
Chromo-dynamic multi-component lattice Boltzmann 
equation scheme for axial symmetry

SPENDLOVE, James Edward, XU, Xu <http://orcid.org/0000-0002-9721-
9054>, SCHENKEL, Torsten, SEATON, Michael Andrew 
<http://orcid.org/0000-0002-4708-573X> and HALLIDAY, Ian 
<http://orcid.org/0000-0003-1840-6132>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/25890/

This document is the Published Version [VoR]

Citation:

SPENDLOVE, James Edward, XU, Xu, SCHENKEL, Torsten, SEATON, Michael 
Andrew and HALLIDAY, Ian (2020). Chromo-dynamic multi-component lattice 
Boltzmann equation scheme for axial symmetry. Journal of Physics A: Mathematical 
and Theoretical, 53 (14), p. 145001. [Article] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Journal of Physics A: Mathematical and Theoretical

PAPER • OPEN ACCESS

Chromo-dynamic multi-component lattice Boltzmann equation scheme
for axial symmetry
To cite this article: J Spendlove et al 2020 J. Phys. A: Math. Theor. 53 145001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 143.52.74.149 on 31/03/2020 at 18:05

https://doi.org/10.1088/1751-8121/ab777f
http://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstC4ikkl2uYZSFaPTaJic0Ks0lpL-KaW92QZaD3MuvNd6KwMJWHitb8g7rxnktpmRGoI_5ombr5Q3vtKeXZQVivTzcGkY16HuKjjRKhDIfE0LIvAIOuEGWnwCx-ZRW3tLwrJWtlvs-GqAUbtLrAXHtnKPgRUKJY-ddvuL9AGEbj0sY-6T-dIV9b_SKMYWllNDTjc_HqHZ41TURD2KhJVc83k1D3TiuV0-gAwUYG0nOjoZ0ulQeM&sig=Cg0ArKJSzGI1iJSzkUhW&adurl=http://iopscience.org/books


1

Journal of Physics A: Mathematical and Theoretical

Chromo-dynamic multi-component lattice 
Boltzmann equation scheme for axial 
symmetry

J Spendlove1, X Xu1,2 , T Schenkel1,2, M Seaton3   
and I Halliday1

1  Materials & Engineering Research Institute, Sheffield Hallam University, Howard 
Street, S1 1WB, United Kingdom
2  Department of Engineering and Mathematics, Sheffield Hallam University, Howard 
Street, S1 1WB, United Kingdom
3  Scientific Computing Department, UKRI STFC Daresbury Laboratory, Keckwick 
Lane, Warrington WA4 4AD, United Kingdom

E-mail: i.halliday@shu.ac.uk

Received 1 August 2019, revised 13 January 2020
Accepted for publication 18 February 2020
Published 18 March 2020

Abstract
We validate the chromo-dynamic multi-component lattice Boltzmann 
equation (MCLBE) simulation for immiscible fluids with a density contrast 
against analytical results for complex flow geometries, with particular emphasis 
on the fundamentals of the method, i.e. compliance with inter-facial boundary 
conditions of continuum hydrodynamics. To achieve the necessary regimes 
for the chosen validations, we develop, from a three-dimensional, axially-
symmetric flow formulation, a novel, two-dimensional, pseudo Cartesian, 
MCLBE scheme. This requires the inclusion in lattice Boltzmann methodology 
of a continuously distributed source and a velocity-dependent force density 
(here, the metric force terms of the cylindrical Navier–Stokes equations). 
Specifically, we apply our model to the problem of flow past a spherical liquid 
drop in Re  =  0, Ca → 0 regime and, also, flow past a lightly deformed drop. 
The resulting simulation data, once corrected for the simulation’s inter-facial 
micro-current (using a method we also advance herein, based on freezing the 
phase field) show good agreement with theory over a small range of density 
contrasts. In particular, our data extend verified compliance with the kinematic 
condition from flat (Burgin et al 2019 Phys. Rev. E 100 043310) to the case 
of curved fluid–fluid interfaces. More generally, our results indicate a route to 
eliminate the influence of the inter-facial micro-current.
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1.  Introduction

Since 1991, when Gunstensen and Rothman [1, 2] invented the technique, a range of increas-
ingly sophisticated multi-component lattice Boltzmann (lB) equation variants have evolved. 
Still, Gunstensen and Rothman’s method remains a milestone of statistical physics [3]. Current 
multi-component lattice Boltzmann equation  (MCLBE) variants depart substantially from 
Gunstensen’s. They may be classified by the physical content of their fluid–fluid interface 
algorithm. Broadly, where the kinetics of phase separation feature, free-energy methods [4, 5] 
and their thermodynamically consistent extensions, due to Wagner and co-workers [6–8], is a 
natural choice. In continuum, isothermal hydrodynamics, inter-facial fluid physics is defined 
by dynamic and kinematic conditions [10]. Here, MCLBE simulation may be performed using 
the phase field or, hereafter, chromo-dynamic method (which is a combination of the algo-
rithms of Lishchuk et al [11] and d’Ortona et al [12]).

To induce fluid–fluid boundary effects, chromo-dynamic MCLBE uses an immersed 
boundary [13] (henceforth Lishchuk) force which requires appropriate corrections be applied 
to the velocity [14] and a computationally-efficient, analytic component segregation [12] 
(which is isotropic, mass-conserving and Galilean invariant). This synthesis is robust and 
transparent in its encapsulation of Laplacian interfacial tension and its no-traction condition 
[11]. It also has a very low micro-current which allows direct parametrization of inter-facial 
tension and width [15]. We note that Reiss and Phillips [16] developed inter-facial pertur-
bation operators in place of the Lishchuk force which, arguably, offer the most consistent 
encapsulation of inter-facial tension in a kinetic-scale, distribution function-based technique. 
In its original form, chromo-dynamic MCLBE does not allow for a density contrast between 
immiscible fluids. Density-difference MCLBE methods of the chromo-dynamic class, based 
on multi-relaxation time (MRT) collision schemes, due to Ba et al [17], Liu et al [19], Wen 
et al [20] and Spendlove et al [21] have been developed and benchmarked, in applications 
such as the evolution of three-dimensional (3D) convective instabilities [17] and, recently, 
by careful comparisons with theoretical predictions in two-dimension (2D) with restricted 
symmetry [21, 24]. While this previous work certainly confirms the utility of the method, 
questions relating to its fundamental physical accuracy remain. Here, we aim to assess the 
extent to which 3D MCLBE simulation complies with the hydrodynamic boundary condi-
tions of mutual impenetrability and the no-traction conditions using, note, comparison with 
appropriate analytic results for complex flow in the presence of non-uniform curvature. To 
achieve this, the noise introduced by the inter-facial micro-current and computability present 
significant difficulties. To overcome the influence of the inter-facial micro-current, we employ 
a phase-field freezing method, to overcome computational limitations we develop a pseudo-
Cartesian methodology, which, itself, requires two extensions to lB to incorporate (i) spatially 
variable sources/sinks and (ii) velocity-dependent forces. The data we generate to validate 
boundary condition compliance implicitly supports our practical method for removing the 
influence of the inter-facial micro-current.

We organise this article as follows. In section 2 we outline chromo-dynamic MCLBE meth-
odology, in section  3 we derive a pseudo Cartesian formulation suitable for our intended 
applications and develop a suitable MRT scheme, in section 4 we outline its application and in 
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section 5 we present and interpret our data. We conclude in section 6. Details of our analysis 
of the MRT scheme and high-order accurate lattice stencils are provided in appendices A and 
B respectively.

2.  Background method

We express the chromo-dynamic variant in colour-blind form, designating immiscible fluid 
components red and blue, to be described by distribution functions Ri(r, t) and Bi(r, t) where:

fi(r, t) = Ri(r, t) + Bi(r, t).

An MCLBE for immiscible fluids with a large density difference, based upon an MRT col
lision scheme for a fluid subject to an immersed boundary, or body force, Fα(r) may be form
ulated as follows:

fi(r + δtci, t + δt) = fi(r, t)−
Q−1∑
j=0

Aij(fj(r, t)− f (0)
j (ρ, v)) + F1i + F2i + F3i,

�

(1)

where the density-difference supporting equilibrium, f (0)
i (ρ, v), redistributes mass away from 

the rest (i  =  0) link via term φi:

f (0)
i (ρ, v) = ρφi + tiρ

(
vαciα

c2
s

+
vαvβciαciβ

2c4
s

− v2

2c2
s

)
.� (2)

In equation (1), Aij is an element of the collision matrix and source terms F1i,..,F3i correct the 
dynamics for large density contrasts, external body force densities, Dα, and flow sources/sinks 
respectively. In section 3, we find appropriate forms for F1i,..,F3i. We return to parameter φi 
shortly.

An external force density Dα is, in general, a sum of distinct contributions. We shall be 
concerned, here, with velocity-dependent forces which we expose by writing:

Dα = Gα(r) + Fα(r, v),

in which G might represent e.g. gravity, or the Lishchuk force (see equation (8) below). This 
separation is motivated by the definition of force-adjusted macroscopic observables:

ρR(r, t) =
∑

i

Ri(r, t), ρB(r, t) =
∑

i

Bi(r, t)

v =

∑
i fi(r, t)ci

ρ
+

D
2ρ

.
� (3)

Apparently, when a contribution to D depends upon velocity v, equation (3) will define an 
implicit problem to be solved for v. Above, ρ , ρR, ρB, i, δt, ciα, ti and cs denote overall nodal 
density, red fluid nodal density, blue fluid nodal density, link-index, time step, the α comp
onent of the ith lattice basis vector, the weight for link i and the colour-blind speed of sound 
(second order tensor lattice isotropy constant). A significant part of our methodology will be 
to develop explicit solutions for the third of equation (3) for v, when Fα(v) depends upon spa-
tial velocity gradients. In implementation, many quantities in equations (20), (21) and (8) will 
clearly require the numerical computation of gradients, as described below.
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Returning to the mass activation parameter now:

φi =

{αRρR
ρ + αBρB

ρ , i = 0,

kti
[
(1 − αR)

ρR
ρ + (1 − αB)

ρB
ρ

]
, i �= 0,� (4)

where αR and αB are chosen to control the fluids’ contrast in density:

Λ ≡ ρ0R

ρ0B
=

c2
sB

c2
sR

=
1 − αB

1 − αR
,� (5)

and, for D2Q9, k = 9
5 [24]. In equation  (5), ρ0C is the density deep within the coloured 

component C = R, B and the third part of the equality reflects mechanical stability of a flat 
interface. The speed of sound in the red (blue) component is therefore csR = κ

√
1 − αR  

(csB = κ
√

1 − αB) with κ a constant. We find κ by noting that αR → αB implies Λ → 1; 
however, considering equations (2) and (4), we see the traditional equilibrium [18] is recov-

ered for αR = αB = 4
9: in the latter, the speed of sound (in lattice units, in D2Q9) is 1√

3
, hence 

1
3 = κ2

(
1 − 4

9

)
, which gives κ =

√
3
5  and hence csC =

√
3(1−αC)

5 . Accordingly, the pressure 

step across the interface of a red drop suspended in a blue fluid is:

∆p =
3
5
[(1 − αR)ρR − (1 − αB)ρB] .� (6)

Immiscible species are identified in simulation by a generalised colour index, or phase field 
[17]:

ρN ≡
(

ρR

ρ0R
− ρB

ρ0B

)
/

(
ρR

ρ0R
+

ρB

ρ0B

)
,� (7)

in terms of which the Lishchuk force, G (which carries inter-facial tension effects [11]) is:

G =
1
2
σK∇ρN , K = −∇ · n̂, n̂ =

∇ρN

|∇ρN |
.� (8)

Here, σ is the surface tension parameter and K the interface’s mean curvature. ρN  is consid-
ered to be continuous: ρN ∈ [−1, 1] with ρN = 1(−1) indicative of pure red (blue) fluid and 
changes occur rapidly in the inter-facial region. Since it identifies the fluid component, the 
value of index ρN  may be used to control the value of e.g. kinematic viscosity, by introducing 
into collision matrix eigenvalue λ3 an appropriate functional dependence upon ρN :

ν(ρN) =
1
6

(
2

λ3(ρN)
− 1

)
.

The functional form of λ3(ρ
N) has been shown to have significant consequences [22, 23].

Kinetic-scale, post-collision colour species segregation, or re-allocation, is an adaptation of 
the method of d’Ortona et al [12] , which may be written as:

C++
i (r, t) =

ρC(r, t)
ρ(r, t)

fi(r, t)+ ± β
φi(r, t)ρR(r, t)ρB(r, t)

ρ(r, t)
n̂ · δtĉi,

�

(9)

where superscript  +  (++) denotes a post-collision (post re-colour) quantity, β is a chosen 
segregation parameter [12] and the  +  (−) sign is used for the red (blue) component. We note 
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that this segregation rule is mass-conserving, simple to implement, local (given a constant 
director, n̂) and perhaps most significantly, ‘bottom-up’, i.e. a kinetic scale postulate which is 
justified a posteriori. Indeed, it has recently been shown that equation (9) is consistent with 
the following continuum-scale kinematics (expressed relative to the red component) [24], for 
uniform fluid motion:

∂ρR

∂t
+

1
2
δ2

t
∂2ρR

∂t2 + vγ∂γρR

=
k
2

c2
s (1 − αR)δt∇2

(
ρ2

R

ρ

)

+
k
2

c2
s (1 − αB)δt∇2

(
ρRρB

ρ

)

+
1
2
δtvαvβ∂α∂βρR

− δtβ(1 − αR)kc2
s nγ∂γ

(
ρ2

RρB

ρ2

)

− δtβ(1 − αB)kc2
s nγ∂γ

(
ρRρ

2
B

ρ2

)

+ 2δtc4
s∂α∂β

(
ρRFαβ

ρ

)
.

�

(10)

In the above, the last term on the right hand side originates in the dynamics correction term, 
F1i (see equation (20)) and determines the effect on the model kinematics of the dynamics 

[24]. When the term 2δtc4
s∂α∂β

(
ρRFαβ

ρ

)
 in equation (10) is small, Burgin et al [24] find the 

following, physically correct chromo-dynamics, obtained by solving equation (10):

ρR(r, t) =
ρ0R

2
(
1 + tanh(βn̂ · (r − vt)

)
,

with equivalent behaviour for the blue component. This result represents interface advection 
within fluids moving at uniform velocity. Note that, with this solution, the corresponding colour 
field profile is amenable to numerical differentiation i.e. ρN(r, t) → tanh [βn̂ · (r − vt)], so 
that the chromo-dynamic field is approximately a material invariant at order δ2

t . On the other 
hand, the error term in equation (10) constitutes an issue even with pure advection, i.e. it is 
present even in uniform flow, which is shown to restrict applicability of the method accord-

ing to approximate relation Λu = constant [24]. Taking the order δt approximation in equa-

tion  (10), DρC
Dt ≈ 0 equivalent, Burgin et al [24] arrive at the following, at lowest order of 

Chapman–Enskog theory:

DρC

Dt0
= 0, C ∈ [R, B],� (11)

for both fluid components. The above result will be seen to be central when deriving our 
pseudo Cartesian, chromo-dynamic MCLBE MRT scheme, in section 3.

3.  MRT scheme for axi-symmetric chromo-dynamic MCLBE

With the overall aim of facilitating the efficient benchmarking of multi-component flows with 
axial symmetry, we first develop a quasi-two-dimensional (2D), Cartesian representation, 
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from continuum fluid dynamics. The resulting formulation motivates two, essentially distinct, 
developments to lB methodology. First, a MCLBE MRT scheme (for a system with density 
contrast) able to handle spatially distributed flow sources/sinks and second, an advance to the 
methodology for incorporating velocity-dependent forces in MCLBE. We therefore establish 
a pseudo 2D representation of 3D, axially symmetric flows, then develop a suitable MCLBE 
scheme after Dellar et al and finally extend to velocity-dependent forces.

3.1. Two-dimensional representation of axially symmetric flows

Figure 1 illustrates the reduction from three to two dimensions, of a multi-component system 
with axial symmetry. A pseudo 2D system may be derived by discounting ignorable cylin-
drical polar co-ordinate φ, with an equivalent Cartesian equivalent system (x, z) parametriz-
ing the φ = 0 plane. The Navier–Stokes and continuity equations  for incompressible flow, 
expressed in cylindrical polar co-ordinates, are [10]:

∂vr

∂t
+ vr

∂vr

∂r
+

vφ

r
∂vr

∂φ
+ vz

∂vr

∂z
−

v2
φ

r

= − 1
ρ

∂p
∂r

+
η

ρ

[
1
r
∂

∂r

(
r
∂vr

∂r

)
+

1
r2

∂2vr

∂φ2 +
∂2vr

∂z2 − 2
r2

∂vφ

∂φ
− vr

r2

]
,

�

(12)

∂vφ

∂t
+ vr

∂vφ

∂r
+

vφ
r
∂vφ

∂φ
+ vz

∂vφ

∂z
+

vrvφ
r

= − 1
ρr

∂p
∂φ

+
η

ρ

[
1
r
∂

∂r

(
r
∂vφ

∂r

)
+

1
r2

∂2vφ
∂φ2 +

∂2vφ
∂z2 +

2
r2

∂vr

∂φ
− vφ

r2

]
,

�

(13)

∂vz

∂t
+ vr

∂vz

∂r
+

vφ
r
∂vz

∂φ
+ vz

∂vz

∂z

= − 1
ρ

∂p
∂z

+
η

ρ

[
1
r
∂

∂r

(
r
∂vz

∂r

)
+

1
r2

∂2vz

∂φ2 +
∂2vz

∂z2

]
,

�

(14)

1
r
∂

∂r
(rvr) +

1
r
∂vφ

∂φ
+

∂vz

∂z
= 0.� (15)

In axial-symmetry, with the following replacements:

r −→ x, vr → vx,� (16)

this system reduces to a 2D, quasi-Cartesian form wherein metric terms of the acceleration 
equations transform to velocity-dependent accelerations and the continuity equation acquires 
a source:

∂vα

∂t
+ (v · ∇) vα = −1

ρ

∂p
∂xα

+
η

ρ
∇2vα + aα, α = x, z

∂vx

∂x
+

∂vz

∂z
= A.

J Spendlove et alJ. Phys. A: Math. Theor. 53 (2020) 145001
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Above, ∇ =
(

∂
∂x , ∂

∂z

)
 and a (A) denotes an acceleration (source/sink):

ax =
η

ρ

(
1
x
∂vx

∂x
− vx

x2

)
, az =

η

ρ

1
x
∂vz

∂x
, A = −vx

x
.� (17)

After straightforward algebra, an equivalent velocity-dependent body force density (with units 
of N m−3) and continuity source may be identified for the weakly compressible formulation 
characteristic of lattice Boltzmann:

Fx(v) = η
∂

∂x

(vx

x

)
, Fz(v) =

η

x
∂vz

∂x
,

A(v) = −ρ
(vx

x

)
.

� (18)

Since we occupy the φ = 0 plane of a cylindrical polar co-ordinate system with axial symme-
try, the Mean curvature in equation (8), for the Lishchuk force, should, however, be computed 
using the cylindrical polar divergence:

K = −∇ · n̂ = −∂n̂x

∂x
− ∂n̂z

∂z
− n̂x

x
.� (19)

Figure 1.  Schematic illustrating the reduction from 3D to 2D, for our multi-component 
drop system with the corresponding computational domain, used in simulation. 
Asterisks identify discrete, lattice quantities. Diagrams are not to scale. In (a) the 
sphere represents a liquid drop of radius R. The 2D system in (b) is described using 
cylindrical polar co-ordinates (r, z), i.e. φ is ignorable. Cartesian equivalent system 
(x, z) parameterizes the φ = 0 plane. Our domain is part of the region x ∈ [0.5,∞), 
z ∈ (−∞,∞), i.e. the symmetry boundary r  =  0 lies outside simulations. Boundaries 
are implemented straightforwardly, to achieve the following: (i) an origin of lattice co-
ordinate x*  =  0 corresponding to x = 1

2 containing the effect of an axis of symmetry 
at x  =  0, (ii) at large |z*|, periodic replicas of the system and (iii) at large x* mid-link 
bounce-back, to represent a no-slip boundary located at large x.

J Spendlove et alJ. Phys. A: Math. Theor. 53 (2020) 145001
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Clearly equations (18) and (19) contain spatial gradients. In simulation, such gradients are 
computed using stencils based upon lattice link vectors, ci. For example, by exploiting lattice ten-

sor isotropy it is possible to devise a compact, third-order stencil : ∂f
∂xα

≈ 3
∑

i tif (r + δtci)ciα, 

where f  denotes the scalar function to be differentiated and δt is the simulation time step. In 
appendix B we derive the high order stencils necessary in part of this work.

The continuity equation source/sink, A, introduced above, may be understood in terms of 
the system’s geometry. Consider an annular volume element with volume drdz(rdφ). With 
vr = constant and ρ = constant, there still exists a mass flux differential between the volume 
element’s curved exterior and interior surfaces, the relevant fluxes being ρvr(r + dr)dφdz and 
ρvrrdφdz, respectively. The difference in mass flux is equivalent to a source or sink per unit 
volume of the 2D, pseudo Cartesian domain:

ρvrrdφdz − ρvr(r + dr)dφdz
rdφdz

= −ρvr

r
→ A(v).

Henceforth, we denote by (x∗, z∗) the discrete lattice co-ordinate corresponding to (x, z) 
respectively.

3.2.  MRT scheme

From section 3.1, we see a quasi-Cartesian lB model for axi-symmetric flow must encompass 
velocity dependent forces and sources. Here, we derive a MRT scheme using the method of 
Dellar, able to incorporate geometrical forces, F(v) and sources, A, alongside other simpler 
body forces, G and also to treat immiscible fluids with a density contrast, Λ.

Dellar developed the most logically consistent approach to an MRT scheme for single 
component flow [25]. It avoids explicit assignment of collision matrix elements, Aij. The col
lision matrix is, instead, implicitly defined by its eigenvalues and eigenvectors, a majority 
being assigned naturally in the Chapman–Enskog process. By a Chapman–Enskog analysis 
of the kinetic equation (1), using the framework of Guo et al [14], we derive, in appendix A, 
an MRT scheme-based collision model. Our analysis is performed in D2Q9 with the lattice 
link vectors ci and indexing defined in figure 2. The scheme is derived colour-blind, so as to 
clarify the coupling between it and the model kinematics [24]. Put another way, we wish to 
incorporate the effects of the chromo-dynamics MCLBE segregation or re-colour step in the 
macroscopic description. Based on an analysis of the f i, we demonstrate correct macroscopic 
dynamics for the following kinetic sources:

F1i = ti(ciαciβ − c2
sδαβ)Fαβ(ρR, ρB, ρN ,Λ, v),� (20)

F2i = ti

[
Dαciα

c2
s

+
1

2c4
s

(
1 − λ3

2

)
× (Dαuβ − Dβuα)(ciαciβ − c2

sδαβ)

]
,

�

(21)

F3i = tiA −
(

1 − λ3

2

)
Auαuβ − 1

3
Aδαβ .� (22)

Above, λ3 is an eigenvalue of matrix A, which determines the kinematic viscosity of the lattice 
fluid, the tensor:
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Fαβ =
ti

2c4
s

(
1 − λ3

2

)
×
{

1
3
ρ∂γuγδαβ − (uα∂βΦ′ + uβ∂αΦ

′ + uγ∂γΦ
′δαβ)

}
,

and

Φ′ =
3
5
(1 − αR)(ρR + ΛρB)−

1
3
ρ.� (23)

Clearly, to use equations (1), (20), (21) and (23) to evolve the f i requires the elements of 
A. To avoid this expense, we follow Dellar’s approach and use a complete set of linearly-
independent macro-scopic modes, m(p ), p = 0, 1, .., (Q − 1), defined in table 1. A majority of 

these are physical i.e. m( p) =
∑

i h( p)
i fi represent observables like momentum. However, for 

closure, a subset of ‘ghost modes’ require a second lattice link weight function, gi:

gi =




0 i = 0
4 i = odd
−2 i = even

where, e.g. the designation ‘odd’ indicates a long lattice link, indexed by an odd value of sub-
script i (see figure 2) Conveniently, the m(p ) turn out to obey scalar relaxation equations, the 
parameters for which, we will show, effectively define the elements of A.

We define a projection matrix, comprised of linearly independent left row collision matrix 
eigenvectors, h( p), each the projector of a mode, m(p ):

M ≡
(

h(0), h(1), · · · , h(8)
)T

,

such that

Figure 2.  Schematic of a square lattice in D2Q9 with the indexing convention used 
throughout. Note that even (odd) value of link index i label short (long) links.
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(
m(0), m(1), ..., m(8)

)T
= (ρ, ρux, ρuy,σxx,σyy,σxy, N, Jx, Jy)

T
= Mf,

�
(24)

(see table 1). Above, the column vector f ≡ ( f0, f1, ..., f8) T  and M is a column vector, each 
element of which is a left eigenvector. We define all the h( p) as polynomial expressions in the 
lattice basis. Let us project evolution equation (1) using left multiplication by M:

M f+ = M f + M A M−1
(

M f(0) − M f
)
+ M F,� (25)

where F is the column vector whose elements are the source terms, Fi = F1i + F2i + F3i, in 
the evolution equation (1), i.e. F ≡ (F0, F1, ..., F8)

T . Using equation (24), the above projected 
evolution equation decomposes into a set of forced scalar relaxation equations, one for each 
mode:

m( p)+ = m( p) + λp

(
m(0)( p) − m( p)

)
+ S( p),

S( p) =

8∑
j=0

MpjFj, p = 0, 1, ..., (Q − 1),

m(0)( p) =

8∑
j=0

Mpjf
(0)
j , p = 0, 1, ..., (Q − 1).

�

(26)

In equation  (25) it is immediate from the properties of the h( p) that Λ = M A M−1, with 
Λ ≡ diag(λ0, λ1, ...,λ8), whence we obtain the stated set of scalar, modal relaxation equa-
tions. Note that zero eigenvalues are associated with physical modes subject to conservation 
principles. The problem of developing an MRT scheme now reduces to one of computing 

Table 1.  Collision matrix eigenspectrum. Left row eigenvectors (projectors), 
h( p), p ∈ [0, 8], corresponding eigenvalues, corresponding physical significance (if any) 
and corresponding equilibria for mode m( p) ≡

∑
i h( p)

i fi of the collision matrix, A.

Eigenvector Component Definition Eigenvalue, λp

mode,  
m(p )

Physical  
interpretation Equilibrium

h(0) h(0)
i

1i 0 ρ Density ρ

h(1) h(1)
i

cix 0 ρux x momentum ρux

h(2) h(2)
i

ciy 0 ρuy y  momentum ρuy

h(3) h(3)
i

c2
ix λ3 Pxx See  

equation (A.2)
Π

(0)
xx

h(4) h(4)
i

c2
iy λ3 Pyy See  

equation (A.2)
Π

(0)
yy

h(5) h(5)
i

cixciy λ3 Pxy See  
equation (A.2)

Π
(0)
xy

h(6) h(6)
i

gi λ6 N — 0

h(7) h(7)
i

gicix λ7 Jx — 0

h(8) h(8)
i

giciy λ7 Jy  — 0
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appropriate equilibria, m(0)(p ), and source terms S(p ). These computations are straightforward 
when performed within the framework of Guo et al, [14]. In appendix A, we use these authors’ 
approach to write our kinetic equation  source (F1i + F2i + F3i) in terms of the following 
tensor:

Cαβ =

(
1 − λ3

2

)
[uα (Fβ − ∂βΦ

′) + uβ (Fα − ∂αΦ
′)]

−
(

1 − λ3

2

)[
uγ∂γΦ′ − 1

3
ρ∂γuγ

]
δαβ

−
(

1 − λ3

2

)
Auαuβ − A

3
δαβ .

�

(27)

Then, in terms of Cαβ, above, we have:

S(0) = h(0) · F =
∑

i

h(0)
i Fi = A,

S(1) = h(1) · F =
∑

i

h(1)
i Fi =

∑
i

cixFi = nFxδt,

S(2) = h(2) · F =
∑

i

h(2)
i Fi =

∑
i

ciyFi = nFyδt,

S(3) = h(3) · F =
∑

i

h(3)
i Fi =

∑
i

c2
ixFi = Cxx +

A
3

,

S(4) = h(4) · F =
∑

i

h(4)
i Fi =

∑
i

c2
iyFi = Cyy +

A
3

,

S(5) = h(5) · F =
∑

i

h(5)
i Fi =

∑
i

cixciyFi =
1
2
(Cxy + Cyx),

S(6) = h(6) · F =
∑

i

h(6)
i Fi =

∑
i

giFi = 0,

S(7) = h(7) · F =
∑

i

h(7)
i Fi =

∑
i

gicixFi = 0,

S(8) = h(8) · F =
∑

i

h(8)
i Fi =

∑
i

giciyFi = 0.

We note that the source term Fi has no projection onto the non-hydrodynamic modes N, Jx, Jy . 

For the modal projections of the particle distribution function equilibrium, f (0)
i (ρ, v), we have:
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h(0) · f(0) =
∑

i

h(0)
i f (0)

i =
∑

i

1if
(0)
i = ρ,

h(1) · f(0) =
∑

i

h(1)
i f (0)

i =
∑

i

cixf (0)
i = ρux,

h(2) · f(0) =
∑

i

h(2)
i f (0)

i =
∑

i

ciyf (0)
i = ρuy,

h(3) · f(0) =
∑

i

h(3)
i f (0)

i =
∑

i

c2
ixf (0)

i = Π(0)
xx

h(4) · f(0) =
∑

i

h(4)
i f (0)

i =
∑

i

c2
iyf (0)

i = Π(0)
yy ,

h(5) · f(0) =
∑

i

h(5)
i f (0)

i =
∑

i

cixciyf (0)
i = Π(0)

xy ,

h(6) · f(0) =
∑

i

h(6)
i f (0)

i =
∑

i

gif
(0)
i =

9
5
αRρR +

9
5
αBρB − 4

5
ρ,

h(7) · f(0) =
∑

i

h(7)
i f (0)

i =
∑

i

gicixf (0)
i = 0,

h(8) · f(0) =
∑

i

h(8)
i f (0)

i =
∑

i

giciyf (0)
i = 0.

With sources and equilibria defined, it is possible to write down the full set of modal evolution 
equations. These are stated for all the Q  =  9 modes ρ , (ρux), (ρuy), Pxx, Pyy, Pxy, N, Jx and Jy  
in appendix A.

An inversion, from mode space, directly to obtain the post-collision distribution function 
may be performed:

f+ = M−1 m+.� (28)

Here, a distinct advantage of Dellar’s approach is that projection matrix M may be inverted 
based upon lattice isotropies. Define the components of column vectors k( p), p = 0, 1, .., 8 as 
follows:

k(0)
i = 2ti −

3
2

ti
(
c2

ix + c2
iy

)
,

k(1)
i = 3ticix,

k(2)
i = 3ticiy,

k(3)
i =

9
2

tic2
ix −

3
2

ti,

k(4)
i =

9
2

tic2
iy −

3
2

ti,

k(5)
i = 9ticixciy,

k(6)
i =

1
4

giti,

k(7)
i =

3
8

giticix,

k(8)
i =

3
8

giticiy,
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It is straightforward, using the usual lB simulation lattice properties of isotropy of even ten-
sors (see e.g. equations (A.3)–(A.5)), to show that h( p) · k( p′) = δpp′ and hence it follows:

M−1 =
(

k(0), k(1), · · · , k(8)
)

,� (29)

whence, using equation (28):

f+i = (M)−1
ij m+

j

= ti

{[
2 − 3

2
(
c2

ix + c2
iy

) ]
ρ+

+ 3
(
(ρux)

+cix + (ρuy)
+ciy

)

+
9
2
(
P+

xxc2
ix + 2P+

xycixciy + P+
yyc2

iy

)

− 3
2
(
P+

xx + P+
yy

)

+
1
4

giN+ +
3
8

gi
(
J+x cix + J+y ciy

)
}

,

with ρ+, (ρux)
+, (ρuy)

+, P+
xx, P+

yy, P+
xy, N+ , J+x  and J+y  given explicitly in equation (A.24)–

(A.31) of appendix A. In summary, A was defined implicitly above, in terms of its eigenval-
ues, λp, and its left row eigenvectors, h( p), p = 0, 1, ..., (Q − 1), each of which determines 
one modal relaxation. The MRT scheme developed here and in appendix A has several novel 
features: (i) all dynamics corrections are made in evolution equation  source term in equa-
tions (20)–(22) (or, equivalently, in the source terms of equation (26)), (ii) no explicit col
lision matrix, A, is constructed and (iii) the post-collision distribution function is constructed 
directly from post-collision modes, m(p )+ , using equation (28).

Of course, species or colour is finally re-allocated according to f+i , using equation (9).

3.3.  Velocity-dependent forces

For velocity dependent body force densities, the relationship between the first moment of lB’s 
distribution function and the lattice fluid’s macroscopic velocity requires attention. A body 
force and fluid velocity are generally related according to ρv =

∑
i fici +

1
2 F. If a component 

of F depends on v, this relationship may be become implicit. Previous approaches to this gen-
eral problem have involved approximate ‘predictor-corrector’ type methods [35] and algebraic 
solution [36]. Here, we begin by writing:

ρv =
∑

i

fici +
1
2
(F(v) + G) ,� (30)

where G denotes any contribution to the total body force density which is velocity-indepen-
dent, as in equation (34). Here, for F(v) given in equation (18), we find equation (30) may be 
solved. For the metric force density in equation (18), we obtain from equation (30) two de-
coupled partial differential equations (PDEs) for v as follows:

(ρvx, ρvz) =
∑

i

fici +
1
2
η

(
∂

∂x

(vx

x

)
,

1
x
∂vz

∂x

)
+

1
2

G.� (31)
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From equation (31), after a little algebra, we can write a pair of PDEs to be solved for vx  and 
vz:

∂vx

∂x
−

(
1
x
+

2x
ν

)
vx = −2x

ν

Sx

S0
,

∂vz

∂x
− 2x

ν
vz = −2x

ν

Sz

S0
,

� (32)

where we have defined:

(Sx, Sz) =
∑

i

fici +
1
2

G, S0 = ρ =
∑

i

fi,� (33)

so that S includes any contribution, G, to the body force density which is velocity-indepen-
dent. Relevant examples of the latter are the Lishchuk force for inter-facial tension effects and 
a buoyancy force:

G = G0êz +
1
2
σK∇ρN .� (34)

We seek vx  and vz from PDEs (32) using integrating factors. We neglect spa-
tial variation in S in order to obtain a tractable scheme. We will justify this approx

imation a posteriori. For the first of equation  (32), an integrating factor is 1
x exp

(
− x2

ν

)
 

and for the second, exp
(
− x2

ν

)
. Accordingly, we can re-cast the first of equation  (32) 

as ∂
∂x

(
vx

1
x exp

(
− x2

ν

))
= Sx

S0

1
x

∂
∂x exp

(
− x2

ν

)
 whereupon integration by parts yields 

( vx
x

)
exp

(
− x2

ν

) ∣∣∣∣∣
∞

x0

= Sx
S0

[
1
x exp

(
− x2

ν

) ∣∣∣∣∣
∞

x0

+
∫∞

x0

1
x2 exp

(
− x2

ν

)
dx

]
 and substituting limits, 

using transformation u = x√
ν
 and simplifying, we obtain for the pseudo-Cartesian lattice 

velocity x-component:

vx =
Sx

S0
I(ν, x),

I(ν, x) =

[
1 − 1√

ν
x exp

(
x2

ν

)∫ ∞

x
ν

1
u2 exp

(
−u2) du

]
.

� (35)

Numerical integration to determine I(ν, x) will be discussed shortly. Similarly, the second of 

equation (32) becomes ∂∂x

(
vz exp

(
− x2

ν

))
= − 2x

ν exp
(
− x2

ν

)
Sz
S0

, in which the right hand side 

is exact, hence vz exp
(
− x2

ν

)
= Sz

S0
exp

(
− x2

ν

)
+ φ(z) and selecting φ(y) = 0, we have for the 

pseudo-Cartesian lattice velocity y -component:

vz =
Sz

S0
.� (36)

The factor I(ν) in equation (35) is evaluated, using Simpson’s rule, for a range of x (transverse 
co-ordinate). Specimen data for ν = 1

6 are shown in figure 3. Note the integrand in I(ν), in 
equation (35), decays very rapidly indeed. This fact justifies our neglect of the spatial varia-

tion in the quantity Sx
S0

, above. For a given lattice position (x∗, z∗), the measured value of vx  
is multiplied by I(ν, x∗). Naturally, scale-factors I(ν, x∗) may be pre-compiled for efficient 
computation. Note that, from equation  (36), no adjustment to vz is required in our pseudo 
Cartesian system.
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The discussions above deal with the assignment of an appropriate velocity in a quasi 3D 
scheme. To simulate, one must of course be able to apply relevant boundary conditions. 
Appropriate kinetic scale simulation lattice closure rules and representation of the vertical 
boundaries x  =  0 and x → ∞ will be considered in section 4.

4.  Simulations

We note that our pseudo-Cartesian methodology, reported above, reduces the computational 
expense of the complex flow validation simulations we describe below by at least two orders 
of magnitude.

To validate our pseudo Cartesian, MCLBE method (and with it the foundations of the 
chromo-dynamic variants’ inter-facial kinematics and dynamics), we shall compare simula-
tion data with analytical solutions. The latter exist, for curved interface configurations, only 
for steady flow. We first consider steady flow at Re = 0 past a tethered, spherical drop, con-
sidered by Rybczynski [31] and Hadamard [32]. (See also [33] for a self-contained and con-
textualized treatment.) Second, we shall consider the perturbed solution of this flow, solved 
by Taylor and Acrivos [34], in which the drop deformation in flow is computed as a perturba-
tion expansion in Weber, Wb, and Reynolds, Re, numbers. Figure 1(b) shows the simulation 
geometry of our test-bench solutions, which both require an unbounded external (blue) fluid.

Throughout this section, discrete lattice positions are indicated by use of an asterisk. The 
flows represented in schematic figure  1(B) were simulated as follows. Reported data cor-
respond to a simulation lattice with x*  =  0,1,..,199 and z*  =  0,1,..,299, corresponding to 
x = 0.5, 1.5, .., 199.5 and z = 0, 1, .., 299. Horizontal periodic boundary conditions were 
applied between sites z∗ = 0 and z*  =  299, ∀x∗. The first lattice nodes in the domain, i.e. 
x*  =  0, were considered to lie at x  =  0.5, to avoid a potential singularity in the source, A, at 
x  =  0. Off the lattice boundary x  =  0 is a symmetry condition, co-located with an inviscid, 
solid boundary condition, vn = 0. Both these physical conditions were encapsulated in the 
applied lattice closure rule of mid-link specular reflection. A constant, positive body force 
density −G0ρRêz was applied. This body force produced acceleration, even for a neutrally 
buoyant drop, note.

For all data presented and discussed, the non-hydrodynamic, ghost, modes of our Dellar-
type scheme were relaxed directly to equilibrium, by setting λi = 1 (i �= 3) and the fluids’ 
kinematic viscosity was ν = 1

3 = constant, (corresponding to the MRT relaxation param
eter λ3 = 2

3). To facilitate comparison, our data will not depict the external flow. Of course, 
all velocity field data reported actually correspond to 3D, axially-symmetric flow, confined 
within (say) meridional planar section φ = 0, taken from the equivalent 3D system.

4.1.  Flow past a tethered spherical liquid drop

For the simulations performed on non-deforming drops, we shall utilize the fact that our test-
bench analytical solution gives the flow field at all points. Accordingly, we present data for 
the entire flow field, which will facilitate our examination of inter-facial boundary conditions.

In the Re,Ca  =0 regime, the anticipated micro-current activity will be relatively large, 
since micro-current amplitude is proportional to surface tension σ and the physical flow (value 
of U0) must be small, to avoid deformation. Nevertheless, this artefact can be subtracted, to 
reveal the physical flow [35], even when it seemingly dominates. For clarity, we shall present 
data on internal flow within spherical drop and assume the kinematic viscosity of the system 
is uniform. Hence, the ratio of the shear viscosities is determined by the density contrast:
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ηB

ηR
=

νρB0

νρR0
=

1
Λ

.

The flow is most conveniently computed using a spherical polar co-ordinate system [33]. 
The analytical calculations [31, 32] represent a stringent test-bench and it makes explicit ref-
erence to key dynamic and kinematic boundary conditions, the representation of which in 
MCLBE simulation is our present concern. Note that the form of the theory quoted below does 
not contain explicit reference to inter-facial tension i.e. it refers only to kinematic and viscous, 
no-traction conditions at the interface and assumes surface tension forces are so strong as 
to enforce spherical shape. These constraints are raised when we come to consider a lightly 
deformed drop. Expressed in spherical co-ordinate system with the origin at drop centre, the 
internal velocity field is:

vs
r = cos(θ)

(
Λ

1 + Λ

)
U0

2

(
1 − r2

s

R2

)
,

vs
θ = sin(θ)

(
Λ

1 + Λ

)
U0

2

(
1 − 2r2

s

R2

)
,

vs
φ = 0.

� (37)

Here, U0êz is the constant speed of the blue fluid at a large distance from the red drop and 
rs =

√
r2 + z2 is spherical polar distance from the origin. Note the stagnation point -the centre 

of a single internal vortex- is always located at θ = π
2 , rs =

R√
2
 or, equivalently, x = R√

2
, z  =  0. 

This flow feature does not change position when Λ changes. The above solution is plotted as 
a vector field for U  =  1.0, R  =  20, in figure 4 (panel (A)).

In simulation, the steady-state of flow was identified by a constant velocity residual and the 
surface tension parameter, σ, used was always as small as possible for a front-back symmetric 
drop. A Galilean transformation to the rest frame of the drop was applied to the z velocity 

Figure 3.  The result of a numerical integration, using Simpson’s rule, for the 
multiplicative velocity scaling factor I(ν), defined in equation  (35). For these data, 
ν = 1

6.
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component (only), once steady-state was reached. This was achieved by subtracting the aver-
age velocity of the red fluid, the latter being computed as a sum of annular mass increments:

vz → (vz − 〈vz〉)� (38)

〈vz〉 =
∫ ∫

r,z 2πρR(r, z)vz(r, z)rdrdz∫ ∫
r,z ρR(r, z)rdrdz

−→
∑

x∗,z∗ 2πx∗ρR(x∗, z∗)vz(x∗, z∗)∑
x∗,z∗ 2πx∗ρR(x∗, z∗)

.
� (39)

Hence, the simulated flow field was translated to the approximate rest frame of drop, translated 
z* co-ordinates being rounded. Front-back symmetry and spherical drop shape were used to 

confirm that data correspond to Re ≈ 0. (Formally, the computed Re = <vz>R
ν < 3.0 × 10−4.) 

The phase field of the steady state was then frozen, the applied body force removed and the 
corresponding micro-current flow allowed to evolve to its steady state. Finally, this flow was 
measured and subtracted. For all data reported in the next section, the value of phase field seg-
regation parameter was β = 0.67 and the buoyancy parameter was G0 = 8.0 × 10−9 lattice 
units. Data reported correspond to R*  =  20 lattice units and were checked for convergence to 
the narrow interface limit and for general finite size effects as follows. Our check for finite 
size effects was performed by taking a system with size parameters R*  =  20 lattice units, 
x∗ ∈ [0, 199], z∗ ∈ [0, 299] and repeatedly doubling x*, z* whilst keeping R* fixed; our check 
for the narrow interface (continuum) limit was performed by repeatedly doubling all of x*, z*, 
R*.

4.2.  Flow past a tethered deforming drop

For these simulations, we shall present data for the drop shape deformation alone, for which 
analytic expressions exist. This validation is therefore more challenging to interpret that that 
reported in section 4.1 above.

Taylor and Acrivos use a singular perturbation solution of the antisymmetric equations of 
motion to predict the shape (and drag) of a slightly deforming drop [34]. We shall be con-
cerned with Taylor and Acrivos’ equation (30) and will use their notation. With our restriction 
of equal kinematic viscosities, the deformed drop radius at spherical polar zenithal location, 
θ, may be written:

R(θ)
R

= 1 − a2P2(cos(θ))− a3P3(cos(θ)) + ...,� (40)

with expansion co-efficients [34]:

a2 = λWe, a3 =
3λ(11Λ + 10)

70(Λ + 1)
We2

Re
,� (41)

where P2(x) etc is the second order Legendre polynomial [29] and:

λ =
1

4(Λ + 1)3

[
81
80

Λ3 +
83
30

Λ2 +
103
40

Λ +
5
6

]
.� (42)

No confusion should arise from our use of symbol λ above, as the MRT collision eigenvalues, 
λp, p = 1, ..., 3. In simulation, we compute dimensionless Reynolds and Weber numbers as 
follows:
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Wb =
ρB < vz >

2

∆p
, Re =

R < vz >

ν
,� (43)

where ∆p is the measured pressure step across the drop interface, from equation  (6). 
Simulations were performed as described in section 4.1, above. Data for the deformed radius 
were extracted and fitted to equation (40) as set-out below, by first computing the centre of 
gravity as:

〈z〉 =
∫ ∫

rz 2πzρR(r, z)rdrdz∫ ∫
rz 2πρR(r, z)rdrdz

−→
∑

x∗,z∗ 2πx∗ρR(x∗, z∗)z∗∑
x∗,z∗ 2πx∗ρR(x∗, z∗)

� (44)

and from it the radial distance and zenithal angle of inter-facial locations 
(x∗, z∗) : ρN(x∗, z∗) ∈ [−0.2, 0.2] were computed as follows:

Figure 4.  Comparison between analytical internal solution of flow past an effectively 
tethered red drop and simulation results. Panel (A) shows the analytical solution 
stated in equation (37). Note, the analytical solution has been shifted in z to facilitate 
comparison with the micro-current adjusted simulation data in the second panel, (B). 
Both velocity fields are separately normalised by our plotting package (Matlab ver. 
2014b.). The solid black contour shows the nominal position of the interface, ρN = 0 
contour. For these data: R  =  20, x ∈ [0.5, 199.5], z ∈ [0, 299], β = 0.67, buoyancy 
parameter G0 = 8.0 × 10−9 and ν = 1

6.
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R(θ∗) =
(
(x∗ + 0.5)2 + (z∗− < z >)2)1/2

,

θ∗ = cos−1
(

z∗− < z >
R∗

)
.

� (45)

A conjugate gradients grid search optimised a fit to equation (40), using as adjustable param
eters the undeformed drop radius, R, and amplitudes a2, a3 should, apparently, produce results 
related to Wb and Re after equation (41). For deformed drop data presented in section 5, the 
value of the phase field segregation parameter was reduced to β = 0.3, with a commensurate 
doubling of undeformed drop radius (to R*  =  40) and lattice dimensions. This was necessary 
to stabilize simulations, whilst maintaining the width of the inter-facial region (which varies 
as 1/β), relative to R, constant compared with data in section 4.1. The surface tension param
eter σ = 6.0 × 10−4 lattice units, Wb � 2.0 × 10−2 and Re < 0.1.

5.  Results and discussion

All data presented and discussed in this section correspond to maximum density contrasts 
Λ < 10. We return to this matter in our conclusions. The main interest of this article is not 

Figure 5.  Flow past an effectively tethered red drop, here centred close to the location 
z*  =  260 lattice units. The solid line is the contour ρN = 0. The flow of the external, blue 
fluid has not been plotted. Panel (A) shows the scaled velocity field after application 
of the transformation in equations (38) and (39). The effect of the inter-facial micro-
current is very clear. Panel (B) shows the steady-state micro-current computed for the 
phase field configuration in (A) without any external flow. Panel (C) shows the result 
of subtracting the flow in (B) from that in (A). The correspondence with theory and, 
in particular, the compliance of the flow with the kinematic condition are striking in 
the data in panel (C). In particular, the physical flow in panel (C) lies tangent to the 
interface. Simulation data as figure 4.
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the stability of the chromo-dynamic density difference method, rather it is the fundamental 
accuracy of its hydrodynamics. In this respect, results are encouraging.

Consider our first test-bench solution of flow past a spherical, red tethered drop, as dis-
cussed in section 4.

Figure 4 below shows, side by side, the full velocity field of the shifted analytical solution, 
computed from spherical polar co-ordinate velocity components in equation (37) (panel (A)) 
and the corresponding velocity field obtained from simulation (panel (B)). The latter were 
adjusted for the micro-current as discussed shortly. For these data, Λ = 1. The correspondence 
between these two solutions over the whole internal domain is excellent.

Panel (A) of figure 5 shows steady-state simulation data for the scaled internal velocity 
field, after applying the Galilean transformation in equation (39). In these data, the effect of 
the inter-facial micro-current is very clear and flow is certainly not parallel to the interface (the 
solid black contour corresponds to the interface center, ρN = 0). A localized micro-current 
circulation may be subtracted from the overall flow in (A), to reveal the physical flow in the 
linear, Stokes’ regime [35]. The flow in panel (B) of figure 5, which is not normalised to the 
same quantity as that in panel (A), corresponds to the micro-current of the ‘frozen’ colour 
field, ρN . This is subtracted, vectorally, to expose the physical flow field in panel (C). The 
correspondence with theory and, in particular, the compliance of the flow with the kinematic 
condition of mutual impenetrability are striking in these data. Whilst a MCLBE interface is 
not sharp, flow is directed tangentially to contours of ρN = constant everywhere within a shell 
of finite thickness and we can say that the physical flow lies tangent to the curved interface at 
all relevant points in the simulated domain. The significance of this result should be stressed. 
Apparently, in this challenging Re, Ca  =0 regime, where received wisdom would argue that 
the influence of the inter-facial micro-current is proportionally large in comparison with the 

Figure 6.  Normalised velocity field components from figure 5 (C) along two transects, 
from am un-deformed, spherical drop centre, with Λ = 5. The continuous line 
corresponds to theory (equation (37)), points to simulation data. Panel (A) compares the 
spherical polar radial velocity with its measured value along the equator (Note that there 
is no tangential component of motion along the drop equator). Panel (B) compares the 
spherical polar radial velocity with its measured value along a line sub-tending an angle 
of π4  at the positive z axis. Panel (C) : as panel (B) but for the tangential component of 
velocity. Simulation data as figure 4.
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Figure 7.  Corrected flow field (i.e. with the inter-facial micro-current removed), for 
flow past an effectively tethered red drop computed, for a range of density contrasts, Λ, 
in Stokes’ regime (All flows have Re< 2 × 10−4). External flow of the blue fluid is not 
plotted. The solid line is the contour ρN = 0. The plotting package used (MATLAB) has 
normalised the flow depicted in each panel individually. Nevertheless, it is clear that, in 

all cases, the location of the primary vortex agrees with the prediction in equation (37). 

(That is, the vortex is predicted to lie at x = r = R√
2
, ∀Λ ). Moreover, the extent of 

compliance with the kinematic condition of mutual impenetrability across the range of 
Λ is also clear in these data.
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true, hydrodynamic signal, our data, together with the supporting analysis contained in [24], 
demonstrate that, at steady state, its influence may be removed altogether, simply by comput-
ing, then subtracting the flow induced by the frozen phase field, ρN . Figure 6 assesses the 
quantitative variation of the velocity field components from figure 5(C), measured along two 
transects from the lattice co-ordinate closest to the drop centre. To facilitate comparison with 
the theory of equation (37) we have defined:

f (Λ) =
(

1 + Λ

Λ

)
.� (46)

Panel (A) compares the spherical polar radial velocity, vs
r, with its measured value along the 

equator (θ = 0), where there is no tangential component of motion, note. Panel (B) compares 
spherical polar vs

r with its measured value along the line subtending an angle of π4  at the posi-
tive z axis, intersecting the latter close to the centre of the drop (i.e. θ ≈ π

4 ). Panel (C) : as 
panel (B) but for spherical polar vs

θ. In these data, correspondence between theory and simula-
tion is weakest for r → R as expected, owing to the diffuse nature of the MCLBE interface. 
In simulation, the interface corresponds to a shell of finite thickness, not a surface. Again, 
we observe that despite its diffuse nature, both the magnitude and direction of flow conform 
with a sensible interpretation of the relevant continuum no-traction and kinematic conditions. 
In figure  7, we show the simulated internal flow field (with the inter-facial micro-current 
removed, as discussed above), for flow past an effectively tethered red drop computed, for a 
range of density contrasts, Λ, all in Stokes’ regime. (All flows have Re< 2 × 10−4.) Note that 
the buoyancy parameter varies between the data on panels (A)..(D). Insofar as one can judge 
from these data, the location of the primary vortex does not change, which agrees with the 
prediction implicit in equation (37). Moreover, the extent of compliance with the kinematic 
condition of mutual impenetrability, across the range of Λ is again very clear in these data. We 
defer all further discussion until section 6.

Figure 8.  Signals in a meridional section through a lightly deformed drop sedimenting 
vertically downwards, viewed from the rest frame of the drop, at steady state. Panel 
(A) shows the pressure field (in lattice units). Panel (B) shows Stokes’ stream-function. 
The red contour shows the ρN = 0 contour. For these data, β = 0.3, Λ = 5, R  =  40, 
x*  =  0.5,1.5,...,300, y *  =  0,1,...,400, ν = 1

6 = constant.
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We proceed to consider our second test-bench solution of flow past a slightly deformed 
drop. It will be noted that the range of Λ achieved with the chosen level of resolution, for this 
more complex interface shape is reduced relative to that in e.g. figure 4. We return to this issue 
in section 6.

Figure 8 shows data obtained for a drop sedimenting vertically downwards, with deforma-
tion, viewed from the rest frame of the drop, at steady state. For these data, Λ = 5. Panel (A) 
shows the pressure field (in lattice units), panel (B) shows Stokes’ stream-function for the 
flow, whilst the red contour corresponds to the ρN = 0 contour, which is the nominal interface. 
In figure 9 we see the time development of deformation in a set of interface configurations for 
a drop sedimenting vertically downwards. Here, the red line corresponds to the initial ρN = 0 
contour, the black contour is a later time and the blue contour corresponds to steady state.

In figure 10 we see points on the lightly deformed drop interface for Wb ≈ 2.0 × 10−2, 
Re ≈ 0.01, for three lightly deformed drops with Λ = 1

2 , 1, 2 (panels (A), (B), (C) respec-
tively). The solid line corresponds to a conjugate gradients grid search optimised fit to the 
prediction of equations (40)–(42). The measured fit coefficients corresponding to these data 
are recorded in table 2, below.

The fit to the interface is in reasonable agreement with the predictions of analytical pertur-
bation theory.

Figure 9.  Time development of deformation. Sequential interface configurations for 
a drop sedimenting vertically downwards (displacement not to scale). The red red line 
corresponds to the initial ρN = 0, the black contour is a later time and the blue contour 
corresponds to steady state. For these data, Λ = 5 with all other parameters as figure 10.
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6.  Conclusion

Here, we have developed a 2D pseudo Cartesian, chromo-dynamic MCLBE scheme for effi-
cient simulation of multi-component systems with 3D axial symmetry, continuously distrib-
uted sources (and/or sinks) of momentum and a density contrast between the simulated fluids. 
This methodology makes the complex inter-facial validations we report computationally 
accessible. Without our 2D pseudo Cartesian model, our simulations would have been at least 
two orders of magnitude more expensive. Our analysis motivates a novel and versatile treat-
ment for velocity-dependent forces in lattice Boltzmann methodology (here, the metric force 
terms of the cylindrical Navier–Stokes equations), which should facilitate wider application of 
the method, where such forces are present e.g. magneto-hydrodynamics, porous flow and geo-
physical flow. All the data we present with our novel scheme correspond to maximum density 
contrasts of Λ ≈ 10. The investigations of Burgin et al [24], using a similar chromo-dynamic 
MRT model in 2D only achieve larger Λ in the case of no applied flow. Moreover, the complex 
simulations with chromo-dynamic MCLBE method [20] have Λ = 2. Apparently, the density 
contrasts achievable with a given level of resolution appear to be less than those achieved with 
the MCLBE method of e.g. Innamuro et al [37]. Nevertheless flows of immiscible fluids at 

Figure 10.  Fits to the deformed interface of a moving drop with Wb ≈ 0.02. The 
continuous red line is an optimum fit to the perturbation calculation summarized in 
equations (40)–(42). Panel (A) Λ = 0.5, (B) Λ = 1.0, (C) Λ = 2. For these data, phase 
field segregation parameter β = 0.3, R*  =  40, x*  =  0,1,..,600, y *  =  0,1,..,400 surface 
tension parameter σ = 6.0 × 10−4 lattice units, Wb � 2.0 × 10−2 and Re  <0.1.

Table 2.  Measured drop deformation. The value of parameter a2 measured by fitting 
interface data (see figure 10) is compared with that computed from equation (41), using 
the measured value of Wb (column 1) and the value of λ in equation (42).

Wb Λ a2 simulation a2 theory

0.019 123 0.50 −0.208 83 −0.209 88
0.019 043 1.00 −0.151 21 −0.215 46
0.022 791 2.00 −0.268 77 −0.267 41
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this level of density contrast are important in many chemical engineering and environmental 
applications, where verified inter-facial hydrodynamics may be more important than the the 
scale of Λ.

The methodological developments we relate here facilitate our principal aim: validation 
of interfacial hydrodynamic properties of chromo-dynamic MCLBE, with complex interface 
shapes, by computation of solved problems, namely flow past a spherical liquid drop for 
Re,Ca → 0 and, also, a lightly deformed drop. A glance at figure 5 illustrates the question. In 
panel (A), the dominant micro-current produces a strong transverse flow, which clearly vio-
lates the kinematic of condition of mutual impenetrability. However, in the case of a spherical 
drop, simulation data, once corrected for the inter-facial micro-current (see below), actually 
show excellent agreement with well-accepted analytical theory, over a range of density con-
trasts and strongly imply the operation of the kinematic condition of mutual impenetrability 
(e.g. figure 4) and the no-traction condition (e.g. figure 6). Broadly, agreement between data 
from chromo-dynamic MCLBE variants (including those with sources, herein) and the kin-
ematic condition of mutual impenetrability is very good for flat interfaces [24] and, we now 
confirm, also for curved interfaces in 3D flows. This result clearly adds considerable support 
to a number of recent chromo-dynamic MCLBE, MRT schemes [17, 19, 20], as well as future 
applications with the method. Further, for lightly deformed drops, simulation data are in rea-
sonable agreement with analytical theory,

The excellent agreement obtained in the challenging Re  =0, Ca → 0 regime, in which the 
inter-facial micro-current is a relatively large contribution to the total flow, shows the precau-
tion of phase field freezing, outlined in section 5, to be a very effective means of resolving the 
physical flow alone. Generally, the success of this procedure supports the view that the inter-
facial micro-current is a super-posed, hydrodynamic response in the linear regime (which 
implies that interfacial micro-currents in other MCLBE variants can be removed in a similar 
fashion). It also provides a way forward for the use of MCLBE throughout suspension rheol-
ogy, especially in the limit of a high volume fraction of the suspended phase, where micro-
current activity infects -indeed, dominates- hydrodynamic signals over most of the domain.

Appendix A.  Multi-relaxation-time scheme for large density contrast  
immiscible fluids with density sources/sinks

We present a detailed derivation of the Navier–Stokes equations from the multiple-relaxation-
time (MRT) lattice Boltzmann equation adapted for multi-component applications with a large 
density difference between completely immiscible components, where a body force is pres-
ent. The latter is necessary to carry the Lishchuk interface force. Density gradients associated 
with a chromo-dynamic or phase field must not affect the macroscopic dynamics, of course. 
Equally the dynamics of the developed scheme should not affect the physics of the segregation 
rule. The challenge is to compensate for their presence accurately, whilst retaining algorithmic 
stability and simplicity. The key advance outlined in this appendix is the consideration of fluid 
cources and sinks.

In the interest of a compact literature, we retain here the overall structure of the analyses of 
Guo et al [14], Dellar [25] and Hou et al [26]. For this reason we work in this appendix in two 
dimensions, using space variables x and y  and we denote flow velocity u. We choose to extend 
the scheme of Dellar because it is efficient (due to a careful choice of non-hydrodynamic 
modes N, Jx and Jy  [25] with zero equilibria), robust, straightforward to implement and, not 

least, logical. Note, within this and following appendices, 
∑

i =
∑(Q−1)

i .
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At the kinetic scale, the ‘forced’ MRT LBE for a system subject to an ‘external’ force term 
can be expressed in the following form:

fi (x + ciδt, t + δt) = fi(x, t) +
∑

j

Aij

[
f (0)
j (x, t)− fj(x, t)

]
+ δtFi,�

(A.1)

where the density-difference supporting equilibrium distributes mass away from the rest 
( j = 0) link via term φj, is in the form of:

f (0)
j = ρφj + ρtj

(
3uαcjα +

9
2

uαuβcjαcjβ − 3
2

uγuγ

)
,

and where the kinetic equation source term, Fi, is assumed to have the following properties:
∑

i

Fi = A,
∑

i

ciFi = nF,

∑
i

ciαciβFi = c2
s Aδαβ +

1
2
[Cαβ + Cβα] ,

where n is a scalar to be determined and tensor C is also to be determined.
In this appendix, we first set-out the basics, then proceed to the Chapman–Enskog analysis 

to obtain the thermodynamic limit of the kinetic scheme defined in equation (A.1) (i.e. find 
appropriate expressions for tensor C, which represents the crux of the problem of recovering 
correct hydrodynamics with the MRT scheme), then we transform to a modal description, and 
finally, we invert that transformation to obtain an explicit expression for the post-collision dis-
tribution function. To maintain parity with the analysis of Guo et al [14] at the outset, we now 
‘relax’ the form of the definition of lattice velocity given in equation (3) as follows:

ρu =
∑

i

fi(r, t)ci + mF,

with m being a constant to be determined.
Dellar’s [25] eigenvalues and left row eigenvectors for the collision matrix Aij can be tabu-

lated as in table 1, where we define

Pαβ ≡ Π
(0)
αβ +Π

(1)
αβ ,� (A.2)

for α, β = x, y, and the Π( p)
αβ , p = 0, 1 have the usual meaning, which is also set-out later in 

this appendix.
As set out in table 1, matrix Aij has the following properties which, it will be seen, are nec-

essary if one is to recover correct hydrodynamics:
∑

i

1iAij = 0,� (A.3)

∑
i

ciαAij = 0,� (A.4)

∑
i

ciαciβAij = λ3cjαcjβ .� (A.5)

Here α and β represent either x or y  direction in the lattice grid. We also assume that the lattice 
basis ci and the corresponding weights ti have the following symmetry properties:
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∑
i

ti = 1,

∑
i

ti(ciα)
2p+1 = 0, p � 0

∑
i

ticiαciβ =
1
3
δαβ ,

∑
i

ticiαciβciγciθ =
1
9
(δαβδγθ + δαγδβθ + δαθδβγ) ,

�

(A.6)

where δαβ  is the Kronecker delta such that δαβ = 1 for α = β, and 0 otherwise. Weightings ti 
are effectively the same as found in Hou et al [26]; that is t0 = 4

9, todd = 1
36  and teven = 1

9 . ( See 
figure 2 for the definition of our link vectors and indexing. ) Note that the six left row eigen-
vectors h(0), .., h(5) which appear in equations (A.3)–(A.5), as defined in table 1, are linearly 
independent but not orthogonal. We will return to this matter later. We follow Benzi et al [27, 
28] and Dellar [25] in selecting the other three ‘ghost’ eigenvectors (see table 1), in respect of 
which it is important to note the choice:

g0 = 1, godd = 4, geven = −2,

where the designation ‘odd’ indicates the value applies to long lattice links, with values of 
subscript i.

Our equilibrium distribution function f (0)
i  may now be shown to have the following proper-

ties, which, again, are necessary if one is to recover correct hydrodynamics:

Q−1∑
i=0

f (0)
i (1, ciα, ciαciβ) =

(
ρ, ρuα, (2φ1 + 4φ2)ρδαβ + ρuαuβ

)
.

� (A.7)

Functions φ1 and φ2 depend upon the chromo-dynamic field (see equation  (4)) and hence 
the spatial-temporal variation of the isotropic term of the second moment is modified as fol-

lows: 
∑

i f (0)
i ciαciβ =

[ 3
5 ((1 − αR)ρR + (1 − αB)ρB) δαβ + ρuαuβ

]
. Here, the variation of 

the speed of sound between red and blue components is apparent, with c2
sR = 3

5 (1 − αR) and 
c2

sB = 3
5 (1 − αB).

We now proceed with a Chapman–Enskog expansion of the kinetic equation and distribu-
tion function. The latter is used to expand f i around the equilibrium and to reflect the changes 
occurring at different time scales, as follows:

fi = f (0)
i + εf (1)

i + ε2f (2)
i + · · · ,

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · .

The expansion parameter ε can be interpreted as the Knudsen number, which is proportional 
to the ratio of the lattice spacing to the characteristic flow length. Clearly, the assumptions 

expressed in equation (A.7) imply 
∑

i f ( p)
i = 0 and 

∑
i f ( p+1)

i ci = 0, p � 1 but it is important 
to note that:

ρv =
∑

i

fici + mFδt ⇔
∑

i

f (1)
i ci = −mFδt.
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Let us consider the most rapid behaviour in the model. Equation (9b) of [14] (Guo et al) 
can be obtained straightforwardly as the following:

O(ε) : (ciα∂α + ∂t0) f (0)
i = − 1

δt

∑
j

Aijf
(1)
j + Fi.� (A.8)

Taking summation 
∑

i on both sides of equation (A.8) leads to:

∂α
∑

i

f (0)
i ciα + ∂t0

∑
i

f (0)
i = − 1

δt

∑
ij

Aijf
(1)
j +

∑
i

Fi

= A.
Using property (A.3), we therefore obtain:

∂αρuα + ∂t0ρ = A.

which gives the continuity equation and is the MRT equivalence of equation (10a) in [14]. 
Before proceeding further, we present the counterpart result, deriving from the kinematics 

of our model. It is reasonable to interpret equation (11), which is order δt accurate, as corre

sponding to the statement DρR
Dt = DρB

Dt = 0, from which it is straightforward to deduce [24]:

DρN

Dt0
= 0.� (A.9)

That is, on the shortest timescales, the chromo-dynamic field is a material invariant. We 
will indicate where we appeal to this fact, to eliminate certain t0 derivatives, as we proceed. 
Multiplying every term of equation (A.8) by cix and taking summation 

∑
i on both sides, we 

have:

∑
i

(ciα∂α + ∂t0)f
(0)
i cix = − 1

δt

∑
ij

cixAijf
(1)
j +

∑
i

Ficix,

�

(A.10)

where 
∑

i Ficix = nFx, n is a constant to be determined, and we will use property (A.4). 
Similar as in [26] ( Hou et al), the momentum flux tensor is defined as:

Π
( p)
αβ =

∑
i

f ( p)
i ciαciβ , p = 0, 1.� (A.11)

Equation (A.10) can be simplified to produce the Euler equation:

∂αΠ
(0)
αx + ∂t0ρux = nFx,� (A.12)

where the zeroth-order momentum flux tensor Π(0)
αx = (2φ1 + 4φ2)ρδαx + ρuαux  and δαx is 

the Kronecker delta. Equation (A.12) is the MRT equivalence of (10b) in [14] Guo et al. We 
note that the equivalent result in Guo et al [14] couples n, m and τ  (the collision parameter) in 
the case of the single-relaxation time (SRT) variant. Following Guo et al [14] we recover the 
appropriate form of the Euler equation by setting:

n = 1,

with no constraint on m at O(ε).
Proceeding to O(ε)2 in the Chapman–Enskog expansion, equation  (9c) of [14] can be 

rewritten as the following:
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O(ε2) : ∂t1 f (0)
i + (ciα∂α + ∂t0)f

(1)
i − 1

2
(ciα∂α + ∂t0)

∑
j

Aijf
(1)
j

=− 1
2
(ciα∂α + ∂t0)δtFi.

�

(A.13)

Taking summation 
∑

i on both sides of equation (A.13) and simplifying the result gives:

∂t1ρ =
(

m − n
2

)
δt∂αFα − 1

2
∂t0 A,

which is equivalent to (13a) of [14]. We recover appropriate dynamics by requiring:

m − n
2
= 0 ⇔ m =

1
2

.

A similar treatment can be performed on equation (A.13) by multiplying every term by ciy 
and taking summation 

∑
i on both sides:

∂t1

∑
i

f (0)
i ciy + ∂α

∑
i

f (1)
i ciαciy + ∂t0

∑
i

f (1)
i ciy

− 1
2
∂α

∑
ij

ciαciyAijf
(1)
j − 1

2
∂t0

∑
ij

ciyAijf
(1)
j

=− 1
2
δt∂α

∑
i

ciαciyFi −
1
2
δt∂t0

∑
i

ciyFi,

�

(A.14)

where the second order moment of Fi, 
∑

i ciαciyFi, can be calculated as c2
s Aδαy +

1
2 (Cαy + Cyα), 

according to Guo et al in [14]. Using property (A.5), equation (A.14) can be simplified as:

∂t1(ρuy) = δt

(
m − n

2

)
∂t0 Fy + ∂ασ

′
αy,� (A.15)

where the viscous stress tensor σ′
αy is given by:

σ′
αy = −

(
1 − λ3

2

)
Π(1)

αy − δt

4
(Cαy + Cyα)−

δt

6
Aδαy,� (A.16)

and where Π(1)
αβ  represents the 1st order momentum flux. In equation (A.15), the first term on 

the right hand side is eliminated by our previous choice of n  =  1, m = 1
2 . Equation (A.15) is 

the MRT equivalence of equation (13b) in [14]. The assignment of m = 1
2  accords with Guo 

et al but, interestingly, the constraint imposed by these authors 
(
n + m

τ

)
= 1 does not arise in 

the case of MRT dynamics.
Taking the second moment of equation (A.8) (i.e. multiplying by ciαciβ and summing on i), 

the re-arranging for Π(1)
αβ  gives, after a fair amount of algebra outline shortly:

Π
(1)
αβ

δt
=− 2ρ

3λ3
Sαβ − uα

λ3
(Fβ − ∂βΦ

′)− uβ

λ3
(Fα − ∂αΦ

′)

+
1
λ3

[
uγ∂γΦ′ − 1

3
ρ∂γuγ

]
δαβ

+
1

2λ3
(Cαβ + Cαβ) +

c2
s

λ3
Aδαβ +

1
2λ3

uαuβA

�

(A.17)

where Sαβ = 1
2 (∂αuβ + ∂βuα), and we have defined:
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Φ′ =
3
5
(1 − αR)(ρR + ΛρB)−

1
3
ρ.

To obtain the expression for Π(1)
αβ  in equation  (A.17), we have used the definition of f (0)

i  

(see equations (2)) and (A.5) to introduce eigenvalue λ3 and, crucially, we have used equa-
tion (A.9), which derives from a study of the model kinematics, to eliminate terms such as 
∂
∂t1

(2φ1 + 4φ2) [24]. That is, the form of Π(1)
αβ  given in equation (A.17) relies explicitly on the 

fact that ρN  is a material invariant on the shortest timescales of the model.
Using the definition of the viscous stress tensor, equations (A.16) and (A.17), and simplify-

ing, we obtain, after some algebra:

σ′
αβ

δt
= − 1

2λ3
(Cαβ + Cβα) +

2
3

(
1
λ3

− 1
2

)
ρSαβ

+

(
1
λ3

− 1
2

)
[uα (Fβ − ∂βΦ

′) + uβ (Fα − ∂αΦ
′)]

−
(

1
λ3

− 1
2

)[
uγ∂γΦ′ − 1

3
ρ∂γuγ

]
δαβ

− 1
3λ3

Aδαβ −
(

1
λ3

− 1
2

)
Auαuβ .

�

(A.18)

The discrepancy between the desired result (a term in ρSαβ ) and equation (A.18) defines the 
error term to be eliminated:

Eαβ = − 1
2λ3

(Cαβ + Cβα)

+

(
1
λ3

− 1
2

)
[uα (Fβ − ∂βΦ

′) + uβ (Fα − ∂αΦ
′)]

−
(

1
λ3

− 1
2

)[
uγ∂γΦ′ − 1

3
ρ∂γuγ

]
δαβ

− 1
3λ3

Aδαβ −
(

1
λ3

− 1
2

)
Auαuβ .

�

(A.19)

Therefore, we make the following choice for tensor Cαβ in our kinetic scale evolution equa-
tion, to correct the macro-scale dynamics

Cαβ =

(
1 − λ3

2

)
[uα (Fβ − ∂βΦ

′) + uβ (Fα − ∂αΦ
′)]

−
(

1 − λ3

2

)[
uγ∂γΦ′ − 1

3
ρ∂γuγ

]
δαβ

−
(

1 − λ3

2

)
Auαuβ − A

3
δαβ .

� (A.20)

With this choice of Cαβ, we obtain from equation  (A.18) for the model viscous stress 

σαβ = 2
3

(
1
λ3

− 1
2

)
ρSαβδt, whereupon it is immediate that the kinematic viscosity is given by

ν =
1
6

(
2
λ3

− 1
)

.
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The source term Fi in equation (A.1) may now be conveniently partitioned into: (i) a term 
responsible for correcting the model dynamics in the presence of density gradients associated 
with component changes, (ii) a term responsible for the Lishchuk force and (iii) a term result-
ing from the continuity equation not equalling to zero:

Fi = F1i + F2i + F3i,� (A.21)

where:

F1i =
ti

2c4
s

(
1 − λ3

2

){
1
3
ρ∂γuγδαβ

− (uα∂βΦ′ + uβ∂αΦ
′ + uγ∂γΦ

′δαβ)

}
(ciαciβ − c2

sδαβ),
�

(A.22)

F2i = ti

{
Fαciα

c2
s

+
1

2c4
s

(
1 − λ3

2

)
(uαFβ1 + uβFα1)(ciαciβ − c2

sδαβ)

}�

(A.23)
and

F3i = tiA −
(

1 − λ3

2

)
Auαuβ − 1

3
Aδαβ .

From equations (20) and (A.22) we identify:

Fαβ =
1

2c4
s

(
1 − λ3

2

){
1
3
ρ∂γuγδαβ

− (uα∂βΦ′ + uβ∂αΦ
′ + uγ∂γΦ

′δαβ)

}
.

The development of an MRT scheme for MCLBE after Dellar et al now reduces to one of re-
casting the model in terms of a set of linearly-dependent modes (defined in table 1). This pro-
cess is described in section 3.2. The particular modal equations, determined from equation (1) 
and table 1 are the following ‘forced’ modal evolution equations of simple, scalar relaxation:

i = 0 : ρ+ = ρ+ A,� (A.24)

i = 1 : (ρux)
+ = ρux + nFxδt,� (A.25)

i = 2 : (ρuy)
+ = ρuy + nFyδt,� (A.26)

i = 3 : (Pxx)
+ = Pxx − λ3

(
Pxx −Π(0)

xx

)
+

δt

2
(Cxx + Cxx) +

1
3

A,
�

(A.27)

i = 4 : (Pyy)
+ = Pyy − λ3

(
Pyy −Π(0)

yy

)
+

δt

2
(Cyy + Cyy) +

1
3

A,
�

(A.28)

i = 5 : (Pxy)
+ = Pxy − λ3

(
Pxy −Π(0)

xy

)
+

δt

2
(Cxy + Cyx),

�

(A.29

i = 6 : N+ = N − λ6N,� (A.30)

i = 7, 8 : J+α = Jα − λ7Jα,� (A.31)
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where α ∈ [x, y]. We note the simple form of the relaxation equations for h(6), · · · , h(8), i.e. N, 
Jx, Jy , which for λ6 = λ7 = 1, reduce to N+ = J+x = J+y = 0. This is a direct consequence of 
the choice of equilibria. Note that the fact that the scheme devised contains source and sinks 
is apparent from the first of the above modal equations.

Appendix B.  High order lattice stencils

It is possible to exploit lattice tensor isotropy, to develop non-compact stencils of any chosen 
order of accuracy for first gradient quantities. Thampi et al have given a similar treatment of 
this essential approach [30] but based around the other gradient quantities (the Laplacian).

Consider a scalar function denoted f . No confusion with the colour-blind distribution func-
tion, f i, should arise from use of this notation. A multi-variate Taylor expansion, on the lattice, 

of function f (r) may be written: f (r + Nci) = f (r) +
∑∞

n=1
Nn

n! (c · ∇) nf . Taking moments 
of this expansion with ticix and appealing to lattice properties (A.6), we straightforwardly 
obtain:

∑
i

tif (r + Nci)cix =
N
3
∂f
∂x

+
∞∑

n=2

N(2n−1)

(2n − 1)!
E(2n−1),� (B.1)

where N ∈ Z+, and we define the mth error term:

Em =

(
Q∑

i=1

ticixciα1 ciα2 ..ciαm

)(
∂mf

∂xα1∂xα2 ...∂xαm

)
.� (B.2)

We need not be concerned with expressions for the Em to eliminate them.
Let us obtain a non-compact stencil for ∂f

∂x , correct to (say) fifth order, using straightforward 
linear algebra methods. Take N ∈ [1..3] in equation (B.1) and truncate each equation at n  >  3, 
to obtain three equations (one for each choice of N). These three equations may be written as 
follows, in matrix form:



∑

i tif (r + ci)cix∑
i tif (r + 2ci)cix∑
i tif (r + 3ci)cix


 =




11

1!
13

3!
15

5!
21

1!
23

3!
25

5!
31

1!
33

3!
35

5!







1
3
∂f
∂x

E(3)

E(5)


 .� (B.3)

The inverse matrix of co-efficients, Cij =
i(2j−1)

(2j−1)!  exists and may be computed. Inverting the 

above, then, we find an expression for ∂f
∂x  as:

∂f
∂x

=
[

9
2 − 9

10
1
10

]



∑
i tif (r + ci)cix∑
i tif (r + 2ci)cix∑
i tif (r + 3ci)cix.


� (B.4)

Clearly, this approach may be adapted to yield expressions for gradients of chosen accuracy.
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