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Abstract 

High recoverable energy density (10 J cm-3) multilayers have been fabricated from 
lead-free 0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 ceramics. High 
breakdown strength > 730 kV cm-1 was achieved through the optimisation of 
multilayer processing to produce defect-free dielectric layers 7 µm thick. Excellent 
temperature, frequency, fatigue stability and fast charge-discharge speed were 
observed in the multilayer, critical for their potential use in power electronics. 
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Introduction 

Multilayer ceramic capacitors (MLCCs) are used for pulsed power electronics due to 
their fast charging-discharging rate and high-power density.[1-5] The energy density 
(W and Wrec) and energy conversion efficiency (η) for dielectric capacitors are:  

W = ∫ EdP
Pmax

0
,                          (1) 

Wrec = ∫ EdP
Pmax

Prem
,                       (2) 

η = Wrec/W                                 (3) 

where P, Pmax and Prem are the polarization, maximum polarization and remanent 
polarisation. Thus, high Wrec can be obtained by both optimising breakdown strength 

(EBDS) and P (Pmax-Prem). For several decades, BaTiO3 (BT)-based MLCCs have 
been used as filters and de-couplers in electronic circuits. More recently, lead-based 
anti-ferroelectrics (AFEs) have been used in commercial pulsed power applications 
but the search for lead-free equivalents is on-going and becoming increasingly 
important with the rise in manufacture of electrical vehicles, where power electronics 
are a critical part of the engine and battery management systems. For lead-based [6-
13] and lead-free ceramics, [14-45] dopants are often used to induce a phase 
transition from ferroelectric (FE) to anti-ferroelectrics (AFE) and relaxor-ferroelectrics 
(RFE) states with promising lead free ceramics reported for: BT-based [23-25]; 
BiFeO3-BaTiO3 (BF-BT)-based; [26-34] Na0.5Bi0.5TiO3 (NBT)-based; [35-38] and 
K0.5Na0.5NbO3(KNN)-based [39-42] solid solutions. These compositions not only show 
great potential for developing lead-free high energy density capacitors with low 
dissipation factor (df) but also exhibit considerably lower field induced strain 
compared to lead-based materials, [6-11] such as La doped Pb(Zr, Ti)O3 (PLZT), an 
important factor in minimising mechanical failure. 

In this study, we report a novel lead-free MLCC with high Wrec fabricated from 
0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 (BF-BST-LMN) ceramics which 
from previous studies has been reported to have high Wrec ~3.38 J cm-3 and η ~ 59% 

at 230 kV cm-1.[33]  Optimised multilayers with a dielectric layer thickness of 7 µm 
revealed greatly improved Wrec (~ 10 J cm-3) and η (~ 72%), principally due to a 

higher EBDS (730 kV cm-1). 

Experimental method 

0.61BiFeO3-0.33(Ba0.8Sr0.2)TiO3-0.06La(Mg2/3Nb1/3)O3 ceramic calcined powder was 
fabricated using conventional solid-state method.[33] After ball-milling stoichiometric 
starting materials, mixed-powder was calcined at 800 °C for 4 h and 0.1 wt% MnO2 
was added before second ball-milling. Then the calcined powder was sieved and 
ball-milled with binder, plasticizer and solvent to form a slurry for tape casting. 
Multilayers were fabricated using an MTI MSK-AFA-II tape caster with a single doctor 
blade, followed by screen printed (DEK 247) Pt electrodes onto the tape. The 
electrode layers were laminated with the inner Pt electrode offset and hot-pressed 30 
mins at 80 °C. MLCCs were sintered at 920 °C for 4 h with binder burnout at 300 °C, 
followed by application of a terminal Au electrode at 850 °C for 2 h.  

The crystal structure of ceramic powder was studied using Bruker D2 phase X-ray 
diffractometer (XRD). Microstructural cross sections of MLCCs were examined using 
an FEI Inspect F50 scanning electron microscope (SEM) equipped with a 



backscattered electron (BSE) and energy dispersive X-ray (EDX) spectroscopy 
detector. 

Temperature-dependent dielectric permittivity and loss were examined using an 
Agilent 4184A precision LCR meter (Agilent Technologies Inc., Pala-Alto, CA) from 
room temperature (RT) to 500 °C at 1, 10, 100 and 250 kHz, respectively. Unipolar 
polarisation-electric field (P-E) loops of MLCCs were obtained using an aixACCT 
TF2000E ferroelectric tester at temperatures ranging from RT to 120 °C and 
frequencies ranging from 0.1 to 100 Hz. Charge-discharge behaviour of multlayers 
was measured using a PolyK 1801 (USA) machine. Multilayers were first charged 
using trek amplifier then the discharge energy was measured using a load resistor 
(10 kΩ) in series. An oscillator was used to collect the voltage which increases with 
electric field across the resistor with time. [26,27]  

Results and discussion 

The crystal structure of the BF-BST-LMN ceramic powder was examined using x-ray 
diffraction, Figure 1(a), which revealed a single perovskite phase without secondary 
peaks. A core-shell microstructure is observed under SEM in BSE mode, as 
illustrated in the inset of Figure 1(a), consistent with other reported BF-BT-based 

materials. [26, 27, 32, 43-45] The temperature-dependent dielectric permittivity (r) 
and loss (tanδ) of BF-BST-LMN MLCCs at 1, 10, 100 and 250 kHz are presented in 
Figure 1(b). Similar to other reported BF-BT-based materials, including BF-BT-
Bi(Zn2/3Nb1/3)O3, BF-BT-Nd(Zr1/2Zn1/2)O3 and BF-BT-Nd(Mg2/3Nb1/3)O3,[27, 32] several 

anomalies in r were observed as a function of temperature, consistent with a core-
shell microstructure due to chemical micro-segregation on slow-cooling. [26,27,32] 
BSE image, coupled with EDX line scan, of polished cross section of the MLCC are 
presented in Figure 1(c, d). The dielectric layer and electrode thickness was 
measured at 7 and 5 µm, respectively, with no evidence within the images of an 
interaction layer between ceramic and Pt. 

 

Figure 1. (a) XRD pattern of BF-BST-LMN ceramic powder; SEM microstructure of BF-BST-
LMN ceramics as inset. (b) Temperature dependent permittivity and loss for BF-BST-LMN 



MLCCs. (c) BSE image and (d) EDX element line scan of polished cross section of BF-BST-
LMN MLCCs. 

RT unipolar P-E loops of BF-BST-LMN MLCCs are shown in Figure 2(a). The EBDS 
for multilayers increased to 730 kV cm-1 compared with 230 kV cm-1 for bulk samples 
due to the fabrication of thinner and defect-free dielectric layers (7 µm).[7, 12] At the 
highest applied electric field, Pmax was  53 μC cm-2 and Prem ~ 7 μC, yielding a Wrec ~ 
10 J cm-3 with η ~ 72% at 730 kV cm-1 (Figure 2b). In situ temperature-dependent 
unipolar P-E loops of MLCCs were also obtained at 300 kV cm-1, as shown in Figure 
2c. The energy storage properties (Wrec and η) as a function of temperature (20-
120°C) are displayed in Figure 2d, revealing good temperature stability (<15%).  

 

Figure 2. (a) Unipolar P-E loops and (b) Calculated energy storage properties for BF-BST-
LMN MLCCs at RT; (c) Temperature dependent unipolar P-E loops and (d) calculated energy 
storage properties for BF-BST-LMN MLCCs as function of temperature. 

Under application of the same electric field (300 kV cm-1), the frequency-dependent 
and cycle-dependent unipolar (Figure 3) P-E loops of MLCCs were evaluated in the 
frequency range of 0.5 Hz to 100 Hz and up to 104 cycles, respectively. Frequency 
independence (<10%) and fatigue-resistance (<5%) were evident.  

 

Figure 3. (a) Frequency-dependent unipolar P-E loops and (b) Calculated energy storage 
properties for BF-BST-LMN MLCCs as function of frequency. (c) AC cycling of unipolar P-E 
loops and (d) Calculated energy storage properties for BF-BST-LMN MLCCs as function of 
cycle number.  



The charge-discharge behavior of the multilayers was investigated under different 
electric fields, as presented in Figure 4. The discharge processes for all applied 
electric fields (up to 400 kV cm-1) complete within 10 μs, as shown in Figure 4a. The 
discharge time (τ0.9) is found to be 1.53 μs (Figure 4b), which is the time to discharge 

90% of the total energy density (Figure 4b). The discharging energy density of 
multilayers as a function of electric field are displayed in Figure 4c, exhibiting a good 
linear relationship between the discharge energy density and the applied electric field, 
which is useful to the practical control application. The discharging power density of 
multilayers is calculated to be 2.2 MW cm-3 at 400 kV cm-1.  

 

Figure 4. (a) The discharge voltage curves of MLCCs as a function of time. (b) The discharge 
energy density curves of MLCCs as a function of time. (c) The discharge energy density of 
MLCCs as a function of electric field and (d) the discharge power density of MLCCs as a 
function of time. 

Compared with other reported lead-based/lead-free compounds (Figure 5), BF-BST-
LMN multilayers deliver one of the highest known Wrec (~ 10 J cm-3) with a fast τ0.9 

(~1.53 μs). [23, 24, 27, 32, 35, 46-48] 



 

Figure 5. A comparison of Wrec and maximum electric field values among the recently 
reported lead/lead-free MLCCs at room temperature. 

Conclusion 

Lead-free BF-BST-LMN multilayers were fabricated with dielectric and inner Pt 
electrode thicknesses of 7 μm and 5 μm, respectively. The multilayers exhibited one 
of the highest reported values of Wrec ~ 10 J cm-1 with η ~ 72 % at 730 kV cm-1. 

Furthermore, the MLCCs displayed good frequency stability from 0.5 Hz-100 Hz 
(<10%) and temperature stability from 20-120°C (<15%), fatigue-resistance up to 104 
cycles (<5%) as well as a fast charge-discharge speed (τ0.9 ~1.53 μs) which are 

essential for practical applications.  
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