5-hydroxypentane-2,3-dione (F-DPD) a fluoro DPD analogue has been shown to 

disrupt AI-2 based QS and biofilm formation in  Vibrio harveyi. A small variety of 

naturally produced compounds have also been shown to inhibit AI-2 based signalling. 

Cinnamaldehyde is a natural product from the bark of the cinnamon tree and furanone is 
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a naturally produced QSI produced by red algae Delisea pulchra [10]. Both furanone 

C30 and cinnamaldehyde have been suggested to inhibit AI-2 based QS by decreasing 

the DNA binding ability of the response regulator LuxR [10]. Both compounds have 

been shown to affect biofilm-formation and increase biofilm susceptibility towards 

antibiotic treatment in a range of bacterial species in vivo [71]. As well as demonstrating 

QSI activity these compounds have also shown bacteriostatic and bactericidal effects 

[188, 189]. 

The gradient created by the release of an antimicrobial agent from a coated medical 

device creates a selective pressure that may induce phenotypic adaptations within 

individual bacterial cells or select for intrinsically resistant mutants altering both the 

bacteria itself and the surrounding microbial community composition. The risks 

associated with long-term exposure of bacteria to broad-spectrum antimicrobials has 

been extensively studied [9, 83], however there has been significantly lesser research 

into the long-term impact of QSIs. The current study therefore aimed to quantify the 

effects of QSI exposure in eight UPEC isolates. Specifically we will determine impact 

on antimicrobial and anti-biofilm susceptibility, the induction of antibiotic cross-

resistance, level of biocompatibility in addition to changes in biofilm-formation, relative 

pathogenicity and capacity for cell invasion.  

3.3.0 Aims and objectives 

Quorum sensing inhibitor treatment has been shown to reduce biofilm formation in 

E.coli by inhibiting the cell signalling required to initiate the genetic switch to biofilm 

growth [190]. There have also been reports of other effects of QSI treatment, for 

example increased antibiotic resistance [63]. There have not been any major studies into 

the impact of long term exposure to QSIs on bacteria. As quorum sensing is involved in 

the control of hundreds of genes in E.coli it is hypothesised that UPEC adaptation to 

QSI exposure will result in multiple phenotypic changes. 

The specific aims of this chapter were to: 

 Determine the efficacy of the QSIs cinnamaldehyde, furanone C30, and F-DPD 

in a Vibrio harveyi reporter system. 

 Evaluate QSI susceptibility before and after QSI exposure using MIC, MBC, 

and MBEC assays. 
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 Determine antibiotic cross resistance against QSI exposed UPEC. 

 Evaluate the ability of UPEC to form biofilms before and after QSI exposure 

using crystal violet assay. 

 Investigate the pathogenicity of UPEC before and after QSI exposure using 

Galleria mellonella model and primary cell invasion assays. 

 Determine the biocompatibility of the three QSIs against an L929 cell line. 

3.4.0 Methods 

3.4.1 Bacteria and chemical reagents Six UPEC clinical isolates (EC1, EC2, EC11, 

EC26, EC28 and EC34) previously isolated from urinary tract infections (Stepping Hill 

Hospital, UK) and two laboratory characterised  UPEC isolates (EC958 and CFT073) 

were used in the investigation. Bacteria were cultured onto Muller-Hinton agar (MHA; 

Oxoid, UK) or Muller-Hinton broth (MHB; Oxoid, UK) and incubated aerobically at 

37 °C for 18 h unless otherwise stated.  Furanone C30, cinnamaldehyde and F-DPD 

were prepared at 1 mg/ml in water and filter sterilised prior to use. Cinnamaldehyde was 

purchased from Sigma–Aldrich (Poole, UK). (Z)-4-Bromo-5(bromomethylene)-2(5H)-

furanone C30 (furanone C30) was synthesised at Sheffield Hallam University by P.G 

Chirila and C. Whiteoak as described previously [191]. 4-fluoro-5-hydroxypentane-2,3-

dione (F-DPD) was synthesised at University of Manchester by M. Kadirvel as 

described previously [192]. 

3.4.2 Vibrio model for determination of QSI activity Overnight cultures of Vibrio 

harveyi BB170 were grown in 20ml marine broth (Difco) at 37ºC 200rpm prior to 

dilution to OD600 0.008 and exposure to doubling dilutions of QSI in a 96-well 

microtitre plate. Plates were incubated at 37ºC for 40 h at 200rpm in a ClarioStar plate 

reader (BMG Labtech). Bioluminescence and the corresponding OD600 were recorded 

every 30 minutes.  

3.4.3 Long-term exposure of bacteria to quorum sensing inhibitors Bacteria were 

repeatedly exposed to QSIs using an antimicrobial gradient plating system as described 

in McBain et al [152].  In brief, 100 µl of a 5 × MBC concentration solution of QSI was 

added to an 8 x 8 mm well in the centre of a 90 mm agar plate. Bacterial pure cultures 

were radially inoculated in duplicate from the edge of the plate to the centre, prior to 

incubation for 2 days aerobically at 37°C. Biomass from the inner edge of the annulus 
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of bacterial growth representative of the highest QSI concentration at which growth 

could occur was removed and used to inoculate a new QSI containing plate, as outlined 

above. This process was repeated for 12 passages. Control isolates passaged 12 times on 

QSI free media were also included. Bacteria were archived at -80 °C before and after 

QSI passage for subsequent testing. 

3.4.4 Minimum inhibitory and minimum bactericidal concentration Minimum 

inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 

determined as described previously [80]. The MIC was defined as the lowest 

concentration of QSI for which growth was completely inhibited (viewed as turbidity 

relative to a sterile negative control). To determine MBC aliquots (5 µl) were taken 

from the wells of the MIC plate and were spot plated onto Muller Hinton Agar (MHA) 

in triplicate. The plates were incubated statically for 18-24 h at 37ºC. The lowest test 

concentration for which visible bacterial growth was completely inhibited was deemed 

the MBC.  

3.4.5 Minimum biofilm eradication concentration Minimum biofilm eradication 

concentrations were determined using the Calgary biofilm device (CBD) as described 

previously [105]. MBEC was defined as the lowest concentration of QSI for which re-

growth was completely inhibited (viewed as turbidity relative to a sterile negative 

control) indicating complete biofilm eradication.  

3.4.6 Crystal violet bacterial attachment assay 2 × 5 ml overnight cultures of test 

bacteria were diluted to an OD600 of 0.008 in MHB after incubation for 18-24h at 37º C 

and 100 rpm. 150 µl of diluted overnight bacterial culture was added to the wells of a 

sterile 96-well microtiter plate. Plates were incubated statically for 48 h at 37ºC. Media 

was removed from wells and replaced with 180 µl of crystal violet solution. Plates were 

left to dry at room temperature for 30 minutes, crystal violet solution was decanted and 

the wells were rinsed with 3 × 200 µl of PBS prior to drying for 1 h at 37ºC. The 

remaining crystal violet was solubilised in 250 µl of 100% ethanol. The A600 of the 

solubilised crystal violet solution was determined and compared to a sterile negative 

control. 

3.4.7 Galleria mellonella pathogenicity assay The pathogenesis model was performed 

as described in Peleg et al [153]. Final larval-stage G. mellonella were obtained from 

Live Foods Direct, Sheffield, UK. Treated larvae were incubated in a petri dish at 37°C 
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and the number of surviving individuals was recorded daily. An untreated group and a 

group injected with sterile PBS were used as controls. The experiment was terminated 

when at least two individuals in a control group had died or after 7 days of incubation. 

Two independent bacterial replicates were used to inoculate 24 caterpillars (12 per 

replicate) and significance in death rate was calculated using a log-rank reduction test 

(p≤0.05).  

3.4.8 Biocompatibility index Calculation of biocompatibility index (BI) was performed 

as described by Muller and Kramer [151]. To determine cytotoxicity, Neutral Red (NR) 

(3-amino- 7-dimethylamino-2-methylphenazine hydrochloride) assays and MTT [3-

(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetra-zolium bromide] assays were performed 

on an L929 cell line to establish IC50.  Procedures for the NR assay and the MTT test 

have been described in detail elsewhere [151]. The bacterial quantitative suspension 

tests were done in accordance with the guidelines for testing disinfectants and 

antiseptics of the European Committee for Standardization [154]. Suspension tests were 

performed in the presence of serum to determine the rf value, defined as the 

concentration of QSI that achieved a reduction in bacterial load of at least 3log10 

(99.9%). BI is calculated as IC50/rf for each combination of QSI and isolate and 

indicates the antiseptic potential of the test compound. 

3.4.9 Antibiotic susceptibility Bacterial susceptibility was determined for trimethoprim 

sulfamethoxazole (25 µg), nitrofurantoin (50 µg), ciprofloxacin (10 µg), and gentamicin 

(200 µg). Antibiotic susceptibility tests were performed according to the standardized 

British Society for Antimicrobial Chemotherapy (BSAC) disc diffusion method for 

antimicrobial susceptibility testing [155]. 

3.4.10 Cell Invasion Assay Evaluation of % invasion was performed on primary 

normal bladder smooth muscle cells (SMC) and human urothelial epithelial cells 

(HUEPC). SMCs were grown in Vascular Cell Basal Medium supplemented with the 

Vascular Smooth Muscle Cell Growth Kit (ATCC, UK). HUEPCs were grown in 

urothelial cell growth medium supplemented with serum free supplements (Provitro, 

Germany). Cells were seeded in 24 well plates at a concentration of 8x104 cells/ml, with 

1ml of cell suspension per well. Plates were incubated at 37ºC, 5% CO2 for 48h. Cells 

were incubated with 500µl 2% Bovine Serum Albumin for 1 hour, at 37ºC, 5% CO2. 

Overnight bacterial cultures were diluted to 200x the number of host cells per ml in cell 
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culture medium. Host cells were washed twice with PBS and 500µl bacterial suspension 

was added. Wells of bacterial suspension that did not contain host cells were also 

included ('survival' plate). All plates were incubated for 90 mins at 37ºC, 5% CO2.The 

invasion plate was washed three times with PBS before 500µl media with 200µg/ml 

metronidazole was added. The plate was incubated for a further 60 mins at 37ºC, 5% 

CO2. The attach plate was washed three times with PBS. Cells of each well were lysed 

in the presence of 200µl dH2O for 1 minute per well. Lysate was removed and serial 

dilutions were carried out in PBS. Dilutions were plated out in triplicate onto MHA. 

This was repeated for the invasion plate and the 'survival' wells. Agar plates were 

incubated at 37ºC for 1 overnight and cfu/ ml were counted. 

3.5.0 Results 

3.5.1 Efficacy of QSI's QS reporter strain Vibrio harveyi BB170  was used to determine 

QS inhibitory activity of furanone C30, F-DPD and cinnamaldehyde. The lowest 

concentration of QSI where bioluminescence was significantly (One-Way ANOVA) 

reduced without significantly reducing planktonic growth was termed the minimum 

quorum sensing inhibitory concentration (MQSIC). The MQSICs for the three test QSI's 

were: 39.06 µg/ml for cinnamaldehyde, 0.098 µg/ml for furanone C30 and 31.2 µg/ml 

for F-DPD (Figure 3.1). 
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Figure 3.1 Graphs showing the planktonic growth (absorbance) and QSI activity 
(luminescence) of Vibrio harveyi BB170 in the presence of increasing concentrations of 
a) cinnamaldehyde, b) furanone C30, and c) F-DPD as a % relative to the negative 

control (0µg/ml). The lowest concentration where QS was significantly (* p < 0.05, 
n=3) reduced without significantly reducing growth was termed the minimum quorum 

sensing inhibition concentration (MQSIC).  
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3.5.2 QSI susceptibility of UPEC in planktonic and biofilm states  MIC (Table 3.1), 

MBC (Table 3.2) and MBECs (Table 3.3) were determined for all test isolates before 

and after repeated QSI exposure and were compared to the respective control passaged 

on QSI free media. Change in QSI susceptibility after exposure was calculated as fold-

change relative to the control (Table 3.4). Data indicates both the frequency of 

susceptibility change (≥2 fold) and the average magnitude of susceptibility change for 

each QSI.  

After repeated cinnamaldehyde exposure there was a ≥2 fold-decrease in MIC in 8/8 

isolates for cinnamaldehyde indicating an increase in susceptibility (Table 3.1). The 

same results for furanone C30 susceptibility were seen after furanone C30 exposure. 

There were no significant changes in MIC induced by F-DPD exposure. The average 

fold-change in MIC was -2.5 for cinnamaldehyde and -3 for furanone C30 (Table 3.4). 

For MBC (Table 3.2) QSI exposure led to a ≥2 fold-decrease in 8/8 isolates for 

cinnamaldehyde and 6/8 isolates for furanone C30. In contrast 1/8 isolates showed a ≥2 

fold- increase in MBC after exposure to F-DPD indicating reduced susceptibility. The 

average fold-change in MBC was -2.56, -2.59, and 2 for cinnamaldehyde, furanone C30 

and F-DPD respectively. In terms of MBEC (Table 3.3) there was a ≥2 fold-decrease in 

8/8 isolates for cinnamaldehyde and 6/8 isolates for furanone C30. There were no 

significant changes in MBEC induced by F-DPD exposure. The average fold-change in 

MBEC was -3.5 for cinnamaldehyde and -2.56 for furanone C30 (Table 3.4).
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Cinnamaldehyde  

 

Furanone C30 

 

F-DPD 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 

 

250 

 

125 

 

500 

 

125 

 

125 

 

500 

 

125 

 

125 

 

125 

EC2 250 250 500 125 125 375 (144) 125 125 125 

EC11 250 250 500 125 125 375 (144) 62.5 125 125 

EC26 250 125 500 125 125 313 (125) 62.5 125 125 

EC28 250 250 500 125 125 500 62.5 125 125 

EC34 250 250 500 125 125 313 (125) 62.5 125 125 

EC958 250 250 500 125 125 375 (144) 62.5 125 125 

CFT073 

 

250 250 500 125 125 250 125 250 250 

Table 3.1 Minimum inhibitory concentrations (µg/ml) for UPEC before exposure to QSI (P0), after 12 passages in the presence of the same QSI 
(P12), and after 12 passages in a QSI free environment (C12). Data represent mean MICs taken from two separate experiments each with four 

technical replicates. SDs are given in parentheses.  
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Table 3.2 Minimum bactericidal concentrations (µg/ml) for UPEC before exposure to QSI (P0), after 12 passages in the presence of the same 
QSI (P12), and after 12 passages in a QSI free environment (C12). Data represent mean MBCs taken from two separate experiments each with 

four technical replicates. SDs are given in parentheses.  

 

 

 

Cinnamaldehyde  

 

Furanone C30 

 

F-DPD 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 

 

1000 

 

500 

 

1750 (500) 

 

250 

 

250 

 

500 

 

250 

 

500 

 

500 

EC2 1000 1000 2000 250 125 500 250 500 500 

EC11 250 1000 2000 125 250 437.5 (125) 250 500 500 

EC26 250 1000 2000 125 125 375 (144) 250 250 250 

EC28 250 1000 2000 250 125 500 250 500 500 

EC34 250 1000 2000 125 125 312.5 (125) 250 250 125 

EC958 250 1000 2000 250 250 375 (144) 250 500 500 

CFT073 

 

250 250 1250 (500) 125 125 250 250 500 500 
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Cinnamaldehyde  

 

Furanone C30 

 

F-DPD 

 

 

Isolate 

 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

P0 

 

P12 

 

C12 

 

EC1 

 

250 

 

250 

 

1000 

 

250 

 

250 

 

312.5 (125) 

 

500 

 

500 

 

500 

EC2 250 250 1000 250 250 437.5 (125) 250 250 250 

EC11 250 250 500 125 125 437.5 (375) 62.5 15.6 15.6 

EC26 250 250 1000 125 250 500 250 250 250 

EC28 250 250 1000 250 125 500 500 250 250 

EC34 250 250 1000 125 93.75 (44.2) 187.5 (72.2) 62.5 62.5 62.5 

EC958 250 250 1000 250 125 500 500 500 500 

CFT073 

 

250 250 500 250 125 250 500 500 500 

Table 3.3 Minimum biofilm eradication concentrations ( µg/ml) for UPEC before exposure to QSI (P0), after 12 passages in the presence of the 

same QSI (P12), and after 12 passages in a QSI free environment (C12). Data represent mean MBECs taken from two separate experiments each 
with four technical replicates. SDs are given in parentheses.  
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Table 3.4 Fold changes are indicated for MIC (Table 3.9), MBC (Table 3.10), and MBEC (Table 3.11) in UPEC isolates after long-term QSI 
exposure compared with the respective isolate passaged in a QSI free-environment (C12). Changes (≥2 fold-change) are shown in bold.

  

MIC 

 

MBC 

 

MBEC 

 

 

Isolate 

 

Cinnamaldehyde 

 

 

Furanone  

C30 

 

 

F-DPD 

 

  

Cinnamaldehyde 

 

 

Furanone  

C30 

 

 

F-DPD 

 

  

Cinnamaldehyde 

 

 

Furanone  

C30 

 

 

F-DPD 

 

 

 

EC1 

 

-4 

 

-4 

 

0 

  

-3.5 

 

-2 

 

0 

  

-4 

 

-1.25 

 

0 

 

EC2 -2 -3 0  -2 -4 0  -4 -1.75 0  

EC11 -2 -3 0  -2 -1.75 0  -2 -3.5 0  

EC26 -4 -2.5 0  -2 -3 0  -4 -2 0  

EC28 -2 -4 0  -2 -4 0  -4 -4 0  

EC34 -2 -2.5 0  -2 -2.5   2  -4 -2 0  

EC958 -2 -3 0  -2 -1.5 0  -4 -4 0  

CFT073 -2 

 

-2 0  -5 -2 0  -2 -2 0  
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3.5.3 The impact of QSI exposure on UPEC biofilm-formation Biofilm formation 

was determined via a crystal violet biofilm assay for each UPEC isolate before and after 

repeated QSI exposure (Figure 3.2). Unexposed isolates displayed varying biofilm 

forming capabilities with EC2 showing the highest level of biofilm-formation followed 

by EC1>CFT073>EC11>EC28>EC34>EC26 and EC958. When repeatedly exposed to 

cinnamaldehyde, 6/8 isolates (EC1, EC11, EC26, EC28, EC34, EC958) demonstrated a 

significant (ANOVA p≤0.05) increase in biofilm-formation relative to the respective 

control. Exposure to furanone C30 induced one significant increase in biofilm-

formation (EC958) and one decrease (EC26). When exposed to F-DPD, EC1 showed a 

significant increase in biofilm-formation. Differences in biofilm-formation were 

determined to be irrespective of growth rate as we did not observe any significant 

change in rate or overall growth productivity when in binary culture (Figure 3.3; 

ANOVA p<0.05). 
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Figure 3.2 Crystal violet biofilm assay indicating the effect of previous QSI exposure 
on biofilm-formation in eight isolates of UPEC. Data shows the mean absorbance (A600) 

representative of biofilm-formation for individual bacteria before and after long-term 
exposure to cinnamaldehyde, furanone C30, and F-DPD or after passage on a QSI free 

media (C12). Data represent samples taken from two separate experiments each with 
four technical replicates. For data that varied between replicates, SDs are given as error 
bars. Significance was determined using ANOVA; * p≤0.05. 
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Figure 3.3 Planktonic growth for eight UPEC isolates after exposure to three QSIs. 

Control isolates passaged without QSI (C12) are also shown.  
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3.5.4 Relative pathogenicity of UPEC after long-term QSI exposure A G. mellonella 

waxworm model was used to determine relative pathogenicity in UPEC isolates (Figure 

3.4). Data indicate that prior to QSI exposure, EC2 was the least pathogenic and EC1 

and EC958 were the most pathogenic isolates. Cinnamaldehyde exposure induced 

significantly (log-rank p≤0.05) increased relative pathogenicity in 4/8 isolates (EC2, 

EC11, EC26, EC28) when compared to the respective control isolate. F-DPD exposure 

induced significantly increased pathogenicity in 2/8 isolates (EC11, EC26) and 

significantly decreased pathogenicity in 2/8 isolates (EC34, CFT073). Furanone C30 

was the only QSI to induce only significant decreases in pathogenicity which occurred 

in 6/8 isolates (EC1, EC11, EC26, EC34, EC958, and CFT073). 
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Figure 3.4 G. mellonella survival curves for larvae injected with QSI-exposed 
and -unexposed UPEC. Data represents 24 biological replicates. Control data from non-

injected larvae, larvae injected with PBS alone, and larvae injected with control isolates 
passaged on a QSI free media (Control) are also shown. * indicates a significant 

difference in pathogenicity when comparing QSI adapted isolates to the respective 
control strain (p≤0.05, log-rank reduction test). 
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3.5.5 Cell invasion Bacterial invasion of human cells was determined via cell invasion 

assay for bladder smooth muscle (SMC) (Figure 3.5) and urothelial cells (HUEPC) 

(Figure 3.6). For the unexposed isolates, EC1 showed the highest percentage of invasion 

followed by EC11, EC2, EC28, EC34, EC958, CFT073 and EC26 in SMC. F-DPD 

induced a decrease in SMC invasion in EC26 when compared to the respective control. 

For HUEPC, EC958 showed the highest rate of invasion of the unexposed isolates, 

followed by, CFT073, EC1, EC26, EC11, EC34, EC28, and EC2. Cinnamaldehyde led 

to increased HUEPC cell invasion in EC26 whilst furanone C30 exposure induced 

increased cell invasion in EC34. 
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Figure 3.5 Data show the % invasion of eight UPEC isolates before and after exposure 
to three QSIs (Cinnamaldehyde, Furanone C30, F-DPD) into SMCs. Control isolates 

passaged on QSI free media are also shown. * indicates a significant difference in 
pathogenicity when comparing QSI adapted isolates to the respective control strain 

(p≤0.05, ANOVA).  



 

89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Data show the % invasion of eight UPEC isolates before and after exposure 
to three QSIs (Cinnamaldehyde, Furanone C30, F-DPD) into HUEPCs. Control isolates 

passaged on QSI free media are also shown. * indicates a significant difference in 
pathogenicity when comparing QSI adapted isolates to the respective control strain 
(p≤0.05, ANOVA). 
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3.5.6 Changes in antibiotic susceptibility after QSI exposure  Isolates were classed as 

resistant, intermediate, or sensitive to each antibiotic as defined by EUCAST 

breakpoints [155]. Antibiotic susceptibility was determined for UPEC isolates before 

and after exposure to each QSI (Table 3.5). Data indicate that cinnamaldehyde exposure 

induced EC26 to become resistant to gentamicin and EC28 to become intermediately 

resistant to gentamicin. Exposure to furanone C30 induced gentamicin resistance in 

EC26 and EC34 and intermediate resistance in EC28. F-DPD exposure induced 

gentamicin resistance in EC26 and EC28. Cinnamaldehyde exposure induced CFT073 

to become intermediately resistant to trimethoprim sulfamethoxazole as did furanone 

C30 exposure. There were cases where isolates that were initially resistant to 

trimethoprim sulfamethoxazole became more susceptible after QSI exposure. This 

occurred in EC2 after exposure to furanone C30 and F-DPD. This was also observed in 

EC28 for ciprofloxacin after cinnamaldehyde and F-DPD exposure.  
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Table 3.5 Data show the mean antibiotic inhibition zones (mm) for UPEC before and after QSI exposure (mm) and represent samples taken from two separate experiments 
each with three technical replicates. For data that varied between replicates, SDs are given in parentheses. S = Sensitive, I = Intermediate, R = Resistant, as defined by BSAC 
breakpoint.

 

Antibiotic 

 

Exposure 
 

 

EC1 

 

EC2 

 

EC11 

 

EC26 

 

EC28 

 

EC34 

 

EC958 

 

CFT073 

T
r
im

e
th

o
p

r
im

 

S
u

lf
a

m
e
th

o
x

a
z
o

le
 

 
Unexposed 

 
14.4 (1.8) S 

 
0 R 

 
0 R 

 
0 R 

 
0 R 

 
0 R 

 
0 R 

 
15.3 (1) S 

Cinnamaldehyde 14.3 (0.8) S 11 (5.5) R 0 R 0 R 0 R 0 R 0 R 12.8 (1.9) I 

Furanone C30 14.2 (1.5) S 11.3 (1.4) I 0 R 0 R 0 R 0 R 0 R 13 (3.5) I 

F-DPD 
 

29.7 (0.5) S 29 (0.6) S 0 R 3.7 (4) R 0 R 0 R 0 R 36.7 (0.8) S 

N
it

r
o

fu
r
a

n
to

in
 

 

 
Unexposed 

 
20.3 (0.3) S 

 
20.7 (0.3) S 

 
23.7 (0.3) S 

 
21.2 (1.5) S 

 
19.7 (0.5) S 

 
16.3 (1.2) S 

 
20.4 (1.4) S 

 
18 (0.6) S 

Cinnamaldehyde 23 (1) S 22.3 (1.5) S 26.7 (1.2) S 25 (1) S 20.3 (4.7) S 18 (3) S 20.7 (0.6) S 22 (1) S 

Furanone C30 24 (1) S 24.7 (0.6) S 22.3 (0.6) S 21.7 (0.6) S 18.3 (2.1) S 17.3 (0.6) S 19.7 (1.5) S 17.7 (2.3) S 

F-DPD 
 

22.3 (0.6) S 24.7 (0.6) S 23.7 (1.2) S 26.3 (2.5) S 19.3 (0.6) S 18.7 (1.5) S 21.7 (2.1) S 19.7 (0.6) S 

C
ip

r
o

fl
o

x
a

c
in

 

 

 
Unexposed 

 
33 (0.6) S 

 
0 R 

 
0 R 

 
0 R 

 
25 (0.9) I 

 
0 R 

 
0 R 

 
35 (1.3) S 

Cinnamaldehyde 35.5 (0.8) S 0 R 0 R 0 R 29 (1.3) S 1.7 (4.1) R 0 R 33.3 (1) S 

Furanone C30 29.9 (1) S 0 R 0 R 0 R 25 (2.5) I 0 R 0 R 32.2 (1.2) S 

F-DPD 
 

33 (1.3) S 0 R 0 R 0 R 27.5 (1.4) S 0 R 0 R 47.7 (2.5) S 

G
e
n

ta
m

ic
in

 

 

 
Unexposed 

 
26 (0.5) S 

 
27.7 (0.3) S 

 
25.5 (0.6) S 

 
14.3 (1.2) I 

 
18.2 (1) S 

 
16.5 (0.5) I 

 
26 S 

 
24.8 (0.4) S 

Cinnamaldehyde 20.2 (0.8) S 20.2 (1) S 20.2 (1) S 12.3 (0.8) R 15 I 14.3 (0.8) I 20 S 21.8 (1.8) S 

Furanone C30 19 (1.1) S 19.8 (0.4) S 20 S 11 (0.9) R 14.5 (0.8) I 13.3 (1.5) R 20.7 (1.6) S 23.9 (2.1) S 

F-DPD 
 

17.5 (0.5) S 19 (0.6) S 19 (0.9) S 13.7 (0.5) R 13.3 (0.8) R 14.3 (0.8) I 19.2 (1) S 23 (1.7) S 
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3.5.7 Biocompatibility Index Cytotoxicity data for the three QSIs against an L929 cell 

line are shown in Table 3.6. rf values indicating antimicrobial activity and 

corresponding BI values, highlighting the antiseptic potential of the compounds, are 

shown in Table 3.7. The order of cytotoxicity in relation to the QSI concentration was 

F-DPD > cinnamaldehyde > furanone C30. BI values for the eight isolates were 

averaged for each QSI and the final ranked order of BI was furanone C30 > 

cinnamaldehyde > F-DPD indicating the antiseptic potential of the QSIs. 
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Table 3.6 Mean concentration of QSIs allowing 50% survival (IC50) of murine fibroblasts 
after 30 min at 37ºC as determined via Neutral Red (NR) and [3-(4,5-dimethylthiazol-2-

yl)-2, 5-diphenyltetra-zolium bromide] (MTT) assays. Mean IC50 based on mass and 
molecular weight (m.w.). Data indicates two separate experiments each with six 

replicates. 

 

QSI 

 

NR IC50  

 

MTT IC50  

 

m. w. 

 

 

           Mean IC50 

 

 

 

Cinnamaldehyde 

 

0.28 

 

0.0115 

 

132.16 

 

0.1458 0.0011 

Furanone C30 0.5735 0.0217 253.877 0.2976 0.0012 

F-DPD 0.06495 0.0003 134.04 0.0326 0.0002 

 

mg/ ml                  mmol/ ml 
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Table 3.7 Data shows the concentration of QSI (mg/ml) producing 3 log10 reduction (rf) after 30 min of exposure at 37ºC on eight isolates of UPEC and the 
resulting BI value. Data represent mean rf  values taken from two separate experiments each with four technical replicates. Standard deviation is given in 
parentheses. 

 

QSI 

 

 

EC1 

 

 

EC2 

 

EC11 

 

EC26 

 

EC28 

 

EC34 

 

EC958 

 

CFT073 

  

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

rf  

 

BI 

 

 

 

Cinnamaldehyde  

 

0.23 

 

0.63 

 

0.23 

 

0.63 

 

0.23 

 

0.63 

 

0.23 

 

0.63 

 

0.23 

 

0.63 

 

0.23 

 

0.63 

 

6.48 (1.85) 

 

0.022 

 

0.23 

 

0.63 

Furanone C30 0.38 0.79 0.5 0.60 0.38 0.79 0.5 0.60 1 0.30 0.5 0.60 0.5 0.60 0.5 0.60 

F-DPD 

 

0.5 0.07 0.5 0.07 0.5 0.07 0.5 0.07 1 0.04 0.5 0.07 0.5 0.07 0.5 0.07 
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3.6.0 Discussion 

3.6.1 QSI activity in a V. harveyi reporter system Blocking the AI-2 based signaling 

pathway is often primarily achieved by synthetically creating analogues that act as 

competitive inhibitors of the AI-2-binding site [60]. F-DPD is a 4- fluoro analogue of the 

AI-2 precursor (S)-4,5-Dihydroxypentane-2,3-dione (S)-DPD and has been previously 

shown to inhibit AI-2 based QS systems through such competitive inhibition[192]. Both 

furanone C30 and cinnamaldehyde reportedly inhibit AI-2 QS in Vibrio harveyi by 

decreasing the DNA binding ability of a response regulator LuxR [10]. In addition, the 

natural furanone C30 covalently modifies and inactivates LuxS and accelerates LuxR 

turnover [66]. All test compounds showed QSI activity at concentrations below that 

required for growth inhibition. Our data suggests that furanone C30 displayed the 

highest level of QS inhibitory activity whilst cinnamaldehyde displayed the least. This 

may be due to the multiple proposed mechanisms of QS disruption exhibited by 

furanone C30 leading to a combinatorial effect.  

3.6.2 QSI exposure induces changes in susceptibility in planktonic UPEC Exposure 

to QSI's was performed using a previously validated gradient plating system [193], 

simulating the selective conditions that may be experienced during leaching of an 

antimicrobial coating agent from a catheter surface. Cinnamaldehyde induced a high 

frequency of >2-fold increases in susceptibility at MIC, MBC, and MBEC.  

Cinnamaldehyde has been previously shown to cause oxidative damage to and alter the 

fatty acid composition of the E.coli cell membrane [194]. This compromised the 

structural integrity of the membrane and increased cell permeability [195]. This would 

explain the increased susceptibility seen here as, with the cell wall more permeable, 

more cinnamaldehyde can penetrate the cell wall and cause damage. 

There were increases in susceptibility for all of the UPEC isolates when exposed to 

furanone C30 at MIC and 6 increases observed at MBC. A previous investigation 

assessing the effects of furanone C30 on B. subtilis found that furanone C30 treatment 

increased the permeability of the cell plasma membrane [189], which could 

consequentially result in increased antimicrobial susceptibility, however there is no 

previous report of the response of E. coli to furanone C30 treatment outside of its 

immediate inhibitory influence on QS and biofilm formation [196].  
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F-DPD induced 1 decrease in susceptibility at MBC for EC34. F-DPD has been shown 

to increase mutation rate in E.coli leading to rifampicin resistance [63] by modulating 

LuxS dependant methylases. This same mechanism could lead decreases in 

susceptibility to other antimicrobials so this could explain the decreased susceptibility to 

F-DPD seen here.  

3.6.3 Biofilm-formation and susceptibility in UPEC after QSI exposure QS in E.coli 

is mediated by AI-2 and it has been shown that AI-2 production is directly correlated to 

biofilm production [48].Cinnamaldehyde is widely believed to elucidate its quorum 

sensing inhibition by blocking the binding of LuxR to its transcriptional regulator and 

can reportedly disrupt biofilm-formation by reduced formation/accumulation of EPS 

[70]. There was an increase in biofilm susceptibility for all isolates after 

cinnamaldehyde exposure in the current investigation however this was assoc iated with 

6/8 increases in biofilm formation. Genes for biofilm cell signaling protein (bhsA) have 

been shown to become upregulated in E.coli after sub- lethal exposure to 

cinnamaldehyde [197]. In the same study, long term exposure to cinnamaldehyde 

caused increased expression of type 1 fimbriae which would increase cell adhesion 

[197]. Increases in cell signaling and cell adhesion would increase biofilm formation, 

this could be the explanation for the results seen in this study. 

Furanone C30 also reportedly decreases the DNA binding activity of LuxR [198] and 

was the most potent quorum sensing inhibitor within the V. harveyi reporter system. 

Small magnitude increases in biofilm susceptibility were observed in 6/8 isolates and 

the effect on biofilm formation was variable (one increase and one decrease). E.coli 

biofilm formation has been shown previously to be inhibited by furanone C30 [67, 68] 

partially due to a down regulation in genes associated with chemotaxis, flagella 

synthesis, and motility. These are examples of immediate effects so not necessarily 

indicative of the adaptive responses that have been observed in the work reported in this 

chapter. 

F-DPD is an analogue of AI-2 and inhibits quorum sensing by blocking the AI-2 

receptor [192]. Isobutyl-DPD has been shown to inhibit biofilm-formation in E.coli [65]. 

In this study, exposure to F-DPD did not induce any increase or decrease in biofilm 

susceptibility and only one significant increase in biofilm-formation.  
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3.6.4 Changes in antibiotic susceptibility after QSI exposure in UPEC Cross-

resistance to antibiotics occurred in 9 out of a possible 63 cases. Previous studies have 

shown that exposure to cinnamaldehyde upregulated the expression of several antibiotic 

resistance genes including marRAB and mdtEF  in E.coli [197]. Furanone C30 exposure 

has been shown to reduce expression of AmpC  (beta-lactamase) [199] and caused 

increased antibiotic resistance to 10 antibiotics in P. aeruginosa due to overexpression 

of multidrug efflux pumps [200]. Treatment with F-DPD has been previously shown to 

increase rifampicin resistance in E.coli [63]. Inhibition of the QS pathway by F-DPD 

increased mutation rate plasticity via increased modulation of mutational hotspots by 

Dam methylase (which itself is modulated by LuxS) [63]. There were also 4 cases 

where exposure to the QSI increased the susceptibility of certain isolates (EC2, and 

EC28) to certain antibiotics (trimethoprim and ciprofloxacin). Antibiotic cross 

protection after antimicrobial exposure has been demonstrated previously [193], and is 

likely to be caused due to increased membrane permeability. Exposure to F-DPD 

induced the most increases in antibiotic susceptibility. Other AI-2 analogues have been 

shown to increase bacterial susceptibility to antibiotics when used in combination (e.g 

phenyl-DPD combined with gentamicin was more effective at clearing P.aeruginosa 

biofilms than gentamicin alone [201]). Also, LuxS mutants have been shown to have 

increased susceptibility to antibiotics [202], it was hypothesised that AI-2 QS is 

associated with the ability to cope with environmental stress and so inhibition of this 

communication increased bacterial sensitivity to antibiotics. 

3.6.5 Biocompatibility of test QSIs in an L929 cell line To assess the suitability of an 

antiseptic agent both the antimicrobial activity and cytotoxicity must be considered. F-

DPD was shown to be the most cytotoxic compound followed by cinnamaldehyde and 

furanone C30. Cinnamaldehyde has been shown to upregulate Fas/CD95 expression and 

decrease mitochondrial transmembrane potential (Δψm) [203]. Fas/FasL is an important 

death receptor pathway and induces apoptosis by activation of caspase 8 [204]. The 

activation of subsequent processes by caspase 8 induce apoptosis in cells causing 

nuclear degradation and cellular morphological change [204].The cytotoxic mechanisms 

of furanone compounds have been shown to be the production of reactive oxygen 

species and breakage of DNA, in a study by Murakami et al. (5H)-Furanone 

(structurally similar to furanone C30) did not inhibit aconitase and so was concluded to 

not have superoxide radical generation activity [205]. This would explain why furanone 
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C30 was the least cytotoxic QSI tested. F-DPD was the most cytotoxic QSI tested and 

also had the lowest calculated BI value. To our knowledge, there are no previous studies 

into the cytotoxicity of DPD associated analogues. 

3.6.6 Altered relative pathogenicity in QSI adapted UPEC Many virulence factors, 

such as flagellar motility, surface adhesion and toxin production have been shown to be 

regulated by QS in E.coli [206]. Exposure to cinnamaldehyde induced increased 

pathogenicity in 4 UPEC isolates. Cinnamaldehyde treatment has been also been 

associated with reduced virulence in Vibrio spp towards Artemia franciscana shrimp , 

possibly due to reduced protease expression [70]. Furanone C30 was the only QSI to 

induce only decreases in pathogenicity. Furanone C30 has been shown to repress major 

virulence factors (proteasases (lasA and lasB), chitinase (chiC), and pyocyanine 

synthesis (phzABCDEFG)) in P.aeruginosa [207], 80% of the genes that were 

downregulated by furanone C30 were controlled by QS. Experiments with Vibrio spp. 

show that exposure to furanone C30 decreases the virulence of the bacteria towards A. 

franciscana [208]. This was hypothesised to occur due to reduced virulence factor 

production such as proteases, haemolysin, and siderophores [209]. Increases in relative 

pathogenicity were observed in 2/8 isolates (EC11 and EC26) when exposed to F-DPD. 

DPD has been shown to upregulate QS associated virulence factors lasB encoding 

elastase and xcpP encoding a type II protein secretion apparatus in P. aeruginosa but 

there is no previous investigation in E. coli [210].  

3.6.7 UPEC invasion into human cells after exposure QSIs It was observed that, on 

average, invasion was higher in HUEPC than in SMC. This is likely due to UPEC 

expressing genes that encode P fimbriae/ pyelonephritis associated pili (PAP) [24] and 

type 1 pili which both adhere specifically to uroepithelium [26, 183]. Cinnamaldehyde 

induced increases in HUEPC invasion in 1/8 isolates. In contrast, in previous studies, 

cinnamaldehyde exposure has been associated with reduced virulence in UPEC due to 

decreased expression in cell surface adhesins fimA, fimH, and papG [211] impacting 

adhesion to the cell.  

Furanone C30 induced increased HUEPC invasion in 1/8 isolates. Furanone C30 has 

been shown to repress major virulence factors (proteasases (lasA and lasB), chitinase 

(chiC), and pyocyanine synthesis (phzABCDEFG)) in P.aeruginosa [207]. These 

reductions were proposed to be directly controlled by inhibition of QS. Again this 
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demonstrates that the effects of short term exposure can be very different to those seen 

after long term exposure. F-DPD induced decreases in SMC invasion in 1/8 isolates. As 

far as we are aware, there have been no studies into the effect of F-DPD exposure on 

UPEC virulence.  

3.7.0 Conclusion 

Quorum sensing inhibitors (QSIs) are a novel class of anti-biofilm agents and are being 

increasingly studied to investigate their potential uses in medical device coatings. 

Uropathogenic E.coli is the major causative of CAUTI so it is important to research the 

effects of QSIs on this pathogen to be able to develop a catheter coating. In this study, 

the long term effects of three QSIs were tested on eight strains of UPEC. The changes in 

susceptibility, biofilm-formation, pathogenicity, and virulence were varied between 

each QSI and each UPEC isolate indicating the complex responses to these agents. It is 

therefore very important to continue to research the long term effects of these 

compounds to properly evaluate the suitability of these antimicrobials for use in a 

catheter coating. 
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Chapter 4 

Evaluation of Biocidal Coating Agents in Uropathogenic 

Escherichia coli Urinary Catheter Biofilms 
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4.1.0 Abstract 

Background: Catheter associated urinary tract infections (CAUTIs) are an increasing 

burden on healthcare providers and a substantial risk to the health of the population. As 

antibiotic resistance in uropathogens in on the rise, a new approach is needed to help 

prevent these infections and reduce the need to further antibiotic treatment. One such 

approach is to use antimicrobial impregnated catheters to reduce bacterial contamination 

and subsequent biofilm formation on the catheter surface. Methods: In this study seven 

antimicrobial agents (PHMB, triclosan, benzalkonium chloride (BAC), silver nitrate, 

cinnamaldehyde, furanone C30, and F-DPD) were incorporated into three coating 

agents (sol gel, polyethylene glycol diacrylate (PEG), and 

Poly(hydroxyethymethacrylate) (pHEMA). The biocompatibilities of the coatings were 

determined by comparing antimicrobial activity to cytotoxicity in an L929 murine 

fibroblast cell line. After this initial screen, the sol gel coating was determined to have 

the best biocompatibility. In order to evaluate the sol gel coating combinations further, 

we determined the antimicrobial efficacy of urinary catheter segments coated with sol 

gel against uropathogenic E. coli in a continuous culture drip-flow reactor. In order to 

determine the long-term efficacy of the antimicrobials used within the catheter coating, 

8 strains of uropathogenic E.coli (UPEC) were repeatedly exposed to the antimicrobials 

to simulate long-term adaptation to the coating agent. The subsequent effects of 

antimicrobial exposure on biofilm formation on the catheter surface were evaluated in a 

catheter biofilm model. Biofilm biomass was determined using crystal violet and 

metabolic activity was determined using XTT. Results: In the antimicrobial inhibition 

assay, the coating agent with the highest average antimicrobial efficacy when 

impregnated with the seven antimicrobials, was PEG followed by sol gel and pHEMA, 

whereas cytotoxicity was ordered PEG > sol gel > pHEMA indicating the different 

release strategies of these polymers. Therefore, the coating agent with the highest 

biocompatibility was sol gel followed by PEG and pHEMA. In the drip flow reactor, the 

order of antimicrobial efficacy for the sol gel coated catheter segments was found to be 

PHMB > furanone C30 > silver nitrate > F-DPD > cinnamadlehyde > BAC > triclosan. 

With regard to the effects of long-term exposure to the test compounds, we saw a 

number of isolates that reduced in their ability to form biofilms on the catheter surface, 

however the biofilm that did form was often highly metabolically active as determined 

through the use of XTT. Conclusion: This study highlights the importance of assessing 
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the biocompatibility and antimicrobial efficacy of coating agents in a range of 

experimental systems and investigating the long term effects of the coating agents on 

relevant bacteria. 

4.2.0 Introduction  

Catheter associated urinary tract infections (CAUTIs) account for the highest proportion 

of hospital acquired infections [15] with uropathogenic Escherichia coli (UPEC) 

reportedly responsible for  65% of complicated UTI cases [23]. CAUTIs often show 

recalcitrance to antimicrobial treatment due to the formation of bacterial biofilms within 

the catheter in addition to the increasing prevalence of antibiotic resistance in 

uropathogens [3, 4]. Biofilms are adhered microbial communities encased in a 

protective gel like matrix of extracellular polymeric substance secreted from the 

bacterial cell and are frequently associated with chronic infection that persists despite 

immune response or antibiotic therapy [5]. The catheter provides the surface for the 

initiation of biofilm formation which following maturation may occlude the central 

lumen of the catheter obstructing urine outflow in addition to providing a continuous 

reservoir for infection. 

In order to reduce the incidence of CAUTI approaches for the production of anti-

infective catheter coatings have been developed including (i) surfaces containing 

antimicrobials that may be eluted into the surrounding environment [125] (ii) surfaces 

containing covalently bound antimicrobials [132] and (iii) surfaces coated in an anti-

adhesive material to reduce bacterial attachment [118]. Biocides are often considered as 

anti- infective coating agents due to their broad-spectrum of antimicrobial activity and 

their multiple site-targeted mode of action [105], meaning the risk of selecting resistant 

microorganisms is comparatively low when compared  to antibiotics. Biocide coated 

urinary catheters incorporating biocides such as silver nitrate and nitrofurazone have 

been developed but have shown limited efficacy during clinical trial partly due to their 

short lived antimicrobial activity resulting in low efficacy in patients undergoing long-

term catheterisation [114]. This has fuelled the search for further anti- infective catheter 

coating agents that display broad -spectrum activity which is maintained after prolonged 

use.  

A novel approach in the production of anti- infective catheter coatings is to use quorum 

sensing inhibitors (QSIs). Quorum sensing  (QS) is a extracellular signalling process 
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utilised by bacteria to coordinate their behaviour through cell density dependent gene 

expression [10]. QS involves the production and detection of autoinducer molecules that 

can be divided into Autoinducer-1 (AI-1) and Autoinducer 2 (AI-2). AI-1 type QS 

molecules are acyl homoserine lactones produced by LuxI- like synthases and detected 

by a LuxR transcriptional regulator [43]. In comparison AI-2 are DPD-derived 

molecules dependent on LuxS- like synthases, detected by a LuxPQ receptor and 

regulatory complex [47]. Two quorum sensing systems in E. coli, AI-2/LsrR and 

AHL/SdiA, have been shown to play a role in both biofilm formation and virulence 

factor production [48]. 

'Active' release coatings incorporate antimicrobials that are released over a period of 

time to reduce bacterial attachment to the surface [118]. Compounds that have been 

incorporated into active release coatings include conventional antibiotics [122] in 

addition to broad-spectrum antimicrobials such as silver [121] and nitric oxide [123] as 

well as  antibodies [124]. Antibiotics have been incorporated into a variety of polymers 

including hydroxyapatite [122], polyurathane [126], and biodegradable polymers such 

as polylactide-co-glycolide (PLGA) [127]. Hydrogels are polymer networks with 

hydrophilic structures, meaning they are able to retain large amounts of water [137]. 

The nature of hydrogels being wet and slippery is advantageous for use in a catheter as 

this helps prevent damage to the urethral mucosa when inserted, and removed, in situ 

[134]. The sol gel process involves the formation of an inorganic colloidal suspension 

(sol) and gelation of the sol in a continuous liquid phase (gel) to form a 3D network 

structure [141]. An advantage to the sol gel manufacturing process over other coating 

processes is that it can be conducted at much lower temperatures such as room 

temperature [142], facilitating mass-production. Materials can be designed to elute 

incorporated antimicrobials using either instant or sustained release strategies. Instant 

release will deliver a higher dose of antimicrobial over a short period of time, whereas 

sustained release will deliver lower levels of antimicrobial over longer periods of time 

[118]. Using a sustained release strategy provides advantages with regards to long-term 

antimicrobial activity but concerns have been raised that this strategy increases the 

likelihood of exposing bacteria to sub-lethal concentrations of antimicrobials promoting 

the selection of antimicrobial resistance populations. 

Drip flow biofilm reactors are designed for the study of biofilms grown under low shear 

conditions and are ideal for medical material evaluations and indwelling medical device 
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testing [212]. The drip flow reactor has been used to model environments such as 

catheters, cystic fibrosis lung, and the oral cavity [213]. The reactor consists of 4 

chambers that each have their own influent and effluent ports to allow the continuous 

flow of media through the reactor. The benefit of a drip flow reactor is that the 

experimental conditions can mimic that of clinical infections more closely than standard 

biofilm assays [212].  

The phenotypic adaptations that may occur in a panel of UPEC clinical isolates as a 

consequence of long-term biocide exposure in bacteria have been demonstrated in 

previous chapters [193]. The current investigation aims to determine the efficacy of 

antimicrobial impregnated catheter coating polymers by assessing their antimicrobial 

and cytotoxic effects. The long-term effects of the antimicrobials on both biofilm 

formation and biofilm viability on the catheter surface will be evaluated utilising high-

throughput biofilm formation assays. 

4.3.0 Aims and objectives 

The previous chapters detail the phenotypic changes observed in eight strains of UPEC 

after long term exposure to seven antimicrobials (PHMB, triclosan, BAC, silver nitrate, 

cinnamaldehyde, furanone C30, and F-DPD). These effects are important to consider 

when selecting for potential catheter coating agents. How these changes impact the 

bacteria in a catheter infection must be investigated. It is also important to assess the 

performance of these antimicrobials when incorporated into coatings in conditions that 

are comparable to an in vivo infection.  

The specific aims of this chapter were to: 

 Determine the effects of antimicrobial exposure on UPEC biofilm formation and 

viability grown on urinary catheters using crystal violet and XTT assays. 

 Evaluate antimicrobial efficacy of the seven antimicrobials when incorporated 

into three different coatings (sol gel, PEG, and pHEMA) against UPEC isolate 

EC958. 

 Determine the biocompatibility of these coatings against an L929 cell line. 

 Select the most promising coating and evaluate the anti-biofilm capabilities 

using the drip flow biofilm reactor. 
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4.4.0 Methods 

4.4.1 Bacteria and antimicrobials Six UPEC clinical isolates (EC1, EC2, EC11, EC26, 

EC28 and EC34) previously isolated from urinary tract infections (Stepping Hill 

Hospital, UK) and two laboratory characterised  UPEC isolates (EC958 and CFT073) 

were used in the investigation. Bacteria were cultured onto Muller-Hinton agar (MHA; 

Oxoid, UK) or Muller-Hinton broth (MHB; Oxoid, UK) and incubated aerobically at 

37 °C for 18 h unless otherwise stated.  Antimicrobials were formulated as follows: 

triclosan and furanone C30 solubilised in 5% (v/v) ethanol. Polyhexamethylene 

biguanide (PHMB) (LONZA, Blackley, UK), benzalkonium chloride (BAC), silver 

nitrate, cinnamaldehyde, and F-DPD were prepared at 1 mg/ml in water and filter 

sterilised prior to use. Furanone C30 and F-DPD were synthesised in-house. All 

chemicals were purchased from Sigma–Aldrich (Poole, UK) unless otherwise stated. 

4.4.2 Long-term exposure of bacteria to biocides and quorum sensing inhibitors  

Bacteria were repeatedly exposed to antimicrobials using a gradient plating system 

adapted from Moore et al [152].  In brief, 100 µl of a 5 × MBC concentration solution 

of antimicrobial was added to an 8 x 8 mm well in the centre of a 90 mm agar plate. 

Bacterial pure cultures were radially inoculated in duplicate from the edge of the plate 

to the centre, prior to incubation for 2 days aerobically at 37°C. Biomass from the inner 

edge of the annulus of bacterial growth representative of the highest antimicrobial 

concentration at which growth could occur was removed and used to inoculate a new 

antimicrobial containing plate, as outlined above. This process was repeated for 12 

passages. Bacteria were archived at -80 °C before and after antimicrobial passage for 

subsequent testing. 

4.4.3 Catheter biofilm model Method adapted from Nweze et al [214]. 1cm catheter 

sections were cut with a hot scalpel lengthways and autoclaved. Overnight cultures of 

bacteria were made in MHB. In a 12 well plate, sections were pre-coated with 4ml FBS 

for 24 h at 37ºC and 30 rpm (3 sections per well). Bacteria were washed twice with PBS 

and resuspended in 5 ml PBS at OD600 0.18 (107 cells/ml). FBS was removed from 

sections and 4 ml bacterial suspension was added. These were incubated for 90 min at 

37ºC (Adhesion phase). Sections were removed with a sterile forceps and placed in a 12 

well plate containing MHB. Plates were incubated for 48 h at 37ºC and 30 rpm (Biofilm 
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formation phase) the sections were moved to new plates containing s terile MHB after 

the first 24 h.  

4.4.3.1 XTT A working solution containing XTT and menadione was prepared by 

adding 1200 µL of XTT from 1 mg/mL XTT stock and 88 µL of menadione from 1 mM 

menadione stock solution to 88 mL of PBS and mixing gently. MHB was carefully 

removed by aspiration from each well of the plate containing discs with formed biofilms 

and replaced with 3mL of the XTT/menadione mixture. The microtitre plates were 

covered with aluminium foil and incubated for 90mins at 37ºC. Blank wells containing 

3mL of the XTT/menadione mixture with sections and no biofilm were prepared, 

covered with aluminium foil and incubated with the biofilm plate. Next, the catheter 

sections were carefully removed and the optical density (OD) read at 490 nm using a 

Microplate Reader. 

4.4.3.2 Crystal violet Catheter sections that had grown biofilm were added to a 12 well 

plate. Then 3ml of crystal violet solution was added and left the plate at room 

temperature for 30 minutes. The crystal violet solution was carefully removed and 

replaced with 4ml of PBS. This rinse step was repeated three times with PBS. Plates 

were left to dry for 1h in a 37ºC incubator. The remaining crystal violet was solubilised 

in 4ml of 100 % ethanol and the catheter section was removed. The A600 of the 

solubilised crystal violet solution was measured using a microplate reader. 

4.4.4 Evaluation of biocompatibility of catheter coatings Three polymer coatings 

were assessed: Polyethylene glycol diacrylate (PEG), Poly(hydroxyethymethacrylate) 

(pHEMA), and sol gel. The polymers were prepared as follows: 

PEG was prepared using 6.57 ml PBS, 1.43 ml Polyethylene glycol and 48 μl 2-

hydroxy-2-methyl-propiophenone (Darocur 1173). The reagents were combined in a 96 

well plate with 6mm glass coverslips placed on the bottom of the wells. The plate was 

placed under a UV lamp for 90 seconds to induce polymerisation and the discs were 

stored for later use.  

pHEMA gels containing 2% methacrylic acid were prepared using 9.78 ml 2-

hydroxyethymethacrylate (HEMA), 19 μl ethylene glycol dimethacrylate (EGDMA), 50 

μl Daracur 1173 and 0.2 ml methacrylic acid. The mixture was aliquoted into the wells 

of a 96-well microtiter plate with 6mm glass coverslips placed on the bottom of the 
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wells. Polymerisation was carried out under a UV lamp for 30 seconds. Discs were 

submerged in 70% ethanol for 48 h followed by 30% ethanol for 48 h. Gels were 

continuously washed in water for 24 h until transparent, and stored in water for later use.  

Sol gel was prepared by first mixing 0.5 ml tetraethylorthosilicate, 1ml 

tetramethylorthosilicate, 2.18 ml Isopropanol (anhydrous) for 5 mins. Added to this 

mixture was 1ml trimethoxymethysilane slowly (5 x 200 µl). In a separate universal, 

2.18 ml Isopropanol was added to 2.5 ml 0.07M Nitric acid. 2.35 ml of the acid/solvent 

mixture was added dropwise (approx 1 drop per second). 0.2 ml polydimethylsiloxane 

(mwt 162) was slowly (4 x 50 µl) added as was the remaining acid/solvent mix 

dropwise (approx 1 drop/sec). This was left stirring for 5 - 10 mins then a further 2.4 ml 

of Nitric acid was added dropwise (approx 1 drop/sec). Sol gel was aliquoted onto 6mm 

circular coverslips, left to dry, and stored in the fridge until needed. 

4.4.4.1 Disc diffusion Overnight cultures of EC958 were diluted to OD600 0.008 and 

were used to inoculate MHA plates. Polymer discs (as prepared above) containing 

concentrations of 10, 50, 100, 250 X MBC (determined previously) of antimicrobials 

were placed onto the inoculated plates and incubated at 37ºC for 24 h. Zones of 

inhibition were measured in mm. Untreated discs acted as negative controls. 

4.4.4.2 Agar overlay To determine the direct cytotoxicity of antimicrobial impregnated 

polymers we performed an agar overlay assay using an L929 cell line according to ISO 

standards [215]. In brief, 2.4 x 106 cells in 10 ml of EMEM were seeded into 60 mm 

diameter cell culture plates. Cells were incubated for 48 h at 37ºC and 5% CO2 to form 

a monolayer on the base of the dish. After incubation media was removed by aspiration 

and cells were washed twice in 10 ml of PBS. 10 ml of EMEM containing 1% agar was 

added to each dish and was allowed to solidify at room temperature. 

After the agar set, 10 ml of a 0.1% neutral red solution was added to the centre of each 

plate, which was then rotated to evenly distribute the dye, left for 15 min, and excess 

solution was removed by aspiration. Three polymer discs were placed in an individual 

cell culture dish. Plates were incubated for 24 h at 37°C and 5% CO2 before being 

checked for cell lysis. Disc toxicity was characterised by a white colourless zone of 

dead cells around the implanted region. The diameter of the lysis zone was measured in 

mm. Untreated discs acted as negative controls. 
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4.4.5 Drip Flow Biofilm Reactor Sol gel was the best performing coating so the 

efficacy of this coating was evaluated in the drip flow biofilm reactor (BioSurface 

technologies). To mimic an in vivo catheter infection, artificial urine was pumped 

through the reactor, each chamber containing catheter pieces coated with sol gel, sol gel 

containing 1.25 mg/ml antimicrobials, and uncoated catheter controls. The protocol, in 

brief, consists of reactor assembly and sterilisation by autoclaving at 121ºC for 20 

minutes. Artificial urine was prepared as described by Brooks and Keevil [216], briefly 

this is formulated as 1 g/L peptone L37, 0.005 g/L yeast extract, 0.1 g/L lactic acid, 0.4 

g/L citric acid, 2.1 g/L sodium bicarbonate, 10 g/L urea, 0.07 g/L uric acid, 0.8 g/L 

creatinine, 0.37 g/L calcium chloride 2H2O, 5.2 g/L sodium chloride, 0.0012 g/L iron II 

sulphate 7H2O, 0.49 g/L magnesium sulphate 7H2O, 3.2 g/L sodium sulphate 10H2O, 

0.95 g/L potassium dihydrogen phosphate, 1.2 g/L di-potassium hydrogen phosphate, 

1.3 g/L ammonium chloride. Catheter sections are placed within the reactor and 

inoculated with 25 ml of bacterial culture (EC958) at OD600 0.008. The reactor was 

incubated flat (batch phase) for 6 h at 37ºC. Then the reactor was angled 10º and sterile 

one inch 23 gauge needles were inserted into the injection port valve at the top of each 

chamber. The pump was turned on (continuous phase) and artificial urine was pumped 

into the chambers at 0.83 ml/min for 48 h at 37ºC. After continuous phase the catheter 

sections were removed with sterile forceps, rinsed and placed in sterile water and 

vortexed for 30 seconds. Biofilms were serially diluted and plated onto MHA plates in 

triplicate, plates were incubated for 24 h at 37ºC and cfu/ml were determined. 

4.5.0 Results 

4.5.1 Biofilm attachment to catheter service before and after exposure  Biofilm 

formation was determined via a crystal violet biofilm assay for each UPEC isolate 

before and after repeated exposure (Figure 4.1). Unexposed isolates displayed varying 

biofilm forming capabilities prior to exposure with EC1 showing the highest level of 

biofilm formation followed by EC26 > EC11 > CFT073 > EC958 > EC2 > EC34 and 

EC28. When repeatedly exposed to PHMB, 4/8 isolates (EC11, EC28, EC34, and 

EC958) demonstrated a significant (ANOVA p ≤ 0.05) decrease in biofilm formation 

when compared with the respective control (C12). Triclosan exposure induced 

significant decreases in biofilm formation for 3/8 isolates, EC11, EC34, and EC958. 

When exposed to BAC, 3/8 isolates showed a significant decrease in biofilm formation 
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(EC11, EC28, EC34) the same results were seen in these isolates when exposed to silver 

nitrate.  When exposed to cinnamaldehyde, EC11 and EC34 showed a significant 

decrease in biofilm formation. The isolates EC28, EC34, and EC958 showed a 

significantly decreased biofilm formation when exposed to furanone C30. When 

exposed to F-DPD, 3/8 isolates (EC11, EC34, EC958) demonstrated a decreased 

biofilm formation. Triclosan was the only compound to induce a significantly increased 

biofilm formation in 1/8 isolates (EC26). 
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Figure 4.1 Crystal violet biofilm assay indicating the effect of previous biocide and QSI 

exposure on biofilm formation in eight isolates of UPEC. Data shows the mean 

absorbance (A600) representative of biofilm formation for individual bacteria before and 

after long-term exposure to PHMB, triclosan, BAC, silver nitrate, cinnamaldehyde, 

furanone, and F-DPD. Data represent samples taken from experiments each with three 

technical replicates. For data that varied between replicates, SDs are given as error bars. 

Significance was determined using ANOVA; * p≤0.05 relative to the respective control.  
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4.5.2 Biofilm viability after repeated exposure to test compounds Biofilm viability 

on the catheter surface was determined for all isolates before and after repeated 

antimicrobial exposure by XTT assay. Before exposure, EC1 was shown to form the 

highest viability biofilm with the remaining isolates ranking as: EC28 > EC2 > EC26 > 

EC11 > EC958 > EC34 > CFT073 (Figure 4.2). PHMB exposure induced significant 

increases in biofilm viability in 4/8 isolates (EC2, EC11, EC958 and CFT073). 

Triclosan exposure induced significantly increased biofilm viability in 4/8 isolates 

(EC11, EC26, EC28 and EC958). Silver nitrate was induced significantly increased 

biofilm viability in EC26. There were no significant changes in biofilm viability after 

exposure to BAC, cinnamaldehyde, furanone or F-DPD.  

  



 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 XTT biofilm assay indicating the effect of previous biocide and QSI 
exposure on biofilm viability in eight isolates of UPEC. Data shows the mean 

absorbance (A490) representative of biofilm viability for individual bacteria before and 
after long-term exposure to PHMB, triclosan, BAC, silver nitrate, cinnamaldehyde, 

furanone, and F-DPD. Data represent samples taken from experiments with three 
technical replicates. For data that varied between replicates, SDs are given as error bars. 
Significance was determined using ANOVA; * p≤0.05 relative to the respective control. 
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4.5.3 Disc Diffusion Polymer discs were formulated containing antimicrobial agents at 

concentrations of 10, 50, 100, and 250 X the MBC. F-DPD could only be formulated at 

10 X MBC due to limited availability of the compound. Polymer discs were assessed for 

their antibacterial efficacy against EC958 in disc diffusion experiments. Figure 4.3 

shows the mean zones of inhibition (Sol gel, PEG, and pHEMA) for each of the 7 

antimicrobials at increasing concentrations.  

For PHMB, incorporation into sol gel resulted in a significantly (One Way ANOVA 

p<0.05) higher level of antimicrobial activity than when incorporated into PEG or 

pHEMA at 100 X MBC and pHEMA at 250 X MBC. In contrast, PHMB impregnated 

PEG was more antimicrobial than PHMB impregnated sol gel and pHEMA at 50 and 10 

X MBC. PHMB impregnated PEG showed significantly higher antimicrobial activity 

than PHMB impregnated pHEMA at 250 and 100 X MBC.   

For triclosan, incorporation into sol gel was significantly more potent than PEG at 100 

X MBC and significantly more potent than pHEMA at 10 X MBC.  

For BAC, incorporation into PEG resulted in significantly higher antimicrobial activity 

than incorporation into pHEMA at 250 X MBC. 

For silver nitrate, incorporation into sol gel resulted in significantly higher microbial 

inhibition than pHEMA at 250, 100, and 50 X MBC. PEG was significantly more potent 

than pHEMA at 250 and 100 X MBC. 

For cinnamaldehyde, incorporation into sol gel exhibited significantly higher 

antimicrobial activity than PEG at 250 X MBC and pHEMA at 250, 100 and 50 X MBC. 

PEG was also significantly more potent than pHEMA at 250, 100 and 50 X MBC. For 

Furanone C30, incorporation into sol gel showed significantly higher levels of 

inhibition than pHEMA at 250 X MBC. The only coating to show any antimicrobial 

activity after F-DPD incorporation was PEG (at 10 X MBC). 
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Figure 4.3 Disc diffusion assay for three polymer coatings containing seven 
antimicrobials at increasing concentrations. Antibacterial zone was measured in mm for 

each disc (n=3).  
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4.5.4 Agar overlay Polymer discs containing antimicrobial agents at concentrations of 

10, 50, 100, and 250 X the MBC as determined previously were assessed for their 

cytotoxicity against L929 cells in agar overlay experiments. Figure 4.4 shows the mean 

zone of inhibition of the polymer disc (Sol gel, PEG, and pHEMA) for each of the 7 

antimicrobials at increasing concentrations. 

For PHMB, incorporation into pHEMA was significantly more cytotoxic than sol gel 

and PEG at 50 X MBC. For triclosan, PEG was significantly more cytotoxic than sol gel 

at 250, 100, and 50 X MBC. pHEMA was significantly more cytotoxic than sol gel at 

250 and 50 X MBC. 

For BAC, incorporation into PEG was significantly more cytotoxic than sol gel at 100, 

50 and 10 X MBC. pHEMA was more cytotoxic than sol gel at 100 X MBC. There was 

no statistical significance between the polymer coatings for silver nitrate cytotoxicity. 

For cinnamaldehyde, sol gel was significantly more cytotoxic than PEG at 10 X MBC. 

For furanone C30, both PEG and pHEMA were significantly more cytotoxic than sol 

gel at 250, 100, 50 and 10 X MBC. For F-DPD, PEG was significantly more cytotoxic 

than pHEMA (at 10 X MBC). 
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Figure 4.4 Agar overlay assay for three polymer coatings containing seven 

antimicrobials at increasing concentrations. Cytotoxic zone was measured in mm for 
each disc (n=3). 
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4.5.5 Biocompatibility The biocompatibility of the antimicrobials were calculated by 

dividing the mean antimicrobial diffusion zone by the mean cytotoxicity diffusion zone. 

A biocompatibility value of over 1 signifies higher levels of antibacterial action than 

cytotoxicity (Table 4.1).  

For PHMB, the order of biocompatibility at both 250 and 100 X MBC was sol gel > 

PEG > pHEMA, whilst at 50 and 10 X MBC it was PEG > sol gel = pHEMA. For 

triclosan, the order of biocompatibility at 250 X MBC was sol gel > pHEMA > PEG. At 

100 X MBC it was sol gel > PEG = pHEMA, at 50 X MBC it was sol gel > pHEMA > 

PEG, and at 10 X MBC it was sol gel > PEG > pHEMA. 

For BAC, the order of biocompatibility at 250 X MBC was PEG > pHEMA > sol gel. 

At 100 X MBC it was PEG > sol gel = pHEMA, at 50 X MBC it was PEG > sol gel = 

pHEMA, and at 10 X MBC it was sol gel = PEG = pHEMA. For silver nitrate, the order 

of biocompatibility at 250 X MBC was sol gel > PEG > pHEMA. At 100 X MBC was 

sol gel > PEG > pHEMA, at 50 X MBC was sol gel > PEG > pHEMA, and at 10 X 

MBC was sol gel > PEG > pHEMA. 

For cinnamaldehyde, the order of biocompatibility at 250 X MBC was sol gel > PEG > 

pHEMA. At 100 X MBC was sol gel > PEG > pHEMA, at 50 X MBC was sol gel > 

PEG > pHEMA, and at 10 X MBC was PEG > sol gel > pHEMA. 

For furanone C30, the order of biocompatibility at 250 X MBC was sol gel > PEG > 

pHEMA. At 100 X MBC was sol gel > PEG > pHEMA, at 50 X MBC was sol gel > 

PEG > pHEMA, and at 10 X MBC was sol gel > PEG > pHEMA. For F-DPD, the order 

of biocompatibility (at 10 X MBC) was PEG > sol gel = pHEMA.
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Table 4.1 Biocompatibility of seven antimicrobials at increasing concentrations for three coating agents. Biocompatibility was calculated by dividing 
the mean antimicrobial diffusion zone by the mean cytotoxicity diffusion zone (mean of n = 3 experiments). A value of 0 indicates no antimicrobial 

activity.

 

Coating 

 

Sol gel 

 

 

PEG 

 

 

pHEMA 

Concentration (X MBC) 10 50 100 250 10 50 100 250 10 50 100 250 

 

PHMB 

 

 
0 

 
0 

 
0.85 

 
0.91 

 
0.66 

 
0.81 

 
0.76 

 
0.65 

 
0 

 
0 

 
0 

 
0 

 

Triclosan 

 

 
2.04 

 
2.83 

 
3.49 

 
3.01 

 
1.94 

 
1.57 

 
1.75 

 
1.85 

 
1.13 

 
1.78 

 
1.75 

 
2.03 

 

BAC 

 

 

0 

 

0 

 

0 

 

0 

 

0 

 

0.51 

 

0.64 

 

0.94 

 

0 

 

0 

 

0 

 

0.15 

 

Silver Nitrate 

 

 

0.7 

 

1.04 

 

1.18 

 

1.06 

 

0.32 

 

0.66 

 

0.74 

 

0.77 

 

0 

 

0 

 

0 

 

0.33 

 

Cinnamaldehyde 

 

 
0.41 

 
0.81 

 
0.83 

 
1.41 

 
0.9 

 
0.78 

 
0.81 

 
0.77 

 
0 

 
0 

 
0 

 
0 

 

Furanone  C30 

 

 
0 

 
2 

 
7.6 

 
12.3 

 
0 

 
0 

 
0.82 

 
0.74 

 
0 

 
0 

 
0 

 
0 

 

F-DPD 

 

 
0 

 
- 

 
- 

 
- 

 
0.69 

 
- 

 
- 

 
- 

 
0 

 
- 

 
- 

 
- 
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4.5.6 Biofilm formation in Drip Flow Biofilm Reactor Colony forming units (cfu) 

/ml were determined after growth on coated catheter pieces in the presence of a 

steady flow of artificial urine. The mean cfu/ml of biofilm formed on uncoated 

catheters was 2.77x10⁷ (Figure 4.5). There was a small but significant (One way 

ANOVA p < 0.005) reduction to 1.29x10⁷ cfu/ml when non antimicrobial containing 

sol gel was added to the catheter sections. All antimicrobial incorporated coatings 

induced significant (p < 0.0001) reductions in biofilm formation. The largest 

reduction occurred for PHMB which completely eradicated biofilm growth. The 

second most potent antimicrobial was furanone C30 which reduced biofilm growth 

to an average of 1.33x10² cfu/ml. Silver nitrate reduced the biofilm growth to an 

average of 3.33x10² cfu/ml. F-DPD incorporated sol gel gave a reduction to 

9.56x10⁴ cfu/ml. When cinnamaldehyde was added to the sol gel coating the biofilm 

formation was reduced to 2.4x10⁵ cfu/ml and BAC incorporation reduced biofilm 

growth to 1.13x10⁶ cfu/ml. Triclosan incorporation was the least potent 

antimicrobial which reduced cfu/ml to 1.64x10⁶.  
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Figure 4.5 Biofilms of EC958 were grown on urinary catheter pieces coated in sol 
gel containing seven antimicrobials. Controls coated in sol gel only and uncoated 
catheters were also used. Colony forming units (cfu/ml) were evaluated after 48 

hours and mean cfu/ml was calculated (n=3). Statistical analysis by One Way 
ANOVA: ** p < 0.005 and **** p < 0.0001.  
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4.6.0 Discussion 

CAUTIs are becoming an increasing concern due to the aging population and the rise 

of antibiotic resistant uropathogens which has resulted in these infections becoming 

more difficult to treat [217]. Preventing these infections with the use of catheters 

coated with anti- infective agents is one area of research that has produced seemingly 

positive results in vitro [218] but has not been as successful in practice [114, 117]. It 

is clear that a more thorough screening of anti- infective agents needs to be employed 

when attempting to select for a novel coating for catheters to make sure that the 

components chosen will display long lasting efficacy. Three coating agents were 

screened in this study. PEG is a hydrogel based polymer that has been shown to elute 

antimicrobials in a sustained release profile [219]. pHEMA is also a hydrogel which, 

although has been used in controlled release of antimicrobials, exhibits an instant 

'burst' release strategy when initially hydrated [220]. Sol gel coatings can vary in 

their properties depending on their preparation [221], the preparation used in this 

study has been shown to have a sustained release profile [222]. In this investigation 

we have exposed UPEC isolates to four biocides and three QSI's with the aim to 

assess which of these compounds would prove suitable as a catheter coating agent 

through the use of a series of high through put assays and a continuous culture 

catheter biofilm model. 

4.6.1 Formation of bacterial biofilms grown on urinary catheters after long-

term antimicrobial adaptation There was no significant effect on biofilm 

formation for the isolates EC1, EC2, CFT073 after exposure to any compound. In 

contrast, PHMB exposure decreased biofilm formation in 4/8 isolates (EC11, EC28, 

EC34, and EC958). Long term exposure to PHMB has been shown to reduce biofilm 

formation in UPEC previously [193]. It has been suggested that PHMB exposure 

induced downregulation of genes associated with flagella which are essential for 

initiation of biofilm formation [95]. If the PHMB exposed isolates have 

downregulated flagella this may impair the ability of those isolates to form biofilms, 

which may explain the reduction in overall biofilm found in the PHMB exposed  

isolates in the current investigation. 

Triclosan exposure decreased biofilm formation in 3/8 (EC11, EC34, and EC958) 

isolates and increased biofilm formation in EC26. Sublethal exposure to triclosan has 
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been shown to impair biofilm formation in S. aureus, possibly due to repression of 

the extracellular matrix component PIA [104], a similar mechanism may occur in 

E.coli. Contrastingly, triclosan was also the only antimicrobial to induce any increase 

in biofilm formation after exposure. Studies on the effect of sub-lethal concentrations 

of triclosan on S. mutans biofilm formation showed that biofilm formation was 

increased by the upregulation of biofilm formation genes such as gtfB, gtfC, and luxS 

[223]. If a similar mechanism occurs in E. coli this could explain the increase in 

biofilm formation seen here. This demonstrates a strain specific response in the 

presence of triclosan. 

When repeatedly exposed to BAC, 3/8 isolates (EC11, EC28, and EC34) 

demonstrated a significant decrease in biofilm formation. One possible explanation 

for a decrease in biofilm formation is a decrease in motility, as flagellar and 

chemotaxis proteins have been associated with biofilm initiation (attachment) [224]. 

Exposure to BAC has previously lead to a decrease in motility of E.coli [184], which 

RNA-sequencing revealed was due to a decrease in the expression of genes 

associated with flagella synthesis. A reduction in motility associated genes may 

explain the decreased biofilm formation in our BAC exposed isolates.  

Silver Nitrate exposure decreased biofilm formation in 3/8 isolates (EC11, EC28, 

and EC34). It has been shown that bacteria that have been exposed to silver have 

downregulated adhesion factors and chemotaxis genes [225], further suggesting a 

possible mechanism for biofilm reduction. 

Biofilm formation in EC11 and EC34 decreased when exposed to cinnamaldehyde. 

A study by Yuan et al [226] showed that exposure to cinnamaldehyde caused an 

upregulation in genes associated with metabolism but virulence genes associated 

with biofilm formation were repressed in E.coli. This could explain the decrease in 

biofilm formation after exposure to cinnamaldehyde.  When exposed to furanone C30, 

EC28, EC34, and EC958 showed a significant decrease in biofilm formation. Genes 

for chemotaxis, flagella, and motility have been shown to be repressed by furanone  

C30 [69]. These genes are important for the initiation of biofilm formation [224]. If 

this has occurred in the furanone C30 exposed isolates then this could explain the 

decrease in biofilm formation seen here. 
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Exposure to DPD induced decreased biofilm formation in 3/8 isolates (EC11, EC34, 

and EC958). F-DPD is an AI-2 analogue and therefore inhibits quorum sensing by 

binding to the AI-2 receptor [64] and has been shown to inhibit biofilm formation in 

E.coli [65]. As far as we are aware there is no previous data on the effects of E.coli 

biofilm formation after adaptation to F-DPD. 

Although these responses are not measuring the direct effect of the QSI on biofilm 

formation, undergoing long-term QS inhibition may have resulted in selecting for 

isolates with alterations in normal AI-2 based signalling, which are known to play a 

role in biofilm establishment [227]. 

4.6.2 Viability of bacterial biofilms grown on urinary catheters XTT assays were 

used to evaluate the viability of the UPEC biofilms grown in the catheter model. 

XTT is a redox dye that works by colour change due to the metabolisation of XTT to 

formazan in the presence of metabolic activity (mainly mitochondrial succinoxidase, 

cytochrome P450 systems, and flavoprotein oxidases) [228].  Exposure to PHMB 

caused increased biofilm viability in 4/8 isolates. A study by Allen et al examined 

the effects of PHMB exposure on E.coli and found upregulation of genes associated 

with energy and amino acid metabolism [95] if this has occurred in the PHMB 

exposed isolates this could explain the increase in viability seen in this study. 

Triclosan exposure induced significantly increased biofilm viability in isolates EC11, 

EC26, EC28 and EC958. Triclosan has been shown to be effective at controlling 

E.coli infection in catheter models previously [229, 230]. E.coli that are tolerant to 

triclosan have been shown to have upregulated fatty acid, glyoxylate, dicarboxylate, 

and butanoate metabolism compared to the wild type [231]. This adaptive response 

likely occurs in an attempt to subvert the inhibitory effects of triclosan on fatty acid 

synthesis. If this has occurred in the triclosan exposed isolates, this upregulation in 

metabolism could increase the conversion of XTT to formazan and therefore show 

increased viability results for these isolates.  

BAC exposure did not induce any changes in biofilm viability. In previous studies 

XTT assays were unaffected by previous BAC exposure in E.coli biofilms [166] 

which corroborates this study. Silver Nitrate induced one significant increase in 

biofilm viability (EC26). Silver has been shown to act on enzyme activity as one of 

the mechanisms of bactericide [232]. To adapt to the presence of silver, the bacteria 
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would have to overcome this enzyme inhibition, perhaps by attempting to increase 

enzymic activity. An increase in enzyme activity, especially respiratory enzymes, 

would cause increased metabolism of XTT to formazan which would lead to 

increased viability results seen here.  

4.6.3 Biocompatibility of polymer coatings Out of the three coating agents tested, 

sol gel was calculated to have the highest biocompatibility values overall. Sol gel 

coatings are generally considered to have high biocompatibility [233] and are the 

subject of increasing interest in use for medical device coatings. For the most part, 

all polymer coatings were measured to have a similar level of cytotoxicity but the 

calculated BI score was mainly influenced by the variable antimicrobial activity of 

the coatings. pHEMA gels were observed to have the lowest antimicrobial activity 

for the majority of the antimicrobials tested and therefore lowest biocompatibility. 

Drug elution by pHEMA has been previously studied and it was found that 

unmodified pHEMA has poor capacity for drug loading and delivery [234].  

As mentioned earlier, pHEMA hydrogels initially elute the majority of incorporated 

antimicrobial when first hydrated. Due to the method of synthesising pHEMA gels, 

the discs were washed in water for 24 hours before being used in experiments. It 

could be that the antimicrobials incorporated into these discs were partially eluted 

out during the washing process. This highlights the variability of pHEMA as a 

catheter coating agent. PEG and sol gel coatings both have a sustained release profile, 

sustained release is associated with higher biocompatibility [235] as the 

antimicrobial dose can be lower to avoid cytotoxicity and longer elution periods are 

beneficial if the medical device is in situ for a longer period of time [236].  The 

biocompatibility of furanone C30 when incorporated into sol gel were the highest 

values seen in this study, mainly due to the fact that there was no zone of 

cytotoxicity recorded for this coating combination. 5H-furanones have been shown 

to be less cytotoxic than other furanone derivatives possibly due to their inability to 

reduce transition metals and so cannot produce reactive oxygen species [205].  

4.6.4 Evaluation using Drip Flow Biofilm Reactor Within the continuous culture 

system, the order of antimicrobial efficacy in terms of reduction in biofilm growth 

was found to be PHMB > furanone C30 > silver nitrate > F-DPD > cinnamadlehyde 
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> BAC > triclosan. The sol gel coating itself was also found to be mildly effective at 

reducing biofilm growth.  

For the previous diffusion experiments triclosan performed the best out of the seven 

antimicrobials tested when incorporated into sol gel. However it performed the worst 

for the drip flow biofilm reactor, which was surprising considering the high 

concentration of triclosan in the biofilm reactor. Triclosan is a potent antimicrobial 

[193] but it is also a small, hydrophilic molecule which means that it can easily elute 

out of polymer gels [237]. It could be hypothesised that either all the triclosan eluted 

out of the sol gel in a short period of time and was washed away, allowing any 

residual bacteria to repopulate or that the bacteria quickly developed  resistance to the 

triclosan coating.  Triclosan is well documented to induce resistance in both 

planktonic and biofilm growth [193]. It could also be that triclosan is less effective 

against biofilms compared with planktonically growing cells, however triclosan has 

been shown to be effective against E.coli biofilms [230] so it is more likely that the 

results observed in the current investigation are due to rapid elution of triclosan from 

the coating or due to the selection of resistant bacterial populations, potentially 

having acquired mutations in the well document triclosan target enzyme FabI [80]. 

Conversely, BAC performed better in the flow reactor experiments than the disc 

diffusion (50, 100, and 250 X MBC are higher concentrations than 1.25mg/ml for 

BAC). BAC is a very large molecule and has both hydrophilic and hydrophobic 

regions [238] so it is less likely to be able to elute out of coatings easily when under 

static conditions such as found in the disc diffusion assay (which would explain the 

low biocompatibility values for BAC). It is possible that under continuous flow and 

increased polymer hydration that BAC was able to release more readily from the 

impregnated sol gel. It is also important to note, that the biocompatibility assays 

were only conducted over a period of 24 hours. Quaternary ammonium salts (which 

are similar to BAC) have been incorporated onto catheter coatings and were shown 

to have activity over longer periods of time [239] so it could be that BAC simply 

takes longer than 24 hours to elute out and therefore would show less activity in the 

inhibition assay experiments.  

Cinnamaldehyde and F-DPD are both QSIs so it is likely that they were able to 

prevent biofilm formation on the coated catheters. We have previously tested the 
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potency of these QSIs in terms of antimicrobial and anti-biofilm activity and how 

they perform at disrupting AI-2 based signalling. These compounds possessed 

similar anti-biofilm activity in the drip flow reactor, however cinnamaldehyde was 

the least potent QSI overall. It may be that the QSIs performance as catheter coatings 

in this model is directly proportionate to their quorum sensing inhibitory activity. 

The National Institute of Health and Care Excellence (NICE) recommends that cfu 

counts of > 10³ of E.coli should be used to diagnose CAUTI in adults [19]. Sol gel 

coatings containing silver nitrate, furanone C30, and PHMB were able to reduce the 

cfu/ml to beneath this guideline.  Silver nitrate was one of the best performing 

antimicrobials in the flow reactor system, however, in clinical practice silver coated 

catheters have been shown to not be any more effective than uncoated catheters 

[114]. It is our hypothesis that silver works for a short term in vitro however in vivo 

bacteria develop resistance to the coating [103], it is possible that the silver elutes 

out of the coating over a short period of time so is not suitable for long term 

catheterisation.  It is also possible that sol gel is a more appropriate delivery system 

for silver than current coatings, hence the improved efficacy of the sol gel coating. 

More investigation would be needed before drawing these conclusions. 

Furanone C30 was the best performing QSI and is also the most potent QSI with 

regards to dirupting AI-2 basted signalling (Chapter 3). Furanone C30 has been 

shown to be an effective antimicrobial when incorporated into coatings [240] and the 

results seen in this study corroborates that. 

Sol gel containing PHMB was the best performing coating as it completely 

eradicated all biofilm in the flow reactor model. A study showed PEG co ntaining 

PHMB coatings were also particularly effective at reduce biofilm formation [241]. 

PHMB did not exhibit high antimicrobial activity in the disc diffusion assays, 

however this shows the importance of evaluation using a model that more 

realistically mimics in-use conditions. 

4.7.0 Conclusion  

When evaluating antimicrobials to be used in medical device coatings it is important 

to not only assess the antimicrobial efficacy and biocompatibility of the coating but 

also the long term effects of exposure to the coating agent on the bacteria it will 
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encounter. In this study, PHMB was found to perform the best in an in vitro catheter 

biofilm model and induced the most decreases in biofilm formation after long term 

biocide exposure. However it was also observed that PHMB induced increases in 

biofilm viability and had generally low biocompatibility. When considering all 

experiments, furanone C30 was the best performing QSI, induced decreased biofilm 

formation in 3/8 isolates and had the highest biocompatibility values for sol gel. 

Further investigation is warranted to further evaluate the potential of these coatings.  
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Chapter 5 

Genomic and transcriptomic analysis of antimicrobial exposed 

uropathogenic Escherichia coli EC958 
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5.1.0 Abstract 

Background: Catheter associated urinary tract infections (CAUTIs) are a major 

burden on healthcare providers and can lead to fatal complications such as 

pyelonephritis and bacteremia. The major causative agent of CAUTI is 

uropathogenic E.coli (UPEC) which forms biofilms on the catheter surface making 

the infection difficult to treat. Anti- infective coatings have been developed and are in 

clinical use however they demonstrate limited efficacy at preventing CAUTI during 

long term catheterisation due to the emergence of insusceptible bacterial populations. 

The genomic and transcriptomic changes that occur as a consequence of long term 

exposure to a panel of antimicrobials were characterised in UPEC strain EC958, a 

well characterised ESBL producing strain of the ST131 subgroup. Methods: 

Genome sequencing and RNA sequencing were performed before and after exposure 

to the biocides PHMB, triclosan, benzalkonium chloride (BAC), and silver nitrate, 

and the QSI's cinnamaldehyde, furanone C30, and F-DPD using an antimicrobial 

gradient plating system. Comparative genomics and differential gene expression 

analysis was utilised to evaluate the molecular mechanisms that govern antimicrobial 

adaptation in EC958. Results: Impaired motility by downregulation of flagella 

associated genes occurred after exposure to PHMB, BAC, cinnamaldehyde and F-

DPD which correlated to a reduction in biofilm formation on the catheter surface for 

the PHMB and F-DPD exposed isolates. Multidrug efflux pumps were upregulated 

after exposure to PHMB (mdtE) and cinnamaldehyde (marA and mdtN). Triclosan 

exposure induced a mutation in fabI which conferred decreased susceptibility to 

triclosan. However antimicrobial susceptibility to PHMB, cinnamaldehyde, and 

furanone C30 increased potentially due to downregulation of murein 

transglycosylase mltA. MltA is is involved in peptidoglycan synthesis, reduced 

synthesis may impair the structure of the cell wall leading to increased membrane 

permeability and increased antimicrobial susceptibility. Multiple virulence factors 

were upregulated after exposure to triclosan (Type 1 fimbriae fimA,C,D) and 

cinnamaldehyde (tonB which is involved in iron transport) which did not correlate to 

changes in pathogenicity in this case. Antigen 43 (ag43) was upregulated after 

exposure to BAC and cinnamaldehyde which correlated with increased biofilm 

formation in these isolates. Ag43 was downregulated after exposure to F-DPD which 

correlated to reduced biofilm formation on the catheter surface. Conclusion: The 
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multiple and varied effects that occur after exposure to broad-spectrum 

antimicrobials must be taken into consideration when developing a new 

antimicrobial coating as these effects have impacts on resistance, virulence, biofilm 

formation, and antibiotic resistance. 

5.2.0 Introduction 

Catheter associated urinary tract infections (CAUTIs) cause 20% of all episodes of 

health-care acquired bacteremia in acute care facilities, and over 50% in long term 

care facilities [242]. It is estimated that approximately 3% of people over the age of 

65 will require a catheter and, with an aging population, this figure is likely to 

increase [16]. The major causative agent of CAUTI is uropathogenic E.coli which is 

distinct from the gastrointestinal serotypes of E. coli in its virulence factor 

production.  UPEC encode P fimbriae/ pyelonephritis associated pili (PAP) [24] 

which facilitate attachment and invasion of the uroepithelia. P fimbriae mediate the 

internalisation of UPEC into host cells to form intracellular biofilm communities 

(IBCs) [40] allowing the bacteria within to proliferate inside the cell and form a 

persistent reservoir, often leading to recurrent UTI [41]. Other key virulence factors 

in UPEC may include: Type 1 pili, lipopolysaccharide (LPS), flagella, curli, secreted 

toxins, secretion systems, and tonB-dependent iron-uptake receptors [25]. 

EC958 is a UPEC isolate belonging to subgroup ST131 [243]. This bacteria was 

isolated from the urine of a patient presenting with a urinary tract infection in the 

Northwest region of England and is a leading contributor to urinary tract and 

bloodstream infections in clinical and community settings [243]. The E.coli ST131 

subgroup is associated with resistance to fluoroquinolones, high virulence gene 

content, the possession of the type 1 fimbriae FimH30, and the production of the 

CTX-M-15 extended spectrum β-lactamase (ESBL) [244]. 

UPEC form biofilms on the surface of the catheter which exacerbates infection as  

biofilms are reportedly recalcitrant to many antimicrobial agents in addition to the 

actions of the host immune system making them far less susceptible compared to 

their planktonic counterparts [5]. Quorum sensing is density dependent bacterial 

communication whereby bacterial cells sense the concentration of signal molecules 

and activate QS-controlled genes in response [42]. As bacterial density increases the 

biofilm develops new characteristics that are different to the planktonic cells, 
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specifically the biofilm tends to be more virulent and less susceptible to 

antimicrobial treatment.  

Antimicrobial catheter coatings have been developed as an attempt to prevent 

CAUTIs from occurring, with silver coated catheters currently in clinical use. 

However there is little evidence to suggest that the current coated catheters are any 

more effective at preventing bacterial growth than uncoated catheters [113]. A novel 

approach in the production of anti- infective catheter coatings is to use quorum 

sensing inhibitors (QSIs). These molecules disrupt the communication between 

bacterial cells and so inhibit biofilm formation. Another approach is to use biocides, 

broad-spectrum antimicrobial chemicals whose purpose is to inhibit the growth or 

kill microorganisms [7]. Catheters have been previously developed that have been 

coated with biocides [8] in order to reduce the bacterial contamination of the catheter 

but success has been limited, largely due to issue with cytotoxicity and the 

emergence of biocide resistance in bacteria during treatment.  

It is hypothesised that current antimicrobial coatings become ineffective due to 

bacteria developing resistance to the coating over time [114]. It is important, then, 

that new coating agents should be assessed using long-term exposure to elucidate the 

effects of these antimicrobials over an extended amount of time. Research into the 

long-term effects of biocides has shown multiple phenotypic and genotypic changes 

occurring as bacteria respond to the antimicrobial challenge, which has been 

correlated with phenotypic effects such as changes in antimicrobial susceptibility, 

biofilm formation and relative pathogenicity [80, 184, 193].  

The previous chapters have detailed the phenotypic changes that have occurred after 

exposure to the biocides PHMB, triclosan, benzalkonium chloride (BAC), and silver 

nitrate, and the QSI's cinnamaldehyde, furanone C30, and F-DPD in eight UPEC 

isolates. For the EC958 isolate these have included: decreased susceptibility after 

triclosan, BAC, and silver nitrate exposure, increased susceptibility after exposure to 

PHMB, cinnamaldehyde, and furanone C30, increased biofilm formation in 96 well 

plates after triclosan, BAC, cinnamaldehyde, and furanone C30 exposure, decreased 

biofilm formation on catheter surface after exposure to PHMB, triclosan, furanone 

C30, and F-DPD, and decreased pathogenicity after PHMB, triclosan, BAC, and 

furanone C30 exposure.  In this chapter, we assess the genotypic and transcriptomic 
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changes that occur in UPEC isolate EC958 after long term exposure PHMB, 

triclosan, benzalkonium chloride (BAC), silver nitrate, cinnamaldehyde, furanone 

C30, and F-DPD.  

5.3.0 Aims and objectives 

In the previous chapters, multiple phenotypic changes have been observed in UPEC 

after exposure to seven antimicrobials (PHMB, triclosan, BAC, silver nitrate, 

cinnamaldehyde, furanone C30, and F-DPD). In light of the phenotypic data, there is 

a need for transcriptomic and genomic analysis to attempt to understand the 

mechanisms of UPEC adaptation to these antimicrobials. The isolate EC958 and the 

antimicrobial exposed strains of EC958 were selected for genome and RNA 

sequencing, the resulting data can be used to explain the corresponding phenotypic 

observations reported in previous chapters. As many phenotypic changes have been 

observed in this isolate, it is expected that there will also be a significant amount of 

genomic and transcriptomic changes revealed in the analysis of the sequencing data. 

The specific aims of this chapter were to: 

 Compare the genome sequencing data of EC958 and the antimicrobial 

exposed strains of EC958 to determine mutations that have occurred as a 

result of antimicrobial exposure. 

 Compare the RNA sequencing data of EC958 and the antimicrobial exposed 

strains of EC958 to determine transcriptomic changes that have occurred as a 

result of antimicrobial exposure. 

 Relate these genomic and transcriptomic changes to phenotypic observations. 

5.4.0 Methods 

5.4.1 Bacteria and chemical reagents Laboratory characterised UPEC isolate 

EC958 was used in the investigation. Bacteria were cultured onto Muller-Hinton 

agar (MHA; Oxoid, UK) or Muller-Hinton broth (MHB; Oxoid, UK) and incubated 

aerobically at 37 °C for 18 h unless otherwise stated. Furanone C30, cinnamaldehyde 

and F-DPD were prepared at 1 mg/ml in water and filter sterilised prior to use. 

Cinnamaldehyde was purchased from Sigma–Aldrich (Poole, UK). (Z)-4-Bromo-

5(bromomethylene)-2(5H)-furanone C30 (furanone C30) was synthesised at 
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Sheffield Hallam University by P.G Chirila and Dr C. Whiteoak as described 

previously [191]. 4- fluoro-5-hydroxypentane-2,3-dione (F-DPD) was synthesised at 

University of Manchester by Dr M. Kadirvel as described previously [192]. 

5.4.2 Long-term exposure of bacteria to antimicrobials Bacteria were repeatedly 

exposed to antimicrobials using an antimicrobial gradient plating system as 

described in McBain et al [152].  In brief, 100 µl of a 5 × MBC concentration 

solution of antimicrobial was added to an 8 x 8 mm well in the centre of a 90 mm 

agar plate. Bacterial pure cultures were radially inoculated in duplicate from the edge 

of the plate to the centre, prior to incubation for 2 days aerobically at 37°C. Biomass 

from the inner edge of the annulus of bacterial growth representative of the highest 

antimicrobial concentration at which growth could occur was removed and used to 

inoculate a new antimicrobial containing plate, as outlined above. This process was 

repeated for 12 passages. Control isolates passaged 12 times on antimicrobial free 

media were also included. Bacteria were archived at -80 °C before and after 

antimicrobial passage for subsequent testing. 

5.4.3 Whole genome sequencing Exposed isolates of EC958 and unexposed and 

control isolates were sent to MicrobesNG (Birmingham, UK) to be sequenced. 

MicrobesNG sequencing protocol is as follows:   

Three beads were washed with extraction buffer containing lysozyme and RNase A, 

incubated for 25 min at 37ºC. Proteinase K and RNase A were added and incubated 

for 5 min at 65ºC. Genomic DNA was purified using an equal volume of SPRI beads 

and resuspended in EB buffer.  

DNA was quantified in triplicates with the Quantit dsDNA HS assay in an Ependorff 

AF2200 plate reader. Genomic DNA libraries were prepared using Nextera XT 

Library Prep Kit (Illumina, San Diego, USA) following the manufacturer’s protocol 

with the following modifications: two nanograms of DNA instead of one were used 

as input, and PCR elongation time was increased to 1 min from 30 seconds. DNA 

quantification and library preparation were carried out on a Hamilton Microlab 

STAR automated liquid handling system. Pooled libraries were quantified using the 

Kapa Biosystems Library Quantification Kit for Illumina on a Roche light cycler 96 
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qPCR machine. Libraries were sequenced on the Illumina HiSeq using a 250bp 

paired end protocol.  

Reads were adapter trimmed using Trimmomatic 0.30 with a sliding window quality 

cutoff of Q15 [245]. De novo assembly was performed on samples using SPAdes 

version 3.7 [246], and contigs were annotated using Prokka 1.11 [247].  

Each genome of exposed bacterial strain of EC958 was compared to the genome of 

EC958 prior to exposure with a minimum of 30 x genome coverage. 

5.4.4 RNA sequencing RNA from each exposed strain of EC958 was extracted 

using the TRIzol plus RNA purification kit (Thermofisher, UK). RNA integrity and 

quality was assessed using the NanoDrop (Thermofisher, UK), Qubit fluorometer 

(Thermofisher, UK), and Affymetrix Genechip microarray system (Thermofisher, 

UK).  

Library preparations, sequencing reactions, and bioinformatics analysis were 

conducted at GENEWIZ, LLC. (South Plainfield, NJ, USA). rRNA depletion was 

performed using Ribozero rRNA Removal Kit (Illumina, San Diego, CA, USA). 

RNA sequencing library preparation used NEBNext Ultra RNA Library Prep Kit for 

Illumina by following the manufacturer’s recommendations (NEB, Ipswich, MA, 

USA). Briefly, enriched RNAs were fragmented for 15 minutes at 94 °C. First strand 

and second strand cDNA were subsequently synthesized. cDNA fragments were end 

repaired and adenylated at 3’ends, and universal adapter was ligated to cDNA 

fragments, followed by index addition and library enrichment with limited cycle 

PCR. Sequencing libraries were validated using the Agilent Tapestation 4200 

(Agilent Technologies, Palo Alto, CA, USA), and quantified by using Qubit 2.0 

Fluorometer (Invitrogen, Carlsbad, CA) as well as by quantitative PCR (Applied 

Biosystems, Carlsbad, CA, USA).  

The sequencing libraries were multiplexed and clustered on one lane of a flowcell 

and loaded on the Illumina HiSeq instrument according to manufacturer’s 

instructions. The samples were sequenced using a HiSeq 2x150 Paired End (PE) 

configuration. Image analysis and base calling were conducted by the HiSeq Control 

Software (HCS). Raw sequence data (.bcl files) generated from Illumina HiSeq was 
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converted into fastq files and de-multiplexed using Illumina's bcl2fastq 2.17 software. 

One mis-match was allowed for index sequence identification.  

After demultiplexing, sequence data was checked for overall quality and yield. Then, 

sequence reads were trimmed to remove possible adapter sequences and nucleotides 

with poor quality using Trimmomatic v.0.36. The trimmed reads were mapped to the 

Escherichia coli reference genome available on ENSEMBL using the STAR aligner 

v.2.5.2b. The STAR aligner is a splice aware aligner that detects splice junctions and 

incorporates them to help align the entire read sequences. BAM files were generated 

as a result of this step. Unique gene hit counts were calculated by using 

featureCounts from the Subread package v.1.5.2. Only unique reads within exon 

regions were counted.  

After extraction of gene hit counts, the gene hit counts table was used for 

downstream differential expression analysis. Using DESeq2, a comparison of gene 

expression between the groups of samples was performed. The Wald test was used to 

generate p-values and Log2 fold changes. Genes with adjusted p-values < 0.05 and 

absolute log2 fold changes > 1 were called as differentially expressed genes for each 

comparison. A gene ontology analysis was performed on the statistically significant 

set of genes by implementing the software GeneSCF v1.1. The GO list was used to 

cluster the set of genes based on their biological process and determine their 

statistical significance. A PCA analysis was performed using the "plotPCA" function 

within the DESeq2 R package. The plot shows the samples in a 2D plane spanned by 

their first two principal components. The top 500 genes, selected by highest row 

variance, were used to generate the plot.  RNA expression of each exposed isolate 

was compared with the control isolate. Analysis of genes was conducted using 

PANTHER [248]. 

5.5.0 Results 

5.5.1 Mutations in antimicrobial adapted UPEC isolate EC958 

5.5.1.1 PHMB There were no genes that acquired mutations that were specific to 

PHMB exposure alone. All of the genes that acquired mutations after exposure to 

PHMB also acquired mutation after exposure to the other test antimicrobials (Table 

5.1). These mutations were as follows: missense mutation in exodeoxyribonuclease 8 
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(recE1), missense mutation in 50S ribosome binding GTPase (yeeP), missense 

mutation in ISEc9 family transposase (tnpA), missense mutation in EntS/YbdA MFS 

transporter (entS), missense mutation in IS1 transposase (insB), missense mutation in 

increased serum survival gene (iss), missense mutation in putitative sulfertransferase  

(yeeD), missense mutation in positive regulator (alpA). 

5.5.1.2 Triclosan Mutations that occurred after triclosan exposure (Table 5.1) 

include missense mutation in fabI enoyl-[acyl-carrier-protein] reductase (Table 5.2), 

nonsense mutation in wbbL rhamnosyltransferase (Table 5.18), missense mutation in 

lipid II flippase (murJ), and silent mutation in glutamate decarboxylase beta (gadB). 

5.5.1.3 BAC Mutations that occurred after BAC exposure (Table 5.1) included 

missense mutation in cspE cold-shock like protein and missense mutation in ldrD2 

small toxic polypeptide. The BAC exposed isolate was one of the only isolates to not 

acquire a yeeD mutation. 

5.5.1.4 Silver Nitrate Mutations that occurred after silver nitrate exposure (Table 

5.1) included missense mutation in fadA (3 ketoacyl CoA thiolase) (Table 5.2) and a 

silent mutation in glutamate decarboxylase beta (gadB). 

5.5.1.5 Cinnamaldehyde Mutations that occurred after cinnamaldehyde exposure 

(Table 5.1) include nonsense mutation in proQ RNA chaperone, frame shift mutation 

in dihydrolipoyl dehydrogenase (ipd), missense mutation in dnaX DNA polymerase 

III subunit tau (Table 5.2), missense mutation in TONB protein (tonB), and a silent 

mutation in glutamate decarboxylase beta (gadB). 

5.5.1.6 Furanone C30 Mutations that occurred after furanone C30 exposure (Table 

5.1) include silent mutation in probable manganese efflux pump (mntP), and silent 

mutation in glutamate decarboxylase beta (gadB). 

5.5.1.7 F-DPD Mutations that occurred after F-DPD exposure (Table 5.1) include 

silent mutation in negative regulator (rsxC), missense mutation in uncharacterized 

HTH-type transcriptional regulator (yfhH), missense mutation in ldrD3 small toxic 

polypeptide, and a silent mutation in glutamate decarboxylase beta (gadB). The F-

DPD exposed isolate was one of the only isolates to not acquire a yeeD mutation. 
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Antimicrobial Gene name Type of 

mutation 

Function 

All recE1 Missense Exodeoxyribonuclease 8 

hydrolyses 
phosphodiester bonds in 
DNA and is mainly 

involved in 
recombination and 

damage repair 

All yeeP Missense 50S Ribosome binding 
GTPase. Era mutant 
era1 suppresses some 

temperature-sensitive 
mutations that affect 

DNA replication and 
chromosome 
partitioning and 

segregation 

All tnpA Missense ISEc9 family 
transposase. 

Transposase is an 
enzyme that binds to the 
end of a transposon and 

catalyzes its movement 
to another part of the 

genome 

All entS Missense EntS/YbdA MFS 
transporter. The 
transporter is mainly 

involved in efflux of 
enterobactin 

All insB Missense IS1 transposase. 

Transposase is an 
enzyme that binds to the 

end of a transposon and 
catalyzes its movement 
to another part of the 

genome 

All iss Missense ISS (increased serum 
survival gene). ISS has 

role in the complement 
resistance associated 
with a ColV plasmid 

and is an outer 
membrane protein 

PHMB, 

triclosan, silver 
nitrate, 
cinnamaldehyde, 

furanone C30 

yeeD Missense yeeD encodes a 

putitative 
sulfertransferase 
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All alpA Missense AlpA is a positive 
regulator of the 
expression of the slpA 

gene. SlpA encodes 
surface layer protein A. 

Triclosan fabI Missense Enoyl-[acyl-carrier-

protein] reductase is a 
key enzyme of the type 

II fatty acid synthesis 
(FAS) system 

Triclosan wbbL Nonsense Rhamnosyltransferase is 
involved bacterial outer 

membrane biogenesis 
(O antigen) 

Triclosan murJ Missense Lipid II flippase is 

involved in 
peptidoglycan 
biosynthesis 

BAC cspE Missense cspE encodes cold-
shock like protein which 
regulates expression of 

genes encoding stress 
response proteins but 
can also perform an 

essential function during 
cold acclimation 

BAC ldrD2 Missense Small toxic polypeptide 

is the toxic component 
of a type I toxin-

antitoxin (TA) system 

F-DPD ldrD3 Missense Small toxic polypeptide 
is the toxic component 
of a type I toxin-

antitoxin (TA) system 

Silver nitrate fadA Missense 3 ketoacyl CoA thiolase  
enzyme catalyzes the 

final step of fatty acid 
oxidation 

Triclosan, silver 

nitrate, 
cinnamaldehyde, 
furanone C30, 

F-DPD 

gadB Silent Glutamate 

decarboxylase beta 
converts glutamate to 
gamma-aminobutyrate 

(GABA) 

Cinnamaldehyde proQ Nonsense RNA chaperone with 
significant RNA 

binding, RNA strand 
exchange and RNA 
duplexing activities 

Cinnamaldehyde ipd Frame Shift Dihydrolipoamide 

dehydrogenase is a 
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bacterial enzyme that is 
involved in the central 
metabolism and is a 

component of the 
glycine cleavage system 

as well as of the alpha-
ketoacid dehydrogenase 
complexes 

Cinnamaldehyde dnaX Missense DNA polymerase III 
subunit tau. DNA 
polymerase III is a 

complex, multichain 
enzyme responsible for 

most of the replicative 
synthesis in bacteria 

Cinnamaldehyde tonB Missense TONB protein involved 
with the transport of 

iron-containing 
compounds and colicins 

into the cell 

Furanone C30 mntP Silent Probable manganese 
efflux pump 

F-DPD rsxC Silent Negative regulator of 
soxS transcription 

F-DPD yfhH Missense Uncharacterized HTH-
type transcriptional 
regulator 

 

Table 5.1 Summary of genes that acquired mutations after antimicrobial exposure, 
type of mutation and brief overview of function. 
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5.5.2 Alterations in UPEC transcriptome after antimicrobial exposure  

5.5.2.1 PHMB Following PHMB exposure 268 genes were significantly (p<0.05) 

upregulated and 137 genes were significantly downregulated compared to the control 

strain. The largest fold increase (3.82) was allantoin permease ybbW and the largest 

fold decrease (-4.93) was PTS trehalose transporter subunit IIBC (treB). PANTHER 

analysis revealed functional groups of genes that had altered expression in the 

PHMB exposed mutant. These were genes associated with TCA cycle such as gltA 

(1.26) and fumC (1.13). Genes associated with flagella structure 

(flgB,C,D,E,F,G,H,I) (-1.00 to -2.35) and function (fliF,G,H,I,J,K,LM,N,P) were all 

downregulated (-1.09 to -2.55). There were increases in the expression of genes 

associated with membrane transport such as dppD (2.75), dppF (2.17) and 

sufA,B,C,E (1.17 to 1.37). Changes were observed in the expression of genes 

associated with cell membrane synthesis such as mltA (-1.2) and lysM (1.21). Genes 

associated with DNA repair such as recR were downregulated (-1.17). BolA, a 

transcription factor associated with cellular stress response, was upregulated (1.24) 

(Table 5.2). 

5.5.2.2 Triclosan Following triclosan exposure 172 genes were significantly 

(p<0.05) upregulated and 155 genes were significantly downregulated. The largest 

fold increase (5.48) was 2-hydroxy-3-oxopropionate reductase (garR) and the largest 

fold decrease was (-4.37 and -4.06) for nitrate reduction associated genes napH and 

napG respectively. PANTHER analysis revealed functional groups of genes that had 

altered expression in the triclosan exposed isolate. These were genes involved in 

purine biosynthesis such as purH (1.11) and purE (1.36) (Table 5.18). Genes that 

contribute to cellular transport systems such as dppD (3.34), dppF (2.44), 

sufB,C,D,E (1.08 to 1.25), dcuC (-1.12), potE (-1.66) and malE,F,K (-1.49 to -2.05) 

(Table 5.2). Genes associated with cell adhesion such as fimA,C,D were upregulated 

(1.25 to 2.2), and genes involved in the PTS system such as srlE (-2.08) and srlA (-

2.03) were downregulated. Genes associated with cell wall synthesis such as mltA 

were downregulated (-1.22) (Table 5.2). 

5.5.2.3 BAC Following BAC exposure 195 genes were significantly (p<0.05) 

upregulated and 248 genes were significantly downregulated. The largest fold 

increase (4.47) was antigen 43 (ag43) an autotransporter outer membrane protein 
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(Table 5.2) and the largest fold decrease (-6.48) was flagellin (fliC) (Table 5.2). 

PANTHER analysis revealed groups of genes that had altered expression in the BAC 

exposed isolate. These were genes involved in purine synthesis such as purH (1.49), 

purN (1.14), and purE (2.16) (Table 5.2). Genes associated with motility such as 

fliA,D,F,G,H,I,J,K,L,M,N,O,P,R,S,T,Z (-1.31 to -3.24), flgC,D,E,G,H,I,J,K,L,N (-

1.06 to -3.83), motA (-2.97), motB (-3.38) and cheA,R,W,Z (-3.99 to -3.14) were 

downregulated. Genes involved in transport systems such as dppD (1.53), dppF  

(1.18) were upregulated and potE (-1.19) was downregulated. 

5.5.2.4 Silver Nitrate Following silver nitrate exposure 225 genes were significantly 

(p<0.05) upregulated and 141 genes were significantly downregulated. The largest 

fold increase (4.8) was antigen 43 (ag43) (Table 5.2). The largest fold decrease (-

5.43) was PTS trehalose transporter subunit IIBC (treB). PANTHER analysis 

revealed functional groups of genes that had altered expression in the silver nitrate 

exposed isolate. These were genes involved in purine synthesis such as purH (1.34), 

purN (1.1), and purE (1.34) (Table 5.2) and genes associated with the TCA cycle 

such as gltA (1.25) and fumC (1.07). Genes involved in fatty acid degradation such 

as fadA (1.13) and fadB (1.57) were upregulated. Genes associated with transport 

such as dppD (2.59), actP (1.59), potG (1.02), and artP (1.06) were upregulated, 

malF (-3.9) (Table 5.18) and dcuC (-1.55) were downregulated. Genes involved in 

cell wall synthesis such as mltA were downregulated (-1.84). 

5.5.2.5 Cinnamaldehyde Following cinnamaldehyde exposure 368 genes were 

significantly (p<0.05) upregulated and 329 genes were significantly downregulated. 

The largest fold increase (4.64) was 2-hydroxy-3-oxopropionate reductase (garR) 

and the largest fold decrease (-5.74) was mexE family multidrug efflux RND 

transporter periplasmic adaptor subunit (Table 5.2). PANTHER analysis revealed 

groups of genes that had altered expression in the cinnamaldehyde exposed isolate. 

These were gltA (1), fumC (1.36), and sucA (1.14) involved in the TCA cycle. Genes 

involved in ribonucleotide synthesis upp (-1.31), pyrG (-1.17) and carB (-2.54), and 

purine synthesis adk (-1.29) and guaA (-1.32) were all downregulated. Flagella 

associated genes flgB,C,D,E,H,I,J,K,L (-1.09 to -2.64) and 

fliA,D,F,G,H,J,K,L,M,N,P,S,T,Z (-1.23 to -2.75) were downregulated. Genes 

associated with chemotaxis cheA,R,W,Z were downregulated (-2.13 to -2.61). Genes 

associated with transport such as uhpT (1.05) tonB (1.13), and marA (1.5) were 
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upregulated and sufA,B,C,D (Table 5.2) (-1.2 to -1.8) was downregulated. MdtE was 

downregulated (-2.73) whereas mdtN was upregulated (1.87). Genes associated with 

adhesion such as Antigen 43 (ag43) (1.14) and yfcV (1.83) were upregulated. Genes 

associated with DNA transcription and repair such as proQ (-1.44), recR (-1.62) and 

dnaK (-2.34) were downregulated. Genes associated with cell wall synthesis such as 

mltA (-1.02) were downregulated. 

5.5.2.6 Furanone C30 Following furanone C30 exposure 122 genes were 

significantly (p<0.05) upregulated and 98 genes were significantly downregulated. 

The largest fold increase (5.02) was 2-hydroxy-3-oxopropionate reductase (garR) 

and the largest fold decrease (-2.21) was murein transglycosylase (mltA) (Table 5.2). 

PANTHER analysis revealed groups of genes that had altered expression in the 

furanone C30 exposed isolate. These were genes involved in purine synthesis such as 

purH (1.43), and purE (1.31) (Table 5.2), genes involved in cellular transport 

systems such as dppD (1.9) and dppF (1.19) were upregulated and secY (-1.4) (Table 

5.2) was downregulated. Genes associated with 50S Ribosomal subunit L20 (rplT), 

L23 (rplW), and L4 (rplD) were downregulated (-1.08, -1.33, and -1.45 respectively).  

5.5.2.7 F-DPD Following F-DPD exposure 86 genes were significantly (p<0.05) 

upregulated and 181 genes were significantly downregulated. The largest fold 

increase (2.76) was 2-hydroxy-3-oxopropionate reductase (garR) and the largest fold 

decrease (-4.76) was flagellin (fliC) (Table 5.2). PANTHER analysis revealed groups 

of genes that had altered expression in the F-DPD exposed isolate. These were genes 

involved in motility such as fliA,D,F,G,H,I,J,K,L,M,N,O,P,S,T,Z  (-1.2 to -3.17) and 

flgB,C,D,E,G,H,I,J,K,L,N (-1.2 to -4.76). Antigen 43 (ag43) was downregulated (-

1.2). Genes involved in adhesion such as AfaC and afaD increased expression (2.59 

and 2.02 respectively). Genes involved in cell membrane synthesis such as mepS was 

upregulated (1.07) and lysM was downregulated (-1.26). Transporter mdtE was 

downregulated (-1.39). 
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 PHMB Triclosan BAC Silver 

Nitrate 

Cinnamaldehyde Furanone 

C30 

F-DPD Associated 

Genes 

MIC Fold 
Change 

-5 260 2 2 -2 -2 No Change mltA [249] 
fabI [80] 

MBC Fold 
Change 

-1.1 8 No Change 16 -2 -.1.5 No Change fadA [185] 
sufC [250] 

MBEC Fold 

Change 

42.4 125 4 1.3 -4 -4 No Change mexE [251] 

Cross 
Resistance 

No Change Nitrofurantoin 
resistance 

No Change No Change No Change No Change No Change potE [252] 
dnaX [253] 

Biofilm 

Formation 
(Plate) 

No Change Increase 

(p<0.0001) 

Increase 

(p<0.0001) 

No Change Increase 

(p<0.001) 

Increase 

(p=0.0124) 

No Change bolA [254] 

wbbL [255] 
ag43 [256] 

Biofilm 
Formation 
(Catheter) 

Decrease 
(p=0.0069) 

 

Decrease 
(p=0.0094) 

No Change No Change No Change Decrease 
(p=0.0056) 

Decrease 
(p=0.0337) 

flg [257] 
fli [257] 

Pathogenicity Decrease 

(p<0.001) 

Decrease 

(p<0.001) 

Decrease 

(p<0.001) 

No Change No Change Decrease 

(p<0.001) 

No Change wbbL [255] 

malF [258] 
secY [259] 

SMC 

Invasion 

No Change No Change Increase 

(p=0.0006) 

No Change No Change No Change No Change purE,H,N 

[260] 

 

Table 5.2 Observed changes in MIC, MBC, MBEC, biofilm formation, cross resistance, pathogenicity, and cell invasion in EC958 after 

exposure to 7 antimicrobials. Where a change was observed, the p value is given. Genes whose expression was found to be affected by 
antimicrobial exposure and that are associated with the observed changes are also shown. 
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5.6.0 Discussion 

There were certain mutations that occurred in all antimicrobial exposed EC958 isolates 

(Table 5.1). These indicate universal adaptation to antimicrobial stress. Genome 

sequencing revealed all isolates acquired mutations in the recE1 gene. RecE1 encodes 

exodeoxyribonuclease 8 which hydrolyses phosphodiester bonds in DNA and is mainly 

involved in homologous recombination and DNA damage repair [261]. Mutations in 

recE have been shown to abolish nuclease activity, which would likely  impair DNA 

repair mechanisms [262]. Any functional deficits in EC958 in response to antimicrobial 

adaptation may be attributed to impaired DNA repair.  

All EC958 isolates also acquired mutations in yeeP (Table 5.1). yeeP encodes 50S 

Ribosome binding GTPase. GTPases that are associated with ribosomes are essential to 

the function of the ribosome [263]. Mutations in yeeP have been previously associated 

with attenuated fitness in E. coli [264]. A similar GTPase (era) binds rRNA to the 30S 

ribosomal subunit, ensuring translation can take place [263]. A significant part of the 

bacterial stress response is impairment of translation and therefore protein synthesis 

[265], impacting cell division and fitness. Mutation in this GTPase may impair  

translation which could explain the reduction in pathogenicity seen in the PHMB, 

triclosan, BAC, and furanone C30 exposed isolates as a reduction in fitness would 

impair the bacteria's ability to grow and establish infection [266]. 

These mutations are deleterious (decreases fitness of the organism) and so are unlikely 

to be maintained after exposure to the antimicrobial is removed. These mutations are 

unlikely to be coincidental changes as they occurred in all seven exposured isolates so it 

is more likely that these functional deficits are universal adaptation to general 

antimicrobial challenge. 

All isolates acquired multiple mutations in entS (Table 5.1). EntS encodes the 

EntS/YbdA MFS transporter. The transporter is mainly involved in efflux of 

enterobactin - one of the most effective ferric iron chelating compounds known in 

bacteria [267]. Enterobactin has been suggested to have another role - protection against 

oxidative stress [268]. As the molecule has exposed hydroxyl groups it would be an 

effective molecule to scavenge oxygen radicals [268]. Mutations in this gene may 

therefore potentially make bacteria more sensitive to oxidative stress. Cinnamaldehyde 

is known to exert oxidative stress on bacterial cells [194], and the cinnamaldehyde 
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exposed EC958 isolate showed increased susceptibility to cinnamaldehyde after 

exposure, suggesting a potential mechanism of increased susceptibility. 

5.6.1 PHMB Exposure to PHMB induced an increase in susceptibility in planktonic 

EC958 (Table 5.2). RNA sequencing of the PHMB exposed isolate revealed a 

downregulation of murein transglycosylase (mltA). Peptidoglycan (murein) is integral to 

the structure and function of the bacterial cell wall and mltA is involved in 

peptidoglycan synthesis [249]. There was also an upregulation of peptidoglycan-binding 

protein lysM, these domain have multiple functions which include peptidoglycan 

degradation [269]. These impairments in peptidoglycan synthesis and an increase in 

degradation could drastically impair cell wall formation, the resulting loss of integrity 

increasing antimicrobial susceptibility. 

The genes gltA (citrate synthase) and fumC (fumarate hydratase II) were both 

upregulated and are both involved in the TCA cycle. The TCA (tricarboxylic acid) 

/Krebs /citric acid cycle is a series of chemical reactions used by all aerobic organisms 

to generate energy (ATP) [270]. Citrate synthase catalyzes the condensation of 

oxaloacetate and acetyl coenzyme A to produce citrate plus coenzyme A [271]. 

Fumarate hydratase II catalyzes the stereospecific interconversion of fumarate to L-

malate, fumC supplements fumA under conditions of iron limitation and oxidative stress 

[272]. PHMB is a decoupling agent and has been shown to play a role in disrupting 

respiration by altering the proton motive force (PMF) across the membrane [273].  

Upregulation of the aforementioned genes could be a response of the bacteria to the 

limitation in respiration exerted by PHMB, by boosting the TCA cycle. 

PHMB exposure led to a significant decrease in biofilm formation grown on urinary 

catheters (Table 5.2). RNA sequencing data analysis revealed downregulation of 

multiple genes associated with flagella structure and function. Flagella are an important 

factor in the initiation of bacterial biofilm formation [257] so loss of these structures 

would suggest that the ability of these isolates to form biofilms may be impaired. 

However the MBEC for this strain increased after PHMB exposure, possibly suggesting 

the presence of a small but persistent biofilm. RNA sequencing revealed an 

upregulation in the gene bolA  which is a transcription factor that downregulates flagella 

synthesis and upregulates biofilm formation [254]. BolA was shown to repress flhD and 

flhC which are major regulators for flagella synthesis, and upregulate genes associated 
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with fimbriae (yfcV) and LPS biosynthesis which favours biofilm formation [254]. BolA  

also elevates expression of enzymes involved in the TCA cycle [254]. We see 

downregulation of flhA, upregulation of yfcV and gltA and fumC as mentioned earlier. 

This is likely occurring in response to the upregulation of transcription factor bolA. As 

this isolate is less motile this would affect initiation of biofilm growth on a catheter 

since motility is an important factor in the ability of bacteria to initiate biofilm 

development [257]. 

5.6.2 Triclosan Triclosan induced the largest frequency and magnitude of susceptibility 

decreases in MIC, MBC, and MBEC (Table 5.2). Mutations in the fabI gene found in 

the triclosan exposed isolate would explain the high levels of triclosan resistance as fabI 

encodes Enoyl- [acyl-carrier-protein] reductase which is a known target of triclosan [80]. 

Genome sequencing of the triclosan exposed mutant showed mutation in the wbbL gene, 

which encodes the enzyme rhamnosyltransferase which is involved in lipopolysacharide 

(LPS) and O antigen biogenesis. Mutation in wbbL has shown to impair O antigen 

biosynthesis, when O antigen is restored in E.coli the bacteria exhibit increased 

susceptibility to triclosan, decreased biofilm formation and increased virulence [255]. O 

antigen is important in maintaining the structure of the bacterial cell wall, and it has 

been shown that loss of O antigen increases cell permeability in E.coli, hence increasing 

antimicrobial susceptibility [274]. FabI is also involved in LPS synthesis [275] and 

because triclosan is a surfactant, the amount of LPS in the cell wall could have an effect 

on triclosan susceptibility.  

Decreased pathogenicity was observed in the triclosan exposed isolate (Table 5.2). O 

antigen is an important virulence factor in UPEC [25] as it protects UPEC against 

phagocytosis by immune cells and complement mediated killing [276]. Therefore, a 

mutation in wbbL that inhibits O antigen synthesis may explain the decreased 

pathogenicity that was seen in this study. RNA sequencing showed downregulation of 

transporters dcuC and malF. MalF is a maltose transporter, knockout mutations of this 

gene caused Vibrio spp. to become less virulent by inhibiting the production and 

secretion of toxins and virulence factors [258]. This may also contribute to the 

decreased pathogenicity seen here in EC958 after triclosan exposure. 

EC958 exhibited an increase in biofilm formation after triclosan exposure as well as an 

elevation in MBEC (Table 5.2). This could be explained by the mutation in wbbL that 
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was seen in the triclosan exposed isolate. As previously stated - O antigen synthesis 

decreases biofilm formation in E.coli so a mutation in wbbL leading to impaired O-

antigen formation may increase biofilm formation [255]. 

The triclosan exposed isolate showed downregulation of srlE and srlA which are 

involved in the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS). In 

Escherichia coli, PTS is responsible for the transport and phosphorylation of sugars, 

such as glucose. PTS activity has a crucial role in the global signalling system that 

controls the preferential consumption of glucose over other carbon sources [277]. The 

enzyme IIC complex composed of srlA, srlB and srlE is involved in sorbitol transport, it 

can also transport D-mannitol [277]. Downregulation of this system could be a sign of 

reduced energy production which is common in a bacterial stress response [278].  

5.6.3 BAC EC958 was observed to form increased biofilm biomass after BAC exposure 

and had a corresponding increase in MBEC (Table 5.2). The highest increase in gene 

expression after BAC exposure was antigen 43 (ag43). Antigen 43  is a self-recognizing 

adhesin that is associated with cell aggregation and biofilm formation in E. coli K-12 

[256]. Such a large fold increase in this gene expression would undoubtedly cause 

increased biofilm production which is what we have observed. 

After BAC exposure, multiple genes responsible for synthesis of flagella were down 

regulated. In fact, the gene with the highest fold decrease in expression was flagellin. 

Exposure to BAC decreasing motility of E.coli has been demonstrated previously [184]. 

As discussed earlier this decrease in motility would negatively impact the initiation of 

biofilm formation. The flagellar motor proteins motA,B and the chemotaxis proteins 

cheA,R,W,Z have been associated with biofilm initiation (attachment) [224] all were 

downregulated in the BAC exposed strain.  

Exposure to BAC induced an increase in EC958 invasion in for SMC. Genes involved 

in purine biosynthesis: purE, purH, and purN were upregulated after BAC exposure. An 

upregulation of these genes could increase virulence by promoting increased survival 

inside the cell [260]. If the bacteria survive inside the cells they would survive until the 

end of the SMC invasion assay which would explain the increased SMC invasion 

observed for the BAC exposed isolate.  
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Increased expression of dppD and dppF which are involved in the Ntr (Nitrogen 

regulated) response was observed in this study, this was also seen after sublethal 

exposure to BAC in another UPEC isolate CFT073 [279]. It was hypothesised that 

biocide exposure depleted the bacteria of nitrogen and therefor mechanisms to scavenge 

nitrogen were upregulated.  

5.6.4 Silver nitrate It was observed that EC958 decreased in silver nitrate susceptibility 

after long-term exposure (Table 5.2). Silver nitrate exposure induced a mutation in the 

fadA gene (3-ketoacyl-CoA-thiolase) which catalyses the final step of fatty acid 

oxidation. Silver- induced shortening of the acyl chain of fatty acids occurs mostly in the 

cell membrane and one effect of ionic silver is reducing the amount of unsaturated fatty 

acids in the cell wall [185]. FadA has been shown to be downregulated by ionic silver 

[185]. So an increase in the amount of fatty acids in the cell wall could be a potential 

mechanism of withstanding the effects of prolonged exposure to silver. RNA 

sequencing of the silver nitrate exposed isolate revealed fadA and fadB expression were 

upregulated which further corroborates this. The promotor region for the fadBA operon 

is located in fadB and the direction of transcription is fadB to fadA [280]. Therefore, it is 

highly unlikely that the mutation in fadA is responsible for the increased levels of 

transcription, so the increased expression of these genes may be more adaptive than 

mutational. One of the products of the final stage of fatty acid oxidation is acetyl-CoA 

[281] which is necessary for the TCA cycle (described above). Genes involved in the 

TCA cycle gltA (citrate synthase) and fumC (fumarate hydratase II) were also 

upregulated. Silver has been shown to depolarise the outer cell membrane and therefore 

inhibit respiration [282].The upregulation of all of these genes could be a response from 

the bacteria to the disruption of the TCA cycle by membrane depolarisation caused by 

silver. 

Silver nitrate exposure led to no change in biofilm formation and a small magnitude 

increase in MBEC in EC958 (Table 5.2). The highest increase in gene expression for 

the silver nitrate exposed isolate was antigen 43 (ag43). Antigen 43 is a self-recognizing 

adhesin that is associated with cell aggregation and biofilm formation in E. coli K-12 

[256]. This could explain the increase in MBEC observed in response to silver exposure.  

5.6.5 Cinnamaldehyde Exposure to cinnamaldehyde induced an increase in 

susceptibility in planktonic EC958 (Table 5.2). RNA sequencing of the cinnamaldehyde 
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exposed isolate revealed a downregulation of murein transglycosylase (mltA). 

Peptidoglycan (murein) is integral to the structure and function of the bacterial cell wall 

and mltA is involved in peptidoglycan synthesis [249]. This impairment in 

peptidoglycan synthesis would drastically impair cell wall formation, the resulting loss 

of integrity increasing antimicrobial susceptibility. RNA sequencing also revealed a 

downregulation of sufC which is involved in iron-sulphur cluster synthesis [250]. 

Decreased activities of this enzyme have been shown to cause increased sensitivity to 

ROS and DNA damage in S. aureus [250]. As cinnamaldehyde's mechanism of action 

depends on generation of oxidative damage [194] this would explain the increase in 

sensitivity seen in this study. We also see that the largest fold decrease in gene 

expression after cinnamaldehyde exposure was mexE (efflux system). Multidrug efflux 

pumps have been shown to be able to transport AHL (QS molecules) out of the cell 

[251]. The mexEF operon is controlled by the global regulator MVAT which itself is 

activated by QS [283]. Constant inhibition of the QS signal may cause decreased 

expression of these transporters. With the cell less able to export antimicrobials, this 

could explain the increase in susceptibility. 

In the cinnamaldehyde exposed isolate, a mutation in proQ was reported. ProQ encodes 

an RNA chaperone, which are proteins that aid in RNA folding, with significant RNA 

binding, strand exchange and duplexing activities [284]. RNA sequencing of EC958 

indicated that proQ was downregulated after cinnamaldehyde exposure. ProQ has been 

shown to bind RNA to regulate transcription and prevent the degradation of mRNA, 

proQ deletion attenuated virulence in Salmonella enterica by disregulation of genes for 

chemotaxis, motility, and invasion [285]. We also observe downregulation of genes 

associated with chemotaxis (cheA,R,W,Z) and motility (flagella associated genes) in 

cinnamaldehyde exposed EC958.  

Genome sequencing also revealed a mutation in dnaX (DNA polymerase III subunit tau). 

DNA polymerase III is a complex, multichain enzyme responsible for most of the 

replicative synthesis in bacteria [253]. DnaX is the promotor for recR, which encodes a 

protein involved in DNA repair [286] which was downregulated in EC958 after 

cinnamaldehyde exposure. The expression of dnaK (chaperone involved in DNA 

replication) was also downregulated. Furthermore, genes encoding proteins involved 

ribonucleotide and purine biosynthesis: uracil phosphoribosyltransferase (upp), CTP 

synthase (pyrG), carbamoyl-phosphate synthase (carB), adenylate kinase (adk) and 
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GMP synthase (guaA) were all downregulated. Each of the four antibiotics used in the 

cross resistance experiments act on DNA replication. As all of these genes are involved 

in DNA replication and synthesis, downregulation of these genes could confer 

resistance against these antibiotics because the active processes that the antibiotic is 

targeting is reduced. Cinnamaldehyde exposure induced 3 cases of antibiotic cross 

resistance although not in the EC958 isolate specifically so we cannot say for certain 

that this is a mechanism for antibiotic cross resistance in cinnamaldehyde exposed 

bacteria.  

Cinnamaldehyde exposure induced a mutation in ipd which encodes dihydrolipoyl 

dehydrogenase. Dihydrolipoamide dehydrogenase is a bacterial enzyme that is part of 

the pyruvate dehydrogenase complex [287]. The pyruvate dehydrogenase complex 

converts pyruvate to acetyl-CoA to be used in the TCA cycle. Genes involved in the 

TCA cycle gltA (citrate synthase), fumC (fumarate hydratase II), and sucA  (2-

oxoglutarate dehydrogenase E1 component) were all upregulated. Cinnamaldehyde has 

been shown to interfere with the E.coli TCA cycle in previous studies [288] so the 

upregulation of these genes could be a response to this repression. 

There was also a mutation in tonB which encodes the TONB protein. This is involved 

with the transport of iron-containing compounds and colicins into the cell and is a key 

virulence factor in UPEC [37]. RNA sequencing of the cinnamaldehyde exposed isolate 

revealed tonB expression was upregulated, the promoter region is located within the 

tonB gene [289] so it is possible that the mutation has affected the promotor region - 

causing the upregulation. Proteins associated with iron transport have been shown to be 

upregulated in cinnamaldehyde exposed E.coli previously [226]. It was hypothesised 

that induced uptake of iron would enhance microbial survival under stress conditions 

and contribute to microbial oxidative resistance (by sequestering free irons, which 

generate ROS). This study also reported decreased expression of genes associated with 

motility and biofilm formation [226]. We have also observed downregulation of flagella 

(flgB,C,D,E,H,I,J,KL and fliA,D,F,G,H,J,K,L,M,N,P,S,T,Z) in the cinnamaldehyde 

exposed isolate. 

Biofilm formation in the cinnamaldehyde exposed strain increased when grown on a 

plastic surface (Table 5.2). Increased expression of ag43, as stated previously, would 

increase biofilm formation. Upregulation of yfcV was also observed in this isolate. YfcV 
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encodes a major fimbrial subunit and is an important virulence factor for UPEC [290]. 

Fimbriae are important for the initial formation of bacterial biofilms [291] so this could 

also explain an increase in biofilm formation. 

The highest fold increase in expression was garR (2-hydroxy-3-oxopropionate 

reductase). This enzyme is involved in glyoxylate and dicarboxylate metabolism [292]. 

This increase in expression was also seen in the triclosan, furanone C30, and F-DPD 

exposed isolates. This means that in all of the QSI exposed strains garR had the highest 

increase in expression. As far as we are aware, there has been no reported between garR 

and quorum sensing. 

In the cinnamaldehyde exposed isolate, 8 genes known to be controlled by AI-2 

signaling [293] were shown to have altered expression. Genes that are upregulated by 

AI-2: caiF and astD were also upregulated after cinnamaldehyde exposure, and motB 

was downregulated after cinnamaldehyde exposure. Genes that are downregulated by 

AI-2: cheW, fliP, and carB were downregulated, but uhpT and evgS were upregulated 

after cinnamaldehyde exposure. It would be expected that inhibition of AI-2 signaling 

would upregulate expression of genes that would normally be downregulated by AI-2 

and vice versa. This was seen in the cinnamaldehyde exposed isolate for some genes 

(motB, uhpT, and evgS) but we see the opposite in others (caiF, astD, cheW, fliP, and 

carB). E.coli do possess other QS pathways [294] so it could be that the genes that show 

the opposite of what we expected are also under the control of one of these pathways. 

Indeed, one of these genes, astD has been associated with being induced by indole 

signaling in E.coli [295]. CheW and fliP have also been shown to be downregulated by 

AI-2 inhibitors in previous studies [296]. 

5.6.6 Furanone C30 Exposure to furanone C30 induced high frequency of significant 

increases in susceptibility (Table 5.2). The highest fold decrease in gene expression for 

the furanone C30 exposed isolate was murein transglycosylase (mltA). Downregulation 

of this gene would lead to impaired cell wall formation, loss of integrity, difficulty in 

cell division [249]. This may cause increased susceptibility to antimicrobials. 

The gene secY was downregulated after furanone C30 exposure. SECY supports the 

posttranslational translocation of proOmpA across the cytoplasmic membrane [297]. 

OmpA is also an important virulence factor in UPEC (it is an invasin and adhesin [259], 

and has been shown to be integral to IBC formation in bladder cells [298]). The 
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downregulation of ompA could explain the decreased pathogenicity observed in the 

furanone C30 exposed isolate (Table 5.2). 

In the furanone C30 exposed isolate, 4 genes known to be controlled by AI-2 signaling 

[293] were shown to have altered expression. Genes that are upregulated by AI-2: astD 

were also upregulated after furanone C30 exposure. Genes that are downregulated by 

AI-2: cspE, ivbL and carB were downregulated after furanone C30 exposure. As 

previously stated, this is the opposite of what we would expect to observe during 

inhibition of AI-2 signaling. AstD is also controlled by indole signaling [295] but we 

couldn't find any literature that suggests the other genes are under the control of another 

quorum sensing system in E.coli. 

5.6.7 F-DPD Exposure to F-DPD induced decreased biofilm formation for EC958 on 

catheter pieces (Table 5.2). We observed decreased expression of genes associated with 

flagella with the largest fold decrease in expression being flagellin, and there was 

downregulation of antigen 43 (ag43). All of these would explain the decrease in biofilm 

formation observed in EC958. 

In the F-DPD exposed isolate, 4 genes known to be controlled by AI-2 signaling [293] 

were shown to have altered expression. Genes that are upregulated by AI-2: motB was 

downregulated after F-DPD exposure. Genes that are downregulated by AI-2: cheW, 

fliP, and flgN were downregulated after F-DPD exposure.  CheW, fliP, and flgN have 

been shown to be downregulated by AI-2 inhibitors in previous studies [296]. In that 

study, it was postulated that the reduction of these motility associated genes explains the 

reduction in biofilm formation when AI-2 signaling is inhibited.  

5.7.0 Conclusion 

To understand the mechanisms of the phenotypic changes reported in previous chapters, 

one isolate (EC958) and the corresponding exposed strains, was subjected to genomic 

and transcriptomic analysis. This analysis has shown that long term exposure of UPEC 

to broad spectrum antimicrobials has an impact on UPEC resistance, virulence, motility, 

biofilm formation, and antibiotic resistance. Some of these changes can be beneficial in 

terms of a response to a catheter coating agent, whilst others could give cause for 

concern. It is important to fully understand and ellucidate these effects before 

developing a catheter coating for long-term catheterisation. 
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Chapter 6 

General Discussion 
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6.1.0 Study Overview 

Catheter associated urinary tract infections (CAUTIs) account for the highest proportion 

of hospital acquired infections (17.2%) [15] with between 43% and 56% of UTIs 

associated with an indwelling urethral catheter [15]. Uropathogenic Escherichia coli 

(UPEC) is reportedly responsible for 65% of complicated UTI cases [23]. CAUTI can 

lead to serious complications such as blood stream infections [14]. Currently E. coli  is 

the leading cause of blood stream infection in the UK with 40,580 cases reported in 

2016–17 and a mortality rate of 14.8% [17]. Of these cases, 21% are linked to the 

presence of an indwelling urinary catheter [17]. CAUTIs often show recalcitrance to 

antimicrobial treatment due to the formation of bacterial biofilms within the catheter in 

addition to the increasing prevalence of antibiotic resistance in uropathogens [3, 4]. 

In order to reduce the incidence of CAUTI approaches for the production of anti-

infective catheter coatings have been developed including (i) surfaces containing 

antimicrobials that may be eluted into the surrounding environment [125] (ii) surfaces 

containing covalently bound antimicrobials [132] and (iii) surfaces coated in an anti-

adhesive material to reduce bacterial attachment [118]. The advantage of using an anti-

adhesive material is that it does not provide a selective pressure for antimicrobial 

resistant bacterial populations, however there are limited materials that can be 

effectively modified in this way and the non-specific deposition of host proteins during 

device insertion often provides sites for microbial attachment rendering the coating 

ineffective [119]. Covalently bound antimicrobials do not leach out over time, limiting 

cytotoxicity and reduces the creation of an antimicrobial gradient potentially selecting 

for resistance [132]. However, these coatings also become impaired due to host protein 

deposition and there are limitations in the number of antimicrobials that would have 

activity when covalently tethered to surfaces due to their structure. The controlled 

elution of antimicrobials is a currently considered strategy in preventing device 

associated infections as there is a wider availability of compounds that can be 

incorporated into coatings to be eluted out and avoid microbial colonisation [133]. 

Antimicrobial impregnated catheter coatings that are currently in clinical use inc lude 

hydrogel silver alloy-coated latex catheters (CR Bard Inc.) and urethral catheters 

containing covalently bound nitrofurazone (Rochester Medical Corp) [114]. There have 

been numerous studies that have concluded the limited efficacy of these coated catheters 
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in preventing CAUTI, partially due to the emergence of insusceptible bacterial 

populations [113-115]. 

Biocides are often considered as anti- infective coating agents due to their broad-

spectrum of antimicrobial activity and their multiple site-targeted mode of action [105], 

meaning the risk of selecting resistant microorganisms is comparatively low when 

compared to antibiotics. When biocide resistance does occur however, it has been 

associated with cross-resistance to third party agents such as other biocides and 

antibiotics [299]. Biocide exposure however often correlates with other functional 

deficits in bacteria such as impaired growth, reduced competitive fitness and 

pathogenicity [80] and even in some cases increased biocide susceptibility [73]. A novel 

approach in the production of anti- infective catheter coatings is to use quorum sensing 

inhibitors (QSIs). Quorum sensing (QS) is a process by which bacteria produce and 

detect signal molecules and thereby coordinate their behaviour in a cell density 

dependent manner [10]. The inhibition of quorum sensing as a strategy to prevent 

infection is a growing area of research but very little is known about the long term 

effects of QSIs in bacteria.  

In this thesis, the long-term effects of biocide and QSI exposure were measured by 

subjecting clinical isolates and laboratory strains of UPEC (unexposed) to sustained 

antimicrobial challenge using a gradient plating system (exposed). This was done with 

each test antimicrobial. Control isolates, passaged in absence of antimicrobials, were 

also generated. After bacteria had undergone long-term antimicrobial exposure we 

evaluated a range of phenotypic effects. This included changes in antimicrobial 

susceptibility, biofilm formation and pathogenicity in a Galleria mellonella waxworm 

model.  

After initial high- throughput screening of changes in biofilm formation via crystal 

violet assay we implemented a more realistic scenario whereby we determined changes 

in biofilm formation and biofilm metabolic activity on the surface of a urinary catheter. 

The capability of the bacterial isolates to invade human uroepithelial and bladder cell 

lines was also evaluated.  

The project then focussed on developing polymer coatings containing antimicrobials 

and analysing the performance of these coatings in terms of antimicrobial efficacy and 

biocompatibility. The three coating candidates were Sol gel, Poly(ethylene glycol) 
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(PEG), and Poly(hydroxyethymethacrylate) (pHEMA). Once these coatings had been 

screened for their initial activity, the sol-gel coating was deemed the most effective, we 

then determined the antimicrobial activity of antimicrobial impregnated sol-gel coated 

urinary catheters in a Drip Flow Biofilm Reactor. The comprehensive screening of the 

test compounds and polymer coatings on UPEC in this study give a detailed overview 

of the suitability of these materials as anti-infective coatings for urinary catheters. 

Following a detailed assessment of the phenotypic effects of biocide exposure, the final 

stage of the project was to investigate the underlying molecular mechanisms that govern 

such adaptations using full genome sequencing and RNA-sequencing in isolate EC958. 

6.2.0 Changes in bacterial susceptibility, pathogenicity, and biofilm formation are 

induced after biocide and QSI exposure 

Reduction in biocide susceptibility after bacterial exposure to antimicrobial agents such 

as biocides has become a growing concern especially considering the links to antibiotic 

cross-resistance [299]. In medical device coatings that contain biocides that a leachable 

into the surrounding environment this creates a gradient effect, which may expose the 

surrounding bacteria to sub-lethal biocide concentrations. This allows the bacteria to 

adapt to the presence of the antimicrobial which may induce insusceptibility in addition 

to other phenotypic changes. In this investigation, the changes in susceptibility of 

planktonic UPEC after long-term exposure to the test compounds were determined 

using MIC and MBC assays. PHMB exposure induced small magnitude (≤2-fold) 

increases in susceptibility in UPEC whilst triclosan induced a large frequency and 

magnitude of susceptibility decreases. Both BAC and silver nitrate only induced minor 

reductions in susceptibility. Exposure to cinnamaldehyde and furanone C30 induced 

high frequency of significant increases in susceptibility. For F-DPD, there was only one 

case of decreased susceptibility.  

Genomic data can be utilised to identify potential mechanisms that contribute to our 

observed reductions in biocide susceptibility. Whole genome sequencing of the parent 

EC958 isolate and antimicrobial exposed isolates, revealed mutations in the triclosan 

target enzyme fabI that could be contributing to triclosan resistance [80]. The 

transcriptomic data also revealed possible mechanisms of increased susceptibility seen 

in the PHMB, cinnamaldehyde, and furanone C30 exposed isolates. The gene mltA 
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which is involved in peptidoglycan synthesis, was downregulated in the all of the 

aforementioned isolates which would lead to impairment of cell wall formation, the 

resulting loss of integrity may increase antimicrobial susceptibility. For the PHMB 

exposed isolate there was also an upregulation of peptidoglycan-binding protein lysM, 

these domain have multiple functions which include peptidoglycan degradation [269]. 

This would also contribute to loss of integrity of the cell wall increasing susceptibility. 

It has been questioned whether bacteria can become resistant to QSI's and research has 

found that there are in fact numerous ways that bacteria can evolve to overcome QS 

inhibition such as: utilisation of multiple QS systems, efflux pumps, and mutation of QS 

system pathways [300]. There was only one case of increased resistance observed for F-

DPD exposed EC34. RNA sequencing of F-DPD exposed EC958 revealed increased 

expression of mepS, a murein endopeptidase involved in peptidoglycan synthesis, and 

downregulation of lysM which would increase peptidoglycan synthesis and 

incorporation into the cell wall. The mechanism of F-DPD bactericidal activity is not 

currently know but common resistance mechanisms such as decreased cell wall 

permeability have been previously associated with reduced antimicrobial susceptibility 

and could explain the decreased susceptibility seen in this study. 

Biofilm formation and susceptibility was assessed using crystal viole t assay and MBEC 

assay. PHMB exposure led to a significant decrease in biofilm formation for two 

isolates which did not correspond with decreases in MBEC. All isolates that increased 

in biofilm formation after triclosan exposure also exhibited an elevation in MBEC. A 

high number of isolates were observed to form increased biofilm biomass after BAC 

exposure and 6 had a corresponding increase in MBEC. Silver nitrate exposure led to 1 

increase in MBEC and 1 decrease, and 1 (non-corresponding) increase in biofilm 

formation. All isolates decreased in MBEC after cinnamaldehyde exposure which 

corresponded to 1/8 decreases in biofilm formation and 6/8 increased biofilm formation. 

For furanone C30 exposure, 6/8 decreased MBEC with 1 corresponding decrease in 

biofilm formation and a further 2 increases in biofilm formation. F-DPD did not induce 

any change in MBEC after exposure and induced only 1 increase in biofilm formation.  

In terms of the underlying molecular mechanisms that govern our observed changes in 

biofilm formation, Antigen 43 (ag43) was upregulated after exposure to BAC and 

cinnamaldehyde which correlated with increased biofilm formation in these isolates.  
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Antigen 43  is a self-recognizing adhesin that is associated with cell aggregation and 

biofilm formation in E. coli K-12 [256]. An upregulation of this gene would likely 

confer increased biofilm formation to these isolates which is what we see here. 

PHMB exposure induced significantly decreased relative pathogenicity in 3/8 isolates 

and a significant increase in pathogenicity for 1/8 in the G. mellonella model when 

compared to the respective control isolate (C12). When exposed to PHMB, 5/8 isolates 

showed an increase in SMC invasion. For HUEPC, exposure to PHMB induced 

increased invasion in 1/8 isolates. BAC exposure induced significantly decreased 

pathogenicity in 6/8 isolates and significantly increased pathogenicity in 1/8. Exposure 

to BAC induced an increase in invasion in 1/8 isolates for SMC and induced increases 

in HUEPC invasion for 2/8 isolates. Silver nitrate was the only biocide to only induce 

significant increases in pathogenicity which occurred in 2/8 isolates and 1/8 isolates 

showed increases in HUEPC invasion. Triclosan was the only biocide to induce only 

significant decreases in pathogenicity which occurred in 5/8 isolates. For HUEPC 

invasion, triclosan exposure induced increased invasion in 2/8 isolates. In the G. 

mellonella model cinnamaldehyde exposure induced significantly increased relative 

pathogenicity in 4/8 isolates and there was increased HUEPC invasion in 1/8 isolates. 

Furanone C30 was the only QSI to induce only significant decreases in pathogenicity in 

G. mellonella which occurred in 6/8 isolates. Furanone C30 exposure induced increased 

HUEPC invasion in EC34. F-DPD exposure induced significantly increased 

pathogenicity in 2/8 isolates and significantly decreased pathogenicity in 2/8 isolates in 

the G. mellonella model. F-DPD induced a decrease in SMC invasion in EC26 when 

compared to the respective control strain. 

The decreased pathogenicity in the triclosan exposed isolate could be explained by the 

mutation in wbbL that is involved in O antigen biosynthesis which is an important 

virulence factor [255]. We did observe increase in expression of Type 1 fimbriae 

fimA,C,D in the triclosan exposed isolate EC958. Type 1 fimbriae are structures that are 

used by UPEC to attach and invade into cells [25]. So an increase in expression would 

be expected to potentially cause an increase in cell invasion, however, the EC958 isolate 

did not show increased invasion after triclosan exposure.  In the cinnamaldehyde 

exposed strain EC958 there was an increased expression in tonB a key virulence factor 

[25]. Whilst it may be expected that this would correlate to increased pathogenicity, 
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EC958 did not increase in pathogenicity after cinnamaldehyde exposure. RNA 

sequencing of the furanone C30 exposed isolate revealed a decrease in expression of 

secY. SecY supports the posttranslational translocation of proOmpA across the 

cytoplasmic membrane [297]. OmpA is a very important UPEC virulence factor [298], 

it also acts as an adhesin and invasin [259] so this may explain the decreased 

pathogenicity seen after furanone C30 exposure. 

When determining sensitivity to antibiotics there were 16 cases of antibiotic cross 

resistance observed. PHMB exposure induced 2 cases of cross resistance, triclosan 

induced 3, BAC induced 1, silver nitrate induced 1, cinnamaldehyde induced 3, 

furanone C30 induced 4, and F-DPD induced 2. Antimicrobial exposure induced 

increases in the transcription of numerous transporters including multidrug resistance 

transporters, mdtE in the PHMB exposed strain of EC958 and marA and mdtN for the 

cinnamaldehyde exposed strain of EC958. Out of the isolates that were sent for genetic 

sequencing, only the triclosan exposed strain EC958 acquired full cross resistance to an 

antibiotic (nitrofurantoin). Downregulation of potE, which has been shown to be 

involved in the uptake antibiotics into the cell [252], was observed in this isolate but 

this is not a resistance mechanism for this particular antibiotic. 

On average, the QSI's induced more cases of cross-resistance than the biocides.  

Quorum sensing is thought to play a significant role in antibiotic tolerance of bacteria 

[301], inhibition of the AI-2 QS pathway by DPD analogues has been shown to increase 

rifampicin resistance by modulating LuxS mediated methylation of mutational hotspots 

[63]. In the RNA sequencing data downregulation of aidB (DNA alkylation response 

protein) was observed. Alkylation is another mechanism of DNA mutagenesis [302] so 

downregulation of this repair system could also possibly lead to cross resistance through 

increased mutation rate. In contrast, research by Brackman et al. [71] showed that use of 

QSI's increased the susceptibility of bacteria to antibiotics. However this was not long-

term exposure but combination treatment and different quorum sensing systems were 

targeted (AHL and agr systems) so is not directly comparable to this study. 



 

160 
 

6.3.0 The effects of long term exposure to biocides and QSI's in a catheter biofilm 

model  

When grown on a catheter surface, exposure to PHMB caused decreased biofilm 

formation in 4/8 isolates. When repeatedly exposed to BAC, 3/8 isolates demonstrated a 

significant decrease in biofilm formation. Silver Nitrate induced decreased biofilm 

formation in 3/8 isolates. Triclosan exposure decreased biofilm formation in 3/8 isolates 

and increased biofilm formation in 1/8 isolates. Biofilm formation in 2/8 isolates 

decreased when exposed to cinnamaldehyde and exposure to F-DPD induced decreased 

biofilm formation in 3/8 isolates. When exposed to furanone C30, 3/8 isolates showed a 

significant decrease in biofilm formation.  

Impaired motility by downregulation of flagella associated genes occurred after 

exposure to PHMB, BAC, cinnamaldehyde and F-DPD. Flagella are an important factor 

in the initiation of bacterial biofilm formation [257] so loss of these structures would 

suggest that the ability of these isolates to form biofilms may be impaired.  

The results for the biofilm formation on catheters differs from the biofilm formation 

experiments performed in 96 well plates (see above). The topography (the arrangement 

of physical features) of a surface has been shown to be an important factor in the ability 

of bacteria to attach to a surface and form biofilms [303]. In a study by Feng et al. 

E.coli were unable to form biofilms on surfaces with pores 15 - 25 nm in diameter [304]. 

The surface of a catheter would differ from a polystyrene plate which could explain the 

discrepancy in results. Another factor could be that the catheter pieces were transferred 

into fresh media after 24 hours. Thereby selecting the adhered bacterial populations and 

promoting biofilm growth, while the plate based assays were performed in batch culture.  

Having continuous supply of nutrients has been shown to significantly impact biofilm 

formation as opposed to limited nutrients, as traditionally found in batch culture [305].  

6.4.0 Antimicrobial efficacy and biocompatibility of biocide and QSI containing 

polymer coatings for urinary catheters 

Agar overlay and disc diffusion experiments were carried out to determine the overall 

biocompatibility of the antimicrobial agents when incorporated into three polymer 

coatings (sol gel, PEG, and pHEMA). On average, sol gel had the highest 
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biocompatibility values followed by PEG and pHEMA. Sol gel coatings are widely 

regarded as having a high degree of biocompatibility [233].  

The order of cytotoxicity in relation to the compound concentration was silver nitrate > 

PHMB > F-DPD > BAC > cinnamaldehyde > triclosan > furanone C30. BI values for 

the eight isolates were averaged for each compound and the final ranked order of BI 

was PHMB > furanone C30 > cinnamaldehyde > triclosan > BAC > silver nitrate > F-

DPD indicating the antiseptic potential of the compounds. When incorporated into the 

coatings these BI values changed to: furanone C30 > triclosan > silver nitrate > 

cinnamaldehyde > PHMB > BAC = F-DPD for sol gel, triclosan > cinnamaldehyde > 

PHMB > F-DPD > silver nitrate > BAC > furanone C30 for PEG, and triclosan > silver 

nitrate > BAC > PHMB = cinnamaldehyde = furanone C30 = F-DPD for pHEMA. This 

highlights the significant change in biocompatibility once the antimicrobials are 

changed from a planktonic suspension to a coated surface.  

The polymer coatings will have a variety of physio-chemical properties (e.g. 

hydrophilicity or hydrophobicity, lubricity, smoothness, surface energy, wettability, surface 

roughness, swelling, electrostatic effects, solubility, degradability, thermal and mechanical 

stability [306]) that would all affect the biocompatibility of the coating even without the 

addition of the antimicrobial agents. How antimicrobials elute out of the coating would also 

make a difference. For example pHEMA hydrogels initially elute the majority of 

incorporated antimicrobial when first hydrated [220], whereas PEG and sol gel coatings 

both have a sustained release profile, sustained release is associated with higher 

biocompatibility, as you are not introducing a high concentration of antimicrobial in a 

short time frame [235]. As sol gel had the highest biocompatibility values of the three 

coatings, it was taken forward for further evaluation on the drip flow biofilm reactor. 

The order of antimicrobial efficacy for the biofilm reactor in terms of reduction in 

biofilm growth was found to be PHMB > furanone C30 > silver nitrate > F-DPD > 

cinnamaldehyde > BAC > triclosan. This was intriguing as, up to this point, triclosan 

was performing as one of the most potent antimicrobials. It could be hypothesised that 

due to the fact that triclosan is a relatively small molecule that it eluted out of the sol gel 

in a short period of time and was washed away within the drip flow reactor, allowing 

any residual bacteria to repopulate. This highlights the importance of selecting a release 

strategy that complements the antimicrobial being incorporated.   
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It is well understood that as a biofilm matures antimicrobial susceptibility decreases. A 

previous study comparing biofilm eradication with antibiotics in 96 well plate and 

biofilm reactor conditions revealed that in biofilm reactor, bacteria were significantly 

more tolerant to antibiotics than in the well plate [305]. It was concluded that the main 

reason for this difference was the presence or absence of flow of nutrients to the biofilm 

[305]. Continuous fresh nutrients would allow the biofilm to continue to develop and 

would facilitate the removal of waste products. The fluid dynamics of our test systems 

may also have an effect: P. aeruginosa biofilms treated with cationic surfactant 

cetyltrimethylammonium bromide (CTAB) that were formed under laminar flow were 

more susceptible than those formed under turbulent flow [307]. Experiments with the 

drip flow biofilm reactor can produce varied data depending on environmental 

conditions e.g. biofilms of mono-culture grew in single layers whereas multi-species 

biofilms grew in multilayers [308]. It is clear that choosing the right experimental 

model with conditions closest to the clinical environment is incredibly important when 

evaluating anti-infective coatings for medical devices. 

6.5.0 Future Directions 

Although this study comprises a fairly comprehensive overview of the long term effects 

of the antimicrobial coatings tested, there is still much that could be explored. More 

detailed insight into the impact of antimicrobial exposure on bacteria could be obtained 

through proteomic analysis of the unexposed and exposed isolates selected for during 

this study. This would complement our transcriptional analysis and allow us to 

determine if the changes in gene expression that we observed translated into changes in 

protein expression. This would give information of the mechanisms that render the 

bacteria less susceptible towards an antimicrobial agent, but also of any other induced 

changes in the bacteria seen in this study.  Similarly, there are a number of genes 

identified in this study that warrant further investigation. Notably the upregulation of 

antigen 43 in numerous biocide exposed isolates correlating to changes in biofilm 

formation is an interesting phenomenon. Antigen 43 has also been linked to increased 

virulence in UPEC [256]. A more detailed investigation of role of antigen 43 in 

antimicrobial adaptation and the consequence of this on bacterial virulence, potentially 

through use of site-directed mutagenesis, would be an area for future work.  
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Inductively coupled plasma mass spectrometry (ICP-MS) can be used to measure the 

elution of the antimicrobials out of the polymer coatings; this will provide valuable 

insight into the mechanism of elution and the antimicrobial lifespan of the coatings. By 

understanding the elution profiles of our antimicrobials we would be able to manipulate 

their release through changes in the sol-gel formulation and thereby maximise their 

activity. 

Once the antimicrobial sol-gel coatings have been optimised, it would be interesting to 

more fully evaluate their anti-biofilm activity. Transfecting the UPEC isolates with a 

GFP plasmid would enable visualisation of the bacteria on the surface of coated catheter 

sections via confocal microscopy; this would give us more information about the 

efficacy of the coatings and their impact on biofilm architecture. 

Comparing the potential synergistic activity of the biocides and QSIs could provide 

beneficial data. By incorporating both agents into the device surface we may be able to 

disrupt biofilm formation allowing eradication of any residual bacteria at relatively 

lower biocide concentrations, thus avoiding any cytotoxic effects of the biocides which 

may be observed at biofilm eradication concentrations.  

The in vivo efficacy of any medically coated device would need to be evaluated, both in 

animal models and clinical trials, if the coating is to be used as a commercial product. In 

vitro susceptibility testing, whilst giving a good indication of bacterial response, is 

simplified and does not take into account the vast array of physiologica l conditions 

experienced during infection. Catheter infection models have already been developed in 

mice [309] so this would be something that could be taken further. Also, the 

experiments carried out in this study were carried out using only single isolates of 

UPEC and CAUTI is frequently associated with a mixed flora and may involve multiple 

interactions between microorganisms that cannot be accounted for in this type of 

assessment therefore experiments using mixed bacterial communities should be carried 

out. 

6.6.0 Conclusion  

Uropathogenic E.coli (UPEC) are the major causative agent of CAUTI which are 

becoming an increasing burden on healthcare providers due to antibiotic resistance and 

an aging population. Anti- infective coatings to prevent formation of bacterial biofilm on 
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the surface of the catheter are in clinical use but have limited effectiveness. The short-

lived efficacy of these coatings are in part likely to be associated with the induction of 

biocide insusceptibility in bacterial pathogens. New coatings that display good 

antimicrobial efficacy and low cytotoxicity should be developed but the long-term 

impact of these coatings needs to be adequately assessed. The effects of long term 

exposure of UPEC to 7 antimicrobials (both biocides and QSIs) was determined. 

Multiple phenotypic adaptations were observed both in planktonic and biofilm growth 

and corroborated using genotypic and transcriptomic analysis. Furthermore, three 

polymers were evaluated for their potential as a catheter coating and evaluated using a 

biofilm reactor model.  

Whilst reductions in antimicrobial susceptibility were evident, this was often coupled to 

other phenotypic effects including changes in biofilm formation and pathogenicity. This 

demonstrates the importance in both choosing appropriate methods to evaluate anti-

infective coatings and highlights a need to take a multi- faceted approach to risk 

assessment when predicting their long-term consequence in patients. 
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Table 9.1 Position of single nucleotide polymorphisms identified in the full genome sequencing of seven exposed isolates of EC958 compared 

to the unexposed control.  

Gene 

name 

Gene Size 

(bp) 
Location of SNP (bp) 

  PHMB Triclosan BAC Silver Nitrate Cinnamaldehyde Furanone C30 F-DPD 

recE1 2601 
175, 535, 536, 

830  
535, 536, 830 535, 536, 830 

175, 535, 536, 
830 

535, 536, 830 535, 536, 830 
175, 535, 536, 

830 

yeeP 864 
222, 292, 595, 

610, 822 
222, 292, 595, 

610, 822  
222, 292, 595, 

610, 822  
222, 292, 595, 

610, 822  
222, 292, 595, 610, 

822  
222, 292, 595, 

610, 822  
222, 292, 595, 

610, 822  
tnpA 1263 828 828 828 828 828 828 828 

entS 1251 448, 870, 961 448, 870, 961 961 448, 870, 961 448, 870, 961 
448, 870, 961, 

1164 
448, 870, 961 

insB 504 136, 323  136, 323 136, 323 136, 323 136, 323 136, 323 136, 323 

iss 294 144, 229 144, 229  144, 229 144, 229 144, 229 144, 229 
yeeD 228 3, 10  3, 10  3, 10 3, 10 3, 10  

alpA 213 7, 101 7, 101 7, 101 7, 101 7, 101 7, 101 7, 101 
fabI 789  604      

wbbL 795  121      
murJ 1536  806      

cspE 210   187     
ldrD2 108   86     

ldrD3 108       86 
fadA 1164    743    

gadB 1401  
370, 526, 539, 

589, 655 
 

370, 526, 539, 
589, 655 

370, 526, 539, 589, 
655 

370, 526, 539, 
589, 655 

370, 526, 539, 
589, 655 

proQ 699     328   

lpd 1425     39   
dnaX 1932     1564   

tonB 720     110   
mntP 567      427  

rsxC 2223       1883 
yfhH 849       361 

flu 389 
134, 182, 191, 

333, 364 
134, 182, 191, 

333, 364 
134, 182, 191, 

333, 364 
134, 182, 191, 

333, 364 
134, 182, 191, 333, 

364 
134, 182, 191, 

333, 364 
134, 182, 191, 

333, 364 



 

 
 

Gene Product Gene Name PHMB Triclosan BAC Silver nitrate Cinnamaldehyde 
Furanone 

C30 
F-DPD 

[citrate (pro-3S)-lyase] ligase citC         1.16809445     

1-(5-phosphoribosyl)-5-[(5- 
phosphoribosylamino)methylideneamino]imidazole-4- 
carboxamide isomerase hisA     -1.44642         

1,4-dihydroxy-2-naphthoyl-CoA synthase menB     -1.00867         

10 kDa chaperonin groES         -2.310612923     

1-pyrroline dehydrogenase   1.444561 1.038662   1.403760771       

2,3-bisphosphoglycerate-independent phosphoglycerate 
mutase gpmI -1.21346     -1.522463598 -1.233188273     

2,5-diketo-D-gluconate reductase A dkgA 1.420137             

23S rRNA pseudouridine synthase E rluE         -1.351049065     

23S rRNA pseudouridylate synthase B rluB           -1.116090514   

2'-5' RNA ligase   1.714171 1.578466           

2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase ispF     -1.24897   -1.063203493     

2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase ispD         1.009354875     

2-Cys peroxiredoxin tpx         1.159104772     

2-dehydro-3-deoxy-6-phosphogalactonate aldolase dgoA 2.874909 1.5404 2.236014 1.972597734 1.4771281 2.689877369   

2-deoxyribose-5-phosphate aldolase deoC           1.100350819   

2-hydroxy-3-oxopropionate reductase garR -3.23155 5.484397 3.964862 -3.131713076 -1.86660665 -1.786009102   

2-hydroxy-3-oxopropionate reductase glxR       2.941784872 4.643161487 5.018143166 2.75739 

2-methylcitrate dehydratase 
prpD; 
mmgE   -1.12799         -1.01523 

2-oxoglutarate dehydrogenase subunit E1 sucA       1.198951029 1.14293087     

2-succinyl-5-enolpyruvyl-6-hydroxy-3- cyclohexene-1-
carboxylic-acid synthase menD     -1.09244         

2-succinylbenzoate-CoA ligase menE     -1.10516         

30S ribosomal protein rpsV 1.831126             



 

 
 

30S ribosomal protein S1 rpsA           -1.19196478   

30S ribosomal protein S11 rpsK     -1.47585     -1.429954085   

30S ribosomal protein S13 rpsM     -1.12972     -1.180682361   

30S ribosomal protein S14 rpsN     -1.14466   -1.030232607 -1.082494456   

30S ribosomal protein S15 rpsO       -1.001262476   -1.005409204   

30S ribosomal protein S17 rpsQ   -1.21567 -1.43211     -1.666356626   

30S ribosomal protein S18 rpsR     -1.22592   -1.33652143 -1.213549098   

30S ribosomal protein S19 rpsS     -1.74934   -1.159559291 -1.532937506   

30S ribosomal protein S2 rpsB           -1.293329798   

30S ribosomal protein S20 rpsT       -1.180615927       

30S ribosomal protein S3 rpsC     -1.73253     -1.620294829   

30S ribosomal protein S4 rpsD     -1.27738     -1.224962074   

30S ribosomal protein S5 rpsE     -1.54199   -1.135784995 -1.252538051   

30S ribosomal protein S6 rpsF     -1.18541   -1.556098676 -1.076156616   

30S ribosomal protein S8 rpsH     -1.17307   -1.110666739 -1.095071297   

30S ribosomal protein S9 rpsI           -1.310800278   

3-deoxy-manno-octulosonate cytidylyltransferase kdsB -1.00144   -1.40791   -1.311342939 -1.000112264   

3-ketoacyl-CoA thiolase fadA       1.134335176       

3-oxoacyl-ACP synthase I fadB   -1.17539           

4-alpha-glucanotransferase malQ -1.51841 -1.36164   -1.864476168       

4-amino-4-deoxy-L-arabinose lipid A transferase arnT     -1.03045         

4-aminobutyrate aminotransferase gabT 1.826855 1.33875   2.120603342 -1.314105035   -1.61882 

4-deoxy-4-formamido-L-arabinose- phosphoundecaprenol 
deformylase ArnD arnD     -1.49571         

5-(carboxyamino)imidazole ribonucleotide synthase purK   1.227298 1.464015 2.127298466   1.254656717   

50S ribosomal protein L1 rplA           -1.028064134   

50S ribosomal protein L15 rplO   -1.46824 -2.04566   -1.086026821 -1.626519973 -1.44876 



 

 
 

50S ribosomal protein L16 rplP   -1.01205 -1.65238     -1.653473007   

50S ribosomal protein L17 rplQ     -1.04097 -1.028106502   -1.349466308   

50S ribosomal protein L18 rplR     -1.58002   -1.237951548 -1.450589297   

50S ribosomal protein L2 rplB     -1.92057   -1.200612652 -1.65122741   

50S ribosomal protein L20 rplT           -1.078353557   

50S ribosomal protein L22 rplV   -1.0069 -1.9257   -1.220454975 -1.697205488   

50S ribosomal protein L23 rplW     -1.64564   -1.050394094 -1.33320688   

50S ribosomal protein L25 rplY       -1.628564893 -1.377747225     

50S ribosomal protein L28 rpmB       -1.155478457   -1.041489705   

50S ribosomal protein L29 rpmC   -1.28014 -1.47482     -1.711052068   

50S ribosomal protein L3 rplC     -1.30582     -1.223458411   

50S ribosomal protein L30 rpmD   -1.22959 -1.79843   -1.118659501 -1.513073683   

50S ribosomal protein L31 type B ykgM         1.935360576 1.015600104   

50S ribosomal protein L4 rplD     -1.67878   -1.143041125 -1.454587806   

50S ribosomal protein L5 rplE     -1.1121     -1.081241426   

50S ribosomal protein L6 rplF     -1.29644   -1.147790715 -1.229610554   

50S ribosomal protein L9 rplI     -1.35484   -1.224486129 -1.44226617   

5-hydroxyisourate hydrolase hiuH         1.146347076     

5-keto-4-deoxy-D-glucarate aldolase garL -2.75964     -2.931733744 -2.008820976 -1.104624822   

6-phosphogluconolactonase pgl     -1.05628         

7-alpha-hydroxysteroid dehydrogenase hdhA 1.336381     1.040030273   1.308030441   

7-cyano-7-deazaguanine synthase queC   -1.20112           

ABC transporter ATP-binding protein sufC 1.341158 1.254164     -1.374102694     

ABC transporter ATP-binding protein           -1.190839498     

ABC transporter permease   1.871876 1.116964 -1.77753 1.737642908 -1.372355102 1.198658616   

ABC transporter substrate-binding protein   1.142414   -1.1976 1.209524574 1.645268116 1.995362659 -1.01297 

ABC transporter substrate-binding protein   1.066338   1.548703 2.330193863   1.286461683   



 

 
 

ABC transporter substrate-binding protein   2.951338     1.608735498       

ABC transporter substrate-binding protein   2.017172             

acetoacetate metabolism regulatory protein AtoC atoC         1.308087919 1.329818347   

acetyl-CoA--acetoacetyl-CoA transferase subunit alpha atoD     1.405937         

acetyl-coenzyme A synthetase acs 2.247153 2.296064 1.12442 2.440046655 1.508443584 1.063430789   

acetylesterase aes         1.076036214     

acetylglutamate kinase argB   1.103282 -1.11514         

acetylornithine aminotransferase argD 1.834893 1.600074 1.067413 1.959973467       

acetyltransferase         1.068414864       

acid stress chaperone HdeB hdeB 2.477095   -2.71022 1.038579085 -1.015538793   -1.65106 

acid stress protein IbaG ibaG         -1.127971925     

acid-resistance protein HdeA hdeA 2.266714   -2.89704 1.035602689 -1.369620592   -1.7355 

acid-resistance protein HdeD hdeD 1.658105   -3.29673   -2.297380649   -2.26446 

acid-shock protein           1.149192399     

ACP phosphodiesterase acpH         -1.131024505     

acrEF/envCD operon repressor envR     1.102309         

acyl-coenzyme A dehydrogenase fadE 1.020996       1.211244424     

adenosine deaminase add   -1.13726 -1.41387 -1.098748079 -1.407062204     

adenosylcobinamide-GDP ribazoletransferase cobS   -1.32791           

adenylate kinase adk         -1.28779872     

adenylyl-sulfate kinase cysC 1.449152   1.364652   2.111373905 1.105314339   

aerotaxis receptor         1.163153694     -1.02587 

AfaC protein afaC   -2.8207     1.43468877   2.591368 

AfaE protein afaE         1.355883772   1.004838 

alanine racemase alr       1.094049557       

alcohol dehydrogenase           1.025708304     

aldehyde dehydrogenase   1.306282     1.027312398 1.044629625   -1.35885 



 

 
 

aldehyde dehydrogenase           1.125533382     

aldehyde dehydrogenase           -2.147439647     

aldehyde reductase Ahr ahr   1.029725 -1.47058   -3.385406615   -1.80015 

aldose isomerase   1.168262 -2.30442 -1.57799         

alkyl hydroperoxide reductase subunit C ahpC       -1.191743323       

allantoin permease allP 3.8272 4.783063 3.190361 3.63888144 4.418254293 4.766017366 1.808667 

alpha/beta hydrolase           1.335109425     

alpha-amylase malS -1.73299   -1.45695 -1.817010463 -3.921428013   -1.94561 

alpha-glycosidase aglB -1.92397 -1.19357   -1.719947721   -1.206456678   

alpha-ketoglutarate transporter         1.077564254       

altronate hydrolase uxaA         1.312644974     

amidophosphoribosyltransferase purF     1.236614 1.676717484   1.140688513   

amino acid ABC transporter permease   1.163996         1.009576433   

amino acid ABC transporter permease   1.235737             

amino acid ABC transporter substrate-binding protein   1.249931     1.683464379 1.095464849     

amino acid ABC transporter substrate-binding protein   1.138493 1.163659   1.030154159       

amino acid permease   1.86934     1.595100469       

amino acid permease   1.081148             

amino acid transporter   1.341336 1.668109 1.046651 1.608289332 1.370168232     

aminopeptidase PepB pepB     -1.117         

ammonium transporter amtB         1.437101475     

anaerobic C4-dicarboxylate transporter DcuB dcuB -1.96738 -1.87326   -3.082431438       

anaerobic C4-dicarboxylate transporter DcuC dcuC   -1.11558   -1.550365413       

anaerobic glycerol-3-phosphate dehydrogenase subunit B glpB         1.412832318     

anaerobic sulfatase maturase       1.341162   2.182842477     

anaerobic sulfatase maturase             2.214274875   

anti-adapter protein IraD iraD         1.556798714     



 

 
 

antigen 43 flu     4.47401 4.803497926 1.135426671   -1.20156 

antiporter       -2.54033 1.953678198 -1.710649992 1.072925758 -2.16105 

antiporter       -1.18131 -1.73031499       

antiporter uhpT         1.05004768     

antitoxin       1.055057         

antitoxin ChpS chpS 1.209175       1.085214294     

antitoxin PrlF prlF     1.05521 -1.248050736       

apo-citrate lyase phosphoribosyl-dephospho-CoA 
transferase citX -2.21409 -1.71036 -1.55414 -2.039623371 -1.278711792     

arabinose ABC transporter substrate-binding protein araF   -1.03576     1.189737742     

AraC family transcriptional regulator           1.434049946   -1.13859 

AraC family transcriptional regulator           -1.258937216     

AraC family transcriptional regulator           1.554699817     

arginine ABC transporter ATP-binding protein   1.367328             

arginine ABC transporter permease ArtQ artQ         -1.000386038     

arginine decarboxylase           -1.028336407     

arginine N-succinyltransferase astA 1.815495 1.534846 1.084137 2.034019267 1.184467202     

arginine transport ATP-binding protein ArtP artP       1.062400873       

arginine:agmatine antiporter adiC -1.20646   -1.00099 -1.355293522 -1.020229521     

asparagine synthetase A asnA       1.363531516       

aspartate carbamoyltransferase catalytic subunit pyrB -1.06494 -1.06963   -1.222767917       

aspartate carbamoyltransferase regulatory subunit pyrI   -1.04631           

aspartate-semialdehyde dehydrogenase asd   -1.18773           

aspartate--tRNA ligase aspS         -1.142620767     

ATP-binding protein           -1.724693301   -1.26511 

ATP-dependent RNA helicase           -1.170145595     

ATP-dependent RNA helicase RhlE rhlE         -1.714668148     



 

 
 

ATP-dependent RNA helicase SrmB srmB         -1.127056998     

ATP-independent periplasmic protein-refolding 
chaperone spy   1.737543 1.352764         

autonomous glycyl radical cofactor GrcA grcA   -1.63167   -1.098330934       

bacterioferritin bfr 1.672041     1.122509556 -2.542938475 1.012768593 -1.50697 

bacterioferritin-associated ferredoxin bfd     1.058145         

barnase inhibitor yhcO         -1.302293212     

baseplate assembly protein           -1.059862019     

baseplate assembly protein           -1.13200352     

baseplate protein             -1.220229697   

beta-glucuronidase uidA 1.485712     1.169642002   1.047702579   

beta-hydroxydecanoyl-ACP dehydratase fabA -1.21934         -1.0930889   

bifunctional glucose-1-phosphatase/inositol phosphatase agp         1.110304254     

bifunctional imidazole glycerol-phosphate 
dehydratase/histidinol phosphatase hisB     -1.2281         

bifunctional isocitrate dehydrogenase kinase/phosphatase aceK 1.34082 1.205086   1.967817577       

bifunctional 

phosphoribosylaminoimidazolecarboxamide 
formyltransferase/inosine monophosphate 

cyclohydrolase purH   1.108741 1.486147 1.342942298   1.425663559   

bifunctional protein PutA putA 1.343935 1.314752   2.499074033       
bifunctional UDP-glucuronic acid oxidase/UDP-4-amino-
4-deoxy-L-arabinose formyltransferase       -1.73362         

biofilm regulator BssR bssR 1.514282     1.298997828 2.283179479     

biopolymer transporter ExbB exbB -1.0595             

bis(5'-nucleosyl)-tetraphosphatase (symmetrical) apaH         -1.20289525     

BlaEC family class C beta-lactamase         -1.016028515       

branched chain amino acid ABC transporter substrate-
binding protein     1.130094   1.109597307       



 

 
 

branched chain amino acid ABC transporter substrate-
binding protein     1.747837           

C4-dicarboxylate ABC transporter   1.171995     1.654275289       

C4-dicarboxylate ABC transporter permease   1.389984       1.18835249     

C4-dicarboxylate ABC transporter permease           1.09091475 1.22748116   
C4-dicarboxylate ABC transporter substrate-binding 
protein   1.033891     1.040680952 1.119262408     

C4-dicarboxylate ABC transporter substrate-binding 
protein   1.011859       1.383305389     
C4-dicarboxylate ABC transporter substrate-binding 
protein   1.160715             

carbamate kinase arcC 1.402666       1.084518789     

carbamoyl-phosphate synthase large chain carB -2.46304 -1.19064 -2.24938 -2.852347288 -2.543090814 -2.673487858   

carbamoyl-phosphate synthase small subunit carA -2.2989   -2.03899 -2.510304109 -2.409288058 -2.197759504   

carbohydrate kinase lyx     -2.3361   1.389227366     

carbon starvation induced protein   2.52098 1.031843   3.126593706 -1.161642353 1.095717455 -1.33747 

carbon starvation protein A yjiY 1.14129     1.708920647 1.854916762     

carboxymethylenebutenolidase         1.010945887       

carnitinyl-CoA dehydratase caiD     -1.4426     -1.304482445 -1.25623 

catalase HPII katE 1.361509     1.039827739 -1.224465247   -1.06304 

catalase peroxidase katG     -1.05596         

cation acetate symporter actP 1.017613     1.58829928       

cell division protein FtsL ftsL         1.041154951     

cell division protein ZapB zapB         1.15268834     

cell envelope biogenesis protein TonB tonB         1.130527202     

cell filamentation protein Fic fic         -1.535593392   -1.22583 

chaperone modulatory protein CbpM cbpM     -1.36464         

chaperone protein ClpB clpB         -1.170660507     



 

 
 

chemotaxis protein CheA cheA     -3.60171   -2.752982718   -3.75748 

chemotaxis protein CheR cheR     -3.58826   -2.137465152   -2.68669 

chemotaxis protein CheW cheW     -3.21408   -2.310815515   -2.91761 

chemotaxis response regulator protein-glutamate 

methylesterase cheB     -3.13862   -1.619025951   -2.94924 

chlorohydrolase/aminohydrolase ssnA 1.379886             

chromate reductase chrR6     -1.29943         

citrate (Si)-synthase gltA 1.257167     1.245182695 1.001889529     

citrate lyase ACP citD -3.4082 -2.26325 -1.04895 -2.437856098 -2.274517176   -1.29501 

citrate lyase subunit alpha citF -2.51412 -1.68348 -1.48412 -3.383296213 -2.144341319     

citrate lyase subunit beta citE -2.36379 -1.66913 -1.67948 -2.508339596 -2.1344036     

class II aldolase         1.296287066       

class II fumarate hydratase fumC 1.128007     1.074988488 1.356843161     

cold-shock protein   -1.39145   1.878404 -1.196464431       

cold-shock protein       1.665492     -1.666331042   

cold-shock protein CspD cspD 1.253809     1.024647882 2.368019732     

cold-shock protein CspE cspE -1.00681         -1.121094496   

cold-shock protein CspG cspG   1.783565 3.63428 -1.020701041   -1.018064208 1.214205 

cold-shock protein CspH cspH     2.231032       1.070326 

colicin V production protein cvpA     1.251708 1.641981206 1.444337727     

copper homeostasis protein CutC cutC         1.127885781     

crossover junction endodeoxyribonuclease RuvA ruvA         -1.140152678     

crossover junction endodeoxyribonuclease RuvC ruvC -1.03979             

Crp/Fnr family transcriptional regulator           1.072237187     

CTP synthase pyrG         -1.177882954     

c-type cytochrome biogenesis protein CcmF ccmF   -2.98523 -1.09124         

curli production assembly/transport component CsgE csgE         1.118975628     



 

 
 

cyclic amidohydrolase   3.772421 3.895695 2.366878 4.04417938 3.674727214 4.322204141 1.339718 

cyclic di-GMP phosphodiesterase       1.033999   1.066877555     

cyclic-guanylate-specific phosphodiesterase       -3.61174   -2.778750569   -3.76161 

cyd operon protein YbgE ybgE   -1.09213           

cysteine desulfurase   1.035085 1.276611     -1.053722693     

cysteine desulfuration protein SufE sufE 1.189079 1.218943           

cysteine synthase A cysK         1.781142774     

cysteine synthase B cysM   1.024106           

cysteine/O-acetylserine efflux protein eamB       -1.086798899       

cytochrome bd oxidase subunit I       -1.01743   -1.348195708     

cytochrome bd-I ubiquinol oxidase subunit 1 cydA   -1.16457           

cytochrome bd-I ubiquinol oxidase subunit 2 cydB   -1.13893           

cytochrome bd-I ubiquinol oxidase subunit X cydX   -1.21438           

cytochrome bo(3) ubiquinol oxidase subunit 3 cyoC       1.117706284       

cytochrome c nitrite reductase Fe-S protein           1.256565748     

cytochrome C nitrite reductase pentaheme subunit nrfB         1.008054035 1.09030139   

cytochrome c nitrite reductase subunit NrfD nrfD         1.238316792     

cytochrome c-type biogenesis protein CcmE ccmE   -2.08492           

cytochrome c-type biogenesis protein CcmH ccmH   -2.41762   -1.052621066       

cytochrome c-type protein NapC napC   -2.89464           

cytochrome o ubiquinol oxidase subunit IV         1.001055686       

cytochrome ubiquinol oxidase subunit I         1.297980385       

cytochrome ubiquinol oxidase subunit II         1.185581474       

cytochrome-c peroxidase           1.755665482     

D-alanyl-D-alanine carboxypeptidase dacD     -1.17813       -1.04937 

D-amino acid dehydrogenase small subunit   1.093984     1.735825869 1.205829588     

DEAD/DEAH box family ATP-dependent RNA helicase           -1.096299571 -1.148671314   



 

 
 

dehydratase           1.429403113     

dethiobiotin synthase bioD       -1.281803834       

D-galactarate dehydratase garD -2.44282   1.240067 -2.396151897       

dienelactone hydrolase       -1.0651   -1.150420384   -1.14432 

diguanylate phosphodiesterase yhjH   1.48369           

dihydrodipicolinate synthase family protein   1.493167       1.247962322     

dihydrolipoamide succinyltransferase sucB   1.055291           

dihydrolipoyllysine-residue acetyltransferase component 
of pyruvate dehydrogenase complex aceF -1.38858 -1.55078 -2.10756 -1.628558172 -1.136276565 -1.581398695 -1.10527 

dihydroorotase pyrC         -1.055110241     

dihydropyrimidine dehydrogenase subunit A preA   -1.0114 -1.25188   1.212241122     

dihydropyrimidine dehydrogenase subunit B preT   -1.17019 -1.38855   1.350152221     

dihydroxyacetone kinase subunit DhaK dhaK         1.091863232 1.042566592   

dihydroxyacetone kinase subunit DhaL dhaL         1.107321778 1.012549766   

dihydroxyacetone kinase subunit DhaM dhaM         1.234198049     

dimethylsulfoxide reductase   1.22579     1.08527203       

dimethylsulfoxide reductase subunit A         -1.361289092       

dipeptide transport ATP-binding protein DppF dppF 2.170213 2.443573 1.184617 1.841355913   1.194537493   

DNA alkylation response protein   1.319103   -1.34063 1.193018568 -1.276221876   -1.63113 

DNA cytosine methyltransferase           -1.167483738     

DNA cytosine methyltransferase           1.07931475     

DNA gyrase inhibitor               -1.20678 

DNA replication protein DnaC dnaC         -1.246271281     

DNA-binding protein       1.222387       1.093105 

DNA-binding response regulator     -1.01673     -1.257981199     

DNA-binding response regulator           1.050156978     

DNA-binding response regulator           -1.140963115     



 

 
 

DNA-binding transcriptional activator,3HPP-binding           1.151767329   -1.17397 

DNA-binding transcriptional regulator DsdC dsdC         1.280278822     

DNA-binding transcriptional regulator KdgR kdgR   -1.34876           

DNA-directed RNA polymerase subunit alpha rpoA     -1.22566     -1.367012584   

DNA-directed RNA polymerase subunit beta rpoB     -1.57035   -1.462335803 -1.005579127   

DNA-directed RNA polymerase subunit beta'     -1.17885 -1.76741   -1.158398573 -1.259022844   

DNA-invertase         -1.080803659       

D-ribose ABC transporter substrate-binding protein   1.014619       1.16819799     

D-ribose pyranase rbsD         1.676995359     

D-ribose transporter ATP-binding protein rbsA         2.371816418     

D-serine/D-alanine/glycine transporter cycA   1.235808   1.351380396 1.226726629     

dTDP-4-dehydrorhamnose 3,5-epimerase rfbC     -1.62216         

dTDP-glucose 4,6-dehydratase rmlB         -1.269313279     

DUF1107 domain-containing protein           1.060128475     

DUF1198 domain-containing protein       1.017456         

DUF1338 domain-containing protein         1.050410444 -1.585753967   -1.45669 

DUF2542 domain-containing protein           1.136701274     

DUF2810 domain-containing protein   -1.03537     -1.059478815       

DUF883 domain-containing protein       -2.3966   -3.803982618   -2.67494 

DUF903 domain-containing protein     1.153178           

D-xylose ABC transporter ATP-binding protein   1.004002       2.476900936     

ECF RNA polymerase sigma-E factor rpoE -1.0213             

electron transport complex subunit A       1.020664       1.07132 

electron transport complex subunit D rnfD         -1.230107239     

electron transport complex subunit G           -1.20821718     

elongation factor 4 lepA         -1.077270531     

elongation factor G fusA           -1.023832359   



 

 
 

elongation factor P-like protein YeiP yeiP         -1.262986945     

elongation factor Ts tsf           -1.269146834   

endopeptidase     4.687891           

entericidin A ecnA             1.006408 

entericidin B ecnB 1.321201     1.279626158 -3.255248342   -1.06293 

ethanolamine ammonia-lyase heavy chain eutB     -1.17646       -1.29825 

ethanolamine ammonia-lyase small subunit eutC     -1.19147       -1.10137 

ethanolamine utilization protein EutA eutA     -1.06665         

ethanolamine utilization protein EutP eutP         1.35403825     

exclusion suppressor FxsA fxsA -1.74969       -1.262649609     

exodeoxyribonuclease VII large subunit xseA         -1.14149151     

FAD-binding protein ydiJ   1.331557   1.001349126       

fatty acid oxidation complex subunit alpha fadB 1.337796     1.572931993       

Fe(2+) transport protein A feoA       -1.423248504       

Fe(3+) dicitrate transport ATP-binding protein FecE fecE         -1.299491398     

fe(3+) dicitrate transporter fecA fecA   1.105877     -1.189995838     

ferredoxin     -2.6313 2.056382     1.01868493 1.304731 

ferredoxin       1.427208         

ferredoxin-type protein NapG napG   -4.05857           

ferredoxin-type protein NapH napH   -4.37382           
ferric iron reductase involved in ferric hydroximate 
transport fhuF     1.481058   2.083685832   1.145405 

ferrichrome outer membrane transporter fhuA     1.032519   1.201332944     

ferrous iron permease EfeU efeU       1.211491178 1.126186226     

ferrous iron transporter C           1.01798874     

Fe-S cluster assembly protein SufB sufB 1.374202 1.143138     -1.208143693 1.032355199 -1.18302 

FeS cluster assembly protein SufD sufD   1.07896     -1.510962201   -1.5207 



 

 
 

fimbrial adhesin protein           1.227415705     

fimbrial chaperone protein FimC fimC       -1.460495477       

fimbrial outer membrane usher protein           1.016962381     

fimbrial protein       1.147297         

fimbrial protein FimD fimD   1.252401           

fimbrial protein Type 1, A chain fimA   2.151372           

fimbrial yfcV yfcV 1.21276 1.02406     1.827668275     

FKBP-type peptidyl-prolyl cis-trans isomerase fkpA -1.00537             

flagella synthesis chaperone protein FlgN flgN     -1.06725       -1.22551 

flagellar assembly protein H fliH -1.42356   -1.47985   -1.464887285   -1.62078 

flagellar basal body L-ring protein flgH -1.00094   -1.15809   -1.09647634   -1.44769 

flagellar basal body rod modification protein FlgD flgD -2.07152   -2.99159   -2.421987203   -2.78106 

flagellar basal body rod protein FlgB flgB -1.35681       -1.124573106   -1.30909 

flagellar basal body rod protein FlgC flgC -2.35356   -3.83487   -2.641818714   -2.31754 

flagellar basal body rod protein FlgG flgG -1.25593   -1.24453       -1.67164 

flagellar basal-body rod protein FlgF flgF -1.08496             

flagellar biosynthesis protein FlhA flhA -1.25666   -1.01842       -1.07308 

flagellar biosynthesis protein FlhB flhB     -1.389   -1.558100008   -1.19904 

flagellar biosynthesis protein FliO fliO -1.53125   -1.92901       -1.47052 

flagellar biosynthesis protein FliR fliR     1.070856         

flagellar biosynthetic protein FliP fliP -1.09792   -1.70571   -1.588900631   -1.20238 

flagellar brake protein YcgR ycgR     -1.86587   -1.738706246   -1.69259 

flagellar capping protein fliD     -3.24274   -2.75086122   -3.16955 

flagellar export chaperone FliS fliS     -2.79478   -1.553995241   -2.32108 

flagellar hook protein FlgE flgE -1.29363   -1.56139   -1.792255711   -1.70643 

flagellar hook-associated protein 3 flgL     -1.87658   -1.179462861   -1.74504 

flagellar hook-associated protein FlgK flgK     -3.19052   -2.017976073   -2.65516 



 

 
 

flagellar hook-length control protein FliK fliK -1.78451   -2.49466   -2.432154514   -2.46499 

flagellar motor protein MotA motA     -2.97271   -2.246027311   -3.09566 

flagellar motor switch protein FliG fliG -1.12248   -1.67689   -1.23526912   -1.58122 

flagellar motor switch protein FliM fliM -1.6174   -2.08467   -1.997080898   -1.74744 

flagellar motor switch protein FliN fliN -2.11177   -2.9028   -2.281867819   -2.11771 

flagellar M-ring protein FliF fliF -2.54583   -2.40843   -1.964029496   -1.51139 

flagellar P-ring protein flgI -1.15992   -1.5013   -1.093739287   -1.2037 

flagellar protein fliJ fliJ -1.61916   -3.0546   -2.344725922   -2.56522 

flagellar protein fliL fliL -1.91266   -2.19794   -1.987716366   -1.90897 

flagellar protein FliT fliT     -1.39665   -1.683921962   -1.5181 

flagellar regulatory protein FliZ fliZ     -1.88889   -1.493573615   -1.75954 

flagellin fliC     -6.48211   -2.28560547   -4.75505 

flagellum-specific ATP synthase fliI -1.29987   -1.30719       -1.58307 

flavohemoprotein hmp 1.451416       1.198232011 1.168902229   

Fml fimbriae subunit fmlA -1.41202   -1.30109 -1.220985034   -1.089303994   

FMN-binding protein MioC mioC     1.225233         

formate acetyltransferase pflB   -1.4879   -1.288073411       

formate dehydrogenase-N subunit alpha fdnG -1.07216   -1.05222 -1.054218764 -1.548641123     

fructose 1,6-bisphosphatase   -1.01867     -1.029124298 1.647247854     

fructose-bisphosphate aldolase   1.560542 1.023154   1.265661466 -1.857051453     

fructose-bisphosphate aldolase gatY         2.606781815   -1.46132 

fructuronate reductase uxuB   1.146524           

fuculose phosphate aldolase fucA         1.146592349     

fumarate hydratase fumC 1.180062 -1.34245   1.478118839 -1.403356758     

fumarate hydratase 
 

-1.77265     -2.869453902       

fumarate reductase flavoprotein subunit frdA -1.27133     -1.918520696       

fumarate reductase iron-sulfur subunit frdB -1.09306     -1.675131255       



 

 
 

fumarate reductase subunit C frdC -1.0103     -1.524198093       

fumarate reductase subunit D frdD -1.13539     -1.381625913       

GABA permease gabP 2.2354     2.769278781       

galactonate oxidoreductase lgoD 1.451892 1.326875   1.379041012       

galactonate transporter   -2.61609   1.73194 -2.562229226 -1.780845992     

galactose ABC transporter substrate-binding protein mglB       1.70243694       

galactose/methyl galactoside import ATP-binding protein 
MglA mglA 1.309831     1.584908819 1.631405468     

galactose-proton symporter galP   1.067409           

galactoside ABC transporter permease MglC mglC       1.07073029 1.186792869     

GalU regulator GalF galF         -1.218276615     

gamma-glutamyltransferase ggt         -2.395410552   -1.55164 

geranyltranstransferase ispA         -1.093936892     

GlcNAc-PI de-N-acetylase     2.563262           

glucans biosynthesis protein C opgC; mdoC             1.088962 

glucarate dehydratase gudD -2.61433   -1.24798 -2.442871659 -2.005785742 -1.675264389   

glucarate dehydratase   -2.54197     -2.153823809 -1.481383449 -1.243312362   

glucarate transporter gudP -2.3014   1.139103 -1.800540053 -1.255322256     

glucitol operon activator protein gutM   -1.04084           

glucohydrolase   -3.98138 -1.48517   -4.813904768       

glucose-1-phosphate thymidylyltransferase 2 rffH     -1.382   -1.484963768     

glucuronide uptake porin UidC uidC   1.047674           

glutamate ABC transporter permease         1.206203888 1.182056801     

glutamate ABC transporter permease         1.236403263       

glutamate decarboxylase alpha gadA 2.062303   -2.15394 1.409579891 -1.616993947   -1.56334 

glutamate decarboxylase beta gadB 2.30645   -3.28715 1.749649747 -2.860443165   -2.32593 

glutamate--cysteine ligase gshA 1.274822       -1.692661684     



 

 
 

glutamate--tRNA ligase gltX         -1.214263668     

glutaminase 1 glsA1 2.074415   -1.834 1.69770846 -3.109992398 1.080811343 -2.21477 

glutamine ABC transporter permease glnP             1.272332 

glutamine amidotransferase     1.282822     -2.382913019     

glutamine amidotransferase               -1.39347 

glutamine synthetase glnA             1.219407 

glutamine--tRNA ligase glnS         -1.053463536     

glutamyl-tRNA amidotransferase   1.776669           1.032959 

glutathione ABC transporter permease       1.263066         

glutathione-dependent reductase   1.291179     1.071903695       

glutathione-regulated potassium-efflux system ancillary 
protein KefF kefF         -1.154056521     

glutathione-regulated potassium-efflux system ancillary 
protein KefG kefG         1.228491047     
glutathione-regulated potassium-efflux system protein 
KefC kefC             -1.08731 

glycerate kinase   -2.63081     -2.278301975       

glycerol-3-phosphate transporter permease glpT 1.843262     2.342955678   1.235007201   

glycerophosphoryl diester phosphodiesterase glpQ         1.3523036     

glycine cleavage system protein H gcvH         1.100117705     

glycine--tRNA ligase subunit alpha glyQ         -1.335470953     

glycogen synthase glgA 1.759589     1.223112427 2.611079807 1.066388737   

glycolate oxidase iron-sulfur subunit glcF 1.087464 1.323866   1.307560987 1.231130591     

glycolate oxidase subunit GlcE glcE 1.373988 1.163797   1.801281332 1.660825282     

glycolate permease GlcA glcA 1.710411 1.636938   2.242751762 2.22574605 1.121604711   

glycoporin           1.372531709     

glycosyl transferase       -1.1636         

glycosyl transferase family 2       -1.04157         



 

 
 

glycosyltransferase     1.046937           

glyoxylate carboligase gcl   4.931055 3.255242 1.486417226 2.020715432 3.623064643 1.90583 

GMP synthetase guaA     -1.01431   -1.320587245     

GTP cyclohydrolase II ribA -1.02904     -1.207414158       

GTPase ObgE/CgtA obgE     -1.30115   -1.160265437   -1.14212 

GTPase-activating protein           -1.391013536     

GTP-binding protein           -1.069911482 -1.109551908   

head protein     -1.01061 -1.37779   -1.265942152     

heat-inducible protein       1.095443         

heat-shock protein Hsp15 hslR         -1.640454223     

heat-shock protein IbpB ibpB             1.117633 

helix-turn-helix transcriptional regulator hqeH 1.957311 1.715264 -1.59326 1.551642582   1.222529616 -1.10969 

heme ABC exporter ATP-binding protein CcmA ccmA   -2.244           

heme ABC transporter ATP-binding protein       1.294371   1.095399982     

heme ABC transporter permease     -2.4106           

heme exporter protein CcmB ccmB   -2.2822           

heme exporter protein D ccmD   -2.52825           

hemolysin expression-modulating protein Hha hha     1.051953         

high-affinity branched-chain amino acid transport ATP-
binding protein  livF 1.078275             

histidine phosphatase family protein               1.212996 

histidine transport ATP-binding protein HisP hisP         1.003349021     

homoserine O-succinyltransferase metAS       1.240101386       

HslU--HslV peptidase ATPase subunit hslU     -1.16066   -2.090489844     

HslU--HslV peptidase proteolytic subunit hslV -1.17135       -2.18856508     

HTH-type transcriptional regulator cbl cbl 1.198536       1.777132238     

hydrogenase   -1.08931   -2.26266 -1.867476883 -1.964026057     



 

 
 

hydrogenase 1 b-type cytochrome subunit hyaC     -1.72006   -1.231905742     

hydrogenase 1 maturation protease hyaD     -1.32219         

hydrogenase 2 large subunit hybC     -1.67134   -1.579009334     

hydrogenase 2 small subunit hybO -1.38966     -2.107617561       

hydrogenase assembly protein HypC hypC -1.01461     -1.456426411       

hydrogenase formation protein HypD hypD       -1.001217229       

hydrogenase isoenzymes nickel incorporation protein 
HypB hypB -1.21494     -1.683166123       

hydrogenase-1 operon protein HyaE hyaE     -1.2412         

hydrogenase-1 operon protein HyaF hyaF     -1.35607   -1.010380502     

hydrogenase-2 large chain     -1.12095           

hydrolase   1.816713     1.26201084 -3.069928832   -1.49237 

hydroxyethylthiazole kinase thiM 1.340028             

hydroxyglutarate oxidase   1.84152 1.583003   2.121406606 -1.419152255   -1.30871 

hydroxylamine reductase hcp 1.048176       1.07455264 1.44500107   

hydroxymethylpyrimidine/phosphomethylpyrimidine 
kinase thiD 1.425156             

hydroxypyruvate isomerase hyi 1.893045 5.482994 3.759037 2.085082273 3.720873885 4.49907396 2.476193 

IlvB leader peptide ivbL -1.07917 -1.5763       -1.379438518   

IlvGMEDA operon leader peptide     -1.29563   -1.510469714       

imidazole glycerol phosphate synthase subunit HisH hisH     -1.39534         

IMP dehydrogenase guaB         -1.227369456     

inhibitor of glucose transporter           1.164742522     

inner membrane protein YhjD yhjD         -1.917781763     

inner membrane transport permease YhhJ yhhJ 1.438155         1.07112344   

inositol monophosphatase suhB         -1.025098258   1.279002 

iron-siderophore ABC transporter permease           -1.065671994     



 

 
 

isochorismate synthase EntC entC         1.418858109     

isocitrate lyase aceA 2.161842 1.638174   3.461174061   1.170482645   

isomerase           1.069898224     

ketodeoxygluconokinase   -1.25728             

KHG/KDPG aldolase eda -1.21502 -1.205 -1.20684         

knotted carbamoyltransferase YgeW ygeW   -1.06374   -1.305628328       

L+-tartrate dehydratase subunit beta ttdB -1.258 -1.95835 -1.62162 -2.233886878   -1.066621202   

lactose permease lacY         1.376150841     

L-arabinose isomerase araA     1.031682   1.187055744     

L-arabinose transport system permease protein AraH araH         1.468387143     

L-asparaginase 2 ansB   -1.08919     1.118277667     

leu operon leader peptide leuL -1.01231 -1.12579   -1.887961074   -1.047786262   

LexA-regulated protein, CopB family ybfE     1.058498       1.064692 

L-fucose mutarotase fucU 1.1157       1.02441738     

L-fuculokinase fucK 1.078496             

L-fuculose-phosphate aldolase fucA         1.118791418     

L-galactonate-5-dehydrogenase lgoD     1.073072   1.271221682     

ligand-gated channel protein           1.282359797     

lipid A biosynthesis palmitoleoyl acyltransferase lpxP     1.223499         

lipid kinase YegS yegS         -2.165688885   -1.05206 

lipoprotein     -1.18405   -1.382550002 1.0615249     

L-lactate dehydrogenase lldD -1.21068         -1.241692461   

L-lactate permease       2.528416         

LPS O-antigen length regulator               1.073316 

L-ribulose-5-phosphate 4-epimerase araD     1.160669   1.214129005 1.108658385   

L-serine ammonia-lyase         1.029333842       

L-serine dehydratase     -1.41126   -1.064661055       



 

 
 

lysine decarboxylase CadA cadA         -1.116363421     

lysine--tRNA ligase heat inducible lysS       -1.039761021       

lysogenic protein           1.432100092     

lysozyme inhibitor     1.399339 1.657795         

LysR family transcriptional regulator   1.146253   1.154994   1.240848912     

LysR family transcriptional regulator   1.094233   1.405305   1.344589365     

lytic transglycosylase F       1.013336         

magnesium transporter ATPase mgtA 1.50589   -3.26288   -2.329508518   -1.79006 

major curlin subunit csgA         1.148072191     

major pilus subunit operon regulatory protein papI 1.115487       1.773977687 1.035428005   

malate dehydrogenase mdh         1.287524343     

malate synthase A aceB 1.421364 1.504013   2.344922927       

malate synthase G glcB   1.026546           

malonyl CoA-ACP transacylase fabD     -1.04462         

maltodextrin phosphorylase malP -1.75764 -1.6447   -2.346055504       

maltoporin lamB -1.84977 -1.85237   -1.995522823       

maltose ABC transporter substrate-binding protein MalE malE -2.71742 -2.05282   -2.989503128       

maltose operon protein MalM malM -3.65351     -3.910585532       

maltose transporter membrane protein malF -3.65994 -1.5958   -3.895893802       

maltose/maltodextrin import ATP-binding protein MalK malK -2.34439 -1.49114   -2.588821827       

maltose/maltodextrin transport system permease protein  malG -2.8487 -1.70804   -3.007863584       

manganese efflux pump MntP mntP     1.55864       1.369305 

mannose permease IID component   -1.2462 -1.25046           

mannosyl-3-phosphoglycerate phosphatase yedP       1.17642063 -1.631005238 1.270392517   

MBL fold metallo-hydrolase     1.100794     1.188051395     

MDR efflux pump AcrAB transcriptional activator MarA marA         1.500353974     

membrane protein insertion efficiency factor YidD yidD         -1.590634901     



 

 
 

metal-binding protein ZinT zinT 1.408427       2.045431579 1.187961699   

methyl-accepting chemotaxis protein tsr     -2.22331   -1.421798759   -2.27934 

methyl-accepting chemotaxis protein II tar     -4.48519   -2.395715707   -3.80001 

methylglyoxal synthase mgsA         1.581130436     

methylisocitrate lyase prpB   -1.83938 -1.2346   -2.20777103   -2.51048 

methyltransferase           -1.24702984     

MexE family multidrug efflux RND transporter 

periplasmic adaptor subunit           -5.743801507     

MFS transporter   -1.19122     -1.210640826       

microcompartment protein EutL eutL     -1.09646         

minor capsid protein E     -1.29158 -1.03609     -1.341038577   

molecular chaperone DnaK dnaK -1.08156       -2.347897757     

molecular chaperone FimC fimC   2.20865           

molecular chaperone GroEL groEL         -2.027025467     

molecular chaperone HscC hscC         1.071986831     

molecular chaperone Hsp31 and glyoxalase 3   1.34866             

molecular chaperone Hsp33 hslO         -1.939414913     

molecular chaperone HtpG htpG         -1.388566311     

molecular chaperone TorD torD 1.073508             

molybdopterin biosynthesis protein MoeB moeB 2.105819     1.478168031       

mononuclear molybdenum enzyme YedY yedY         -1.201176485     

monooxygenase           1.393186557     

motility protein B motB     -3.38021 1.068528485 -2.036618344   -2.6389 
multidrug ABC transporter permease/ATP-binding 
protein mdlA       1.152629045 1.002891525     

multidrug efflux RND transporter permease subunit   1.586454   -1.60512   -4.585115772   -1.31656 

multidrug efflux RND transporter permease subunit           -1.872861133     



 

 
 

multidrug export protein EmrA emrA         -1.073751655     

multidrug resistance protein MdtE mdtE 1.720385   -1.89824   -2.728744088   -1.39371 

multidrug resistance protein MdtH mdtH   -1.05956           

multidrug resistance protein MdtN mdtN         1.873964488     

multidrug transporter subunit MdtL mdtL     1.411614         

multiphosphoryl transfer protein   -1.04389 -1.20911   -1.106079174       

murein DD-endopeptidase MepS/Murein LD-
carboxypeptidase spr; yeiV             1.065486 

murein transglycosylase mltA -1.19502 -1.21739   -1.837771345   -2.209907403   

murein transglycosylase B mltB         -1.02412571     

N5-carboxyaminoimidazole ribonucleotide mutase purE   1.363896 2.155122 1.337089327   1.305578705   

N-acetyl-D-glucosamine kinase nagK         -1.191096066     

N-acetylgalactosamine permease IIC component 1 agaC 1.144704 -1.45181 -1.20715 1.400427811 1.066671478     

N-acetylgalactosamine-specific phosphotransferase 
enzyme IIB component 1 agaB 1.305456 -2.51578 -1.69656 1.60074701 1.220144309     

N-acetylglucosamine-6-phosphate deacetylase nagA   -1.88499 -1.51774   1.416986245     

N-acetylmannosamine kinase nanK         1.113070821     

N-acetylmannosamine-6-P epimerase             1.202138269   

N-acetylneuraminate epimerase nanM     -1.12113         

N-acetyltransferase     -1.26774           

NAD(P) transhydrogenase subunit alpha pntA   -1.26693 -1.40155         

NAD(P)-dependent oxidoreductase   -1.24731     -1.28162501       

NAD(P)H dehydrogenase (quinone) wrbA     -1.61166   -1.332632619   -1.3569 

NAD-dependent deacylase cobB         -1.166391742     

NAD-dependent succinate-semialdehyde dehydrogenase gabD 1.65585 1.381397 -1.21345 1.921715629 -1.760195736   -1.72651 

NADH dehydrogenase ndh   -1.25625 -1.00062         

NADH:flavorubredoxin oxidoreductase           1.151502144     



 

 
 

NADH-dependent flavin oxidoreductase           2.082674585     

NADH-quinone oxidoreductase subunit F nuoF     -1.19389         

negative regulator of flagellin synthesis flgM     -1.08619   -1.290015867   -1.44226 

Ni/Fe-hydrogenase b-type cytochrome subunit         -1.158416567       

nickel ABC transporter, nickel/metallophore periplasmic 
binding protein         -1.210945538       

nitrate reductase     -2.56281 2.604453     1.293311756   

nitrate reductase A subunit beta narH   2.171319     -1.782916547     

nitrate reductase catalytic subunit     -3.29377 1.248517     1.106665526   

nitrate reductase molybdenum cofactor assembly 
chaperone NarJ narJ 1.005426 1.9279 -1.5409 1.165775294 -1.780213285   -1.71218 
nitrate reductase molybdenum cofactor assembly 
chaperone NarJ narJ         -2.757549449     

nitrate reductase subunit alpha narZ   2.408206 -2.30304 1.005817494 -1.573224801   -1.70311 

nitrate reductase subunit alpha narZ         -2.856319514     

nitrate reductase subunit beta narH     -2.34683   -2.901841624   -1.88093 

nitrate/nitrite transporter NarK narK -1.53228 1.140004 1.045364 -1.37036816 -1.549252635     

nitrite extrusion protein 2 narU 1.051608   -2.44289 1.104326426 -3.281023732   -1.42838 
nitrite reductase (cytochrome; ammonia-forming) c552 
subunit nrfA         1.05355534 1.035252102   

nitrite reductase large subunit nirB -1.15432   1.034864 -1.045286514   1.085822959   

nitrite reductase small subunit nirD     1.134389     1.298247425   

nitrite transporter NirC nirC     1.925257     1.917414204 1.342738 

nitrogen regulatory protein P-II 2 glnK 1.446277   2.043794 1.459188481 2.672575924 1.606476419 1.09413 

non-canonical purine NTP pyrophosphatase           -1.219535786     

non-heme ferritin ftnA 1.30668 -1.16197     2.224089817     

NrdH-redoxin   1.638894     1.682646781   1.62925904   

N-succinylglutamate 5-semialdehyde dehydrogenase astD 2.102714 1.542596 1.442752 2.044775709 1.161774224 1.119555249   



 

 
 

nucleoid-associated protein     2.482541 -1.07064   -1.653685137     

nucleoside permease       1.023637   1.327281891 1.623917825   

nucleoside permease           1.965854532     

nucleoside recognition pore and gate family inner 
membrane transporter yjiH         1.661124133     

nucleoside triphosphatase nudI     1.083008   1.004656813     

nucleotide exchange factor GrpE grpE -1.26098             

NUDIX hydrolase           -1.057512269     

octanoyltransferase lipB   -1.03101           

oligopeptide ABC transporter substrate-binding protein 
OppA oppA   1.005154     1.083752678     

ornithine decarboxylase speC/F   -1.03564           

osmoprotectant uptake system permease         1.145863758 -1.636571895     

osmoprotectant uptake system substrate-binding protein       -1.06936   -2.769750871   -1.16128 

osmotically-inducible lipoprotein B osmB   2.526407 2.514519         

osmotically-inducible protein Y osmY 1.688076 1.742297 -1.24166 1.512569469 -3.044958711   -1.67963 

o-succinylbenzoate synthase menC     -1.42715     -1.196857424   

outer membrane integrity lipoprotein           -1.034178973     

outer membrane integrity lipoprotein               -1.12233 

outer membrane protein assembly factor BamB bamB           -1.005831077   

outer membrane protein slp slp 1.794826   -1.75972       -1.33313 

outer membrane protein W ompW   -1.18392           

oxidoreductase   1.0758 -1.56693 -1.39018 1.018312413       

oxidoreductase FeS-binding subunit   -1.09558     -1.304173575       

oxidoreductase FixC fixC         1.06112056     

PAS domain-containing sensor histidine kinase phoR 1.086235       1.101716247     

peptidase     1.223884   -1.214760946 1.210830663     



 

 
 

peptidase E pepE -1.47052 -1.00789   -1.61658609       

peptidase M37           -1.112179745     

peptide ABC transporter ATP-binding protein dppD 2.752686 3.339171 1.530426 2.585338291   1.902923284   

peptide ABC transporter permease   2.771301 3.102961 1.937968 3.102405113   2.164611771   

peptide ABC transporter permease   2.80573 3.413521 2.761191 3.380545132   2.789842286   

peptide chain release factor 2 prfB         -1.008969609     

peptidoglycan hydrolase FlgJ flgJ     -1.86839   -1.281698054   -1.8209 

peptidoglycan-binding protein LysM lysM 1.212193       -1.150404662   -1.26425 

periplasmic dipeptide transporter dppA 1.817551 3.502534 1.19989 1.787953476   2.09251152   

periplasmic nitrate reductase, electron transfer subunit napB   -4.26939           

periplasmic protein CpxP cpxP     1.338223         

periplasmic trehalase treA     -1.03856   -2.677415903     

periplasmic trehalase treA             -1.57981 

permease   1.09385 1.722223 2.691906 2.105746044 2.196843252 2.81638144   

permease   3.166126     1.008138888       

peroxiredoxin OsmC osmC 1.141894       -1.409689976   -1.01386 

phage antitermination protein     -1.41915       -1.454177035   

phage encoded cell division inhibitor protein       -2.42178   1.584977656     

phage major tail tube protein         -1.016622941       

phage protein     1.037037           

phage recombination protein Bet bet     -1.31088         

phage Tail Collar domain protein       1.428296         

phage tail protein           1.212611354     

phage-shock protein pspG     1.121886   1.09326646     

phenylalanine--tRNA ligase subunit beta pheT     -1.09626         

pheromone autoinducer 2 transporter               -1.11547 

phosphate acetyltransferase pta         -1.038210631     



 

 
 

phosphate acetyltransferase pta         1.370883926     

phosphate starvation-inducible protein PsiE psiE   1.116247           

phosphate starvation-inducible protein PsiF psiF 1.224139             

phosphoadenosine phosphosulfate reductase cysH 1.449919 3.597341 1.670915   1.868481043     

phosphoadenosine phosphosulfate reductase cysH   1.3325           

phosphoanhydride phosphorylase appA         -1.015018536     

phosphogluconate dehydratase edd -1.22081   -1.3335 -1.372350884 -1.004607413   -1.2474 

phosphogluconate dehydrogenase (NADP(+)-dependent, 
decarboxylating)     -1.26884           

phosphoglycolate phosphatase gph     -1.11185   -1.114957383     

phosphomethylpyrimidine synthase ThiC thiC 2.658962     1.353916389       

phosphonate metabolism protein PhnP phnP   1.051612           

phosphoporin protein E   1.594362     1.704085691       

phosphoribosylamine--glycine ligase purD       1.157156024       
phosphoribosylaminoimidazolesuccinocarboxamide 
synthase purC       1.349215882   1.094066791   

phosphoribosylformylglycinamidine cyclo-ligase purM     1.112934 2.14080823   1.238333929   

phosphoribosylformylglycinamidine synthase purL   1.117734 1.125461 1.398915693   1.221188626   

phosphoribosylglycinamide formyltransferase purN     1.139568 1.104443106       

phosphoribosylglycinamide formyltransferase 2 purT     1.843347 2.196907365   1.728999603   

phosphotriesterase           1.242095981     

plasmid partition protein parA           -1.258236521   

poly(A) polymerase pcnB         -1.04158127     

polyamine ABC transporter ATP-binding protein   1.767649     1.691155213 -2.458348947 1.41340634 -1.12539 

poly-beta-1,6-N-acetyl-D-glucosamine biosynthesis 
protein PgaD pgaD         1.084102326     

Poly-beta-1,6-N-acetyl-D-glucosamine N-deacetylase pgaB     -1.0074         

polysaccharide production threonine-rich protein       1.514398   1.367270386     



 

 
 

polysialic acid capsule synthesis protein KpsS kpsS         1.385160218     

polysialic acid transport ATP-binding protein KpsT kpsT 1.096318       1.161547794     

polysialic acid transporter kpsD     -1.05567   -1.024628604     

polysialic acid transporter KpsM kpsM 1.496602     1.163389028 1.966510022 1.356072468   

porin   1.281174       1.254394078 1.215796299   

porin           1.070898024     

primosomal protein 1 dnaT         -1.180608891     

primosomal replication protein N priB     -1.33689   -1.524813897 -1.272629592   

PrkA family serine protein kinase   1.523657     1.150160015 -2.534518243 1.206781412 -1.54322 

probable cadaverine/lysine antiporter cadB     1.76682       1.506767 

proline/betaine transporter proP         -1.579176691     

propionate catabolism operon regulatory protein PrpR prpR 1.680333 1.218814   1.796650523       

propionate/acetate kinase     -1.07613   -1.039404012 1.080578567     

protease         -1.198916883       

protease 7   1.431444   1.510351   1.294853378 1.697419786   

protease modulator HflK hflK         -1.184968488     

protein AaeX aaeX             1.023228 

protein AfaD afaD   -2.57638   -1.338895434 1.11970708   2.021172 

protein BolA bolA 1.238158             

protein ElaB elaB         -2.42307918   -1.22945 

protein GlcG glcG   1.049112   1.051962552 1.048494083     

protein GnsA gnsA     1.274167         

protein HypA hypA -1.02667     -2.202763432       

protein MtfA mtfA         1.145887734     

protein NrdI nrdI       2.067069127       

protein PhnO phnO         -1.33920729     

protein phosphatase CheZ cheZ -1.22369   -3.99691   -2.614266398   -2.89054 



 

 
 

protein SufA sufA 1.167004       -1.804852172   -1.3133 

protein Syd syd -1.03618       -1.013757497     

protein translocase subunit SecF secF   -1.0187       -1.207155053   

protein translocase subunit SecY secY     -1.1407     -1.40410035   

protein transporter HofC hofC 1.036451 1.026246           

protein TsgA tsgA   1.257335 1.148054       1.270565 

protein TusB tusB         -1.186904657     

protein UmuD umuD         1.06598021     

protein-export membrane protein SecG secG     1.006063       1.166305 

protoheme IX farnesyltransferase cyoE       1.069578098       

pseudouridine kinase psuK     1.193383   1.451442634     

pseudouridine-5'-phosphate glycosidase psuG         1.427061224     

PTS fructose transporter subunit EIIBC fruA         1.040476913     

PTS fructose transporter subunit IIC   1.560703       1.755047435     

PTS galactitol transporter subunit IIC gatC 1.540763   1.119385 1.088015824 1.847141952 1.09718785   

PTS glucose EIICB component ptsG -1.18447       -1.229689862     

PTS mannose transporter subunit EIIAB manX -1.10577 -1.11641   -1.039656313       

PTS mannose/fructose/sorbose transporter subunit IIC sorA -1.1922 -1.40269           

PTS N-acetylgalactosamine transporter subunit IIA     -2.77395 -2.21776 1.154729775 1.388000589     

PTS N-acetylgalactosamine transporter subunit IIB     -2.76798 -1.57568   1.19999167     

PTS N-acetylgalactosamine transporter subunit IIC   1.248252 -2.23891 -1.35454   1.536529368 1.037708752   

PTS N-acetylgalactosamine transporter subunit IID     -2.1401 -1.61204 1.151985262 1.349950671     

PTS N-acetylglucosamine transporter subunit IIABC           1.352720754     

PTS sorbitol transporter subunit IIA     -2.28129 -1.30809         

PTS sugar transporter subunit IIA   1.00079       1.521447255     

PTS sugar transporter subunit IIB glvC         1.045812819     

PTS sugar transporter subunit IIB glvC         1.221192195     



 

 
 

PTS system glucitol/sorbitol-specific EIIB component srlE   -2.07868 -1.13222         

PTS system glucitol/sorbitol-specific EIIC component srlA   -2.02715           

PTS trehalose transporter subunit IIBC treB -4.93242 -2.24455   -5.428954376   -1.015039719   

PulS_OutS family protein       1.137398         

purine-nucleoside phosphorylase       1.393126   1.923018426     

putative cation transport regulator ChaB chaB         -1.646149657     

putrescine transport ATP-binding protein PotG potG       1.023333358       

putrescine-ornithine antiporter potE   -1.66241 -1.19387         

pyrBI operon leader peptide     -1.11102       -1.222739725   

pyridine nucleotide-disulfide oxidoreductase   1.071955   -1.22884   -1.327052095   -1.59003 

pyrimidine utilization protein A       1.158778   1.248184642     

pyruvate dehydrogenase       -1.15848   -3.621986746   -1.64227 

pyruvate dehydrogenase E1 component aceE -1.31552 -1.3458 -1.95774 -1.686989034 -1.368089345 -1.38919925   

racemase               -1.22815 

reactive intermediate/imine deaminase     -2.22273 -1.41699 -1.432581401       

recombination protein RecR recR -1.16536       -1.617314055     

regulator of sigma D rsd       1.082992114       

regulatory protein AriR ariR 1.288055     1.20520338 1.237259558     

respiratory nitrate reductase subunit gamma narI   1.241906     -1.918836457     

restriction endonuclease         -1.019561566       

Rha family transcriptional regulator rha         1.018604304     

ribokinase rbsK 1.165683   1.136679   1.206359262 1.324412867   

ribokinase rbsK         1.178143107     

ribokinase RbsK rbsK 1.241417       1.787017265 1.367908326   

ribonuclease HII rnhB         -1.174549119     

ribonuclease P protein component rnpA         -1.396474658     

ribonuclease PH rph         -1.356906552     



 

 
 

ribonuclease T rnt             1.023681 

ribonucleoside hydrolase RihC rihC         1.04716315     

ribonucleotide-diphosphate reductase subunit beta nrdB 1.207312     1.18857136   1.259252253   

ribose ABC transporter permease rbsC 1.223409             

ribosomal-protein-alanine N-acetyltransferase RimI rimI         -1.299786334     

ribosome modulation factor rmf   -1.60422 -1.1141   1.109433124   -1.08613 

ribosome-associated inhibitor A raiA         1.507080953     

ribosome-binding factor A rbfA     -1.53691     -1.221477238   

RNA chaperone ProQ proQ         -1.443494525     

RNA polymerase sigma factor FliA fliA     -3.40407   -1.929735414   -3.14584 

RNA polymerase sigma factor RpoD rpoD     -1.08857   -1.171647218     

RNA-binding protein           1.270682942     

RNase II stability modulator yciR     -1.10388   -2.139629733   -1.06317 

RpoE-regulated lipoprotein yfeY -1.29099             
S-adenosyl-L-methionine (SAM)-dependent 
methyltransferase PhcB phcB     1.146464         

SCP-2 sterol transfer family protein     -1.09193 -1.00647         

SDR family oxidoreductase       -1.79511         

secretion pathway protein       1.277401         

SecY/SecA suppressor protein       -1.17834   -1.975221225   -1.35109 

serine endoprotease   -1.27053   -1.18272     -1.116152455   

serine hydroxymethyltransferase glyA     1.083968 1.317505732       

serine/threonine dehydratase     -1.15339     1.522328363 1.145186056   

serine/threonine protein phosphatase pphA   1.022703   1.052530705       

serine/threonine transporter       1.139312         

serine/threonine transporter SstT sstT   2.056471 1.260339 1.026735346 1.274056578     

short-chain dehydrogenase       -1.89887         



 

 
 

short-chain fatty acids transporter atoE         1.197922033     

sialic acid transporter nanT         1.120019011     

sigma-54-dependent Fis family transcriptional regulator   1.52722   1.030652   1.042785686 1.311285249   

sigma-54-dependent Fis family transcriptional regulator           1.503121588     

sn-glycerol 3-phosphate ABC transporter permease   1.696391 1.088209   2.007354756       
sn-glycerol-3-phosphate ABC transporter substrate-
binding protein   1.286202     1.474165048 -1.063357423   -1.26576 

sn-glycerol-3-phosphate dehydrogenase subunit A glpA -2.77367 -1.49989 -1.01124 -1.855418535   -1.124941685   

sodium:proline symporter putP       1.312446753       

sodium:solute symporter           1.116090939     

soluble cytochrome b562 cybC 1.033565             

sorbitol 6-phosphate dehydrogenase srlD   -2.11007 -1.24914         

SoxR reducing system protein RseC rseC         -1.384306919     

spermidine/putrescine ABC transporter permease potB 1.422584     1.422311622 -1.261390927     
spermidine/putrescine ABC transporter substrate-binding 
protein potA 1.149556   -1.20279 1.354995255 -3.002350209   -1.86918 

spermidine/putrescine ABC transporter substrate-binding 
protein PotF potF       1.36839352       

spermidine/putrescine-binding periplasmic protein potD     -1.08759         

SpoVR family protein   1.552021       -2.49132886   -1.6394 

SprT family protein sprT     1.05379         

stationary phase inducible protein CsiE csiE     -1.25634   -1.664742545   -1.28276 

succinate dehydrogenase cytochrome b556 subunit sdhC       1.264012289       

succinate dehydrogenase flavoprotein subunit sdhA 1.241619     1.587673202       
succinate dehydrogenase hydrophobic membrane anchor 
subunit sdhD       1.600173297       

succinate dehydrogenase iron-sulfur subunit sdhB 1.19216     1.705804283 1.153837927     

succinate-semialdehyde dehydrogenase gabD         1.081105388     



 

 
 

succinylarginine dihydrolase astB 1.76255 1.55444 1.173933 2.124027725 1.044097995     

succinyl-CoA ligase subunit alpha sucD 1.049996 1.333022 1.12211 1.303270696       

succinyl-CoA ligase subunit beta sucC   1.142977   1.341142867       

succinyl-CoA--3-ketoacid-CoA transferase             1.634668879   

succinylglutamate desuccinylase astE 1.875302 1.136489 1.086593 2.200411475 1.128240147     

sucrose porin scrY   -1.17137         1.113427 

sugar ABC transporter   1.005131       4.021609596 1.240311984   

sugar ABC transporter           1.468575294     

sugar ABC transporter ATP-binding protein   1.810212   -2.01984 1.296119177   1.038866003   

sugar ABC transporter permease   1.468875     1.340025819 2.72349871     

sugar ABC transporter permease   1.464831     1.342687446       

sugar ABC transporter substrate-binding protein           1.290030748     

sugar fermentation stimulation protein SfsA sfsA         1.132352518     

sugar kinase       -1.12567   2.22564744     

sugar phosphatase SupH supH     -1.13073         

sulfatase   1.436516       1.885457585 1.130344923   

sulfate ABC transporter permease cysW 1.575508 1.434139 1.013468 1.010861954 2.255189892 1.037395993   

sulfate ABC transporter substrate-binding protein cysP -1.24083     -1.1499416 -1.565417532     

sulfate adenylyltransferase cysN 1.646004 1.416276 1.196107   2.212346795 1.406671551   

sulfate adenylyltransferase subunit 2 cysD 2.061822 1.423871     2.447675979   -1.06805 

sulfate transporter subunit       1.350803   2.354229735 1.116350239   

sulfate/thiosulfate import ATP-binding protein CysA cysA 1.94393 2.016911 1.486323 1.380738952 2.540173541 1.298600392   

sulfate/thiosulfate transporter subunit   1.581931 1.240398   1.044046491 2.489202019 1.031759974   

sulfite reductase subunit alpha cysJ 1.113527 1.460377     1.44540612     

sulfite reductase subunit beta cysI 1.35802 1.750679     1.713668188 1.019341732   

superoxide dismutase sodA/B         1.366447244     

symporter YdjN ydjN         1.339002184     



 

 
 

tagatose-1,6-bisphosphate aldolase kbaY; agaY 1.225515 -2.36568 -1.81058 1.233612272       

tagatose-bisphosphate aldolase 
 

  -2.17514 -1.55282         

tail fiber assembly protein   1.059036             

tartrate dehydratase subunit alpha ttdA -1.09246 -1.64391 -1.20276 -2.27500166       

taurine ABC transporter substrate-binding protein tauA         1.311560616     

taurine dioxygenase tauD         1.029793969     

TDP-4-oxo-6-deoxy-D-glucose aminotransferase           -1.155776826     

TDP-fucosamine acetyltransferase wecD         -1.154585877     

terminase       -1.4742         

thiamine biosynthesis lipoprotein ApbE apbE         -1.277418744     

thiamine biosynthesis protein ThiH thiH 2.517461     1.803326034       

thiamine biosynthesis protein ThiS thiS 2.123782     1.353771869       

thiamine phosphate synthase thiE 1.822024     1.234644112       

thiamine transporter substrate binding subunit tbpA 1.032237             

thiamine-monophosphate kinase thiL         -1.082308196     

thiazole synthase thiG 2.157706     1.436401473       

thiol:disulfide interchange protein   -1.21559 -2.68829 -1.36587         

thiosulfate reductase cytochrome B ydhU         1.545303622     

thiosulfate sulfurtransferase PspE pspE         1.126928275     

thiosulfate transporter subunit   2.122218 1.115237     2.524452331     

threonine/serine transporter TdcC tdcC   -1.73728     1.167515658     

thymidine phosphorylase deoA           1.143402383   

thymidylate kinase tmk         -1.039181099     

toxin B               -1.37667 

toxin YhaV yhaV       -1.111996589       

trans-aconitate 2-methyltransferase tam 1.257216       -2.449996195 1.007995726 -1.22777 

transaldolase A talA 1.015437       -1.463223301   -1.12286 



 

 
 

transcriptional activator TtdR ttdR   -1.63853   -1.481315885       

transcriptional activatory protein CaiF caiF   -1.0887   -1.608327234 1.299025615     

transcriptional regulator       1.442941     1.327073377 -1.02569 

transcriptional regulator             2.505910105 -1.21307 

transcriptional regulator               -1.52499 

transcriptional regulator GadE gadE 2.03063   -2.21011   -1.970638408 1.186404037 -1.2399 

transcriptional regulatory protein RcsA rcsA   1.88301 1.14251         

transferase     1.436867           

transketolase       -2.92578   -1.357423802   -1.29002 

transketolase       -2.5855   -1.396903992   -1.02589 

transketolase       -1.16743   -1.514085749   -1.42455 

translation initiation factor IF-2 infB     -1.85332     -1.392507584 -1.20562 

translation initiation factor Sui1 sui1       -1.006639983       

transpeptidase       1.096626   -1.22227393     

transporter         1.297115721 1.245747431   -1.03291 

trehalose-phosphatase     1.20642     -2.723223004   -1.56329 

tRNA (cytosine(34)-2'-O)-methyltransferase TrmL trmL         -1.251788627     

tRNA (guanine-N(1)-)-methyltransferase trmD           -1.049077397   

tRNA methyltransferase           -1.199916424     

tRNA pseudouridine synthase TruC truC         -1.183873782     

tRNA pseudouridine(55) synthase TruB truB     -1.26451     -1.127574733   

tRNA threonylcarbamoyladenosine biosynthesis protein 
TsaB tsaB         -1.123028424     
tRNA(5-methylaminomethyl-2-thiouridine)- 
methyltransferase mnmA         -1.307125876     

tRNA-dihydrouridine synthase A dusA         -1.107138313     

tryptophan permease   1.235346   1.710155   2.432953266 1.592353488 1.429317 



 

 
 

tryptophanase leader peptide tnaL         1.266236825     

two-component sensor histidine kinase   1.069499       1.34145907     

two-component system response regulator       -3.10894   -2.215299104   -2.91895 

two-component system sensor histidine kinase EvgS evgS         1.511039324     

type I glyceraldehyde-3-phosphate dehydrogenase   1.812072     1.027235574 -1.573207257 1.135309891 -1.06349 

type II secretion system protein GspC gspC   1.459332     1.341070361     

type II secretion system protein GspH gspH         -1.105624339     

U32 family peptidase   -1.18468     -1.018926049       

UDP-N-acetylglucosamine 1-carboxyvinyltransferase murA         -1.103828495     

undecaprenyl-phosphate 4-deoxy-4-formamido-L-
arabinose transferase arnC     -1.01791         

universal stress protein A uspA         1.510536466     

universal stress protein B uspB             -1.13852 

universal stress protein C uspC   -1.14602     1.084658836     

universal stress protein D uspD     -1.03338         

universal stress protein F uspF         1.343585569     

universal stress protein G uspG         1.079043682     

uracil phosphoribosyltransferase upp         -1.311194658     

uracil/xanthine transporter ybbY -1.54153 -1.44752 -1.62589 -1.533717503 -1.300243417 -1.812818122   

uronate isomerase uxaC           1.147731464   

xanthine permease XanP xanP 1.586574 1.994395 3.575241 3.127456164 1.838939164 2.432877787 1.58842 

xylose ABC transporter substrate-binding protein xylF 1.088153       1.827009653     

xylose isomerase xylA         1.057099522     

xylulokinase xylB     1.163497   1.128319359     

YggU family protein           -1.087659942     

YggW family oxidoreductase           -1.076099647     

zinc resistance-associated protein zraP         1.038744457     



 

 
 

 

Table 9.2 Significantly differentiated genes identified from RNA sequencing of seven exposed isolates of EC958 compared with control isolate. 

Genes discussed in Chapter 5 are highlighted in bold. 

 

zinc-binding dehydrogenase       -1.01453   -1.861249039   -1.53388 

zinc-dependent alcohol dehydrogenase adhP; adhA   1.213187 -1.63077   -2.88922666   -1.52167 

Zn-dependent oxidoreductase rspB             -1.38513 
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