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ABSTRACT 
 
The focus of this paper is on a method for the design of bespoke small-scale pilot, metal-
forming processes and models that accurately represent corresponding industrial-scale 
processes.  Introducing new complex metal forming processes in industry commonly involves 
a trial and error approach to ensure that the final product requirements are met.  Detailed 
process modelling, analysis and small-scale feasibility trials could be carried out instead.  A 
fundamental concern of scaled experiments, however, is whether the results obtained can be 
guaranteed to be representative of the associated industrial processes.  Presently, this is not 
the case with classical approaches founded on dimensional analysis providing little direction 
for the design of scaled metal-forming experiments.  The difficulty is that classical 
approaches often focus predominantly on constitutive equations (which indirectly represent 
micro-structural behaviour) and thus focus on aspects that invariably cannot be scaled.  This 
paper introduces a new approach founded on scaled transport equations that describe the 
physics involved on a finite domain.  The transport approach however focuses on physical 
quantities that do scale and thus provides a platform on which bulk behaviour is accurately 
represented across the length scales.  The new approach is trialled and compared against 
numerically obtained results to reveal a new powerful technique for scaled experimentation. 
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1. INTRODUCTION 
 
Scaled experiments are not new and have found particular traction in fluid-dynamic 
applications, where models, similarity, dimensional and numerical analysis play an important 
role [1, 2]. A key theorem underpinning modern dimensional analysis is the Buckingham Pi 
theorem [3].  If the dimensionless quantities coincide for the full-scale and scaled forming 
processes, then the two processes are denoted similar.  Similar processes will produce 
corresponding physics but in reality the scaling of complex processes is not so easy and it is 
seldom possible to match exactly the dimensionless quantities.  Similarity can be categorised 
in three parts: geometric similarity; kinematic similarity and; kinetic similarity [4, 5].  Scaling 
proportionally is seldom a major difficulty but clearly a requirement of geometric similarity.  
Kinematic similarity in bulk deformation is concerned with velocities but because geometric 
similarity is about length scales it is evident that in this context kinematic similarity is about 
time.  Typically, for bulk deformation, kinematic similarity can be achieved by adjustment of 
the time-scales of the experimental setup. A fundamental difficulty stems from kinetic 
similarity which is about force proportionality (or drivers more generically), which in general 
can only be achieved exactly for truly similar systems. 
One of the issues with dimensional analysis is that is does not naturally align itself with 
modern simulation approaches [6].  It is in some sense detached, where the procedure for 
forming dimensionless quantities is performed in isolation from the procedure involved in 
direct analysis.  A related approach however is the direct rescaling of the governing partial 
differential equations (should these exist).  These equations can be transformed into non-
dimensional forms where key non-dimensional quantities will naturally appear as coefficients 
in these equations.  This transformation lends itself to singular-perturbation type analysis 
approaches if small dimensionless quantities arise in the transformed equations.  The 
approach offers no substantive benefits to numerical analysis although does provide 
information on the functional relationship between non-dimensional quantities, which is 
absent from any direct dimensional analysis. 
Dimensional analysis has an important part to play in scaled experiments but has limitations 
[7].  These limitations are particularly pronounced for metal forming processes, where a 
review of the literature reveals a dearth of serious significant technical works on the subject.  
Although numerous text books on dimensional analysis exist, few cover solid mechanics [3, 
8] and fewer still cover forming (none in fact found).  The number of articles involving both 
dimensional analysis and forming [9, 10] is very limited.  Similarity solutions simply do not 
exist in complex metal forming processes and hence a fundamental difficulty exists when 
designing scaled experiments. 
Transport equations provide a description for the transport of mass, momentum (angular 
momentum if needed), energy and entropy (displacement has been recently added to this list 
[11]). The physics of the full-scale industrial process is described by these equations and so is 
the physics of any scaled model.  However, and also, it is possible using Nanson’s identities 
[12] and time rescaling to represent the physics of the full-scale process at the smaller scale 
and conversely the physics of the smaller scale model at the larger scale.  These relationships 
provide important information.  Moving from full scale to the smaller scale provides 
information on what the model should be, to identically (at least down to the smallest control 
volume used) represent the physics at the larger scale.  Similarly, moving from the small scale 
to the large scale relays information about what the physics at the small scale is providing at 
full scale.  The reality of the metal forming process is that the scaled processes are not similar 
but through careful simulation, material selection and choice of lubricant (friction is a major 
concern in metal forming) a good selection of scaled model can be designed.  Up to four 
simulation types can be identified although any starting geometry and mesh will be identical 



 

 

for all simulations.  The assumption here is that geometric similarity is invoked whilst 
recognising that numerical codes (finite element (FE) is applied here) have no concept of 
scale until material properties are input.  The four simulation types are: 
 
(i) Full-scale FE simulation of the industrial metal forming process. 
(ii) FE simulation of the representation of the full-scale model at the smaller scale. 
(iii) FE simulation of the experimental small-scale metal forming process. 
(iv) FE simulation of the representation of the small scale model at the larger scale. 
 
The choice of the material, time scale, lubrication, etc. used in the small-scale experiments is 
informed by the analysis performed in (ii).  The analysis in (iii) can be fully supported by 
experimental trials to refute, support or improve the mathematical models involved or at the 
very least provide understanding on the limitations of said models.  A process of careful 
technical scrutiny is required at this stage, which could in the worst scenario involve repeated 
analysis and experimentation. Analysis (iv) provides information on the limitations of said 
results as seen at the full scale.  In practice, some if not all the analyses will likely be 
performed a number of times prior, during and after any experimental work as the analysis 
process is most certainly iterative.  It is recognised however that his can be problematic for 
industrially complex flow forming processes providing a practical limit on the number of 
analyses that can reasonably be performed.  It transpires (and confirmed in the paper) that FE 
analysis is only required for (i) and (iii), with (ii) and (iv) being projections of these analyses, 
respectively.  
In order to explain the concepts involved the paper begins by introducing the mapping 
underpinning the control volume movements in Section 2 along with possible maps for 
connecting motion in physical and trial spaces.  The transport equations for these spaces are 
introduced in Section 3 along with a representation of behaviour in the physical space on the 
trial space.  This section focuses on a generic transport equation and establishes the 
relationships needed for similarity down to the smallest domain considered; this concept is 
termed finite similitude.  Section 4 examines the five transport equations of interest to metal 
forming, i.e. the transport of mass, momentum, movement, energy and entropy.  This is 
followed by an examination of each transport phenomenon in turn, where relationships 
necessary for the existence of finite similitude are established.  The ability to project similar 
solutions between the trial and physical space and vice versa is considered in Section 6.  The 
importance of this aspect is not fully appreciated in the current literature, yet it provides a 
mechanism for the design of a physical experiment and the assessment of its representation of 
the corresponding practical industrial process.  An alternative route to scaling is examined in 
Section 7 where material spaces are utilised.  This approach is slightly more involved but is 
shown to yield the same outcome as the direct mapping approach.  Although not too 
unexpected, the section does address the importance of placing the correct interpretation on 
the physics as expressed in the material space.  The scaling theory presented in the paper 
being founded on a control volume concept makes no reference to constitutive laws.  
However, for practical calculations, constitutive behaviour needs to be understood; an aspect 
covered in Section 8 applied to classical laws.  Section 9 looks at the practical limitations of 
the similarity approach arising from the numbers of independent scaling factors involved.  
Numerical results are presented in Section 9 to present solutions in both trial and physical 
spaces for a thermal and relatively simple thermo-mechanical metal forming operations. 
 
 
2. MAPPINGS FOR SCALING 
 



 

 

The mapping theory underpinning the application of scaled transport equations is presented 
here.  The starting point is Euler continuum transport forms applied to a moving control 
volume ps  over the physical space.  As depicted in Figure 1 the movement of ps  is 

described by a diffeomorphism * * *, : PS pst psx X  where *
PS  is a reference space for the 

control volume.  The map can be differentiated with respect to time, whilst holding *X  
constant, to obtain the control volume velocity * * * *

psv D D tx , where *
* *D D t t

X
.  This 

formulisation is identical to that employed to derive the material derivative, i.e. D Dt t
X

 
and material velocity mv D Dtx , where ,m tx X  is a map from a material reference 

system to the spatial system as depicted in Figure 1.  The derivative * *D D t  is not common 
to the literature but plays a crucial role in formularising a rigorous foundation for transport 
theory along with their correct application to discontinuous physics [13].  The velocity 
relationship * * *

psv D D tx  can itself be used to define the map * *, tx X  as it provides a first-
order differential equation whose unique solution is guaranteed by Frobenius’s theorem [14], 
which relies on *

psv  being sufficiently smooth and on the specification of appropriate initial 
conditions. 
The same apparatus can be invoked to apply to the scaled-trial space in which 
experimentation is to be performed.  In this case, the reference domain *

TS  is mapped to the 
trial space ts  with a diffeomorphism * * *, : TS tstss S , where allowance is made for the 
fact that time in the trial space can run at a different rate by use of the symbol  as opposed 
to t .  Apart possibly from the material map, all the maps discussed thus far are all considered 
to be diffeomorphisms (i.e. differentiable bijections) and have the role of defining control 
volume movement.  The velocity *

tsv  of ts  is described using the star derivative 

*
* *D D

S
, i.e. * * * *

tsv D Ds .  With the maps defined the following differentials 
exist: 
 

*

* *
* *

*
i i

i j
j

x xdx dX dt
X t X

          (1) 

 
and 
 

*

* *
* *

*
i i

i j
j

s sds dS d
S S

         (2) 

 
succinctly written as *

*
** *x
psX

F v dtdx dX  and *

*
** *s
tsS

F v dds dS , respectively, and 

where the control volume deformation gradient tensors are 
*

*
* *x

X
F x X  and 

*

*
* *s

S
F s S . 

Similarly, a material point S  in TS  is mapped to m
ts  via the assumed diffeomorphism 

, :m m
TS ts

m
tss S , where TS  is a material reference space and m

ts  is a region in the 

physical space.  Likewise, a material point X  in PS  is mapped to m
ps  via the 

diffeomorphism , :m m
PS ps

m
psx X , where PS  the material reference space for m

ps  (see 
Figure 1).   



 

 

There exists also a map to encapsulate the scaling between the trial and physical spaces.  This 
can manifest itself in one of two ways, i.e. by a direct map between ts  and ps  or indirectly 

via a map between TS  and PS  (or more correctly *
TS  and *

PS ).  The former map is a less 
convoluted approach and at its most simplest is represented by the mathematical relationship 

*

*
* *x

s
Fdx ds , where for scaling factor  and isotropic scaling, *

*
x

s
F I , with identity 

tensor I .  In addition, the time scales in the trial and physical space are related by 
dt h d  or d g t dt , where 1h g t , where h and g are bijection maps.  It is 

important to appreciate here that the relationship *

*
* *x

s
Fdx ds  (being an exact differential) 

immediately infers that *x  is solely a function of *s .  Similarly, the material-space route 
invokes identical time scaling but utilises *

*
* *X

S
FdX dS , where *

*
X

S
F I  and control 

volumes *
TS  and *

PS  are contained in the respective material spaces.  The movement of 
control volumes over a material space requires particular care, so initial consideration is given 
to scaled transport equations on the physical spaces. 
 
 
3. TRANSPORT THEORY ON PHYSICAL SPACES 
 
A general conservation law in transport form for some physical quantity  governing the 
physics on a moving control volume ps  is 
 

*
*

*
ps ps ps ps

ps ps ps ps psps ps ps ps ps ps ps ps ps ps
D dV v v n d J n d b dV
D t

 (3) 

 
where  is density, v  is material velocity, J n  is a flux, b is a source term [15] and  is the 
boundary for . 
Note the use of * *D D t  rather than the ordinary derivative d dt  in Equation (3) even though 
these are identical when applied to a function of t.  The use of the derivative * *D D t  in (3) is 
intended to immediately relay the notion that ps  is a control volume transported by means of 

the velocity *
psv .  Consider further an equivalent transport equation for the trial space control 

volume ts  transported with velocity *
tsv , i.e. 

 
*

*
*

ts ts ts ts

ts ts ts ts tsts ts ts ts ts ts ts ts ts ts
D dV v v n d J n d b dV
D

   (4) 

 
Equation (3) and (4) are currently unrelated and describe the transport phenomena in their 
respective spaces.  However, Equation (3) can be transformed into a form that appears rather 
similar to Equation (4). This can be achieved by assuming the existence of the direct map 

* *,x s , whose differential is 
 

* *
* *

*
i i

i j
j

x xdx ds d
s s

         (5) 

 



 

 

succinctly written as *

*
relx

s
F v d* *dx ds  and given that d g t dt  is also equal to 

*

*
relx

s
F gv dt* *dx ds  although as mentioned above reduces further to *

*
x

s
F* *dx ds  with 

*x  assumed a function of *s  only. 
Equation (5) gives rise to Nanson’s geometric identities *

*
x

ps tss
dV F dV  and 

* *

* *

1
x x

ps tss s
F FdΓ dΓ , where dpsps psndΓ  and dtsts tsndΓ [12] . Substitution of 

these into Equation (3) gives 
 

* * *

* * *

* *

* 1 *
*

1

ts ts

x x x
ps ps tsps ps ts ps ps tss s s

D F dV F F v v n d
h D

 

* * *

* * *

* *

1

ts ts

x x x
ps ts ts ps ps tss s s

F F J n d b F dV  (6) 

 
where dt h d  relays the relationship between time in the trial and physical space. 
It should be appreciated that an implicit assumption invoked here is that the control volumes 
in Equations (6) and (4) are identical.  There is however, an element of choice when it comes 
to control-volume selection for any analysis making such an assumption appear not 
unreasonable.  The control volume applicable to Equation (6) however is dictated by the map 

* *, : ts pspsx s .  This is not the case for Equation (4) where an element of choice is 
possible and in this case invoked to provide matching control volumes in the trial space.  
Equation (6) and (4) are identical if 

*

*
x

ps ps ts tss
F , *

*

1 * *x
ps ps ts tss

h F v v v v , 
* *

* *

1
x x

ps tss s
h F F J J  and 

*

*
x

ps ps ts tss
h b F b .  Note however that slightly greater 

generality can be acquired if Equation (6) is multiplied by a scalar  (along with h) and on 
matching again gives  
 

*

*
x

ts ts ps ps s
F          (7a) 

 
*

*

1* *x
ts ts ps pss

v v h F v v         (7b) 

 
*

*
1x

ts psss
J h F F J          (7c) 

 
and  
 

*

*
x

ts ts ps ps s
b h b F          (7d) 

 

where setting 
*

*

1* *x
ts pss

v h F v  and 
*

*

1
x

ts pss
v h F v  is sufficient for Equation (7b). 

The identify 
*

*

1* *x
ts pss

v h F v  has little to do with choice however and is a direct 



 

 

consequence of the relationship between *
ts  and *

ps .  Substitution of *

*
** *s
tsS

F v dds dS  

into *

*
relx

s
F v d* *dx ds  gives 

 
* * *

* * *
** * relx s x
tss S s

F F F v v ddx dS        (8) 

 
which can be contrasted with *

*
** *x
psX

F v dtdx dX , where under the assumption that 

reference control volumes *
TS  and *

PS  are temporally invariant, reveals the identity  
 

*

*
* *v relx
ps tss

h F v v           (9) 
 

which reduces to 
*

*

1* *x
ts pss

v h F v  for 0relv . 

The condition 0relv  applies for the situation where the movement of the two control 
volumes *

ts  and *
ps  are synchronised, which is a reasonable requirement for any matched 

analysis.  
 
 
4. THE EXISTENCE OF SIMILAR EQUATIONS 
 
Equation (7) provides the identities sufficient for isotropic scaling that are required to be 
satisfied for a similar system. For the isotropic scaling with constant scaling factor  the 

control volume deformation gradient tensor *

*
x

s
F I .  It follows that 

*

*
3x

s
F  (in 3D) and 

Equation (7) reduces to 
 

3
ts ts ps ps                    (10a) 

 
* *1
ts psv h v                     (10b) 

 
1

ts psv h v                     (10c) 
 

2
ts psJ h J                    (10d) 

 
and 
 

3
ts ts ps psb h b                    (10e) 

 
where (10c) provides kinematic similarity, and where kinetic similarity principally arises from 
(10d) and to a lesser extent (10e).   
For a particular transport equation that there is a good possibility of being able to select a set 

ts , ts , *
tsv , tsv , tsJ  and tsb  along with h and  to enable Equation (6) and (4) to match.  

The challenge however is to match all those transport equations of interest to metal forming, 
which can only happen for truly similar systems.  The transport equations of interest in metal 



 

 

forming are equations for continuity, momentum, displacement, energy and entropy, which 
are 
 

*
*

* 0
ps ps

ps ps psps ps ps
D dV v v n d
D t

      (11) 

*
*

*
ps ps ps

ps ps ps ps ps ps psps ps ps ps psps

D v dV v v v n d n d b dV
D t

  (12) 

*
*

*
ps ps

ps ps ps ps ps psps ps ps ps ps ps
D u dV u v v n d v dV
D t

    (13) 

*
*

*
ps ps

ps ps psps ps ps ps ps ps
D e dV e v v n d
D t

 
ps ps ps ps

ps ps ps ps psps ps ps ps ps psps ps
v n d q n d Q dV v b dV   (14) 

*
*

*
ps ps

ps ps psps ps ps ps ps ps
D s dV s v v n d
D t

     

 1 1

ps ps

psps ps ps ps ps ps ips
T q n d T Q dV SiSi       (15) 

 
where 1

2e u v v , u is stationary internal specific energy, and s is specific entropy, q n  is 
heat flux, Q represents a heat source,  is the Cauchy stress tensor, b  is a body force and 

0iS 0iSi  is associated with irreversibility. 
Note that  can be identified with unity, velocity, displacement, energy and entropy by 
setting  to be either 1, v , u , e, or s in Equations (3) and (4). 
 
 
5. PRACTICAL SIMULARITY CONDITIONS 
 
It is shown in this section how taking each transport equation in turn starting from continuity 
and ending with entropy imposes constraints on the parameters and functions in the similarity 
conditions of Equation (10). 
 
5.1. The problem with mass 
Consider then the requirements of continuity (i.e. 1ts ps ) where for a similar system 

Equation (10) gives 3
ts ps , * *1

ts psv h v , 1
ts psv h v , 1 0tsJ  and 1 0ts tsb .  The 

relationship of principal interest here is 
 

3
ts ps            (16) 

 
although typically for metal forming density is reasonably invariant.  The parameter  is 
dictated by the scaling involved in the experimental trial so is somewhat constrained.  
However, the parameter  can be set to facilitate the selection of an experimental material 
as regards density.  An example might be a steel-lead combination where for instance  



 

 

 

3

1 lead

steel

           (17) 

 
should suffice with prescribed values for steel  and lead .   
It is clear therefore that density is constrained by the continuity equation by a relationship of 
the form ts steel lead ps .  This relationship is not the only constraint as the identity 

1
ts psv h v  imposes restrictions on the velocity field tsv , which might be expected to be 

problematic for momentum.  Note also that the relationship * *1
ts psv h v  is dictating the 

response of the control volume *
ts  given the response of *

ps . 
 
5.2. The problem with momentum 
For a similar system, continuity restricts density to satisfy 3

ts ps  and it can be 

anticipated that momentum will provide a similar restriction for tsv .  However, as already 

alluded to, continuity similarity also required the constraint 1
ts psv h v .  Equation (10) for 

momentum gives firstly 3v
ts psts psv v , which on assumption that the relationship 

3
ts ps  is satisfied, reduces to  

 
v

ts psv v            (18) 
 
This can be contrasted against the relationship 1

ts psv h v  and immediately infers that the 

function h  is a constant (as yet unspecified) and  
 

1v h            (19) 
 
Note also from Equations (10d) and (10e) that 2v

ts ps
h  and 3v

ts psts psb h b .  

With the constitutive response 22
3: tsts ts

 and 22
3: psps ps

, where  is an 

effective stress (current yield stress) and  denotes a deviatoric stress tensor, it can be 

inferred from the identity 2v
ts ps

h  that 2v
ts ps

h .  It follows that 

2v
ts psh  or 2

ts psh  or 
12 1

ps tsh , which infers that the time-scales 
in the trial space have to set be cater for the different material yield strengths, i.e. 
 

1 ts

ps

Yh
Y

          (20) 

 
where Y refers to yield strength. 
This result is not too surprising because the stress relates back to the forces involved and 



 

 

hence the rate of material movement. 
 
5.3. The problem with movement 
Equation (10) for movement provides the similarity condition 3u

ts psts psu u , which in 

view of the relationship 3
ts ps  reduces to  

 
u

ts psu u            (21) 
 
which at first sight appears unproblematic. 
Note also from Equation (10e) that 3u

ts psts psv h v  which on substitution of 
3

ts ps  gives u
ts psv hv .  However, in order to satisfy Equation (18) it is 

necessary that 
 

u v hh           (22) 

 
which means that Equation (21) gives ts psu u . 
There is little choice with movement as no free factors exist, which is no surprise because on 
differentiation of ts psu u  with respect to time must return Equation (18) or equivalently 

ts psv hv .  Note that a scaled space infers that a material element in one space can be 

related to a material element in the other in the manner 
*

*
m x m m

s
Fdx ds ds , which is 

precisely ps tsdu du .  Differentiation with respect to t and noting that dt hd , returns the 
expected and required relationship ts psv hv .  
 
5.4. The problem with energy 
Following the same approach for energy reveals 3e

ts ts ps pse e , which reduces to 
 

e
ts pse e            (23) 

 
or more fully 
 

2 21 1
2 2

e
ts ts ps psu v u v         (24) 

 
where 2

ts tstsv v v  and 2
ps pspsv v v  but since Equation (18) is v

ts psv v  the scalar 

identity v
ts psv v  immediately follows and consequently it is sufficient for e  to satisfy  

 
2e v            (25) 

 
and  
 



 

 

e
ts psu u            (26) 

 
for Equation (24) to be satisfied. 
Note however, that Equation (10d) yields  
 

2e
ts psts ps

v h v          (27) 

 
but 2v

ts ps
h  and v

ts psv v , which on performing a tensor product produces 
2v v

ts psts ps
v h v 2e

ps ps
h v , which confirms the consistency of 

Equations (18), the stress tensor relationship 2v
ts ps

h  and Equation (27). 

Note also that Equation (10e), if applied to the mechanical energy source term in Equation 
(14), gives the relationship  
 

3e
ts ts ps psts psv b h v b          (28) 

 
but on substitution of ts psv hv  and 3v

ts psts psb h b  into the left had side of this 

expression returns 2 3v
ts ts ps psts psv b h v b . 

However, in view of the identity e v v  this expression reduces to 
2 3v e

ts ts ps psts psv b h v b  and reduces further on substitution of 1v h  to 
2 3e

ts ts ps tsts psh v b h b v , which on cancellation of h  from both sides confirms 
the consistency of Equation (28). 
Note finally from Equation (10c) applied to the heat-flux term in Equation (14), that 
 

2e
ts ps

q h q           (29) 

 
5.5. The problem with entropy 
The left hand side of entropy Equation (15) provides 3s

ts ts ps pss s , which reduces to 
 

s
ts pss s            (30) 

 
but more constraining is the entropy transfer term which on application of Equation (10d) 
yields 
 

2 pssts

ts ps

qq
h

T T
          (31) 

 
but note that Equation (29) is 2e

ts ps
q h q , which on substitution reveals 

 
e s

ts psT T
           (32) 



 

 

 
or equivalently s e

ts psT T  and thus providing a proportional relationship between 
temperature.  
The main function of the scaling parameter s  is to account for the possibility that 
temperatures in the physical and trial spaces can be different although proportional for 
similarity.  Observe also the heat-source term in Equation (15) gives 

1 3 1s
ts ts ts ps ps psQ T h Q T  but energy returns 3e

ts ts ps psQ h Q , which on substitution 

returns 1 1e s
ts psT T , which is just Equation (32), so consistent behaviour is returned. 

An interesting aspect is that entropy production accounted for in Equation (15) by the 
presence of the term iSiS  and one manifestation of this term in a thermo-plastically deforming 
material is 
 

:1

ps ps

plas
ps ps

i ps ps psps
ps ps

S q dV dV
T T

plas

Si q       (33) 

 
Consider then Equation (10e) and the first term in Equation (33), which gives 
 

31 1s
ts psts ps

ts ps

q h q
T T

        (34) 

 
which is arrived at by first introducing the identity 1

ts ts  into Equation (33). 

In view of 2e
ts ps

q h q  it can be deduced that Equation (34) reduces to 

 
1 1e s

ts ps
ts psT T

         (35) 

 
which in view of Equation (32) and the identity reduces to ts ps , which is evidently 
consistent.  
Consider now the application Equation (10e) and the second term in Equation (33), which 
gives 
 

3
:: plasplas

ps pssts ts

ts ps

h
T T

plasplas
st sh          (36) 

which on substitution Equation (32) reduces to  

3: :plas plase
ts ts ps ps

hplas plas3 :plas p3 :3
t

          (37) 

which is consistent with Equation (10e) accounting for energy sources and sinks. 

A sink-like term in the energy equation can appear on application of the divergence theorem 
to the first term on the right hand side of Equation (14) to reveal



 

 

:
ps ps ps ps

ps ps ps ps psps ps ps psps ps ps ps
v n d div v dV v div dV v dV  (38) 

with the integrand in the last term equal to : :elas plas
ps ps ps ps

elas plas:: , hence revealing the origin of 

Equation (37). 

A more direct approach is to note from Equations (19) that (25) reveal that 2 2e h , 
which gives 3e

ts ps
.  Hence, it can be deduced from Equation (37) that plas plas

ts ps
hplas plas

t
p h , 

which is expected as direct differentiation of ts psv hv  gives precisely 
ts ps

h
t

hh . 

 
6. REVERSE MAPPING 
 
Established in Sections 4 and 5 is the existence of finite-similitude solutions for an 
isotropically scaled process.  Finite similitude in this context is defined as the matching of 
scaled transport equations between physical and trial spaces.  Essentially, a physical solution 
in the physical space is projected onto similar solutions in the trial space.  Such solutions are 
known to exist as demonstrated in Section 5.  However, an unfortunate side effect of the 
projection process can be projected-material behaviours that may not be reflected in any 
existing real material.  An alternative viewpoint however is to start from a real material in the 
trial space and project this onto the physical space.  In this case Equation (4) gives rise to 
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which is proportional to Equation (3) after appropriate scalar multiplication to yield 
 

*

*

1
x

ps ps ts ts s
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*

*
* *x

ps ps ts tss
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* *
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1
x x

ps tss s
J g F F J                   (40c) 

 
and  
 

*

*

1
x

ps ps ts ts s
b g b F                   (40d) 

 
and following the procedure outlined in Sections (4) and (5) a set of similarity relationships 
can be established. 



 

 

The velocity of the control volumes is related by 
*

*
* * *x
ps ts tss

v gF v g v  and similarly for 

material velocities, i.e. 
*

*
x

ps ts tss
v gF v g v .  Continuity requirements lead to 

*

*

1
x

ps ts s
F , which on substitution into Equations (40a) and (40d) give 

 
ps ts                    (41a) 

ps tsb gb                    (41d) 

All the relationships identified in Section 5 hold although for a particular practical analysis 
1 .  However, the notation  is chosen here to avoid the unnecessary replication 

of similarity relationships with different symbols. 
 
 
7. TRANSPORT THEORY ON MATERIAL SPACES 
 
As mentioned in Section 2 a somewhat circuitous route to scaling is through material spaces 
via a map between TS  and PS  or more correctly between control volumes *

TS  and *
PS .  

The map is assumed to be isometric and gives rise to the relationship 
*

*
* *X

S
FdX dS , where 

*

*
X

S
F I .  Some care is needed when considering bodies described on a material space, 
which by choice and for convenience do not deform. 
Consider then the movement of control volume *

PS  over PS  and whose motion is described 
by the velocity field * * * *

PSV D D tX .  Somewhat peculiarly it is necessary to define a 
reference space for the reference space *

PS .  A requirement brought about by a need to 
quantify the motion of *

PS .  Consider then the diffeomorphism * ,tX , where 
* *
PSV tX , and where  represents an arbitrary coordinate in the new reference space.  

Although *
PS  has motion it is important to couple this to the motion of *

ps  and more 
importantly not immediately rush to the direct formation of a transport equation for the 
control volume *

PS  in the material space as any physics must arise from the physical space. 

The map * ,tX  gives rise to the differential 
* ** X

PSd F d V dtX , where 
* *XF X  and * * * *

PSV D D tX .  In view of the map * * *, : PS pst psx X  and the 

associated differential *

*
** *x
psX

F v dtdx dX  it follows that 
 

* * * *

* *
* ** relx X x x
PS psX X

F F F V v dt F V dtdx d d     (42) 

 

where 
* * *

*
*x x X

X
F F Fx , and where

 
*

*

* *
* *

*
rel x

PS psX

DV F V v
D t

x          (43) 



 

 

 
The existence of the map * * *, : PS pst psx X  and associated differential 

*

*
** *x
psX

F v dtdx dX  gives rise to the Nanson’s identities 
*

*
x

ps PSX
dV F dV  and 

* *

* *

1* *x x
ps PSX X

d F d F , where PSdV  is an elemental volume in *
PS  (and hence PS ) and 

* * *
PS PS PSd N d  with *

PSN  being an outward pointing unit normal on *
PS  the boundary of 

*
PS .  Substitution of these identities into Equation (3) gives rise to a transport equation on the 

material reference space, i.e. 
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It follows that the same apparatus can be replicated for the trial space with Equation (6) 
replicating Equation (4) and transforming into 
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where time scales in the trial and physical space are related in the usual way by dt h d  
or d g t dt , where 1h g t . 
Equations (44) and (45) are essentially independent but for similar systems can be related via 
scaling with 

*

*
* *X

S
FdX dS , where 

*

*
X

S
F I  and the associated Nanson’s identities 

*

*
X

PS TSS
dV F dV  and 

* *

* *

1* *X X
PS TSS S

d F d F .  Substitution into Equation (44) along 

with time rescaling gives 
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x X x X x X
ps TS TS ps ps TSX S X S X S
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which on multiplication by h  and , and matching of integrands with Equation (45) 
yields 
 

* * *

* * *
s x X

ts ts ps psS X S
F F F                  (47a) 

 



 

 

* * * * * *

* * * * * *

1 1 1* *s s x X x X
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and  
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ts ts ps psS X S
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where setting 
* * * * * *

* * * * * *

1 1 1
s s x X x X

ts psS S X S X S
F F v h F F F F v  and 

* *

* *

1 *s s
tsS S

F F v
* * * *

* * * *

1 1 *x X x X
psX S X S

h F F F F v  is sufficient for Equation (47b). 

Contrasting Equation (47) with Equation (7) reveals that they are identical if and only if 
* *

* *
s x

S X
F F  since by default 

* *

* *
X x

S s
F F I .  The requirement that 

* *

* *
s x

S X
F F  is a direct 

consequence of 
* * * * * *

* * * * * *

1 1 1* *s s x X x X
ts psS S X S X S

F F v h F F F F v  matching 
*

*

1* *x
ts pss

v h F v , which a necessary condition for the synchronisation of control volume 

movement. 
It can be concluded therefore that scaling via material spaces is possible and feasible and if 
correctly interpreted yields the exact same information as direct scaling in the physical space. 
It is worth noting that Equation (44) provides a transport equation in the material space of the 
form 
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*
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* *
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PS PS

PS PS PS PS PS PSJ N d b dV   (48) 

 
which erroneously suggests that material movement with velocity PSV  takes place on the 
material domain.  This illustrates the need to treat equations in the material reference space 
with a certain degree of caution since by default no motion takes place in the material 
reference frame. 
 
 
8. THE ROLE OF CONSTITUTIVE LAWS 
 
The foundational similarity conditions established in Section 3 have Equation (7c) (along with 
Equation (10d) in Section 4) providing the link between flux transfers taking place in the trial 
and physical spaces.  Equation (7c) effectively provides information on the transfer 
mechanisms that are taking place at the boundary of a domain but closure for solution of the 
transport equations is required.  A feature of similarity however is proportional transfers but 
modern-analysis approaches utilise constitutive laws, which generally are unlikely to scale.  
In the case of momentum transfer, traction is associated with applied force but for stress to 
develop in a body, material deformation must occur.  Stress is typically related continuously 



 

 

to strains, strain rates and temperature and an expression pertinent to metal forming is 
(amongst many others) is the Johnson-Cook expression [16], 
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where psY  is the initial yield stress, 0

ps
0  is a reference strain rate, 0

psT  is a reference 
temperature and B, n, C and m are coefficients determined by experimental means. 
In view of the identity 2

ts psh , established in Section 5.2 and the proportional 
relationships for temperature and strain rate with strain being dimensionless, Equation (49) 
transforms into 
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where 2

ts psY h Y , 2
ts psB h B , ts ps  and ts pshht h . 

Equation (50) provides the material response necessary for material similarity but it is 
possible that the particular material response may not in fact exist in a ready available 
material.  However, provided with a physical material (that approximates this material in 
some sense) for use in the trial space, the reverse mapping then provides information about 
the behaviour of the material in the physical space.  Other material properties of interest to 
thermo-mechanical analysis is thermal conductivity and with application of a classical Fourier 
law ps ts psps

q K T  but for similarity 2e
ts ps

q h q  and ts ps , and since 
s e

ts psT T , it follows that  
 

s
ts psK h K           (51) 

 
which may or may not match the behaviour of a selected trial space material. 
However, as mentioned above, projection between physical and trial spaces cuts both ways 
making it possible to gauge the importance of any mismatch in material properties.  It is thus 
of interest to explore this aspect further to ascertain the practical benefits and limitations of 
the similarity approach. 
 
 
9. PRACTICAL PROCEDURES AND CONSTRAINTS  

Despite the apparent mathematical complexity associated with the development of the finite-
similitude theory its application is relatively straightforward.  In the case of isotropic scaling 

(i.e. 
*

*
x

s
F I  or 

*

*
X

S
F I ) there are 7 scalar scaling parameters in total, which are: , h , 

, v , u , e  and s . The scaling factors are not completely independent and the 
dependencies are re-presented here for convenience: 
 

The velocity scaling factor is dependent and related to time, geometry and the density
scaling through the relationship v h .



 

 

 The displacement scaling factor is dependent and related to velocity and time scaling by 
u v h . 

 The energy scaling factor is dependent and related to velocity and density scaling by 
2e v . 

 
Accounting for these three dependencies reveals four independent scaling factors.  There is 
however a number of different possible combinations of independent scaling factors.  An 
upper bound on the number of combination is 7

4 35C  but in practice the three dependencies 
along with practical limitations lowers significantly the number of realistic choices.  In a 
situation where similitude is approximate then different choices can produce different 
outcomes.  Consider for example the independent scaling factors for geometry, time, density 
and entropy, i.e. , , , sh  as listed in Table 1.  The consequences of this choice on 
dependent and independent physical quantities are presented in Tables 1 and 2. 
 
Table 1. Independent scaling factors. 
Scaling factor   h  s  
Equation No.  (16) (20) (32) 

Relationship ps tsl l  3
ts ps  ps ts ts psY Y  3

ts ps ps tsY Y T T  

Quantity affected tsl  ts  tsY  tsT  
 

Table 2. Dependent scaling factors. 
Scaling factor u  v  e  
Equation No. (22) (19) (25) 
Relationship 1  1h  2 2h  
Field influenced tsu  tsv  tsu  

 
The physical quantities in the bottom row in Table 1 are principally affected by the choice of 
independent factors.  Thus for example the selection of  as an independent scaling factor 
prescribes the initial value of density ts  given that  and ps  are prescribed.  Similarly 
Table 2 presents how values of dependent-scaling factors influence the physical fields of 
displacement, velocity and specific internal energy.  The dependent factors are determined to 
ensure that the associated physical quantities are in the correct proportions with the physical 
space. 
The first four steps of a procedure for designing scaled experiments (called direct scaling) is 
as follows: 
 
 Select the material (or materials) to be used in the scaled experiment.  The associated 

model is referred to here as the trial model. 
 Select the independent scaling factors (a choice generally influenced by the dominant 

physics) and determine their values. 
 Determine the values of the dependent scaling factors. 
 Use the scaling factors to calculate physical parameters and material properties for the 

scaled model; referred to here as the direct scaled model.  Note that in the absence of 
finite similitude the trial and direct scaled models will not match. 



 

 

 
To illustrate the procedure consider a full-scale steel (subscript St) model and an aluminium 
(subscript Al) trial model along with scaling relationships presented in Tables 1 and 2. The 
important scaled material parameters are identified and in this case are selected to be density, 
yield stress and temperature.  With the geometric scaling parameter  set, the selected scaled 
model parameters are also fixed, i.e. ts Al , ts AlY Y  and the initial temperature 

initial room
tsT T , where roomT  is the initial room temperature, which can be a cost-effective 

choice for any material used in a laboratory setting.  This information immediately determines 
the independent and dependent scaling factors, which are provided in symbolic form in Tables 
3 and 4. 
 
Table 3. Independent scaling factors for aluminium as trial material. 
Scaling factor    s  
Equation No.  (16) (20) (32) 
Relationships specified 3

Al St  St Al Al StY Y  3
Al St St roomY Y T T  

 
Table 4. Dependent scaling factors for aluminium as a trial material 

Scaling factor u  v  e  
Equation No. (22) (19) (25) 
Relationship 4

Al St  4
Al Sth  2 5

Al Sth  
 
The values of dependent and independent scaling factors (Tables 3 and 4) together facilitate 
the creation of a scaled material model, which can be viewed as a virtual material.  This 
material will possess other material properties as a consequence of the choices made in these 
tables.  A selection of the material properties for the virtual material is tabulated in symbolic 
form in Table 5. 
 
Table 5. Scaled material constants dictated by scaling factors. 

 
Young’s 
modulus 

Thermal 
conductivity 

Johnson-Cook 
strain-hardening 

coefficient 

Melting 
temperature 

Quantity tsE  tsK  tsB  melt
tsT  

Relationship 2
psh E  s

psh K  2
psh B  melt

e s psT  

Symbolic 
value Al St StY Y E  

3

1

St Al Al St

ps room St

Y Y

T T K

 

Al St StY Y B  melt
room ps StT T T  

 
It can be expected that the virtual material will generally differ from the selected trial material 
model (Aluminium) although by choice ,ts tsY  match ,Al AlY .  Loading 
conditions/process parameters for the scaled experiment are dictated by the parameters 
provided in Tables 1 and 2 in a similar fashion and relationships for time, displacement and 
strain rate are provided in Table 6. 
 
 

h



 

 

Table 6. Scaled experiment loading conditions dictated by scaling factors. 
Quantity Process time Axial displacement Loading strain rate 
Symbol elapse  applied

tsu  loading
ts
loading
ts  

Relationship 1elapse elapseh t  
appliedu
psu  loading

psh loading
ps  

 
It is possible to identify other parameters of the trial and direct-scaled model rather than 
simply focus on material properties. For example, with a dynamic thermo-mechanical full-
scale model, it may be possible and sufficient to consider a quasi-static scaled experiment, 
which will lead to a different outcome to those presented in Tables 3 to 6.  The ability to focus 
on important parameters is an important feature of the procedure but an equally important 
aspect is the ability to gauge the effect of these choices at the full scale. 
 
To replicate the results of the scaled experiment in the full-scale space, the reverse scaling 
maps (see Section 6) apply to the real scaled experiment, which consists of the trial material 
model (Aluminium in this case) and scaled loading conditions (Table 6). The resulting 
material model is called the reversed trial material which in general will differ from the full-
scale material model except for the identified matched parameters.  One aspect that is assured, 
however, is that the virtual scaled material model under reverse scaling is identical to the full-
scale material model (e.g. Steel in this case).   
 
It is possible to consider a procedure that adjusts scaling factors in such a manner that 
minimises some objective function quantifying differences between the virtual and real 
behaviours.  This aspect is just mentioned in passing here but the fact that errors/differences 
can be identified is important information in its own right as known differences can often be 
accounted for and accommodated in any experimental trial. 
 
 
10. NUMERICAL EXPERIMENTS 

This section introduces a number of case studies with specific features to provide a proof of 
concept and to test out the new scaling theory.  Case Study I is a pure thermal process with 
sufficient independent scale factors to provide finite similitude on scaling.  This is followed 
by a purely mechanical metal forming process where iteration is required to get a good 
approximation.  The final case study presents a thermo-mechanical analysis, where different 
trial materials are considered but yet again reasonable mechanical behaviour is shown 
possible.  Overall the effect of parameter selection is examined in this section through 
different thermal, mechanical and thermo-mechanical numerical simulations. The numerical 
analyses are performed using the commercial finite element software ABAQUS [17].  It is 
important to appreciate however that the theory presented in the previous sections sits above 
any analysis therefore allowing for the application of any form of analysis (e.g. 
numerical/analytical) and code (e.g. commercial/bespoke).  A consistent system of units is 
used for the numerical experiments, which are: kg, mm, ms, K, kN, GPa, J and kW, 
respectively for the mass, length, time, temperature, force, stress, energy and power. 
 
  
10.1 CASE STUDY I: PURE THERMAL PROCESS 

In this case study, heat transfer through a steel cuboid with dimensions 10mm ×10mm×100mm 
is considered as the full-scale model. Spatially uniform and temporally constant uniform heat 



 

 

fluxes 3 210psq kW mm  are applied through rectangular faces with a fixed temperature 
400psT K  boundary condition on the square ends (see Figure 2). The transient analysis 

using 8-noded convection/diffusion brick elements (DCC3D8D) is performed in the 
ABAQUS Heat Transfer environment.  The full-scale model process time elapset  is equal to 
1000ms and its associated physical properties are: 6 37.83 10  ps kg mm , 

5 1 14.45 10psK kWmm K  and 1 1475  psc J kg K  for density, thermal conductivity and 
specific heat capacity, respectively [18].  Aluminium is selected as the trial material model 
with thermal material properties: 6 32.77 10  ts kg mm , 5 1 114 10tsK kWmm K  and 

1 1880  tsc J kg K  [18]. Using the direct scaling maps involved in this problem, the 
independent scaling factors are listed in Table 7. 
 
Table 7. Independent scaling factors of Case Study I. 
Scaling factor  s   
Equation No. (16) (26), (32) (51) 
Relationship 3

ts ps  ts psc c  1 1 s
ts psK K  

Quantity affected ts  tsc  tsK  
 
Table 8. Case Study I: scaled experiment dependent design parameters. 

Quantity 
Process 

time 
elapse  [ms] 

Energy scaling 
factor 

e  

Initial temperature 
initial

tsT  [K] 
Applied heat loading 

applied
tsq  [kW/mm2] 

Equation No. --- (19),(25) (32) (10d) 
Relationship 1 elapseh t  2 2h  e s initial

psT  2e applied
psh q  

Numerical 
value 

3333.1 32.60 310.93 30.611 10  

 
The direct scaling independent factors are given in Table 7 and dictate the value of the 
dependent scaling factor e  and the loading conditions as presented in Table 8.  A feature of 
this case study is that the number of independent scaling factors is equal to the number of 
physical variables. Therefore all the scaled material properties are free to be set equal to the 
properties of the trial material model (see Table 3).  To see how the scaled trial-model results 
are replicated in the full-scale space, they are transferred to the physical space. For this 
purpose the trial model temperature and z-coordinate should be multiplied by the reverse 
scaling factors as illustrated in Figure 3.  An exact agreement between the spatial distribution 
of temperature along the central longitudinal path in the full-scale and reversed trial 
experiments is depicted in Figure 3.  The predictions in Figure 3 are in accordance with the 
theory (see Sections 5-6) with an exact replication of the scaled model at the full scale.  This 
is an example of finite similitude, which is seldom expected for more complex problems.  It is 
in situations where finite similitude does not exist that the new approach offers the possibility 
of reasonably good approximations, as examined in Case Studies II and III. 
 
10.2 CASE STUDY II: PURE MECHANICAL PROCESS 
 

h



 

 

An open die cold forging of a cylinder is considered as the second case study. The dimensions 
of the full-scale model are 40mm in diameter and 60mm in length deformed in the axial 
direction to one-fourth of its original length. The dimensional scaling factor β is set to be 2 
and consequently the initial dimensions of the scaled model are 20mm and 30mm for diameter 
and length respectively. The full-scale model is made of aluminium 7039 with mechanical 
properties and Johnson-Cook constitutive relation coefficients (see Equation (49)) presented 
in Table 9.  The material model is taken to be elastic-plastic, with Young’s modulus and 
Poisson’s ratio also provided in Table 9. 
 
Table 9. Full-scale and scaled experiments material constants [18]. 

Material [kg/mm3] 
E

[GPa]  Y  
[GPa] 

B [ 
[GPa] n  C  

00
 

[(ms)-1] 
PS: Al 7039 2.77×10-6 70 0.33 0.337 0.343 0.41 0.010 1×10-3 
TS: Steel 4340 7.83×10-6 200 0.3 0.792 0.510 0.26 0.014 1.8×10-3 
TS: Steel 1006 7.89×10-6 210 0.3 0.350 0.275 0.36 0.022 1.2×10-3 
 
 
Cold forging is assumed to be a pure mechanical phenomenon, so can be reasonably 
approximated to be isothermal, i.e. 0ps tsT T T .  This condition on examination of Equation 

(32) reveals that the entropy scaling factor s  is not an independent design factor, i.e. 
s e .  Therefore the number of free independent scaling factors for this case study is 

three, i.e. , h  and .  Setting 2  dictates that the total axial displacement axial
tsu  of the 

scaled experiment, which is equal to 7.5axial
psu mm . More details on the geometry, mesh 

and loading conditions for the full and scaled models is provided in Figure 4.  
 
Two different possible designs (termed Designs I and II) for the scaled experiments are 
studied such that in Design I, density ts  and yield stress tsY  are set to be equal to the trial 
material values, whilst in Design II, density ts  and strain hardening coefficient tsB  of the 
scaled models are fixed. Each design is tested for two different material models (Steel 4340 
and Steel 1006) as possible trial materials (termed Trial I and Trial II).  
 
10.2.1 Design I 

Since there are only two independent factors for this case, the density and yield stress of the 
scaled material are fixed and set equal to the trial material values as the first design of the 
scaled experiment.  Steel 4340 is selected as the first trial material model with steel 4340ts  

and steel 4340tsY Y , and the scaling factors for this situation are: 1.823h , 0.353 , 
0.322v , 0.17u  and 0.294e s .  The full-scale and replicated scaled numerical 

results for axial load versus displacement are shown in Figure 5.  For the second trial material, 
Steel 1006 is selected with steel 1006ts  and steel 1006tsY Y . The scaling factors in this case 

are: 1.207h , 0.356 , 0.215v , 0.17u  and 0.13e s , with results for axial 
load versus displacement depicted in Figure 6.  
 
10.2.2 Design II 



 

 

For the second design of the scaled experiment, the density and strain hardening coefficient of 
the scaled material are set equal to the trial material density and its strain hardening 
coefficient, respectively, i.e. steel 4340ts  and steel 4340tsB B  in the first trial steel 1006ts  
and steel 1006tsB B  in the second trial.  The scaling factors for Steel 4340 as the trial material 

model are calculated as: 1.45h , 0.353 , 0.256v , 0.17u  and 0.186e s  
and corresponding results can be found in Figure 7.  Similarly, for the second trial with Steel 
1006 as the trial material the factors are: 1.06h , 0.356 , 0.189v , 0.17u  and 

0.10e s .  The results for this case again for axial load versus displacement are 
depicted in Figure 8.  
 

Comparison between the results (see Figures 5 to 8) of Designs I and II highlights the 
variability in predictions as a consequence of matching of different physical parameters.  The 
results of the reversed trial model of Design I replicate closer the data to the full-scale results.  
The reason for this is that for a simple upsetting problem the sensitivity of the results depends 
critically on the yield stress, which is matched in Design I.  The targeting of strain hardening 
in Design II transpires to be a less effective strategy and the outcome highlights the 
importance of physical insight.  
 
 
10.3 CASE STUDY III: THERMO-MECHANICAL PROCESS 

In this section hot forging of a cylinder is considered as a thermo-mechanical case study. The 
dimensions of the full-scale physical model are diameter 30psD mm and length 30ps 30ps

mm. The dimensional scaling factor  is set to be 2 and therefore the dimensions of the 
scaled trial model are 15tsD mm and 15ts 15ts mm. The process is thermo-mechanical and 
consists of raising the temperature (an initiating step) of the full-scale model to 700K and then 
applying axial displacement by amount of 2axial

ps 2axial
ps  for the full-scale model (correspondingly 

2axial
ts 2axial
ts  for the scaled model). The details of geometry, mesh and thermomechanical boundary 

conditions for the full and scaled experiments models can be found in Figure 9. 
 
The natural heat convection between the surface of the cylinder and the surrounding area (dry 
air) is modelled during step 2. The time process of the unscaled model for the initiating step is 
0.01ms and for subsequent deformation is 1ms, i.e. a high-loading rate typical to impact 
forming is considered.  The corresponding process times for the scaled model depend on the 
selected trial material, i.e. time scaling factor h (with h considered dependent). The full-scale 
billet is made of Steel 4340 with the mechanical properties presented in Table 9 and thermal 
properties as: thermal conductivity 5 1 14.45 10K kWmm K , specific heat capacity 

1 1475  c J kg K , thermal expansion coefficient 5 1
exp 1.23 10 K , 1.03m , 

1793meltT K  and 0 293T K  for Johnson-Cook relation thermal constants [18] as presented 
in Equation (49).  
 
Two possibilities are considered for the trial materials. In the first trial model the behaviour of 
aluminium 7039 is adopted as the trial material model with the mechanical properties 
presented in Table 9 and its related thermal constants 5 1 11.40 10K kWmm K , 



 

 

1 1880  c J kg K , 5 1
exp 2.34 10 K , 1m , 877meltT K  and 0 293T K [18]. A 

tungsten alloy (0.07Ni, 0.03Fe) is considered as the second trial material model. The material 
properties and Johnson-Cook coefficients for the selected tungsten alloy are: 

5 31.70 10  kg mm , 450E GPa , 0.28 , 1.506Y GPa , 0.177B GPa , 
0 10.1ms0 0.1ms , 0.016C , 0.12n , 1m , 1723meltT K , 0 293T K , 1 1134  c J kg K , 

4 1 11 10K kWmm K , 6 1
exp 5 10 K .  There are 4 independent scaling factors in this 

problem and consequently the density, yield stress and initial temperature of the scaled model 
are fixed, i.e. trial matts , trial mattsY Y  and initial room

tsT T .  Based on the selected trial 
material models and the design conditions, the direct scaling factors are determined and the 
numerical values are presented in Table 10. 
 
Table 10. Scaling factors of Case Study III 
Factor  h   v  u  e  s  
Al 7039 2 2.19 0.044 0.048 0.0219 0.053 0.127 
Tungsten 2 1.87 0.027 0.025 0.013 0.238 0.568 
 
These scaling factors dictate the following loading conditions for the scaled experiments 
where  and convh , represents the friction and convection film coefficients, respectively.  The 
loading conditions necessary for numerical simulation of the scaled experiment using two trial 
material models is provided in Tables 11. Using the given information in Table 10, the results 
of the scaled experiment models can be transferred to the physical space through reverse 
scaling maps. The replicated results of the scaled model and the full-scale model behaviour 
for axial force-displacement are compared in Figure 10.  
 
Table 11. Scaled experiments loading conditions for Case Study III 

Quantity Process 
time [ms] 

Total axial 
displacement

axialu [mm] 

Initial 
temperature

initialT [K] 

Coefficient 
of friction  

 

Heat transfer 
coefficient

convh
[kW/mm2K] 

PS: Steel 4340 1 15 700 0.6 5×10-8 
TS: aluminium 0.455 7.5 293 0.6 5.57×10-8 
TS: tungsten 0.534 7.5 293 0.6 5×10-8 
 
The zoomed area in Figure 10 illustrates that the both reversed scaled models initiate the 
plastic yielding at the same point as the full-scale model. This feature is a consequence of 
matching the yield stress of both trial models with the full scale model.  Thus as anticipated, 
under reversed scaling, the two yield stresses match with the full-scale material.  In order to 
gauge how the geometry behaves the temporal variation of the meridian circle radius for the 
two scaled experimental models and their reversed replications are presented in Figure 11, 
where high accuracy is observed.  It is of interest to observe the change of temperature 
predicted by the scaled experiments at full scale. The spatial distribution of temperature 
distribution of trial models, full-scale and reversed scaled models at final stage of the process 
are depicted in Figure 12, respectively. The spatial and temporal variations of temperature are 
significant due to the large deformation taking place over a short interval and the relatively 
low values of heat transfer coefficients making for an almost adiabatic deformation process.  
None of the trial models provides an accurate response for the thermal behaviour (see Figure 
12). This is not too unexpected however since finite similitude does not exist and none of the 



 

 

thermal parameter were targeted. It is possible of course to capture the thermal behaviour 
more accurately with matching of thermal physical quantities such as thermal conductivity 
and specific heat capacity but this would be at the expense of other physical quantities.   
 
Figure 13 presents the contour plot of equivalent plastic strain (EPS) distribution of full and 
scaled models. It should be noted that with finite similitude, the strain in both full and scaled 
spaces are identical (i.e. 

ts ps
).  The same contour intervals is applied to both full and 

scaled models equivalent plastic strain distributions and the plots are illustrated for the 
corresponding (synchronised) times, i.e. 0.5t ms , 0.228Al ms  and 0.267Tung ms , 
where t h .  The spatial variation of the equivalent plastic strain along the radius of the 
meridian circle for aluminium and tungsten alloy scaled models at different time steps and 
their replications in the full-scale space are presented in Figure 14 and 15, respectively. 
 
Comparing the results of the Case Studies II and III confirm as expected that by increasing the 
physical complexity of the problem, the closeness of the replication of the scaled experiment 
design to the real full-scale design can reduce. The results of two scaled models presented in 
Figures 10 to 15 indicate that somewhat surprisingly tungsten alloy as the trial material model 
replicates a more accurate model in the full-scale space for mechanical behaviour.  
 
 
11. CONCLUSIONS 
 
The presented paper is concerned with a novel methodology in global isotropic scaling of 
physical phenomena. Based on the developed mathematical theory and the illustrated case 
studies, following conclusions can be drawn from the presented work: 
 
 The generalised integral form of the conservation laws (i.e. the Euler transport equations) 

described on synchronised moving control volumes can be used to couple continuum 
physics between scaled and unscaled spaces. 

 
 The scaling theory can be applied either directly to the physical space or indirectly to the 

material space and consistent results are obtained in either case. 
 
 The theory although complicated in its development is relatively straightforward to apply 

and numerical results confirm the applicability of the scaling methodology to thermo-
mechanical processes. 

 
 One of the constraints in the practical procedure is finding the optimum trial material 

model, which is an aspect that warrants further investigation.  
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Figure 1. Mapping from reference CV to material system and spatial CV 
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Figure 2. Full and scaled numerical models for Case Study I 
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Figure 3. Scaled and full-scale numerical results for the spatial distribution of temperature. 
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Figure 4. Full and scaled numerical models for Case Study II. 
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Figure 5. Axial force-displacement results in trial and physical spaces for Design I (trial 1). 
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Figure 6. Axial force-displacement curves in trial and physical spaces for Design I (trial 2). 
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Figure 7. Axial force-displacement curves in trial and physical spaces for Design II (trial 1). 
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Figure 8. Axial force-displacement curves in trial and physical spaces for Design II (trial 2). 
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Figure 9. Full and scaled numerical models for Case Study III 
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Figure 10. Axial force-displacement curves in trial and physical spaces for case study III. 
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Figure 11. Temporal variation of meridian circle in trial and physical spaces  
 

7.5 

9.5 

11.5 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Ra
di

us
   

(m
m

) 

τ  (ms) 

Trial Space 

Aluminium 

Scaled Material: Steel-Aluminium 

Tungsten 

Scaled Material: Steel-Tungsten 

τ=0.455 τ=0.534 

15 

19 

23 

0 0.2 0.4 0.6 0.8 1 1.2 

Ra
di

us
   

(m
m

) 

t  (ms) 

Physical Space 

PS: Steel 

Reversed Aluminium 

Reversed Tungsten 

R
everse Scaling 



 

 

 
 
 
 

reversed
ts tsl l    1( / )reversed e s

ts tsT a a T  
 
 
 
 

 
 

Figure 12. Spatial distribution of temperature in trial and physical spaces at final stages 
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Figure 13. Contour plots of spatial distribution of EPS in physical and trial spaces at specific 
synchronised times. 
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Figure 14. Spatial variation of EPS along meridian circle radius at different times in trial and 

physical spaces (trial material model: aluminium) 
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Figure 15. Spatial variation of EPS along meridian circle radius at different times in trial and  
physical spaces (trial material model: tungsten alloy). 
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