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Abstract

Background
In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical
review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon.
Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by
following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should
plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative
capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~
60% of energy intake, 5–8 g·kg− 1·d− 1) to mitigate the negative effects of chronic, training-induced glycogen
depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily
carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach
may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg− 1·d− 1 are necessary to
maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg− 1·d− 1 may be warranted
during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate
caloric deficits, runners should aim to consume 150–400 Kcal·h− 1 (carbohydrate, 30–50 g·h− 1; protein, 5–10 g·h− 1)
from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the
increased preference for savory foods in longer races; vii) Fluid volumes of 450–750 mL·h− 1 (~ 150–250 mL every 20
min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium)
may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L− 1

sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii)
Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide,
(Continued on next page)
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monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in
support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further
research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of
racing, particularly when sleep deprivation may compromise athlete safety.

Keywords: Endurance, Nutrition, Performance, Racing, Supplementation, Training, Ultra-marathon

Background
Ultra-marathons are footraces that exceed the traditional
marathon distance of 26.2miles (42.2 km) [1, 2]. Participa-
tion has steadily increased in the last 30 years [3] and,
despite its popularity as a competitive sport, most partici-
pants approach racing as a means of personal accomplish-
ment [4]. Ultra-marathons are contested the world over,
often in remote locations, on a variety of terrains, and in
extremes of temperature and altitude. The nutritional de-
mands of training and racing are congruent with the dis-
tances being contested, the latter of which is highly
variable, for example: 31miles/50 km (Blackwater Trail -
Florida, USA); 56miles/90 km (Comrades Marathon -
Durban, South Africa); 100miles/161 km (Western States
Endurance Run - California, USA); and 152miles/245 km
(Spartathlon – Athens, Greece). Moreover, such races
typically last between 6 and 48 h. The distances of multi-
stage events can range from 150miles/240 km (Marathon
Des Sables - Sahara Desert, Africa) to 3100miles/4989 km
(Self-Transcendence 3100 - New York, USA); however, in
order to permit more targeted recommendations, this
Position Stand will focus on single-stage events up to and
including 152miles (245 km).
Nutrition is a critical component of the preparation phase

and might influence the physiological adaptations to train-
ing via several means. Firstly, moderating carbohydrate
(CHO) intake and aligning it with the flux in training
volume and intensity may optimize endurance adaptations
via the mediation of adenosine-5′-phosphate- (AMP-) acti-
vated protein kinase (AMPK) cell-signalling pathways [5].
Conversely, exercising while chronically glycogen-depleted
increases circulating stress hormones (e.g., cortisol), and
causes disturbances in several indices of immune function
(e.g., circulating leukocytes) [6] thereby increasing suscepti-
bility to overtraining. Secondly, in addition to meeting the
requirements of glycogen resynthesis, optimal recovery is
dependent on endurance athletes meeting their daily pro-
tein requirements [7]; this, in turn, will assist with muscle
growth and/or maintenance. Thirdly, failing to adequately
hydrate during training, and/or rehydrate following training,
can result in carry-over effects that may reduce perform-
ance in subsequent sessions. Chronically, this can cause
changes in vasopressin and markers of metabolic dysfunc-
tion or disease [8].

With respect to racing, runners must endure numer-
ous physiological stresses (e.g., substrate depletion,
dehydration, muscle damage, oxidative stress) which can
have both acute and chronic health implications, and
these can be partially addressed through nutritional
interventions. For example, poorly-managed ultra-
marathon hydration and electrolyte strategies can result
in exercise-associated hyponatremia (serum sodium <
135mmol·L− 1), which is a potentially fatal complication
of long-distance racing [9]. Moreover, offsetting dehy-
dration can help slow the degradation of exercise [10]
and cognitive performance [11] that is associated with a
loss of body water. Long-duration exercise is also associ-
ated with a generalized inflammatory state, often charac-
terized by immunosuppression, which can be partly
assuaged by a well-balanced diet that provides the ath-
lete with sufficient macro- and micronutrients [12].
A recent review [13] highlighted that although ap-

proximately 90% of amateur ultra-marathon runners
consider nutrition to play a fundamental role in per-
formance, many athletes still neglect basic empirical rec-
ommendations [14]. Indeed, while race completion has
been positively correlated with energy and fluid intake
[14, 15], the calories consumed by some ultra-endurance
athletes is reported to be between 36 and 53% of their
racing energy expenditure [13, 15–17]. Accordingly, by
implementing nutritional strategies that are congruent
with the physical stresses of training and racing, it may
be possible to simultaneously optimize training adapta-
tions, maximize race performance, and mitigate the
negative consequences of race participation.
Despite the importance of sports nutrition for ultra-

marathon training and racing, athletes and coaches face
a number of obstacles in satisfying the nutritional de-
mands, including: poor appreciation of the physiological
demands of ultra-marathon; poor education (of coach/
athlete/support staff) with respect to the nutritional
demands of the sport; a high prevalence of athlete
gastrointestinal (GI) distress; inconsistent food/fluid tim-
ing and rationing at checkpoints; the need to minimize
pack-weight in self-sufficient races; placebo effects and
confirmation bias from prior race experiences; the
changes in food/fluid palatability associated with pro-
longed endurance exercise; sleep deprivation and
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extremes of temperature/altitude which are known to
influence appetite [18–20]. Importantly, although ultra-
endurance athletes have a reasonable knowledge of
nutrition, they tend to favour the insights of other ath-
letes over qualified nutrition experts [21]. Accordingly,
the aim of this paper is to provide an accessible,
evidence-based Position Stand on the nutritional consid-
erations of ultra-marathon training and racing to inform
best-practice of athletes, coaches, medics, support staff,
and race organizers. This is particularly pertinent given
the increased participation in ultra-marathon racing
across the globe, and the ever-expanding extremes of
race demands.

Evidence statements
This Position Stand is concerned primarily with the nu-
tritional considerations for single-stage ultra-marathon
training and racing. Articles were searched via three
online databases (Pubmed, MEDLINE, and Google
Scholar), and the main search-terms comprised various
combinations of the following: extreme-endurance, hy-
dration, marathon, nutrition (various terms), pathophysi-
ology, physiology, supplements (various terms), ultra-
marathon, and ultra-endurance. The reference-lists of
those articles selected for inclusion were manually
searched for additional literature. The data informing
our recommendations are incomplete, particularly rela-
tive to other sports, for several reasons. Firstly, despite
the growing popularity of ultra-marathon, participant
numbers are still relatively low. Moreover, runners are
often reluctant to compromise their race preparation
and/or recovery to volunteer for data-collection, particu-
larly when invasive, time-consuming testing protocols
are used. Secondly, ultra-marathons are often contested
in remote locations and environmental extremes which
do not lend themselves to complex or invasive data-
collection protocols, especially when requiring equipment
that is difficult to transport. For this review, therefore, the

decision was made to include all published studies that
were relevant to the topic, irrespective of any methodo-
logical concerns that may have arisen (e.g., low sample
sizes, short study durations, lack of randomization, lack of
control measures, and other biases). We have, neverthe-
less, been clear with respect to methodological limitations
of the studies included. Furthermore, we have graded the
strength of our evidence statements according to the sys-
tem employed by the National Heart, Lung, and Blood
Institute (NHLBI [22]), which we have adapted to incorp-
orate a fourth level pertinent to case-reports. The system
in question has also been used by other nutrition-related
reviews [23]. Table 1 is a summary of the grading system
and evidence categories.

Considerations for training
Energy and macronutrient demands
The foremost nutritional challenge facing the ultra-
marathon runner is meeting the daily caloric demands
necessary to optimize recovery and permit prolonged
and repeated training sessions [24]. From a metabolic
perspective, ultra-marathon racing places a heavy de-
pendence on oxidative metabolism to utilize glycogen
and fat stores efficiently; moreover, with increasing race
distance, there is a substantial increase in the use of free
fatty acids as fuel [25]. Therefore, a central aim of any
periodized ultra-marathon training program should be
to maximize capacity for fat metabolism, thereby sparing
muscle glycogen for the latter stages of competition.
Given that training volume and intensity will vary
throughout the season, the energy and macronutrient
intake must be periodized to accommodate variable
training loads.
Daily caloric requirements are influenced by numerous

factors, including: basal/resting metabolic rate [26], daily
activity [27], specific training requirements, body com-
position, and thermogenesis that results from food di-
gestion. The caloric demands of training will be further

Table 1 Grading system and evidence strategies

Evidence category Sources of evidence Definition

A Meta-analyses, position-stands, and
randomized-controlled trials (RCTs)

Evidence from meta-analyses, position stands, and well-designed
RCTs (or trials that depart only minimally from randomization)
that provide a consistent pattern of findings in the population for
which the recommendation is made.

B Systematic reviews including RCTs
of limited number

Evidence from endpoints of intervention studies that include only
a limited number of RCTs, post hoc or subgroup analysis of RCTs. In
general, Category B is relevant when few randomized trials exist, they
are small in size, and/or the trial results are somewhat inconsistent.

C Nonrandomized trials/observational
studies, other reviews (e.g., narrative)

Evidence from outcomes of uncontrolled/nonrandomized trials or
from observational studies. Reviews that may harbour a specific
narrative.

D Case-reports Evidence from low number or single-subject designs that report on
unique observations or events, not necessarily applicable to broader
populations.
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dependent on body mass (particularly lean mass), trained
status, session distance/duration, and environmental ter-
rain and conditions. Table 2 offers generalized estimates
on the daily caloric requirements of ultra-marathon run-
ners with respect to sex, session duration and pace, and
the typical body mass/body fat extremes of ultra-
marathon runners. The values presented are based on
data from empirical studies [28, 29], and corroborated
by independent reports suggesting that the energy cost
of running ranges from 200 to 300 kJ·km− 1 (47–71
Kcal·km− 1) [30, 31]. As an example, a 50 kg female with
15% bodyfat, engaging in continuous running for 1 h·d− 1

(at a pace of 11.5 min·mile− 1; 8.4 km·h− 1) will require an
estimated total of ~ 2004 Kcal·d− 1 in order to maintain
caloric balance. The same athlete undertaking 3 h train-
ing sessions at the same pace would require ~ 2726
Kcal·d− 1, whereas a 3 h session performed at a pace of 7
min·mile− 1 (13.8 km·h− 1) would necessitate a consider-
ably higher energy intake (i.e., ~ 3423 Kcal·d− 1) (Table
2). Training on challenging, variable, and uneven terrain,
and in extremes of temperature and/or altitude, will not-
ably increase the caloric and CHO requirements.
Careful consideration of the weekly requirements of

both training and recovery is recommended to achieve en-
ergy balance, unless there is an individual goal of weight
loss or gain. In addition, when nutritional intake cannot
be matched (e.g., on heavy training days or following
several bouts of exercise in short succession), energy
intake above maintenance calories may be warranted on
recovery days.
With respect to total energy intake, a macronutrient

distribution of 60% CHO, 15% protein, and 25% fat is
typically recommended to support repeated bouts of
endurance training [32]. When expressed relative to
body mass, ultra-marathon runners undertaking fre-
quent bouts of intense training (e.g., 2–3 h·d− 1, 5–6
times per week) typically need ~ 5–8 g·kg− 1·d− 1 of CHO
(for review, see [33]). For runners with greater training
mileage and/or pace, carbohydrate intakes ranging from
7 to 10 g kg− 1·d− 1 may be warranted, pending the
athlete’s metabolic flexibility (i.e., their individual cap-
acity to readily switch between fat or CHO oxidation at

high absolute work-loads [34]) and, specifically, their
capacity to metabolize fat. With respect to macronutri-
ent breakdown, Table 3 provides estimated daily require-
ments for individuals completing training runs at 11.5
min·mile− 1 (8.4 km·h− 1). Based on nitrogen-balance
methodology, protein intakes of > 1.6 g·kg− 1·d− 1 have
been recommended for endurance athletes who have
high training demands [35]. However, for athletes with
greater caloric requirements, relative protein intakes up
to 2.5 g·kg− 1·d− 1 may be warranted. Unless strategically
targeting a ketogenic approach, fat intakes ranging from
1.0–1.5 g·kg− 1·d− 1 are likely sufficient, although heavier/
faster individuals may need fat intakes close to 2.0 g·kg−
1·d− 1 to support caloric needs.

Evidence statement (category A/B)
Nutritional strategies should be individualized and will
be dependent on trained status, basal/resting metabolic
rate, daily activity, specific training requirements, body
composition, thermogenesis that results from food diges-
tion, session distance/duration, and environmental ter-
rain/conditions.

Evidence statement (category B/C)
The current evidence supports the contention that a
macronutrient distribution of 60% CHO (7–10 g·kg− 1·d−
1), 15% protein (1.3–2.1 g·kg− 1·d− 1), and 25% fat (1.0–
1.5 g·kg− 1·d− 1) is necessary to support repeated bouts
of endurance training. However, differences among ath-
letes with respect to training duration, pace, and body
mass, will lead to a range of caloric requirements (for both
males and females) from ~ 38–63 Kcal·kg− 1 d− 1.

Nutrition to maximize fuel efficiency
Carbohydrate ingestion before training
The aim of ultra-marathon training should be to
maximize fat metabolism in order to preserve muscle
glycogen; therefore, nutrition strategies that promote or
optimize fat oxidation should be prioritized. Carbohy-
drate pre-fuelling (within 90min of session commen-
cing), particularly with high-glycaemic foods, should be
avoided due to a CHO-mediated insulin secretion from

Table 2 Estimated daily caloric requirements for ultra-marathon runners, based on sex, typical extremes of body mass/fat, and
session duration/pace

PACE FEMALE MALE

50 kg (15% BF) 70 kg (24% BF) 65 kg (10% BF) 85 kg (20% BF)

1 h 3 h 1 h 3 h 1 h 3 h 1 h 3 h

11.5 min·mile− 1 (8.4 km·h− 1) 2004 2726 2443 3455 2553 3492 2959 4187

9 min·mile−1 (10.7 km·h− 1) 2103 3023 2581 3870 2681 3878 3127 4692

7 min·mile−1 (13.8 km·h− 1) 2236 3423 2768 4430 2855 4398 3354 5372

e.g., a female runner of body mass 50 kg (~ 15% body fat), training for 1 h per day at a pace of 9 min·mile− 1, would need an estimated 2103 Kcal·d− 1. BF body fat.
h hour
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pancreatic ß-cells which supresses adipose tissue lipoly-
sis [36]; this, in turn, may be counterproductive to the
goals of ultra-marathon training. Pre-exercise CHO
intake also facilitates the uptake of blood glucose into
muscle, and suppresses hepatic (liver) glycogenolysis
[37], which may increase the potential risk of
hypoglycaemia during the early period of a training
session in susceptible individuals [38], although any
negative impact of this on short-duration exercise per-
formance has been refuted [39]. Others have reported
hypoglycaemia-like symptoms during exercise that
follows CHO intake [40] which may negatively impact
athlete effort perceptions. Collectively, these data sup-
port the notion that athletes should aim to commence
training in a euglycemic state [41].

Train-low, compete-high
The contemporary guidelines suggest that endurance
athletes should consume approximately 60% of their
daily calories from CHO, aiming for 5–12 g·kg− 1·d− 1,
depending on whether the daily exercise duration is
moderate (~1 h per day) or very high (> 4 h per day)
[42]. These daily intakes are deemed necessary to re-
store muscle and liver glycogen, satisfy the metabolic
needs of the muscles and central nervous system, and
ensure CHO availability for days of successive train-
ing. Nevertheless, a joint proposition from the Acad-
emy of Nutrition and Dietetics, Dietitians of Canada,
and the American College of Sports Medicine [42]
suggested that:

“In some scenarios, when the focus is on enhancing the
training stimulus or adaptive response, low
carbohydrate availability may be deliberately achieved
by reducing total carbohydrate intake, or by
manipulating carbohydrate intake related to training

sessions (e.g., training in a fasted state, undertaking a
second session of exercise without adequate
opportunity for refuelling after the first session).”

The notion of train-low, compete-high is based on
insights from cellular biology suggesting that careful ma-
nipulation of glycogen via dietary CHO restriction can
serve as a regulator of metabolic cell-signalling, which
can optimize substrate efficiency and endurance adapta-
tions [5]. This may be particularly beneficial in the early
stages of a training regimen, thereby allowing sufficient
time for adaptations to occur. Periodically training with
low muscle glycogen is associated with the activation of
signalling pathways, including AMPK, which play a cru-
cial role in mitochondrial biogenesis. Importantly, this
regulates key transporter proteins including glucose
transporter-4 (GLUT-4) and the monocarboxylate trans-
porters, both of which mediate endurance performance
(for review, see [5]). Chronic training with lowered (but
not depleted) glycogen stores can result in adaptations
that, following glycogen resynthesis, increase total work
and time to exhaustion during exercise [43]. In practice,
training with lowered glycogen stores can be achieved
by: i) fasted sessions [44] whereby low-to-moderate
intensity training runs are completed in the morning
before breakfast, given that liver glycogen stores are re-
duced by as much as 80% following an overnight fast
[42]; ii) low glycogen sessions [44] whereby athletes inter-
mittently exercise twice daily every second day, instead
of training once daily, which may enhance gene tran-
scription associated with fat oxidation [43, 45].

Consequences of carbohydrate restriction
The above-mentioned strategy has been scarcely studied
in relation to ultra-marathon training and should, there-
fore, be practiced tentatively. Indeed, safe implementation

Table 3 Estimated daily macronutrient requirements for ultra-marathon runners, based on sex, typical extremes of body mass/fat,
and session duration/pace

FEMALE MALE

50 kg 70 kg 65 kg 85 kg

(15% BF) (24% BF) (10% BF) (20% BF)

1 h 3 h 1 h 3 h 1 h 3 h 1 h 3 h

Carbohydrate (g·d− 1) 301 409 366 518 383 524 444 628

Carbohydrate (g·kg− 1·d− 1) 6.0 8.2 5.2 7.4 5.9 8.1 5.2 7.4

Protein (g·d− 1) 75 102 92 130 96 131 111 157

Protein (g·kg− 1·d− 1) 1.5 2.0 1.3 1.9 1.5 2.0 1.3 1.8

Fat (g·d− 1) 56 76 68 96 71 97 82 116

Fat (g·kg− 1·d− 1) 1.1 1.5 1.1 1.4 1.1 1.5 1.0 1.4

Energy Intake (Kcal·d−1) 2004 2726 2443 3455 2553 3492 2959 4187

Energy Intake (Kcal·kg−1·d−1) 40.1 54.5 34.9 49.4 39.3 53.7 34.8 49.3

e.g., a female runner with body mass 50 kg and 15% body fat, training for 1 h per day will need an estimated 301 g carbohydrate, 75 g protein, and 56 g fat.
Overall values are based on 11.5 min·mile− 1 (8.4 km·h− 1) pace. BF body fat
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requires nutrition-specific knowledge, an understanding
of training periodization, and a degree of experience and
self-awareness on behalf of the athlete with respect to
their requirements. As such, athletes are cautioned against
training in a chronically depleted state (especially during
intensive training periods, or when repeated days of
prolonged training are scheduled) as this may lead to low
energy availability and, ultimately, relative energy defi-
ciency (RED-S [46];). A further consideration is that high-
intensity performance will likely be compromised by low
glycogen availability, due to a relative inability to sustain a
high work rate [45]. Exercising while glycogen-depleted
increases circulating cortisol and causes disturbances in
several indices of immune function (including plasma glu-
tamine and circulating leukocytes) [6], and post-exercise
immune dysfunction is most pronounced following pro-
longed, continuous exercise (> 1.5 h) performed without
food [47]. As training volume and/or intensity increase
(e.g., an increase in running mileage or a transition to
interval training), relatively greater amounts of dietary
CHO will be required to fuel performance and minimize
the risk of injury. Consequently, before implementing a
new dietary regimen, athletes and coaches must consider
each individual’s metabolic needs, ideally having sought
advice from a qualified nutrition professional, with the
program monitored and adjusted based on the individual
response. The practice of periodic CHO moderation
should, therefore, be preferred to restriction.

High-fat, ketogenic diets
Another approach in modifying macronutrient intake to
shift metabolic flexibility in favor of fat oxidation is the
use of ketogenic diets. These have traditionally involved
dramatic alterations in dietary fat utilizing a 4:1 fat:pro-
tein or fat:carbohydrate ratio. Modified ketogenic diets
(70% of energy intake from fat) are also reported to in-
crease fat metabolism [48], but may be more sustainable
relative to traditional ketogenic approaches. The term
keto-adapted has been used to denote a metabolic shift
towards efficient use of ketone bodies. While debate ex-
ists, keto-adaptation may take several weeks or months,
indicating that sustained tolerance to high-fat intake
may be necessary in order that the individual acquire the
full benefits.
Various ketogenic strategies have been studied (e.g.,

cyclical, intermittent fasting) with the premise of in-
creasing ketone production and subsequent oxidation
(i.e., nutritional ketosis ~ 0.5–3.0 mmol·L− 1). Early stud-
ies in endurance-trained athletes demonstrated potential
ergogenic effects of a short-term ketogenic diet [49], but
have been criticized due to low participant numbers
(n = 5), with poor consideration of individual responses
and negligible performance gains. More importantly,
such studies may not be applicable to training durations

typical of ultra-marathon (> 2.5 h). Nevertheless, keto-
genic diets have been shown to reduce muscle glycolysis
[50] and may, therefore, be useful during ‘adaptive’ pe-
riods of training to facilitate a rapid metabolic shift to-
wards fat oxidation, resulting in decreases in body mass.
In a group of ultra-marathon runners performing 3 h of
submaximal treadmill running, a prior ketogenic diet re-
sulted in fat oxidation rates of ~ 1.2 g·min− 1 which were
significantly higher than that observed in subjects who
had followed a high CHO diet (~ 0.75 g·min− 1) [48].
However, the subsequent impact of this change in sub-
strate efficiency on exercise performance is unclear. Al-
though early research into ketogenic diets proposed a
CHO upper-limit of 50 g·d− 1, Volek et al. [48] reported
improved substrate efficiency during exercise when ath-
letes followed a less conservative CHO intake (80 g·d− 1).
Accordingly, a strict ketogenic diet may not be necessary
to promote fat oxidation in ultra-marathon runners.
Notwithstanding the available research which indicates

a degree of benefit, ketogenic diets have been associated
with acute negative symptoms, including: fatigue, head-
aches, poor concentration, lethargy, GI discomfort, nau-
sea, and weight loss. All such symptoms may have
consequences for training, particularly when resulting in
immunosuppression and decreases in lean mass. Further-
more, it is plausible that runners training in a glycogen-
depleted state, and who are insufficiently keto-adapted,
may become acutely catabolic. It should also be noted that
significant increases in fat intake are often congruent with
decreased intake of fiber and micronutrients (specifically,
iron, magnesium, potassium, folate, and antioxidants)
[51]. Previous studies into sustained ultra-endurance exer-
cise have highlighted concerns with decreased intakes of
some micronutrients (magnesium and B-vitamins [52,
53]) and, as such, a mineral-rich approach involving plant-
based foods and wholegrains should be incorporated into
the overall nutrition strategy to support broader training
requirements.
Finally, available data support the contention that

while ketogenic approaches may enhance fuel utilization
to favor fat oxidation, the ability to perform at higher in-
tensities may be compromised, or even reduced, due to
downregulation of pyruvate dehydrogenase [54], leading
to reduced oxygen economy [55]. Despite positive anec-
dotal reports from ultra-marathon runners, there is in-
sufficient literature to support the notion that sustained
ketogenic diets are beneficial for performance, and cau-
tion is urged if following such a practice, especially when
considering the influence of in-task CHO intake on sub-
strate use during exercise.

Evidence statement (category B)
Strategically moderating CHO intake can facilitate meta-
bolic adaptations associated with enhanced endurance
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performance. However, caution is advised against train-
ing chronically glycogen depleted, particularly during
periods of repeated high-intensity exercise or prior to
racing.

Evidence statement (category B/C)
Despite the use of ketogenic diets to facilitate a rapid meta-
bolic shift towards greater fat oxidation, there is insufficient
evidence to support the use of such diets in ultra-marathon
training, and further research is warranted.

Protein and muscle damage
Prolonged or strenuous exercise, particularly that to
which the individual is unaccustomed, can result in
muscle damage attributed to metabolic overload and/or
mechanical strain [56]. Moreover, nitrogen balance can
remain below baseline for several days following un-
accustomed exercise [57]. The substantial training dis-
tances of ultra-marathon are associated with high levels
of mechanical stress. This is reinforced by empirical data
showing that whole-blood markers of muscle breakdown
(e.g., creatine kinase, lactate dehydrogenase, and serum
creatine phosphokinase) were higher following ultra-
marathons when compared to marathons run at a rela-
tively faster pace [58, 59]. Specifically, creatine kinase
concentrations of 274 ± 71 U·L− 1 were observed post-
marathon, relative to 2983 ± 1716 U·L− 1 following a 100
km race, and 4970 ± 2222 U·L− 1 after a 308 km race [58].
These data suggest that race distance and/or duration
mediate muscle damage more than race intensity, al-
though duration is not the sole determinant of muscle
damage during ultra-marathon [60]. The environmental
terrain typical of ultra-marathon also deserves consider-
ation in the training program. Downhill running (on
mountainous or undulating paths) is associated with
greater peak flexion angles relative to level or uphill run-
ning; this exaggerates the eccentric component of
impact-loading, thereby increasing muscle damage [56].
Indeed, muscle damage resulting from a single bout of
downhill running can result in a shortened stride-length
in subsequent efforts [61], and this may be pertinent for
runners training on consecutive days.
Some authors suggest that the muscle damage and

metabolic stress associated with 100 km ultra-marathons,
and equivalent exhaustive efforts, represent a danger to
human health [62], causing possible hepatic damage which
warrants further study [60]. As such, although prior con-
ditioning of the musculoskeletal system is critical for suc-
cessful participation in ultra-marathon, participants
should be mindful of nutritional strategies which may
mitigate muscle damage and the associated inflammation
during the training period. Satisfying metabolic demand
for protein is, therefore, a prerequisite for both recovery
and general health.

Protein dose and timing
Contemporary guidelines for athletes engaged in chronic
endurance training suggest dietary protein in the
amount of 1.2–2.1 g·kg− 1·d− 1 in order to support posi-
tive nitrogen balance and metabolic requirements [42,
63]. Current evidence indicates that protein intakes of
less than 1.6 g·kg− 1·d− 1 may result in a negative nitrogen
balance in endurance athletes who have high training
demands [35]. Furthermore, amounts exceeding 2.1
g·kg− 1·d− 1 are unlikely to have additive effects on muscle
protein synthesis, although the protein contribution to
energy metabolism (and other structural/functional pro-
cesses) may be greater in ultra-marathon runners en-
gaged in very high-mileage training. This may, in turn,
necessitate slightly higher intakes [64]. Higher protein
amounts are also required when CHO and/or caloric in-
takes are low or insufficient [65]. A 20 g bolus of whey
protein appears sufficient to maximize fractional syn-
thetic rate after resistance exercise [66], with up to 30 g
appropriate for larger athletes (>85 kg). Runners should
also be mindful that protein needs may be higher in
older adults [67, 68]. With respect to timing, an inter-
mediate protein feeding strategy (~20 g every 3 waking
hours) is more effective at stimulating muscle protein
synthesis than pulse-feeding (~10 g every 1.5 h), or
bolus-feeding (~40 g every 6 h) [69]. During chronic
training, protein ingested before sleep appears to be an
effective strategy to increase muscle protein synthesis
overnight (for review, see [70]). Ultra-marathon runners
who struggle to meet their protein needs through dietary
means might choose to supplement, perhaps using whey
protein due to its high bioavailability and complete
amino acid profile [63].

Selected amino acids
The branched-chain amino acids (BCAAs) have been the
focus of study for many years. An acute bout of pro-
longed exercise increases the rate of BCAA oxidation in
skeletal muscle [71], suggesting that demands in ultra-
marathon runners may be greater, but chronic training
significantly attenuates the absolute rate of BCAA oxida-
tion during exercise [71]. Therefore, the primary utility
of BCAAs may be in muscle recovery and immune regu-
lation during periods of hard training and racing [72,
73], particularly when consumed in the post-absorptive
state [74]. Although meeting absolute protein demand is
critical for the ultra-marathon runner, the literature sug-
gests that L-leucine may support the upregulation of
muscle protein synthesis, influencing mRNA translation
and the mTOR cell-signalling pathway [75]. Although
there are no existing studies on the efficacy of L-leucine
specifically for ultra-marathon runners, there are reports
that a 3–6 g daily dose of L-leucine might be beneficial
for those engaged in strenuous endurance and/or
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resistance training [75]. Furthermore, L-leucine (5g)
consumed with a small amount of whey protein (6g)
may be as effective at stimulating muscle protein synthe-
sis as a 25 g bolus of whey protein, although the latter
may be more practical [76].

Evidence statement (category B/C)
Protein intakes of ~ 1.6–2.1 g·kg− 1·d− 1 are sufficient to
optimally simulate muscle protein synthesis, which will
likely support recovery from training. Intakes of up to
2.5 g·kg− 1·d− 1 may be warranted during demanding
training periods (when caloric requirements may be sub-
stantially greater), or when CHO/caloric intake is
insufficient.

Evidence statement (category B)
An intermediate protein feeding strategy of ~20 g every
3 waking hours may provide an optimal strategy to
stimulate muscle protein synthesis for ultra-marathon
runners.

Daily hydration guidelines
A typical training session for the ultra-marathon runner
appears sufficient to cause substantial dehydration. Over
the half-marathon distance (13.1 miles), mean sweat
losses of ~1.4 L were observed in male runners and,
when offset against fluid ingestion during exercise, re-
sulted in net fluid losses of ~ 0.3 L [77]. Over longer
training distances (marathon), high-level runners exhib-
ited a body weight loss of 0.3 and 1.7%, in cool and
warm conditions, respectively, even when consuming
fluid at a rate of 1 L·h− 1 [78]. Furthermore, abstaining
from fluid resulted in an average dehydration of 3.3 and
5.3%, respectively [78]. Notwithstanding the commonly-
reported effects of mild dehydration on subsequent exer-
cise performance, chronic dehydration can influence
health outcomes, with several authors noting
dehydration-mediated changes in vasopressin, and
markers of metabolic dysfunction or disease [8]. To miti-
gate carry-over effects from one session to the next, and
to maintain general health, there are two components of
hydration that warrant consideration in the periodized
nutrition program: 1) hydration strategies to facilitate
post-exercise recovery; and 2) day-to-day hydration re-
quirements that are independent of training.

Post-exercise fluid intake
When recovery time is short, or the extent of fluid loss
is great, thirst-driven fluid intake is not adequate to re-
store water balance [79]. Targeted fluid replacement
strategies are, therefore, critical to maximize recovery
before a subsequent session. It stands to reason that run-
ners should replenish the fluid volume lost in training;
this can be estimated via pre- to post-exercise body mass

weighing. However, even in a hypohydrated state, the
obligatory excretion of metabolic waste products allows
for continued fluid losses [80]. Consequently, a fluid vol-
ume greater than that lost in training is necessary to
fully restore water balance. This notion has been demon-
strated empirically by both Shirreffs et al. [80] and
Mitchell et al. [81], who reported that a low-sodium
drink consumed at a volume of 150% of exercise-
induced body mass loss resulted in enhanced hydration
relative to an identical concentration consumed at 100%
body mass loss. Greater fluid volumes up to 200% body
mass loss may only lead to greater post-exercise hydra-
tion when consumed with higher concentrations of so-
dium (61 mmol·L− 1; 1403 mg·L− 1) [80], but fluid
volumes above this are not recommended. As these data
indicate, plain water is not likely sufficient to restore
fluid balance following training due to the consequent
decrease in plasma sodium concentration and osmolality
[82] causing diuresis. Unequivocally, post-exercise urine
output decreases as the drink sodium concentration in-
creases; sodium intake should, therefore, ideally equal
the concentration of sodium lost in sweat. The sodium
content of commercial sports drinks (~20–25mmol·L− 1;
460–575mg·L− 1) is lower than that typically lost in
sweat [83, 84] and should, therefore, be considered a
conservative target. There is little research on the sug-
gested rate of fluid intake, but the available data indicate
that slow consumption (i.e., over several hours) will
maximize the effectiveness of a rehydration strategy.

Day-to-day fluid intake
The actual fluid intake necessary to attain euhydration
on a day-to-day basis will vary with renal and extrarenal
water losses [85]; moreover, the absolute daily fluid in-
take (from food and drink) will vary widely among indi-
viduals. There are also daily fluctuations in total body
water, estimated by Cheuvront et al. to have an upper-
limit of ±1% of body weight (i.e., 0.6–0.9 kg in an adult
of 60–90 kg) [86]. Interestingly, using biochemical mea-
sures of blood and urine, average plasma osmolality was
found to be similar between groups of low-volume (1.2
L·d− 1) and high-volume (2–4 L·d− 1) drinkers [8]; it is
possible, therefore, to attain euhydration with a range of
fluid intakes. Indeed, elite Kenyan endurance runners
have been shown to exhibit a euhydrated state when
consuming fluid ad-libitum [87]. Moreover, given the
sensitivity and reliability of the human thirst sensation
to denote dehydration [79], it is reasonable to suggest
that drinking-to-thirst is appropriate for responding to
daily hydration needs. There are individuals with rela-
tively high plasma osmolality thresholds for thirst [88],
which can lead to chronic deviations from a euhydrated
state. Accordingly, the thirst sensation may only be ap-
propriate in instances of acute dehydration. For the
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ultra-marathon runner, hydration monitoring strategies
are recommended (see Hydration monitoring strategies).
In addition, overuse of fluids that contain insufficient
concentrations of electrolytes (e.g., water or hypotonic
sports drinks) may cause overhydration, decreased elec-
trolyte concentrations, an increased risk of dilutional
hyponatremia, and/or failure of the renal system [89] in
extreme cases. Ultra-marathon runners are, therefore,
cautioned against excessive fluid intakes to placate pseu-
doscientific claims that high fluid volumes are needed to
‘flush the kidneys’ or ‘remove toxins from the blood’.

Hydration monitoring strategies
Only an estimated 20% of endurance runners monitor
their hydration status [90]. Although direct measures
such as urine osmolality are rarely practical for most in-
dividuals, there are several simple and accessible tools
that can be used to estimate hydration status. The urine
color chart is the most common means of estimating hy-
dration status in runners [90]. This simple technique
involves the periodic assessment of urine color,
whereby ‘pale-straw’ would indicate that the individual
is well-hydrated (assuming this is not measured post-
ingestion of a large bolus of fluid). The Venn diagram
proposed by Cheuvront and Sawka [91] is a more
sophisticated tool (appropriate for healthy, active,
low-risk populations) which estimates hydration status
by combining measures of nude body mass, thirst
perception, and urine color.

Evidence statement (category B/C)
General day-to-day hydration can, in most instances, be
achieved by following a drink-to-thirst (ad libitum)
strategy.

Evidence statement (category A/B)
To inform post-training rehydration strategies, athletes
should measure pre- to post-exercise body mass losses,
and monitor their hydration status.

Evidence statement (category A/B)
After key training sessions, ingesting a fluid volume
greater than that lost (150%) is necessary to restore
water balance. Simultaneously, at least 460mg·L− 1 of so-
dium should be ingested, either in food or as a
supplement.

Considerations for racing
Energy and macronutrient demands
Energy expenditure
Given the durations typical of ultra-marathon, it is not
feasible to meet caloric demands in their entirety. Sev-
eral scenarios can be examined to reinforce this hypoth-
esis. First, consider that a 50 kg athlete undertaking a 50

mile (80 km) race at 8.0 km·h− 1 (~ 10 h) will expend ~
3460 Kcal. For the same event contested at the same
pace, a 70 kg athlete would expend ~ 4845 Kcal (an ap-
proximate Kcal range of 346–484 Kcal·h− 1). Second, a 50
kg athlete undertaking a 100 mile (161 km) ultra-
marathon at an average pace of 6.5 km·h− 1 may expend ~
6922 Kcal in ~ 25 h, whereas at the same pace, a 70 kg ath-
lete would likely expend ~ 9891 Kcal (range of 277–395
Kcal·h− 1). These values are similar to the estimated energy
expenditures of 200–300 kJ·km− 1 (47.8–71.7 Kcal·km− 1)
reported elsewhere [31]. When offset against the energy
intakes observed in a typical ultra-marathon, runners are
likely to exhibit a net calorie loss [92]. Accordingly, in
addition to implementing an in-race nutrition strategy, an
effort should be made to minimize caloric deficits before
and after the race, and should be considered part of the
overall holistic approach. Indeed, CHO availability for ra-
cing can be maximized by adhering to a contemporary
loading strategy (i.e., ~10 g·kg− 1·d− 1) in the 48 h leading
into the event [42, 44], with care taken to avoid GI dis-
tress. On race-day, runners are advised to consume a
familiar, easily-digestible pre-race meal, rich in low-
glycemic index CHO, while avoiding food with high fat
and/or fiber content to minimize gut discomfort during
the race.

Energy intake
Field studies indicate that successful completion of
ultra-marathon is generally associated with greater en-
ergy and fluid intake [14, 15], even when accounting for
variations in performance time [15]. A nuance of the
longer distance event is that the lower average work rate
permits a faster rate of gastric emptying, which tends to
be compromised only at exercise intensities > 70% max-
imal oxygen uptake (V̇O2max) [93]. Consequently, rela-
tive to shorter races contested at a higher intensity,
ultra-marathon runners can usually accommodate
greater energy intake and more calorie-dense foods to
the level of individual tolerance [94].
There is variability with respect to the absolute rate of

energy intake reported during racing, but a sensible range
can be determined. In 213 runners contesting one-of-
three race distances (44, 67, or 112 km; Ultra Mallorca
Serra de Tramuntana; Spain), mean energy intake was
183 Kcal·h− 1, with no discernible difference among race
distances [95]. By contrast, in longer races (100 mile, 161
km), caloric intakes of < 200 Kcal·h− 1 tended to result in
race non-completion [15], with race finishers consuming a
significantly greater number of hourly calories when com-
pared to non-finishers (4.6 ± 1.7 versus 2.5 ± 1.3 Kcal·kg−
1·h− 1). These findings have been reported elsewhere under
similar race conditions [92]. Moreover, elite runners con-
testing a series of sixteen 100 mile (161 km) ultra-
marathons, reported average energy intakes of 333 ± 105
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Kcal·h− 1 [96]. Greater caloric intakes may, therefore, be
necessary for longer races to enable performance.
Based on previous estimates of energy expenditure

during running, and the above-mentioned research, the
ISSN recommends a caloric intake of ~ 150–300 Kcal·h−
1 for race distances up to and including 50miles (~ 81
km) during which any caloric deficits may be better tol-
erated. By contrast, in longer races when the magnitude
of caloric deficits is greater and less likely to be well-
tolerated, higher intakes of ~ 200–400 Kcal·h− 1 are sug-
gested. Where GI distress is an issue, transient reduc-
tions in energy intake to the lower-end of this range are
reasonable, congruent with a reduction in race pace.
However, persistent calorie intakes of < 200 Kcal·h− 1 are
not recommended, and when nausea precludes this rate
of intake, a degree of perseverance/stubbornness with
respect to feeding (within tolerance levels) may be re-
quired. This may be particularly pertinent in the latter
stages of a race in order to minimize the risk of
hypoglycaemia which can result in race non-completion,
and reinforces the importance of progressive gut training
during the preparation phase [97].

Carbohydrate versus fat intake
The mechanistic link between glycogen depletion in
skeletal muscle and liver, and a subsequent early-onset
fatigue during prolonged exercise was made in the 1960s
[98]. In addition to negatively impacting endurance per-
formance, the reduction in plasma glucose concentration
that follows glycogen depletion is associated with acute
cognitive decline; this, in turn, can compromise athlete
safety on ultra-marathon courses of technical terrain or
those requiring navigation. Nevertheless, the absolute
CHO requirements for ultra-marathon racing are un-
clear. There is certainly a lower rate of CHO utilization
during ultra-marathon relative to marathon. Laboratory
data demonstrate that respiratory exchange ratio (RER)
gradually decreases until the 8th hour of a 24 h treadmill
run, and plateaus thereafter, reflecting a reduced rate of
energy derived from CHO; moreover, this is congruent
with a diminished running velocity [99]. As muscle
glycogen diminishes, there is a compensatory increase in
fat oxidation, with rates of 0.2–0.5 g·min− 1 typically ob-
served during endurance exercise [100], and higher
values of 1.0–1.5 g·min− 1 reported in a single subject
after 6 h of running [101, 102]. The prolonged durations
and slower relative running speeds that characterize
ultra-marathon appear, therefore, to permit increased
rates of fat oxidation for adenosine triphosphate (ATP)
re-synthesis [100]. However, there is still a risk of glyco-
gen depletion during ultra-marathon if work rate is too
high, or if nutrition is poorly managed. Worthy of note
is that extremes of both temperature and altitude will in-
crease the absolute rate of CHO oxidation during

exercise [102], and the nutrition strategy should accom-
modate these variations.
With respect to the absolute amounts of CHO and fats

to be consumed during ultra-marathon, individual strat-
egies vary greatly. There are reports that amateur run-
ners contesting races of up to 70miles (112 km) ingested
CHO at a mean rate of 30 g·h− 1 [95]. In longer races
(100 miles, 161 km), similar rates of CHO ingestion may
be typical for slower finishers (31 ± 9 g·h− 1 [103];), both
of which were lower than faster finishers (44 ± 33 g·h− 1);
these data reinforce the notion of broad variance in the
strategy used pending race pace or duration. Over the
same distance, others report greater CHO intakes of
65.8 ± 27.0 g·h− 1 (range: 36–102 g·h− 1 [15];) compared to
41.5 ± 23.2 g·h− 1 for non-finishers (range: 13.8–83.8 g·h−
1). When expressed relative to body-mass, finishers con-
sumed nearly double the amount of CHO than non-
finishers (0.98 ± 0.43 versus 0.56 ± 0.32 g·kg− 1·h− 1). Simi-
lar values are reported in elite runners (71 ± 20 g·h− 1)
during single-stage races [96]. Although current litera-
ture advocates CHO ingestion rates up to ~ 90 g·h− 1 for
events > 120 min, particularly when using ‘multiple
transportable carbohydrates’ containing glucose and
fructose [104], such high rates of ingestion may be un-
realistic for longer ultra-marathon races (> 6 h). More-
over, this rate of ingestion may lead to nutrient
malabsorption and GI distress [105]. Worthy of consid-
eration is that a CHO target of 90 g·h− 1 would necessi-
tate a race diet almost exclusively comprising CHO (360
Kcal·h− 1) which is typically unsustainable given the
greater preference for fat and salt that manifest in longer
races.
With increasing race distance, a greater proportion of

calories from exogenous fat may be critical for success
[95]. Throughout a 100-mile race, finishers consumed a
total of 98.1 ± 53.0 g of fat, which was approximately 5-
fold greater than that of non-finishers (19.4 ± 21.1 g);
moreover, when normalized for body mass and running
velocity, this equated to a rate of fat ingestion that was
three times greater in finishers (0.06 ± 0.03 versus 0.02 ±
0.02 g·kg− 1·h− 1 [15]). Collectively, these data suggest that
successful completion of ultra-marathon likely requires a
higher degree of tolerance to both CHO and fat intake
(either as solids or fluids). Foods with a greater fat con-
tent are advantageous during racing in terms of caloric
provision per unit of weight, and this is pertinent for
minimizing pack weight when running self-sufficient.
Moreover, foods with a greater fat content (see Table 4)
often contain more sodium, which may help mitigate the
risk of exercise-associated hyponatraemia.

Protein intake
Protein ingestion during racing is often neglected, for
two possible reasons: i) protein plays a secondary role in
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energy metabolism under race conditions and athletes,
therefore, prioritize the ingestion of CHO and fat; and ii)
strategic ingestion of protein is difficult when runners
rely solely on fixed checkpoints for the supply of energy/
fluid and are, therefore, at the mercy of race organizers
to supply foods with adequate protein. Nevertheless, it is
plausible that protein ingested during an ultra-marathon
would mitigate the ill-effects of muscle damage and/or
positively influence energy metabolism. Indeed, finishers
of a 100-mile (161 km) race had a significantly greater
protein intake relative to non-finishers (131.2 ± 79.0

versus 43.0 ± 56.7 g) and, when expressed as a relative
ratio per hour, race finishers consumed twice the quan-
tity (0.08 versus 0.04 g·kg− 1·h− 1) [15]. Gastrointestinal
distress and a lack of appetite in non-finishers may ex-
plain their lower overall intake.
Protein is likely an important component for pro-

longed endurance exercise because of the substantial
proteolysis and muscle damage that can manifest before
the conclusion of a race. In controlled studies, however,
there are conflicting results. Protein co-ingested with
CHO during 6 h of running and cycling improved net

Table 4 Example foods consumed by athletesa during single-stage ultra-marathon (35–100 miles, 56–161 km)

Food suggestion/serveb Energy (Kcal) CHO (g) PRO (g) FAT (g) Na+ (mg) CHO PRO FAT Na+

Sports drinks (50 g powdered serve) 186 46 0 0 255 ✓ ✓

Sports drinks (50 g) with added electrolytes (1 tablet) 186 46 0 0 505 ✓ ✓

Energy gels (40 g) 91 23 0 0 50 ✓

Energy gels with 30 mg caffeine (40 g) 90 23 0 0 40 ✓

Sports energy bar (55 g) 180 36 2 2 100 ✓

Homemade granola bars (30 g) – no added salt 140 18 3 7 0 ✓

Homemade oat bars with syrup (90 g) – no added salt 340 45 5 20 250 ✓ ✓ ✓ ✓

Dates (30 g) 89 20 1 < 1 0 ✓

Bananas (150 g) 135 30 2 < 1 10 ✓

Banana chips (30 g) 102 4 < 1 9 100 ✓

Boiled potatoes (100 g) – no added salt 173 26 3 6 10 ✓

Fruit/malt loaf (2 slices) 129 25 4 1 230 ✓

Watermelon slices (1 slice) 45 10 < 1 < 1 100 ✓

Spread-based (jam) sandwich – 1 sandwich 218 46 7 1 475 ✓ ✓ ✓

Spread-based (peanut butter) sandwich – 1 sandwich 342 38 12 17 568 ✓ ✓ ✓ ✓

Oatcakes (3 portions) 135 17 3 5 300 ✓ ✓ ✓

Meat pastry products (60 g) 189 15 12 5 400 ✓ ✓ ✓

Beef jerky (25 g) 103 3 8 6 520 ✓ ✓

Chorizo (45 g) 207 1 11 18 1600 ✓ ✓ ✓

Salami sticks (22.5 g) 113 < 1 5 10 900 ✓ ✓ ✓

Sports protein bar (64 g) 238 23 20 11 300 ✓ ✓ ✓ ✓

Sports mass gainer bar (120 g) 453 58 30 13 50 ✓ ✓ ✓

MCT energy bar (45 g) 240 11 10 19 105 ✓ ✓

Macadamia nut butter (1 sachet; 28 g) 215 4 2 22 28 ✓

Trail mix (50 g) 224 25 4 11 200 ✓ ✓

Salted cashew nuts (50 g) 296 9 11 23 200 ✓ ✓

Cheese bites (42 g / 2 portions) 140 0 10 12 320 ✓ ✓ ✓

Salted potato chips (28 g / 16 chips) 150 15 1 9 150 ✓ ✓

Green olives, medium (50 g / 15 olives) 75 3 0 6 285 ✓ ✓

aExamples taken from a survey of recreational to elite ultra-marathon runners (n = 12). bBased on typical serving sizes. MCT medium chain triglycerides, CHO
carbohydrate rich foods, PRO protein rich foods, FAT fat rich foods; Na+ = foods providing relatively greater amounts of sodium (> 250 mg). Amounts are typical
serves, based on commercial brands for example purposes only, and will vary pending ingredients and additives. Athletes should consider individual tolerances
and sensitivities. During single-stage races, recommended target ranges are: Energy = ~ 150–400 Kcal·h− 1; CHO = 30–50 g·h− 1; PRO = 5–10 g·h− 1; FAT = 1.1–17.7
g·h− 1; Fluid intake = 450–750 mL·h− 1; Sodium = > 575mg·L− 1
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protein balance to a greater extent than the ingestion of
CHO alone [106]. By contrast, when ultra-marathon
runners were supplemented with 52.5 g of amino acids
or a placebo prior to, and during, a 62-mile (100 km)
race, there were no significant differences in markers of
muscle damage or overall performance [107]. As such,
the equivocal findings may result from the co-ingestion
of protein and CHO, and/or differences in the exercise
modality used between studies. Irrespective, nutrition
strategies should be implemented that mitigate the
consequences of prolonged protein abstinence, and a
balance of macronutrients should be consumed.
A degree of self-sufficiency when racing may provide

an opportunity for runners to follow a more bespoke nu-
trition strategy to better satisfy individual protein needs
(see Table 4 for example foods). Protein-rich foods can
be carried in running belts and/or backpacks and con-
sumed ad libitum, but race organizers are also encour-
aged to provide high-protein options at checkpoints.
Runners who are concerned that consuming calories
from protein might compromise energy availability (i.e.,
by necessitating fewer calories from CHO and fat) might
consider BCAA supplements (as liquid or tablets) as an
alternative, particularly when the availability of protein-
rich foods is limited. Where possible, ultra-marathon
runners should strive to meet the typical dietary guide-
lines by consuming ~ 20–30 g of protein every 3 h [69].

The central fatigue hypothesis
Another means by which amino acid supplementation
might provide an advantage during ultra-marathon
racing is in offsetting central fatigue. Prolonged exer-
cise increases the synthesis and metabolism of 5-
hydroxytryptamine (5-HT; serotonin) in the brain,
which is associated with lethargy, drowsiness, and re-
duced motivation [108]. Critically, tryptophan (the 5-
HT precursor) competes with BCAAs to cross the
blood-brain barrier [109], with the hypothesis that in-
creasing the circulating concentrations of BCAAs
might mitigate 5-HT accumulation, attenuate the ser-
etonin:dopamine ratio [110], and potentially offset
central fatigue. Indeed, athletes showed reduced effort
perceptions when BCAAs were supplemented during
submaximal cycle exercise performed in a glycogen-
depleted state [111]. Moreover, when trained cyclists
undertook several hours of exercise in the heat to ex-
acerbate the central component of fatigue, BCAA
supplementation prolonged time to exhaustion [112].
It is feasible that the role of BCAAs in offsetting cen-
tral fatigue may be further pronounced during the
extreme-distance ultra-marathons, the conditions of
which are rarely replicated, and difficult to perform
reliably, in a laboratory environment. The effect of
BCAAs on central fatigue is far from certain, and

further studies specific to ultra-marathon running are
needed to elucidate the mechanisms that might
underpin any beneficial effects.

Savory vs. sweet
A key consideration for the ultra-marathon runner
should be the palatability of food (and fluid), particularly
in longer races. Moreover, tastes and food preferences
will likely change throughout the course of the race
[113]. There are several reports of runners complaining
of the unpalatability of sweet foods, particularly energy
gels and sports drinks, both in the heat [114] and in
ultra-marathons > 60 miles contested in thermoneutral
environments [115, 116]. These data indicate that the
aversion to simple CHO is not exclusively dependent on
ambient conditions but is also influenced by race dis-
tance and/or duration. The mechanisms underpinning
the proclivity for high-fat/salty foods are unclear, but it
has been speculated that athlete food preferences are
made to maintain a consistent chemical balance in the
body [115]. In the aforementioned studies, runners
tended to exhibit a penchant for savory food (i.e., fla-
voursome, non-sweet, and containing greater relative
amounts of fat and salt) in the latter stages of ultra-
marathon, thereby supporting the notion that changes in
food preference may reflect nutrient inadequacies result-
ing from long-duration activity. An important consider-
ation is to what extent one must rely on food provided
by organizers at pre-determined checkpoints, given that
the nature of such food is unpredictable and may be in
limited supply. Accordingly, it is recommended that run-
ners anticipate food availability, and carry their own food
to more accurately fulfil their individual needs. Finally,
race organizers are encouraged to provide a variety of
foods at checkpoints (including a mixture of proteins,
carbohydrates, and fats; see Table 4), and to publish in
advance the list of foods to be served at feed-stations, so
as to aid athletes in their race preparation. In longer
races (> 50 miles / 80 km) that require athletes to skip
multiple meals, organizers should consider providing at
least one hot, calorie-dense meal served at a strategic
point in the race. This will break the monotony associ-
ated with repetitive feed stations, and afford the runner
an opportunity to mitigate caloric deficits that will likely
accumulate.

Evidence statement (category C)
Athletes should follow a contemporary CHO-loading ap-
proach in the 48 h prior to racing in order to commence
fully-replete. Calorie deficits during racing are expected
but can be minimized by consuming 150–400 Kcal·h− 1,
pending differences in body mass, race distance/pace,
and individual gut tolerance.
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Evidence statement (category C)
Calories should be consumed from a combination of
protein (5–10 g·h− 1), CHO (30–50 g·h− 1), and fat; how-
ever, foods with greater fat content may be preferred in
longer races.

Evidence statement (category D)
As race duration increases, runners tend to favor savory
foods, likely reflecting energy and electrolyte insufficiencies.

Offsetting dehydration
Thermoregulation during exercise is largely dependent
on the mammalian sweat response to evoke evaporative
heat loss. Insufficient fluid replacement, therefore, re-
sults in a net loss of body water, the main consequence
of which is dehydration-induced cardiovascular drift; i.e.,
a reduction in plasma volume and a necessary increase
in heart rate to maintain cardiac output [117]. The result
is a diminished exercise capacity [118], and an increased
risk of heat illness and rhabdomyolysis [118]. Dehydra-
tion may also diminish cognitive performance [11, 118]
and increase perceived exertion [119]. All of the above
may compromise performance and exacerbate the risk
of injury and/or illness during ultra-marathon, particu-
larly in arduous races, those requiring navigation, or
those contested on technical terrain. Although dehydra-
tion can result from running in cold conditions due to a
blunting of the thirst response, dehydration is more of a
risk during races in hot and/or humid conditions when
sweat rates are increased [120]. Moreover, consideration
should be given to whether hot ambient conditions are
dry or wet since the latter will compromise evaporative
heat loss, increase fluid requirements, and increase the
risk of heat illness.
Drinking-to-thirst is an acknowledged means of main-

taining hydration during short-duration exercise (<90
min), when environmental conditions are cool, and/or
when exercise intensity is low (e.g., < 60% V̇O2max)
[121]. Moreover, this strategy is considered the most ap-
propriate method of minimizing the risk of hypo- or
hyper-hydration during ultra-marathon [16]. However,
given that most athletes choose to consume electrolyte
formulas by ingesting fluids, drinking-to-thirst may re-
sult in the under-consumption of sodium and other vital
electrolytes. In long-distance ultra-marathons, the most
common hydration plan is drinking according to an in-
dividualized schedule [122]. Moreover, finishers tend to
consume fluid at a greater rate than non-finishers [92].
Mean fluid ingestion rates of ~ 0.5 L·h− 1 have been ob-
served during a road ultra-marathon of 62 miles (100
km), with a broad range in the total volumes consumed
(3.3–11.1 L) [123]. Slightly higher ingestion rates of ~
0.75 L·h− 1 have been reported in races of 100 miles (161
km [92]). Collectively, the available data suggest that

there are broad individual intakes among ultra-marathon
runners, but that successful runners tend to meet the
lower-limits of recommended values.
Fluid ingestion that results in diluted plasma sodium

may be indicative that runners are not meeting their so-
dium needs [92]. Over-hydration, and the consequent di-
lution of plasma sodium, can have severe adverse effects
on health (see Exercise-associated hyponatraemia), and
there are case-reports of water intoxication in runners
who aggressively rehydrate [124]. Runners contesting
ultra-marathon should aim to consume 150–250 mL of
fluid approximately every 20 min during exercise [31,
125], but fluid intake should be adjusted pending envir-
onmental conditions, race duration, work rate, body
mass, the degree of fluid tolerance, and prior gut train-
ing. Individuals wishing to optimize performance should
determine their individual sweat rates, in advance, under
conditions which resemble competition (i.e., a similar
exercise intensity, terrain, environment) [121]. An ac-
cessible means of estimating sweat rate is to measure
nude body mass pre- and post-exercise; this will allow
for an individualized fluid ingestion strategy.

Exercise-associated hyponatraemia (EAH)
Sodium is the major ion of the extracellular fluid and
contributes to the generation of action potentials for
muscle contraction, but it also has an important role in
fluid retention [118]. Hyponatraemia, a potentially fatal
condition of cell-swelling, is clinically-defined as a serum
sodium concentration < 135 mmol·L− 1. Modest symp-
toms include headache, fatigue, and nausea, but can re-
sult in seizures and death in severe cases [9]. Two key,
interrelated mechanisms are responsible for hyponatrae-
mia: i) excessive sodium loss from the extracellular fluid
resulting from a high sweat rate (e.g., while exercising in
the heat) and prolonged sweating (e.g., during long-
duration exercise); ii) aggressive hydration strategies
using non- or low-electrolyte-containing fluids, which
precipitate overload of the extracellular fluids, thereby
diluting serum sodium [9]. Although the condition is
rare, and individual susceptibility plays a role in preva-
lence, the earliest reported cases were observed in ultra-
marathon runners and Ironman triathletes [9] (i.e., dur-
ing ultra-endurance exercise), and the athletes most
commonly developing symptomatic hyponatremia typic-
ally participate in distance running events of > 26.2 miles
(> 42.2 km) [126].
In order to reduce the risk of hyponatremia during

long-duration exercise, runners should consume sodium
in concentrations of 500–700 mg·L− 1 of fluid [118].
Slightly greater amounts of sodium (and other electro-
lytes) will be required in hot (e.g., > 25 °C / 77 °F) and/or
humid (e.g., > 60%) conditions when sweat rates are ele-
vated; in such conditions, runners should target ~ 300–
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600 mg·h− 1 of sodium (1000–2000mg of NaCl). If con-
sumed in fluid, sodium concentrations greater than ~
1000 mg·L− 1 (50 mmol·L− 1) should be avoided as this
may reduce drink palatability [127]. Indeed, there is an-
ecdotal evidence that effervescent (dissolvable) electro-
lyte tablets, and liquid electrolytes added to water, can
compromise drink palatability, particularly during long
races or those contested in the heat, thereby resulting in
reduced fluid consumption. As such, capsules or tablets
that can be swallowed whole are recommended, thus
leaving water untreated. The amounts taken should also
be offset against the sodium consumed from salt-
containing foods, although it should be noted that it is
unlikely that the recommended rate of sodium intake
will be achieved from foods alone. In addition, the con-
centrations of some electrolytes (e.g., sodium) in many
commercially-available electrolyte replacement products
are insufficient to meet the recommended intakes. As
such, runners are encouraged to pay close attention to
the ingestion method and composition of their electro-
lyte formula.
Given the inherent risks associated with EAH, greater

care should be taken to educate ultra-marathon runners
on its deleterious consequences. For example, there are
data to suggest that although sodium ingestion may help
attenuate the likelihood of developing EAH, sodium in-
take is not sufficient for this purpose when simultaneous
with excessive fluid ingestion [89]. As a result, runners
sometimes adopt a low-volume drinking plan instead of
increasing sodium intake congruent with their needs
[122]. Such poor practice must be challenged, since it is
possible to consume adequate amounts of both fluid
and sodium during prolonged exercise, with sufficient
practice.

Evidence statement (category C)
Fluid volumes of 450–750 mL·h− 1, or 150–250 mL every
20min, are recommended during racing. Electrolyte
concentrations (particularly sodium) from commercial
products may not be sufficient for optimal hydration, es-
pecially in hot/humid conditions, and additional sources
of sodium should be considered with the aim of ingest-
ing 500–700 mg·L− 1.

Gastrointestinal (GI) distress
A common cause of non-completion and/or reduced
performance in ultra-marathon racing is GI discomfort
or distress. A conservative estimate is that 30–50% of
athletes experience GI-related issues during ultra-
marathon [128], although values of 70–80% have been
reported [129, 130]. The type, duration, and severity of
symptoms vary on an individual basis, with upper GI-
tract related issues (e.g., nausea, vomiting, heartburn)
more common in longer races compared with

complaints relating to the lower GI-tract (e.g., bloating,
diarrhea) [115]. In a large cohort of males and females
(n = 272) competing in the Western States Endurance
Run (100 mile; 161 km), the majority of athletes (96%)
experienced GI symptoms at some point during the race,
particularly at the hottest and likely most challenging
part of the course, with 44% indicating that GI issues
negatively impacted race performance. Nausea was cited
as the most common symptom likely to affect race strat-
egy (reported in 60% of athletes) [130], perhaps due to
the subsequent impact on the ability to ingest food and
fluid.
The pathophysiology of GI distress during ultra-

marathon training and racing is multifactorial, but is
likely the result of reduced mesenteric blood flow [131,
132], leading to relative GI hypoperfusion [133]. This is
often predicated by dehydration and/or increased core
temperature, which can further compromise gastric
emptying and paracellular transport [134]. An increased
appearance of systemic lipopolysaccharides (LPS) from
gram-negative intestinal bacteria may result from acute
intestinal tight-junction protein disruption, thereby pro-
voking an immune response, as well as endotoxin-
mediated GI distress [134]. In one study, 81% of runners
requiring medical attention at the end of a 56 mile (90
km) ultra-marathon (Comrades Marathon, South Africa)
were reported to have LPS concentrations exceeding
100 pg·ml− 1 [135], with 81% reporting both upper- and
lower-GI distress (nausea, vomiting, and diarrhoea).
While such post-race endotoxin concentrations are con-
sidered severe in athletes, other researchers have noted a
‘bi-phasic’ endotoxin response in 68% of athletes com-
peting in an Ironman triathlon, which corresponded
with acute recovery phase cytokinemia [136]. This ‘low-
grade endotoxemia’ may, in part, influence individual re-
covery responses during the short-term (<12 h) and
chronic (>36 h) post-race period.

Strategies to minimize GI distress
Symptoms pertaining to exercise-associated GI distress
are highly individualized and may be related to predis-
position, intestinal microbiome activity (based on bacter-
ial quantity and species diversity), and feeding tolerance
[137]. The primary nutritional cause of GI upset during
ultra-marathon is the high intake of CHO, particularly
hyperosmolar solutions (e.g., > 500 mOsm·L− 1 and > 8%
CHO concentration) [128]. Runners experiencing upper-
GI discomfort were reported to have a greater energy
and CHO intake than runners not experiencing symp-
toms [115]. This supports the notion that high rates of
CHO ingestion, although being beneficial for race com-
pletion, might actually exacerbate symptoms of GI dis-
tress. In addition, strategies that could mitigate the
likelihood of LPS release into the blood and, thus,
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endotoxin-associated symptoms, include limiting the
consumption of saturated fat [138], avoiding the con-
sumption of non-steroidal anti-inflammatory drugs
(NSAIDs) [139], and maintaining an adequate water in-
take [139].
The use of ‘multiple transportable carbohydrate’ solu-

tions (i.e., those containing glucose, fructose, and/or
maltodextrin) has been shown in trained individuals to
increase overall intestinal absorption, facilitate increased
total CHO oxidation rates, and limit the degree of gut
discomfort typically observed with single CHO solutions
(e.g., fructose) [104, 140]. Although many ultra-
marathon runners rarely rely solely on sports drinks for
energy and/or CHO intake during racing, use of solu-
tions with multiple transportable carbohydrates may be
an effective short-term strategy to limit the likelihood of
non-completion due to energy under-consumption. Rec-
ognizing the early onset of GI distress, and strategizing
to maintain energy intake close to target values regard-
less, may be the key to managing some GI-related issues.
Although counterintuitive, there may be some instances
when eating regardless of nausea will give the most relief
from such symptoms, especially when nausea is caused
by hypoglycemia.
Prior race strategies that either ‘train the gut’ or in-

clude/omit some food groups may provide a solution to
limit the negative impact of GI symptoms during racing.
While ultra-marathon training may elicit progressive be-
havioral changes (e.g., greater confidence in trialing per-
sonalized nutrition strategies) and physiological
adaptations (e.g., increased intestinal tight-junction in-
tegrity and enhanced immunological response to endo-
toxin release [135]), targeted nutrition strategies may
confer a degree of individual benefit. It is apparent that
well-trained athletes can tolerate higher intakes of CHO
during running [128], and that habituation to a high
CHO diet enhances total carbohydrate oxidation rates
which may be important for sustained race performance
[141] and reduced GI upset. Where symptoms of irritable
bowel syndrome (IBS) are present, practicing a low FOD-
MAP (fermentable oligosaccharide, disaccharide, monosac-
charide and polyol) diet has been shown to reduce GI
distress acutely [142, 143]. While responses to low FOD-
MAP diets may be highly individual, strategic implementa-
tion (under guidance of a qualified nutrition professional)
in the days preceding a race, or during training when acute
symptoms occur, may confer GI support. Nevertheless,
further research is warranted to confirm whether such
benefits are applicable during sustained running.
Finally, the use of probiotic bacteria, particularly in-

cluding the gram-positive genera Lactobacillus and Bifi-
dobacterium species, has been shown to modify GI
microbiota [144] and may provide an adjunct nutritional
strategy in cases pertaining to acute GI disruption (e.g.,

GI dysbiosis, exercise-associated GI permeability). There
is evidence of reduced GI symptom prevalence and se-
verity following the administration of probiotics [145,
146] although benefits may be individualized and strain-
specific. Recently, 4 weeks of supplementation with
Lactobacillus acidophilus (CUL60 and CUL21), Bifido-
bacterium bifidum (CUL20), and Bifidobacterium ani-
malis subs p. Lactis (CUL34) was shown to reduce GI
symptoms, and may be associated with the maintenance
of running speed in the latter stages of marathon [147].
Chronic multi-strain interventions have also been shown
to reduce fecal zonulin levels by ~ 25% in endurance-
trained athletes, attributed to improved GI epithelial in-
tegrity [148]. The inclusion of dietary prebiotic nutrients
(e.g., fructooligosaccharides, inulin, pectin) may also play
an important role in short-chain fatty acid production,
which may support epithelial integrity (for review, see
[149]). The use of pre/probiotics has, however, been con-
tested [105] and, at present, there is limited evidence of a
beneficial effect in ultra-marathon racing; as such, caution
is recommended before implementing a new strategy.

Evidence statement (category B/C)
Symptoms of upper-GI distress, particularly nausea, are
commonly reported during ultra-marathons, are a cause
of non-completion, and are more prevalent in longer
races.

Evidence statement (category C)
To mitigate GI distress, runners should avoid highly
concentrated CHO, and minimize dehydration. When
symptoms manifest, runners can slow their pace and de-
crease their calorie intake, although persistent intakes of
< 200 Kcal·h− 1 should be avoided in longer races.

Evidence statement (category B)
Nutritional strategies should be practiced in training,
well in advance of racing, to allow sufficient time for GI
adaptations that optimize CHO absorption, and mitigate
GI distress.

Supplements and drugs
Caffeine
Caffeine is widely consumed as part of a normal diet,
and there is clear evidence-for-efficacy regarding its er-
gogenic properties in a variety of sports [150–152], al-
though the extent of the ergogenic effect is largely
dependent on inter-individual genetic variance [153].
Caffeine works via two potential mechanisms: firstly,
there is a centrally-mediated ergogenic effect, whereby
caffeine blocks adenosine receptors in the brain and
inhibits the binding of adenosine, resulting in improved
cognitive function and concentration; secondly, caffeine
potentiates intramuscular calcium release, thereby
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facilitating excitation-contraction coupling to increase
muscle contractile function (for review, see [154]). Caf-
feine can cause a number of side effects, however, in-
cluding GI distress, headaches, and anxiety [155].
Caffeine strategies should, therefore, be carefully
planned and practiced in advance of competition. It
should be noted that while there is some evidence that
reducing habitual intake prior to competition might en-
hance caffeine sensitivity on race day [156], the hypoth-
esis has been contested [157].
Caffeine has been shown to positively impact endur-

ance performance [158], but there is a paucity of data on
the use of caffeine during ultra-marathon. One of the
only studies to assess the caffeine habits of ultra-
marathon runners found that elite athletes contesting a
100-mile (161 km) single-stage race reported total in-
takes of ~ 912 ± 322 mg, spread over 15–19 h of running
[96]. It is the stimulant properties that are likely to be
most important for runners, particularly in races of > 24
h when sleep deprivation will affect performance and
athlete safety. However, the dose response is not linear
(i.e., larger caffeine doses do not necessarily confer
greater performance), and moderate rates of ingestion
are likely sufficient to optimize ergogenic gains [159]. A
conservative strategy may also mitigate the likelihood of
side-effects. While single boluses of ~ 4–6 mg·kg− 1

(280–420 mg for a 70 kg athlete) are common in short-
duration activities, frequent dosing of this magnitude is
not recommended. If frequent doses are to be taken dur-
ing ultra-marathon, then lower (more sustainable)
amounts (e.g., 1–2 mg·kg− 1; 70–140 mg for a 70 kg ath-
lete) are more appropriate and safer over several hours.
Importantly, caffeine has been shown to be effective
when taken in the latter stages of endurance exercise
[160]; accordingly, ultra-marathon runners are encour-
aged to target any caffeine intake for the latter stages of
competition. Although there are no specific guidelines
pertaining to caffeine intake during prolonged ultra-
marathon, repeat doses of 50 mg·h− 1 are likely to be
well-tolerated, principally reserved for night-running
when circadian rhythms are likely to be affected. Individ-
ual sensitivity should, of course, be carefully considered,
and strategies well-rehearsed. Finally, given the ergolytic
and/or dangerous effects of caffeine overconsumption,
athletes are advised to double-check their doses, ensure
their intakes are congruent with the empirical data and
safety guidelines, and give special consideration to the
method of delivery (fluid vs. tablets vs. gum).

Medium-chain triglycerides (MCTs) and ketone esters
Although enhanced fat oxidation may be facilitated by
nutritional ketosis (evoked via caloric restriction, carbo-
hydrate restriction, or chronic high-fat diets), current
evidence does not indicate an ergogenic effect when

compared to diets that have a moderate-to-high CHO
content. For example, exogenous fatty-acid supplemen-
tation (e.g., MCTs) has been proposed as a strategy to
enhance aerobic metabolism through the rapid absorp-
tion and utilization of fatty acids (or converted ketone
bodies). Animal models indicate a potential mechanistic
benefit for the inclusion of MCTs to enhance mitochon-
drial biogenesis through both Akt and AMPK signalling,
thereby enhancing endurance performance [161]. Never-
theless, controlled studies show limited impact of MCTs
on fuel utilization during exercise when human subjects
are in a low-glycogen or a glycogen-replenished state
[162]. A further consideration is that, in order to miti-
gate the likelihood of GI distress during exercise, MCT
oil should only be taken in relatively small amounts (i.e.,
< 30 g), and such low doses may have a negligible influ-
ence on fuel utilization [102] and endurance perform-
ance [163]. Nevertheless, there are anecdotal reports of
MCT use by ultra-marathon runners, during both train-
ing and racing, which warrant further study.
More recently, novel ketone esters have been shown to

optimize fuel utilization without the need of evoking ke-
tosis via carbohydrate and/or caloric restriction. Within
60min of ingestion, a 500mg·kg− 1 ketone ester in-
creased beta-hydroxybutyrate (D-βHB) concentrations to
levels associated with nutritional ketosis (~ 3 mmol·L− 1),
and increased intramuscular fat oxidation even in the
presence of replete glycogen stores or when co-ingested
with CHO [50, 164]. Moreover, such metabolic flexibility
resulted in a significant (2%) increase in endurance per-
formance [50], although this was during exercise lasting
< 120 min. Performance benefits have, however, been re-
peatedly refuted [165, 166]; as such, despite the compel-
ling mechanistic basis for ketone esters to facilitate
ultra-marathon performance, there is currently no direct
evidence to this effect, and further research is needed.

Vitamins and minerals
In general, studies have found no benefit of chronic vita-
min and/or mineral supplementation on exercise per-
formance [167, 168]. However, in a report on the
supplement habits of 20 ultra-marathon runners, 30% of
respondents reported taking multivitamins, and 20%
reported taking vitamin C before races [169], although
consumption rates as high as ~ 70% have been reported
in small cohorts [170]. To date, only one study has
assessed the effect of vitamin/mineral supplementation
on ultra-marathon performance, finding that daily inges-
tion of multivitamins and minerals for ~ 4 weeks before
competition did not result in statistically significant
differences in performance time between supplement
users and non-users (The Deutschlandlauf Marathon,
Germany) [169]. Accordingly, there is insufficient evi-
dence that multivitamin and/or mineral supplementation
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is beneficial for ultra-marathon, except in the instance of
a clinically-determined, pre-existing nutrient deficiency
or dietary insufficiency. Athletes should ensure that nor-
mal dietary intake is sufficient to provide an appropriate
variety and quantity of micronutrients.
Given the substantial oxidative stress associated with

ultra-marathon competition, isolated vitamin C has been
hypothesized as a means of attenuating the high preva-
lence of post-race immunosuppression, although the
data are conflicting. For example, a relatively high dose
of vitamin C (1500 mg·d− 1) for 7 days prior to a 50 mile
(80 km) single-stage race (The Umstead race; NC, USA)
failed to induce any group differences in oxidative or im-
mune responses, including lipid hyrdroperoxide and
plasma interleukin (IL)-6 [171]. By contrast, a randomized,
placebo-controlled trial by Peters et al. [172] reported a
significantly lower prevalence of upper-respiratory-tract
infection (URTI) in finishers of a 56-mile (90 km) single-
stage race following daily ingestion of 600mg of vitamin
C, for 14 days post-race. Moreover, in a 31-mile (50 km)
race, Mastaloudis, et al. [173] observed a significant pro-
tective effect against lipid peroxidation in runners who
had been supplemented with antioxidants (α-tocopherol
at 300mg·d− 1, and ascorbic acid 1000mg·d− 1) for 7 weeks
prior. Accordingly, acute supplementation in the immedi-
ate pre- or post-race period may mitigate oxidative damage
and immunosuppression that precedes URTI, although
further research is needed to corroborate these findings
and establish the effects of acute, in-task supplementation.
Chronic, daily supplementation with antioxidants is not
recommended due to the potential blunting effect on sev-
eral aspects of exercise-induced physiological adaptation
(for review, see [174]).

L-glutamine
L-glutamine is the most abundant amino acid in the
body, with an essential role in lymphocyte proliferation
and cytokine production [175]. In catabolic and hyperca-
tabolic situations, L-glutamine can be essential to help
maintain normal metabolic function and is, therefore,
included in clinical nutritional supplementation protocols
and recommended for immune-suppressed individuals
[175]. Nevertheless, in terms of mitigating immunodepres-
sion after exercise, the available evidence is not sufficiently
strong for L-glutamine supplements to be recommended
for athletes (for review, see [176]). By contrast, there is
emerging research that, in addition to probiotic use, L-
glutamine may provide adjunct nutritional support for GI
epithelial integrity [177]. In a recent study under con-
trolled conditions, GI permeability (assessed via serum
lactulose:rhamanose; L:R) was attenuated following de-
manding exercise performed at 30 °C when participants
consumed a pre-exercise beverage containing 0.25 g·kg− 1

fat-free mass of L-glutamine compared with placebo.

Furthermore, the authors highlighted a potential dose re-
sponse, with higher concentrations (0.9 g·kg− 1 fat-free
mass) further attenuating the L:R ratio. It has been pro-
posed elsewhere that L-glutamine supplementation may
be associated with heat-shock factor-1 (HSF-1) expression,
providing a mechanistic link to GI integrity via regulation
of occludin tight-junction proteins [178]. Further research
is warranted with respect to L-glutamine supplementation
in the context of ultra-marathon.

Analgesics and anti-inflammatories
To mitigate the extreme peripheral stress associated with
competition, ultra-marathon runners commonly use anal-
gesics including NSAIDs (Ibuprofen or aspirin), non-
opioid analgesics (paracetamol), and compound analgesics
(co-codamol) [179]. The prevalence of NSAID use among
ultra-marathon runners is as high as 60%, with 70% of
runners using NSAIDs during racing [180, 181]. There are
several reports of attenuated exercise-induced muscle in-
flammation, circulating creatine kinase levels, and muscle
soreness when NSAIDs were administered prophylactic-
ally before exercise [182, 183]. By contrast, a number of
studies have found no effect of NSAIDs on analgesia or in-
flammation during exercise [184–188]. Notwithstanding,
NSAID use can cause serious adverse effects on cardiovas-
cular, musculoskeletal, gastrointestinal, and renal systems,
all of which might be exacerbated by ultra-marathon run-
ning (for review, see [179]). There is an increased risk of
GI-injury with NSAID use, and this may be exacerbated in
long-distance runners (contesting marathon and ultra-
marathon) who already exhibit a greater incidence of GI-
bleeding [189–191]. Frequent prophylactic use of NSAIDs
is also associated with increased risk of renal side-effects
[192, 193], and concern has been expressed about a pos-
sible causative role of NSAIDs on exercise-induced hypo-
natremia [194]. Given the equivocal evidence-for-efficacy
and the acute contraindications, NSAID use during ultra-
marathon is strongly discouraged. Importantly, up to 93%
of endurance runners are naïve to any contraindications
of NSAID use [195], indicating the need for greater educa-
tion in this respect. We thereby recommend race orga-
nizers to discourage NSAID use among their participants.
Non-NSAID analgesics (e.g., paracetamol) are not pro-

hibited by The World Anti-Doping Agency (WADA),
principally because they are not considered performance
enhancing, per se, but rather performance enabling. This
group of analgesics appears to be better tolerated than
NSAIDs during competition; nevertheless, concealing
symptoms of pain might facilitate and/or exacerbate in-
jury, and the importance of afferent pain signals to indi-
cate potential tissue damage cannot be underestimated.
Caution is urged, therefore, against the frivolous and sys-
tematic use of analgesics for symptom-masking.
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Finally, there is evidence that up to 15% of legal sup-
plements are inadvertently or deliberately contaminated
with illegal drugs, which remain in the system for several
hours following consumption, and that would result in a
positive test for banned substances [196, 197]. Accord-
ingly, there is a growing need for greater batch-testing of
supplements, and special consideration should be given
when athletes are entering races that are overseen by
anti-doping organizations. This will be critical in minim-
izing the risk of inadvertent positive tests.

Evidence statement (category A)
Caffeine is a potent stimulant that may be beneficial
during racing, particularly in the latter stages of longer
events (> 24 h), when sleep deprivation might attenuate
performance and jeopardize athlete safety on technical
terrain.

Evidence statement (category B/C/D)
Despite the potential efficacy of other ergogenic aids
(e.g., ketone esters, MCTs, vitamins, etc.), there are lim-
ited data to support their use, and further research is
warranted.

Evidence statement (category B/C)
Runners should abstain from NSAIDs (e.g., Ibuprofen,
aspirin), due to multiple contraindications including in-
creased renal loads that are already exacerbated during
ultra-marathons. Analgesics may provide effective pain-
relief, but conservative use is advised in order to avoid
the inadvertent masking of serious symptoms.

Summary
Ultra-marathon is a rapidly-growing sport contested by
amateur and elite athletes the world-over. Due to its dy-
namic and complex nature, runners must endure myriad
physiological stresses which can substantially impinge
on both health and performance. This Position Stand
highlights the nutritional considerations that are import-
ant for facilitating training adaptation, improving race
performance, and mitigating the negative consequences
of participation. These recommendations, as outlined in
our evidence statements, should be considered by ath-
letes and coaches, and may inform best-practice of those
overseeing ultra-marathon events (i.e., race organizers
and medics).
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